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SIMPL Systems as a Keyless Cryptographic
and Security Primitive

Ulrich Rührmair

Abstract—We discuss a recent cryptographic primitive termed
SIMPL system. Like Physical Unclonable Functions (PUFs),
SIMPL systems are disordered, unclonable physical systems with
many possible inputs and a complex input-output behavior.
Contrary to PUFs, however, each SIMPL system comes with
a publicly known, individual numeric description that allows
its slow simulation and output prediction. While everyone can
determine a SIMPL system’s output slowly by simulation, only
its actual holder can determine the output fast by physical
measurement. This added functionality allows new public key
like protocols and applications.

But SIMPLs have a second, perhaps more striking advantage:
No secret information is, or needs to be, contained in SIMPL
systems in order to enable cryptographic security. Neither in the
form of a standard digital key, nor as secret information hidden
in the random, analog features of some hardware, as it is the
case for PUFs. The security of SIMPL systems instead rests on (i)
an assumption regarding their physical unclonability, and (ii) a
computational assumption on the complexity of simulating their
output. This provides SIMPL systems with a natural immunity
against any key extraction attacks, including malware, side
channel, invasive, and modeling attempts.

In this manuscript, we give a comprehensive discussion of
SIMPLs as a cryptographic and security primitive. Special
emphasis is placed on the different cryptographic protocols that
are enabled by this new tool.

Index Terms—SIMPL Systems, Public Key Cryptography,
Physical Unclonable Functions, Hardware Security.

I. I NTRODUCTION

A. Background and Motivation

Electronic communication and security devices are perva-
sive in our life. Just to name two examples, around five
billion mobile phones are currently in use worldwide [1],
[2], and the world market of smart cards has an estimated
volume of over three billion pieces per year [3], [4]. Their
widespread use makes such devices both a well-accessible
and a worthwhile target for adversaries. Many security attacks
thereby are not targeted against the employed cryptographic
primitives themselves, some of which have proven attack-
resilient over surprisingly long time spans. Instead, theytry
to extract the employed secret keys by physical or software
methods. Such key-extracting strategies are not just a theo-
retical concern, but have been demonstrated several times in
widespread, commercial systems [5], [6], [7]. This drives the
quest for new mechanisms that protect — or better still: avoid!
— the presence of secret keys in vulnerable hardware system.
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B. Physical Unclonable Functions (PUFs)

The security primitive of a Physical Unclonable Function
(PUF) [8], [9], [10], [11] was introduced, at least in part, in
order to address some of the above problems. A PUF is a
(partly) disordered physical systemS that can be challenged
with so-called external stimuli or challengesCi, upon which
it reacts with corresponding responses termedRCi

. Contrary
to standard digital systems, a PUF’s responses shall depend
on the nanoscale structural disorder present in the PUF. This
disorder cannot be cloned or reproduced exactly, not even by
its original manufacturer, and is unique to each PUF. Assuming
the stability of the PUFs responses, any PUFS hence imple-
ments an individual functionFS that maps challengesCi to
responsesRCi

. Due to its complex and disordered structure,
a PUF can avoid some of the shortcomings associated with
digital keys. For example, it is usually harder to read out,
predict, or derive its responses than to obtain the values of
digital keys that are stored in non-volatile memory. This fact
has been exploited for various PUF-based security protocols
[8], [9], [15], [28].

One prominent example are PUF-based identification
schemes [8], [9], [10]. They are usually run between a central
authority (CA) and a hardware carrying a (unique) PUFS.
One assumes that the CA had earlier access toS, and could
establish a large, secret list of challenge-response-pairs (CRPs)
of S. Whenever the hardware wants to identify itself to the
CA at some later point in time, the CA selects some CRPs
at random from this list, and sends the challenges contained
in these CRPs to the hardware. The hardware applies these
challenges toS, and sends the obtained responses to the CA.
If these responses match the pre-recorded responses in the
CRP-list, the CA believes the identity of the hardware.

C. Private Key like Functionality of PUFs

The described protocol has several well-known advantages
[8], [9]. However, one potential downside is that it presumes a
previously shared piece of secret numerical information (i.e.,
the CRP-list). This information needs to be established in a
secure set-up phase between the CA and the hardware, and
must constantly be kept secret. Furthermore, the CRP-list uses
up over time, since no single CRP should be used more than
once in the identification process, and hence must be large.
In these aspects, PUFs are resemblant of classical private key
systems.

D. Secret Information in PUFs

Another noteworthy point is that PUFs in general do not ob-
viate the presence of secret information within cryptographic
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hardware. The secret information is no longer stored in digital
form in two-level systems, such as digital secret keys stored in
non-volatile memory cells. But there is still some sort of secret
information present in most PUFs, whose disclosure breaks the
security of the system. Let us name two examples: In the case
of SRAM PUFs the information that needs to be kept secret
is the state of the SRAM cells after power up, or the tiny
manufacturing variations of the SRAM cells that determine
their state after power up [30]. Once this information is known
to an adversary, he can numerically derive the same key as the
cryptographic hardware embedding the SRAM PUF, and break
the system. In the case of Arbiter PUFs, the secret information
are the internal runtime delays in the circuit stages [11]. If this
information is known, the adversary can numerically simulate
the behavior of the PUF output by an additive, linear model,
again breaking its security [31].

In other words, the architectures of most current PUFs
“hide” or “obfuscate” secret, security-relevant information
very well in analog characteristics of integrated circuits. But
at the same time, they do not avoid the need for secret
information in hardware systems in principle; they just store
it in a different form.

E. Our Contributions

Our main contribution in this paper is the introduction and
discussion of so-called SIMPL systems as a new security prim-
itive, where the acronym SIMPL stands for SIMulation Possi-
ble, but Laborious. We present the first formal specificationof
SIMPL systems, and show that they can implement a mul-
titude of communication protocols, including identification,
message authentication, coin flipping, bit commitment, and
zero-knowledge proofs. We analyze scenarios in which these
protocols can be applied, including secure communication in
networks, item tagging and digital rights management. Further-
more, we survey existing hardware implementation candidates.
Emphasis is placed on the broad cryptographic usability of
SIMPLs, and on their potential to construct security hardware
without secret key information.

F. Related Work

The current paper is an extended version of [16] and [20].
Since [16], several follow-up papers of our group have focused
on the implementation of SIMPLs by electrical circuits [17],
[18], [19], [21] and optical structures [20]. We emphasize that
around the same time as [16], a comparable concept has been
described completely independently in [24] under the name of
a Public PUF (PPUF), and has been applied for key exchange
purposes. It builds on a ideas and hardware architectures
discussed already in [25]. Another closely related, but later
idea is the concept of time-bounded authentication (TBA)
[26], which has been suggested for identification schemes on
FPGAs.

G. Organization of this Paper

The rest of this manuscript is organized as follows: In Sec-
tion II, we give a semi-formal specification of SIMPL systems,

and discuss their properties. Sections III to V discusses proto-
cols that can be realized on the basis of SIMPL systems and
PPUFs, starting with identification and message authentication
(Sec. III), two-player protocols (Sec. IV), and key exchange
(Sec. V). Section VI treats applications of SIMPL systems, and
Section VII surveys the existing implementation candidates.
We conclude the paper in Section VIII.

II. SPECIFICATION AND PROPERTIES OFSIMPL SYSTEMS

A. Informal Description

We start this section by an informal description of the notion
of a SIMPL system1. A physical systemS is called aSIMPL
system(or just aSIMPL) if the following holds:

1) S is a partly disordered physical system. It can be
stimulated with challengesCi, upon which it reacts
with corresponding responsesRCi

. The responses are
a function of the specific disorder present inS and of
the applied challengeCi.

2) The responses are assumed to be sufficiently stable to
regard the behavior ofS as a functionFS that maps
challengesCi to responsesRCi

. The pairs of the form
(Ci, RCi

) are often called the challenge-response pairs
or CRPs ofS.

3) It is possible (at least for the original manufacturer of
S) to derive an individual numeric descriptionD(S)
of S and an algorithmSim. By use ofD(S) and Sim,
everyone can simulate the correct responsesRCi

of S
to any challengesCi, or can at least verify a purported
responseRCi

to a challengeCi for correctness.
4) Any numeric simulation and any physical emulation

that can predict the responses ofS is noticeably slower
than the real-time behavior ofS. This must hold for
simulation viaSim andD(S), but must also apply to any
adversarial algorithms and physical emulators. It must be
upheld if the adversary has knowledge ofD(S), Sim,
of all internal characteristics and disorder ofS, and had
earlier access toS.

5) It is difficult to physically cloneS, i.e., to produce
a “copy” S′ which generates the same responses as
S with comparable speed. Again, this must hold even
for an adversary who knowsD(S), Sim, the internal
characteristics and disorder ofS, and who had earlier
access toS.

Under these circumstances, a SIMPL systemS computes
the publicly known, publicly computable functionFS faster
than anything or anyone else. In particular, the holder ofS can
determine the function valueFS(Ci) = RCi

for a randomly
chosen challengeCi faster than any adversary. This feature
lies at the heart of all SIMPL-based security protocols.

Interestingly, the concept of a SIMPL is related to some
well-known work of Feynman, who investigated the Turing-
simulatability of physical systems in [32]. He conjecturedthat
(i) all physical systems can, in principle, be simulated by
Turing machines, but that (ii) such simulation cannot always

1As mentioned in Section I-E, the acronym SIMPL stands for SIMulation
Possible, but Laborious
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be carried out in real time and will create a computational
overhead [32]. SIMPL systems can be seen as a special appli-
cation of these ideas in cryptography and security, combining
them with the recent concept of physical unclonability.

B. Semi-Formal Security Specification

The above properties can be coined into a semi-formal
security specification of SIMPL systems. Its style follows
the specifications presented in [27], [28]. The specification
describes the security of SIMPL systems as a “game” with the
adversary, thereby introducing a relatively precise, parametric
adversarial model.

Specification 1 ((tmax, c, tC , tPh, q, ǫ)-SIMPL SYSTEMS.).
LetS be a physical system mapping challengesCi to responses
RCi

, with C denoting the finite set of all possible challenges.
Let c > 1 be a constant, and let furthermoretmax be the
maximum time (over all challengesCi ∈ C) which it takes
until the systemS has generated the responseRCi

to the
challengeCi.

S is called a (tmax, c, tC , tPh, q, ǫ)-SIMPL SYSTEM if
there is a stringD(S), called the description ofS, and a
computer algorithmSim such that the following conditions
are met:

1) For all challengesCi ∈ C, the algorithmSim on input
(

Ci, D(S)
)

outputsRCi
in feasible time.

2) For all binary stringsX of lengthq, any cryptographic
adversaries Eve willSUCCEEDin the followingsecurity
experiment with a probability of at mostǫ:

a) Eve is given the stringX, the numerical descrip-
tion D(S) and the code of the algorithmSim for
a time period of lengthtC .

b) Within the above time periodtC , Eve is further-
more given physical access to the systemS at
adaptively chosen time points, and for time periods
of adaptively chosen lengths. The only restriction
is that her access times must add up to a total of
at mosttPh.

c) After the time periodtC has expired, Eve is
presented with a challengeC∗ that was chosen
uniformly at random from the setC, and is asked
to output a valueVEve.

We thereby say that EveSUCCEEDSin the described exper-
iment if the following conditions are met:

(i) VEve = RC∗ .
(ii) The time that Eve needed to outputVEve after she was

presented withC∗ was at mostc · tmax.
Said probability ofǫ is taken over the uniformly random

choice ofC∗ ∈ C, and the random choices or actions that
Eve might take in steps 2a, 2b and 2c.

1) The Value of a Semi-Formal Specification:It is clear
that Specification 1 is no consistent formal definition. Too
many central aspects remain undefined from a strictly formal
perspective (and the authors are well aware of this). For
example, it is not specified exactly how the adversary is
formalized: Is he a classic probabilistic Turing machine (TM)?
He should not be a classical TM, since he must be able to

conduct physical actions on the SIMPL system while he has
access to it. After all, a classical TM cannot execute such
physical actions.

But how else could the adversary be formalized? Currently,
there is no existing formal model that could capture all
possible physical actions he might perform. In lack of such
a model, a formal, consistent definition seems impossible.

But does that mean that we have to confine ourselves
with the informal description of Section II-A? This would be
quite disadvantageous, since the description does not seem
specific enough to capture the essence of SIMPL systems.
The exact adversarial attack model is unclear, and there is no
thorough specification what the “security” of a SIMPL system
means. For example, it is not stated in which sense it shall be
infeasible for an adversary to determine the responses of the
SIMPL system as quickly as the original system.

The route that we propose in the above Specification 1 is, to
some extent, a compromise. We intentionally leave some of the
aspects of the definition imprecise; one example is the absence
of an exact computational model that underlies the adversary’s
actions. Nevertheless, we believe that the specification helps
to illustrate the exact nature of SIMPL systems more exactly,
and allows us to specify a number of security parameters that
are central to a SIMPL system’s security.

Among other things, the specification can hence help to
develop a common language and a communication interface
between the developers of SIMPL-based protocols, and the
hardware designers of the SIMPL systems themselves. A
thorough and well-defined communication between these two
groups is essential to securely apply SIMPLs in practice.

C. Properties of SIMPL Systems

Let us now discuss several features of SIMPL systems.

1) Immunity againstǫ-fraction Read-out and Simulation:
It follows from Specification 1 that it must be practically
impossible to measure the valuesRCi

of a SIMPL system
for more than anǫ-fraction of all parametersCi ∈ C within
time tPh. Otherwise, Eve could create a lookup table for an
ǫ-fraction of all possible valuesRCi

during step 2b. This
would enable her to succeed in the security experiment of
Specification 1 with probability greater thanǫ. This implies
that the set of possible measurement parametersC must be
very large, preferably exponential in some system parameter.

For the same reasons, it must be impossible for Eve to
determine more than anǫ-fraction of all CRPs within time
tC by exhaustive simulation on the basis ofSim and D(S).
This again implies thatC must be very large, and/or that the
simulation must be time consuming.

2) Immunity against Cloning:Another consequence of
Specification 1 is that previous physical access for timetPh

and computations of timetC must not allow Eve to build a
“clone” S′ of S, whose responsesR′

Ci
possess the following

properties: (i)RCi
= R′

Ci
for more than anǫ-fraction of all

Ci ∈ C, and (ii) the generation of theR′

Ci
works quickly, i.e.,

within time c · tmax.
More precisely, the following three types of clones must be

practically infeasible:
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• Physical clones, i.e., exact physical reproductions ofS
that show the same challenge-response behavior on the
same timescales.

• Digital clones, i.e., computer algorithms which numeri-
cally generate the same responses asS as fast asS.

• Functional clones, i.e., physical systems with a possible
different structure or larger lengthscales that generate the
same responses as fast asS.

Please note that the non-feasibility of functional clones is
a strong and subtle requirement. It implies that there are no
physical systems whose fabrication can be better controlled
(for example because they operate on larger length scales),
and which can emulateS in real-time. The related idea of
simulating physical systems with (better controllable) other
physical systems has again been discussed first by Feynman
in [32].

3) No Secret Information in SIMPLs and the Role of the
StringX: We stated earlier that the security of SIMPL systems
should not depend on the secrecy of some sort of binary
information contained in the SIMPL. Even if the adversary
knows all details about the internal configuration of the SIMPL
system, he shall be unable to break its security. As said earlier,
this requirement can be met in practice since even an adversary
who knows all details about the system may find it hard to
physically build or clone the system.

Specification 1 formalizes this requirement by allowing the
adversary to know any bitstringX of length q when trying
to imitate the input–output behavior of the system. If, for
example, one would try to construct a SIMPL by using a digital
system with some secret key of lengthq, then the adversary
could succeed in the experiment with probability one by using
this key as the additional inputX. No such digital, secret key
based system can therefore serve as a SIMPL system in our
sense.

4) Constant vs. Super-polynomial Time Gap:The time gap
between Eve and the real SIMPL systemS is required to
be at least a constant factorc > 1 in Specification 1. This
seems surprising, since one might expect the stipulation of
an exponential gap here. Still, there are some good reasons
for our choice. First, SIMPL systems with a small, constant
speed advantage seem easier to realize in practice than systems
with larger gaps, leaving alone systems with exponential
margins. Secondly, it is unclear whether SIMPLs with an
exponential time margin between Eve and the SIMPL exist
at all. The only known realistic computational systems which
might outperform Turing architectures by a super-polynomial
factor are quantum computers [52]. But standard quantum
computers possess no immunity against physical cloning.
They could be mass-fabricated with the same functionality,
and therefore appear unsuited as SIMPL systems. Third, it
has been frequently hypothesized within the computational
complexity community that there are no realistic hardware
systems at all that solve NP-complete problems efficiently in
practice. Two recent sources in this context are [50], [51].This
further delimits the hope of SIMPL systems which possess an
exponential security margin over Eve.

Fortunately, many applications of SIMPL systems do not
require exponential speed gaps. The protocols we suggest in
this paper show that a constant, detectable time differencesuf-
fices in order to implement such various tasks as identification,
message authentication, coin flipping, bit commitment, and
zero-knowledge proofs. An exponential time gap between the
SIMPL system and any simulation machine is even undesirable
for these protocols, since it would lead to too time consuming
simulation steps for the honest protocol participants.

5) Feedback Loops:In order to create larger time margins,
the absolute, but not the relative (!) time difference between
the original SIMPL system and any fraudster can be amplified
via feedback loops. Such feedback-loops can be constructed
as follows: Presented with a challengeC1, the SIMPL sys-
tems successively determines a sequence ofk challenge-
responses-pairs(C1, RC1

), (C2, RC2
), . . . , (Ck, RCk

), where
later challengesCn are determined by earlier resultsRCm

,
with k ≥ n > m ≥ 1. The tuple(C1, RCk

) is then regarded
as the overall challenge-response pair of the SIMPL system;
see [19] for further details. This strategy can amplify the
absolute time margin between the SIMPL and the simulator
and compensate network and transmission delays.

A concrete example will probably illustrate our point best.
Let us assume that we possess a SIMPL systemS which pro-
duces its responses intmax of 10 nanoseconds (ns), and which
possesses a speed advantage ofc = 2 over all simulations. Any
adversaries then cannot produce the response to a randomly
chosen challenge within 20 ns. This tiny difference of 10 ns
vs. 20 ns would not be detectable in many practical settings,
for example in networks with natural delays. Nevertheless,
the application of repeated feedback loops can amplify not
the relative, but the absolute time margin, to values such as1
millisecond (ms) vs. 2 ms, or 1 sec vs. 2 sec. These values
allow compensation of small transmission delays.

6) SIMPLs with Multi-bit Output:In some applications, it
is convenient if a SIMPL system produces not just one bit
as response, but a multi-bit output. Some implementations of
SIMPLs have this property naturally (for example the optical
implementation of section VII-C). Otherwise, feedback loops
can allow us to create multi-bit outputs from SIMPL systems
with 1-bit outputs: One simply considers a concatenation (or
some other function, for example a hash function) of the last
n responsesRCk−n+1

, . . . , RCk
in the feedback loop. This

concatenation (or function) can be interpreted as the overall
output of the SIMPL.

Another option to create “large” SIMPL systems withk-
bit outputs from “small” SIMPL systems with 1-bit outputs is
to employk such SIMPL systems in parallel, and to directly
concatenate their responses to produce ak-bit overall output.
This method has been suggested already in the context of PUFs
in [13].

7) A Digital Quasi-SIMPL (Which Does not Meet Speci-
fication 1): It may be useful for the readers to attempt to
design digital, secret key based systems that have some of the
properties of SIMPL systems. We call such systems quasi-
SIMPLs. One possibility to construct a quasi-SIMPL is as
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follows: One takes a private key, public key pair(sk, pk) from
a standard digital signature scheme, stores the secret keysk
in a hardware system, and makespk public. Upon receiving
a challengeC, the hardware chooses a random numberr
of length k (with k being a public security parameter), and
computes the hardware’s response asRC = Sigsk(C‖r)
(‖ denoting concatenation). In order to verify that a certain
responseRC is correct, one must test by exhaustive search if
RC is a correct signature of the stringC‖r for some bitstring
r of lengthk. Choosingk of the correct length will create the
desired speed gap.

If the key sk is stored safely in the hardware system, then
— seen merely from the outside — it will behave similar as
a SIMPL system, i.e., as a quasi-SIMPL. Nevertheless, we
would like a true SIMPL system to be free of any secret
key information; it would be desirable if Specification 1 ruled
out quasi-SIMPLs. And indeed it does: setting the string
X = sk allows Eve to succeed in the security experiment
of Specification 1 with probability 1. This again illustrates
the usefulness of the specification, and stresses the important
function of the stringX within the specification.

8) Error Correction: Finally a quick note on error cor-
rection. In Specification 1 and throughout the rest of the
paper, we assumed for the simplicity of our treatment that
the responses of a SIMPL system are stable. In practice,
error correction must and can be applied to achieve this goal.
Reliable information extraction from noisy PUF responses has
been treated, for example, in [9], [54], [55], [56], [57] andthe
references therein. We refer the reader to the large body of
existing work on this topic, and ignore error correction aspects
in the rest of the paper.

III. I DENTIFICATION AND MESSAGEAUTHENTICATION

We now proceed to several cryptographic protocols that
can be implemented by SIMPL systems, starting with the
identification of entities and the authentication of messages.

A. Identification of Entities

We assume that Alice holds an individual
(tmax, c, tC , tPh, q, ǫ)-SIMPL system S, and has made
the corresponding dataD(S), Sim, the valuec · tmax, and a
description ofC public. Now, she can prove her identity to
an arbitrary second party Bob as follows, withk being the
security parameter of the protocol:

Protocol 2: IDENTIFICATION OF ENTITIES

1) Bob choosesk challengesC1, . . . , Ck uniformly at
random fromC.

2) For i = 1, . . . , k do:

a) Bob sends the valueCi to Alice.
b) Alice determines the corresponding responseRCi

by an experiment on her SIMPL systemS, and
sends this value to Bob.

c) Bob receives an answer from Alice, which we
denote byVi. If Alice’s answer did not arrive

within time c · tmax, then Bob setsVi = ⊥ and
continues the for-loop.

3) Bob computes the valueRSim
Ci

= Sim(Ci,D(S)) for all
i = 1, . . . , k, and verifies ifRSim

Ci
= Vi 6= ⊥. If this is

the case, Bob believes Alice’s identity, otherwise not.

In a nutshell, the security of the protocol follows from the
fact that an adversary is unable to determine the valuesRCi

for randomly chosenCi comparably quickly as Alice. This
holds as long as (i) the lifetime of the systemS (and the
period sinceD(S) was made public) does not exceedtC , and
(ii) the adversary’s accumulated physical access times do not
exceedtPh (see Specification 1). In that case, the adversary’s
probability to succeed in the protocol without possessingS
decrease exponential ink.

Bob can improve his computational efficiency by verifying
the correctness of the responsesRCi

only for a randomly
chosen subset of all responses. If necessary, possible network
and transmission delays can be compensated for by amplifying
the absolute time gap between Eve andS through feedback
loops (see Section II-C5).

If the SIMPL system has multi-bit output (see Section
II-C6), then a value ofk = 1, i.e., a protocol with one round,
may suffice. In these cases, the parameterǫ of the multi-output
SIMPL system will in itself be exponentially small in some
system parameter (for example in the size of the sensor array
in the optical SIMPLs discussed in Section VII-C).

B. Authentication of Messages

Alice can also employ an individual(tmax, c, tC , tPh, q, ǫ)-
SIMPL systemS in her possession to authenticate messages to
Bob. Again, we suppose that the valuesD(S), Sim, c · tmax,
and a description ofC are public.

Protocol 3: AUTHENTICATION OF A MESSAGEN

1) Alice sends the messageN that shall be authenticated
to Bob.

2) Bob choosesk · l challengesC1

1
, . . . , C1

k , C2

1
, . . . , C2

k ,
. . . , Cl

1
, . . . , Cl

k uniformly at random fromC.
3) For i = 1, . . . , l do:

a) Bob sends the valuesCi
1
, . . . , Ci

k to Alice.
b) Alice determines the corresponding responses

RCi
1
, . . . , RCi

k
by experiments on her SIMPL sys-

tem S.
c) Alice derives a MAC-keyKi from RCi

1
, . . . , RCi

k

by a publicly known procedure, for example by
applying a publicly known hash function to these
values. She sendsMACKi

(N) to Bob.
d) Let us denote the answer Bob receives from Alice

by Vi. If Vi did not arrive in timec · tmax + tMAC ,
wheretMAC is the time to deriveKi and compute
MACKi

(N), then Bob setsVi = ⊥ and continues
the for-loop.

4) For i = 1, . . . , k and j = 1, . . . , l, Bob computes the
valuesRSim

C
j
i

= Sim(Cj
i ,D(S)) by simulation viaSim.

He derives the keysKSim
1

. . . ,KSim
k by application of
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the same procedure (e.g. the same publicly known hash
function) as Alice in step 3c.

5) For all i = 1, . . . , k, Bob checks if it holds that
MACKSim

i
(N) = Vi 6= ⊥. If this is the case, he

regards the messageN as properly authenticated, other-
wise not.

The idea behind the protocol is that an adversary cannot
determine the responsesR

C
j
i

and the MAC-KeysK1, . . . ,Kl

as quickly as Alice. As earlier, verification of a randomly
chosen subset of all MACs can improve Bob’s computational
efficiency in step 5. Depending on the exact circumstances, a
few erroneousVi may be tolerated in step 5, too.

We assume without loss of generality in Protocol 3 that the
MAC can be computed quickly (including the derivation of
the MAC keysK1, . . . ,Kl), i.e., within timetMAC , and that
tMAC is small compared toc · tmax. Again, this condition
could be realized by amplification through feedback loops if
necessary (see Section II-C5). It is known that MACs can be
implemented very efficiently [36]. If information-theoretically
secure hash functions and MACs are used, the security of the
protocol will not depend on any assumptions other than the
security of the SIMPL system.

If the SIMPL system has a multi-bit output, then values of
k = 1, i.e., sending just one challenge in each round, or of
l = 1, i.e., employing just one round of communication, may
suffice. Such a multi-bit output can arise either naturally,for
example through the choice of the SIMPL system itself (as
noted earlier, the optical SIMPL system mentioned in Section
VII-C has this property). Or it can be enforced by feedback
loops, or by using several independent SIMPL systems in
parallel (see Sections II-C5 and II-C6). In fact, such measures
even are strictly necessary to uphold the protocol’s security if
the constantc has got a very low value.

IV. T WO-PLAYER PROTOCOLS

SIMPL systems also have a notable potential for two-player
protocols. This extends their application potential, but had
not been addressed in earlier publications. Three important
protocols are covered in this section.

A. Coin Flipping

Coin flipping [33] is a long known two-player protocol
which can serve well as a first simple touchstone for the
potential of SIMPLs with respect to two-party schemes. Its
basic setting is as follows: Two players Alice and Bob want
to communicate over a binary channel in order to produce
a random binary valueB (“a fair coin”) as output. The
protocol must guarantee that the output cannot be biased or
pre-determined by one of the players; see [33] and [46] for
more details.

In our setting, we assume that Alice holds a
(tmax, c, tC , tPh, q, ǫ)-SIMPL system with description
D(S), and that Bob knowsD(S), Sim, and C. Without
loss of generality, we assume that the responses ofS have
a length of one bit (otherwise, one can take the exclusive
or of all single bits in the response string, or apply another

suited function to the responses). Under these circumstances,
a time-restricted coin flipping protocol based on SIMPL
systems can be implemented as follows:

Protocol 4: COIN FLIPPING

1) Alice sends a randomly chosen challengeC ∈ C to Bob.
2) Bob immediately after receipt ofC answers by sending

a random bitr to Alice.
3) Alice verifies if she receivedr within time less than

c · tmax after she sentC. If not, she aborts the protocol.
Otherwise, she determinesRC by measurement onS,
and sets the flipped coin to beB = RC ⊕ r.

4) Bob verifies ifC ∈ C, and aborts if this is not the case.
He determinesRC by simulation, and sets the flipped
coin to beB = RC ⊕ r.

The security of the protocol straightforwardly follows from
the assumption thatS is a (tmax, c, tC , tPh, q, ǫ)-SIMPL sys-
tem: If Alice receives the valuer within time c·tmax, then Bob
cannot knowRC before he sends awayr. He hence cannot
chooser as a function ofRC in order to bias the outcome of
B. Protocol 4, for the first time, illustrates a potential for two-
player protocols in SIMPLs which goes beyond the classical
identification and message authentication applications.

B. Bit Commitment

Can more advanced two-party protocols be realized on the
basis of SIMPL systems? One good candidate to investigate
is bit commitment (BC) [45], [46].

BC is a two-player protocol where one party acts as the
sender, and a second party acts as the receiver. The sender
holds a bit b at the beginning of the protocol, while the
receiver holds the empty input. The protocol has two stages,
a commit phase and a reveal phase. At the end of the commit
phase, the sender and receiver must have interacted in such
a way that the sender has bound or committed himself to
the bitvalueb by the communication, but that the receiver
does not know this value, and finds it infeasible to derive
it from the communication. In the reveal phase, the sender
“opens” his commitment and allows the receiver to learnb.
After completion of the commit phase, it must be infeasible
for the sender to change the commitment he made, and to
run the reveal phase in such a way that the receiver learns a
different bit1−b. Further details and a formal definition can be
found in [46]. Bit commitments are important components of
zero-knowledge proofs [47], [48], and other, more general two-
party cryptographic protocols [49]; see again [46] for further
information.

The SIMPL-based BC scheme we suggest here employs
interactive hashing (IH) [42] as a sub-protocol. IH is another
useful two-player protocol, in which Alice’s initial inputis
an m-bit string C, and Bob has no input. At the end of the
protocol, Alice and Bob know twom-bit stringsC0 andC1,
with the properties that (i)Cj = C for some bitj ∈ {0, 1},
but Bob does not know the value ofj, and that (ii) the other
string C1−j is a random bitstring of lengthm, which neither
Alice nor Bob can determine alone. Secure IH can be realized
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in an information theoretic fashion, i.e., independently of
any computational or other unproven assumptions. For further
details, see [42], [43], [44].

In the following Protocol 5, Alice acts as the sender and
Bob as the receiver of the bitb. We assume that Bob holds a
(tmax, c, tC , tPh, q, ǫ)-SIMPL systemS, and that Alice knows
D(S), Sim and C, and holds a bitb she wants to commit.
The protocol splits in a commit phase and a reveal phase, and
works as follows.

Protocol 5: BIT COMMITMENT

Commit Phase:
1) Alice chooses a random challengeC from C, and

determinesRC by simulation.
2) Alice and Bob start an interactive hashing protocol.

Alice’s input is C, and Bob’s input is the empty string.
Both get two stringsC0 andC1 as output.

3) Alice determines the indexi for which Ci = C, and
sends Bob the valuei ⊕ b.

Reveal Phase:
4) Alice sends Bob the valuesi and RCi

(which is equal
to RC if Alice behaves honestly, and hence known to
her from step 1).

5) Bob checks if the time interval between the start of the
IH protocol in step 2 and the reception of the valuesi
and RC in step IV-B is smaller thanc · tmax. If this
is the case, he verifies by measurement onS that the
valueRCi

sent by Alice is correct. If this holds, too, he
accepts the BC as valid, and reveals the committed bit
by computing(i ⊕ b) ⊕ i = b.

Please note that the commit phase and the reveal phase
of this scheme must be executed relatively closely after each
other. In particular, Alice must not have time to compute the
value RC1−i

in the time interval between completion of the
interactive hashing protocol in step 2 and the reveal step 4.
If she could computeRC1−i

, she can open the commitment
at will by sending either the valuesi andRCi

, or the values
1 − i andRC1−i

in step 4.
This means that the so-called binding property of the above

BC scheme (i.e., the fact that Alice cannot change the value
anymore after the commit phase) is conditional upon the
prompt execution of the reveal phase. On the other hand, the
so-called hiding property of the scheme (i.e., the fact that
Bob will not learn b unless the reveal phase is executed) is
unconditional: No matter how much time passes, Bob cannot
learn the bitb unless Alice gets engaged in the reveal phase.

This implies that if the protocol fails to be executed within
said time limits (for example, because the network is down,
or other delay occurs), it can be restarted arbitrary many
times without endangering the confidentiality of Alice’s bit
b. The time restriction will therefore not constitute a severe
disadvantage in many settings.

C. Zero-Knowledge Proofs

Zero-knowledge proofs (ZK proofs) [47], [48] are a very
powerful two-party scheme, in which one party acts as the so-

called prover, the other as the so-called verifier. The setting
is as follows: The prover is in possession of a solutionW
to a computationally hard problemΠ (for example, a three-
coloring of a certain, publicly known, hard graphG), and
wants to prove to the verifier that he indeed knows such a
solutionW to Π — but without revealingW to the verifier. For
further details, see [47], [48], [46]. Some application exam-
ples of ZK proofs are passwords schemes and authentication
systems, as well as the enforcement of honest behavior in
cryptographic protocols while maintaining the privacy of the
users. Along these lines, they are an essential component in
secure multi-party computations [34], [46].

In the following, we give a ZK proof for the three-coloring
of a graph that rests on the above SIMPL-based BC pro-
tocol. By a well-known reduction result [46] and the NP-
completeness of the three-coloring problem, this implies that
there are SIMPL-based ZK proofs for all languages in NP.
Our proof again employs interactive hashing as a subprotocol;
see Section IV-B. In our protocol, we assume that a finite
graph G = (V,E) with V = {1, . . . , n} is public, and
that Alice knows a three coloringW : V → {00, 01, 11}
for this graph. Furthermore, we suppose that Bob holds a
(tmax, c, tC , tPh, q, ǫ)-SIMPL systemS, and that Alice knows
c · tmax, D(S), Sim andC. Finally, without loss of generality
we assume that the output ofS are one-bit values (otherwise,
one can take for example the XOR of all output bits to obtain
one-bit responses, or apply another suitable function to the
output bits).

Protocol 6: ZK PROOF OF ATHREE-COLORING W

1) Alice selects2n challengesC1, . . . , C2n at random, and
determinesRC1

, . . . , RC2n
by simulation.

2) Alice selects a random permutation π
over {00, 01, 11}, and forms the string
L = π(W (1)) · π(W (2)) · · ·π(W (n)).

3) Alice and Bob run2n interactive hashing protocols. In
the i-th protocol, Alice’s input isCi, and Alice’s and
Bob’s output isC0

i , C1

i . We denote byki ∈ {0, 1} the
index for whichCi = Cki

i , and defineK as K = k1 ·
k2 · · · k2n.

4) Alice sends the stringX = X1 · · ·X2n = L ⊕ K to
Bob.

5) Bob at random chooses an edgee = (l,m) ∈ E and
sendse to Alice.

6) Alice sends the four valuesT = k2l−1, U = k2l, V =
k2m−1,W = k2m and the corresponding responses
RCT

2l−1
, RCU

2l
, RCV

2m−1
, RCW

2m
to Bob.

7) Bob verifies if: (i) The two vertices of the edge
e are colored differently. He does so by checking
whether (X2l−1 ⊕ k2l−1) · (X2l ⊕ k2l) 6= (X2m−1 ⊕
k2m−1) · (X2m ⊕ k2m). (ii) The purported responses
RCT

2l−1
, RCU

2l
, RCV

2m−1
, RCW

2m
are correct. He does so by

measurement onS. (iii) The time that passed between
step 3 and step 6 is at mostc · tmax. If (i) to (iii) hold,
Bob accepts this run of the protocol as successful.

The protocol has an error rate of up to1 − 1/|E|. As
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usual, polynomially many independent runs can downscale
this error rate to any desired value [46]. As noted earlier,
it can be observed that if a single run of the protocol fails
to be executed within the required time limits (for example,
because the network is down), the confidentiality of Alice’s
three-coloringW is still maintained. This is guaranteed by the
fact that the SIMPL-based bit commitment scheme of Protocol
5 is unconditionally hiding.

V. K EY EXCHANGE

Secure key exchange is another central cryptographic task
in which SIMPL systems and Public PUFs can assist us. We
treat this topic at the end of our protocol discussion for two
reasons: First of all, we use for the first time material that
was originally introduced by others (namely Protocol 7); and
second, because one suggested scheme (Protocol 8) builds on
the message authentication method of the earlier Section III-B.

A. Key Exchange via PPUFs

As noted in Section I-F, PPUFs [24] are an essentially
equivalent concept to SIMPLs. One application suggested in
[24] is a key exchange scheme. It requires a special type of
SIMPL system, which we call a PPUF, giving honor and credit
to [24].

Let S be a(tmax, c, tC , tPh, q, ǫ)-SIMPL system, and let the
functionFS implemented byS fulfill the following additional
properties:

(i) FS is a one-to-one function.
(ii) FS is a one-way function, i.e., it is hard to invert.
(iii) The time gapc between any simulation and the real-time

behavior ofS is very large (examples discussed later on
require orders ofc > 105 or similar magnitudes).

Under these circumstances, we callS a
(tmax, c, tC , tPh, q, ǫ)-PPUF. Implementations of such
systems have been suggested in [24].

On the basis of a PPUF, we can implement a key exchange
scheme as described in Protocol 7. Before giving the protocol,
we stress once more that the protocol has originally not been
devised by us, but is an abstraction from the concrete setting
of [24] (i.e., from the concrete PPUF implementation that is
used there).

We assume that Alice holds the PPUFS and that Bob knows
the corresponding sets and algorithmsD(S), Sim andC.

Protocol 7: KEY EXCHANGE WITH PPUFS

1) Bob chooses at random a subsetU of the set of all
possible challengesC, with the property thatU can be
characterized by a short stringIU .

2) Bob choosesk random challengeC1, . . . , Ck from U.
He derives a keyK from C1, . . . , Ck by a publicly
known procedure (e.g., a hash function), and determines
RC1

, . . . , RCk
by simulation ofS.

3) Bob sendsIU , RC1
, . . . , RCk

to Alice.
4) Alice uses the PPUFS for a simple exhaustive search in

order to findC1, . . . , Ck: She applies all possible chal-
lengesC ′ ∈ U to the PPUF, and compares the response

to RC1
, . . . , RCk

. If it matchesRCi
, she has foundCi.

She derives the same keyK from the responses by using
the same publicly known procedure as Bob.

Depending on the exact PPUFS that is in use, examples for
suitable choices for the setsU could be the set of all challenges
in C that start with a certain substring; sets of the form
U = {x0, ..., x0 +n}, wherex0 andn are natural numbers; or
sets of the formU = {H(x) |x ∈ {x0, ..., x0 + n}}, where
x0 and n are natural numbers, andH is a publicly known
hash function. The latter choice forU has been employed in
the original protocol of [24]. It possesses several advantages,
such as distributing the challenges somewhat randomly within
C.

1) Discussion and Analysis:Note that S and FS must
really fulfill the properties (i) to (iii) stated in Section V-A
in order to make the protocol work: IfFS was not one-to-
one, then the determination of theCi is ambiguous; Alice’s
and Bob’s keys will not match. Secondly, ifFS was not one-
way, then an adversary could eavesdrop the communication,
learn RC1

, . . . , RCk
, invert FS in order to learnC1, . . . , Ck,

and thus deriveK. Finally, if feature (iii) is not fulfilled,
an adversary Eve couldby numerical simulationperform the
same exhaustive search as Alice in order to identify the values
C1, . . . , Ck relatively efficiently (see also below). Properties
(i) to (iii) therefore are necessary requirements. This is in
opposition to earlier protocols, where the employed SIMPL
system does not need to fulfill (i) to (iii), making their
hardware implementation easier. For example, Protocols 2 to
6 could work with SIMPLs with small time gapsc.

We now analyze the security margin of the protocol in
more detail (compare [24]). Let us assume that Bob can
simulate the PPUF’s response on any challenge in timetsim.
As follows from Specification 1,c ·tmax ≤ tsim. Furthermore,
Specification 1 implies that Alice can execute her measurement
on S in time tmax, and any adversary Eve requires at least
time c · tmax in order to simulate the PPUF’s response to a
randomly chosen challenge.

It therefore holds for Alice’s expected workloadWA and
Bob’s workloadWB in the above protocol thatWA ≈ tmax ·
k/(k + 1) · |U|, and WB ≈ tsim · k ≥ c · tmax · k. On the
other hand, an adversary Eve who numerically simulates all
responsesC ∈ U, and who can simulate one response in time
c · tmax, has an expected workload ofWE ≈ c · tmax · k/(k +
1)·|U|. Note that the factorsk/(k+1) come in due to standard
probability theory as we consider expected workloads.

Thus, the relative advantage of Alice over an adversary who
applies the above simple attack strategy of exhaustive search,
is WE/WA ≈ c, or

WE ≈ WA · c. (1)

In other words, Eve’s workload is only separated by the
SIMPL system’s constantc from the workload of Alice. In
order to achieve a long term security of the key, this requires
a very largec or substantial values forWA. Let us consider
a few examples: If we stipulate thatWE is required to be
on the order of 100 years for security reasons, thenc = 105
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makes a workload ofWA ≈ 8.76 hours necessary for Alice;
c = 107 implies WA ≈ 5.3 min; and in order to achieve
WA ≈ 0.3 sec, a time gap ofc = 1010 is required. It seems yet
uncertain if such large time gaps can be achieved by practical
and inexpensive hardware implementations of SIMPL systems;
an alternative method that requires only smaller values forc
is described in the upcoming Section V-B.

Finally, we note that protocol in practice requires an au-
thenticated channel, which can either be realized by classical
means, or by SIMPL/PPUF-based message authentication a la
Protocol 3.

B. Authenticated Key Exchange by SIMPLs and Diffie-
Hellman

An alternative approach to Protocol 7 is to combine the
Diffie-Hellman key exchange protocol with the SIMPL-based
message authentication scheme of Protocol 3. This presumes
that Alice holds a(tAmax, cA, tAC , tAPh, qA, ǫA)-SIMPL system
SA, Bob holds a(tBmax, cB , tBC , tBPh, qB , ǫB)-SIMPL system
SB , and that both know the respective valuesD(SA),D(SB),
cA, cB , tAmax, tBmax, and the algorithmSim. The protocol is
straightforward, but we include it for reasons of completeness.

Protocol 8: AUTHENTICATED KEY EXCHANGE BY SIM-
PLS AND DH (SCHEMATIC)

1) Alice chooses a random exponenta. She sends the
messagega to Bob, authenticated by use of her SIMPL
SystemSA and Protocol 3.

2) Alice chooses a random exponentb. He sends the
messagegb to Bob, authenticated by use of his SIMPL
SystemSB and Protocol 3.

3) Both form the exchanged key asK = gab.

One asset of Protocol 8 is that it inherits its long-term
security and its authenticated channel from two different
sources. It can be carried out efficiently (if SIMPLs with small
cA, cB andtAmax, tBmax are used), and can hence be employed
for the ad-hoc exchange of session keys in communication
networks. These keys can be erased whenever needed, being
in line with our overall goal of avoiding the long term-presence
of secret keys in hardware.

The long-term confidentiality of the protocol, on the other
hand, is derived from the well-established Diffie Hellman (DH)
assumption. It establishes a large, asymptotically exponential
security margin between the computational effort that mustbe
invested by the honest parties to run the protocol and by the
adversary to obtain the exchanged key.

Please note in this context that the DH function is a
digital function that is optimized in terms of its security
properties. It does not need to fulfill any other, possibly
involved criteria. Contrary to that, the function implemented
by the PPUF/SIMPL in Protocol 7 must be a non-invertible
function, similar to the DH function. But in addition, it must
depend on unclonable random analog features of the hardware,
be stable against environmental conditions and aging, and
must be vastly faster than any digital simulator. We feel
that this agglomeration of features could potentially become

problematic, and that the simulation gap of SIMPLs/PPUFs
might be overstretched when it is used to establish the long-
term security of a key or the long-term confidentiality of data.

In our opinion, Protocol 8 thus constitutes a viable, at times
preferable alternative to Protocol 7,

VI. A PPLICATIONS OFSIMPL SYSTEMS

A. Secure Communication Infrastructures

Within the given space restrictions, we will now discuss
the application of SIMPL systems to secure communication in
networks, illustrating their potential in such a setting. Consider
a situation wherek partiesP1, . . . , Pk and a trusted authority
TA participate in a communication network. Assume that each
party Pi carries its own SIMPLSi in its hardware, and that a
certificateCi has been issued for each party by theTA. The
certificate includes the identity and the rights of PartyPi, and
has the form

Ci =
(

Idi, Rightsi,D(Si), SigTA(Idi, Rightsi,D(Si))
)

.

Under these provisions, the parties can mutually identify
themselves by Protocol 2, they can establish authenticated
channels with each other by Protocol 3. They can exchange
session keys via the use of the Protocol 8 (or, alternatively,
Protocol 7). The whole architecture works without permanent
secret keys, or without any other secret information that is
stored permanently in the hardware of the partiesP1, . . . , Pk.

It also seems well applicable to cloud computing: All
personal data could be stored centrally. Session keys could
be exchanged by the Diffie-Hellman protocol over channels
authenticated by the SIMPL systems (Protocol 8). These keys
can be used to download the personal data in encrypted form
from the central storage. The keys can be new in each session,
no permanent secret keys in the mobile hardware are be
necessary.

The above approaches can further be combined with tamper-
sensitive SIMPL systems. These SIMPLs may cover hard-
ware which has a functionalityFunci as long as it is non-
manipulated. Each certificateCi could then also include the
functionality of the hardware, i.e., it could be of the form

Ci =
(

Idi, Rightsi, Funci,D(Si),

SigTA(Idi, Rightsi, Funci,D(Si))
)

.

By running the identification protocol (Prot. 2), partyPi can
prove that the SIMPL systemSi is non-tampered, and that the
hardware hence has the claimed functionalityFunci. Please
note that the optical SIMPL systems we propose in this paper
is naturally tamper sensitive; the tamper sensitivity of such
optical scattering structures has already been shown in detail
in [8].

Finally, by using Protocols 4, 5 and 6, all parties can ex-
ecute several typical two-party computations with each other,
leading to various further cryptographic applications.

B. Two other Applications: Unforgeable Labels and DRM

Let us in all brevity sketch to two other applications of
SIMPL systems, which have been described in more detail in
[16].
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The first of these applications is the generation of unforge-
able labels for products or security tokens. SIMPL systems
can create labels which do not contain any secret information,
which can be verified offline, and which only require remote,
digital communication between the label and a testing device.

SIMPL systems can be applied in this context. A SIMPL-
label consists of the following components: (i) The SIMPL
SystemS; (ii) The descriptionD(S) and some product related
info I; and (iii) the digital signatureSigSK(D(S), I), created
by the secret signing keySK of the label issuer. Components
(ii) and (iii) are digital information that can be stored on the
labeled item of value, for example via a printed barcode or
electronic means.

In the verification of a label, a testing apparatus obtains
D(S) from the label, verifies the digital signature via use of
a publicly known verification keyPK, and executes Protocol
2 in order to check the presence of the SIMPL systemS. A
description ofC, tmax andSim need to be hardwired into the
apparatus together withPK. If more than one label issuer
is involved, the apparatus can store more than one public
verification key, or standard signed key certificates can be
employed.

Labels based on SIMPL system have interesting advantages:
They can be read out digitally and remotely. Secondly, they
can be verified be offline, i.e. without an online connection
to a central institution/database. The labels do not contain any
secret information at all, also not in the form of a PUF. Finally,
also the testing apparatus that evaluates the validity of a label
does not need to contain any form of secret information. The
only secret key involved in the scheme remains centrally with
the issuer of the label, where it can be well protected. In
combination, these features distinguish SIMPL-based labels
from other known approaches.

Note that the issuer of a SIMPL-based labels can create the
required signature of component (iii) remotely, i.e., he does
not need to be present at the production site where the label is
generated and attached to the item of value. His secret signing
key can be kept to him alone. This is particularly useful in
situations where illegitimate overproduction at remote manu-
facturing sites must be encountered.

Another application area of SIMPLs lies in the context
of the digital rights management problem (DRM). Similar
to the above labels, SIMPLs can also create unclonable
representations of digital content, including software [16].
These unclonable representations do not contain any secret
information, and can be verified by a testing device that does
not need to contain any secret keys either. The verification
works offline and by mere digital communication between
the testing device and the device carrying the unclonable
representation. Again, in combination these features are not
met by any comparable technique known to the author. In [38],
[39], [40], for example, the random features of the data carrier
must be determined in the near-field by analog measurements.
The features must be communicated correctly by the analog
measurement apparatus (e.g., the optical drive) to a central
module (e.g., a TPM) that decides about the validity of the
content, meaning that the measurement apparatus must be
trusted.

VII. I MPLEMENTATION OF SIMPL SYSTEMS

We now turn to the practical implementation of SIMPL
systems. Our aim is to give an overview of the particular
challenges in the realization of SIMPLs and the existing
implementation candidates, and to refer the reader to the
existing literature for the details of the described approaches.

A. Challenges

There are some clear challenges in the realization of SIMPL
systems. Three non-trivial requirements that must be balanced
are complexity, stability, and simulatability: On the one hand,
the output of a SIMPL system must be sufficiently complex
to require a long computation/simulation time. On the other
hand, it must be simple enough to allow simulation at all,
and to enable the determination ofD(S) by measurement or
numeric analysis techniques. A final requirement is that the
simulation can be carried outrelativelyefficiently by everyone
(this is necessary to complete the verification steps in the
identification and message authentication protocols quickly);
while, at the same time, even a very well equipped attacker,
who can potentially attempt to parallelize the simulation on
many powerful machines, cannot simulate as fast as the real-
time behavior of the SIMPL system. In the sequel, we list
several implementations that show potential to meet these
demanding requirements.

B. Electrical SIMPL Systems

Since the first publication of [16], a sequence of papers
of our group has dealt with the implementation of SIMPL
systems by electrical, integrated circuits [17], [18], [19], [21].
We tried to exploit two known speed bottlenecks of modern
CPUs: Their problems in dealing simultaneously with very
large amounts of data, and the complexity of simulating inher-
ently analog and parallel phenomena. Let us briefly summarize
these approaches from said papers.

1) “Skew” SRAM Memories:A first suggestion made in
[17], [18], [19], [21] is to employ large arrays of SRAM
cells with a special architecture named “skew design”. In
this design, the write behavior of the cells is dependent on
the applied operational voltage. If the operational voltage is
below a certain threshold, all write operations malfunction.
The simulation of many successive read- and write events of
the skew SRAM memory under quickly varied operational
voltages on a standard architecture then necessarily creates
some computational overhead, since in the standard architec-
ture the bit values that are effectively written into the cells
must be pre-computed as a function of the operational voltages
and the a priori unknown content of the target cell. The
hypothesis put forward in [17], [18], [19], [21] is that this
creates a small, constant simulation overhead, in particular
that it creates the necessity for additional read-operations. Two
essential ingredients in this concept are: No parallelization is
possible, since the successive read- and write events in the
feedback loop are made dependent on the previous read results.
And since no parallelization is possible, the limiting factor for
an adversary is his clock frequency, which is quite strongly
limited by current technology.
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As argued in the listed references, the idea shows promise to
succeed against any adversaries with a limited financial budget,
and in particular to defeat any FPGA-based attacks. Future
work will need to characterize how large the exact simulation
margin is, and whether it is indeed sufficient to defeat an
adversary with strong financial resources who is capable of
fabricating ASICs. Due to its relatively easy realizability and
good security level, the concept has a good potential for the
consumer market.

2) Two-dimensional Analog Computing Arrays:A second
suggestion of [17], [18], [19], [21] consists of using analog,
two-dimensional computing arrays. The authors suggest the
use of so-called cellular non-linear networks (CNNs) which
are designed to imitate non-linear optical systems. Due to their
analog and inherently parallel nature (many cells exchange
information at the same time), CNNs are time consuming to
simulate on a digital, sequential architecture. This claimis
supported by the standard literature on CNNs, which describes
that these analog architectures can outperform classical digital
computers by factors of up to 1,000 in certain, specialized
tasks like image recognition [22], [23].

The use of CNNs has its assets on the security side: Since
it is based on manufacturing mismatches in CNN fabrication
that currently seem unavoidable, it could eventually defeat
even attackers with very strong financial resources, and has
the potential to create SIMPLs that cannot even be clobed by
their own manufacturer (i.e., SIMPLs which are manufacturer
resistant in the sense of [29]). On the downside, since CNNs
are complex analog circuits, they might be less suited for low-
cost applications.

3) Other Electrical Approaches:Independently, the work
of other groups has lead to different electrical structuresthat
could be used as SIMPLs. The implementation of PPUFs
presented in [24] could potentially be downscaled to becomea
SIMPL system, even though it would have to be carefully in-
vestigated how resilient such small-scale instances are against
parallelization attacks. Another very interesting, FPGA-based
candidate for SIMPLs is implicit in the work of [26].

C. Integrated Optical SIMPLs

A second route that was followed in the implementation
of SIMPL systems is the employment of optical structures
[16], [20]. The rationale behind this strategy is as follows:
First, optical systems can potentially achieve faster component
interaction than electronic systems; this promises to create
the desired speed advantage over any electronic simulator.
In particular, the phenomenon of optical interference has no
electronic analog at room temperature [59], and can create
a computational overheads. Second, the material degradation
of optical systems is low, and their temperature stability is
known to be high [59], [60]. Even very complex and randomly
structured optical systems, whose internal complexity creates
the desired speed gaps, can produce outputs that are relatively
stable against aging and environmental conditions.

A concrete optical SIMPL system was suggested in [20].
It comprises of an immobile laser diode array withk phase-
locked diodesD1, . . . ,Dk [61], which is attached to a dis-
ordered, random optical scattering medium. The diodes can

be switched on and off independently, leading to2k possible
challenges or inputsCi to the medium. These challenges can
be written asCi = (b1, . . . , bk), where eachbi ∈ {0, 1}
indicates whether diodeDi is switched on or off. Note that
the diode array must indeed be phase locked in order to allow
interference of the different diode signals. At the oppposite
side of the medium, an array ofl light sensorsS1, . . . , Sl, e.g.
photodiodes, measures the resulting wave front when leaving
the scattering medium: It detects the local light intensities
at each of the sensors. A responseRCi

thus consist of the
intensitiesI1, . . . , Il in the l sensors. Instead of phase-locked
diode arrays, also a single laser source with a subsequently
placed, inexpensive light modulator (as contained in any
commercially available beamer) can be employed.

Under the provision that alinear scattering medium is used
in such integrated optical SIMPLs, the input/output behavior
of this SIPML can be machine learned and predicted. This
was shown by a proof of concept implementation in [20]. As
argued in the same publication, there is also a time margin
between any numeric simulator and real implementations of
the system that are optimized with respect to speed: While
the real system can create its output pattern in nanoseconds,
the simulation requires aroundk · l additions of precomputed
values. For moderate sizes of the system ofk = l = 104, this
requires108 precomputed values and108 additions. This can
create exactly the notable, constant speed gap between the real
system and the simulator that is required in SIMPL systems.

D. Other Implementation Strategies

There are two further promising implementation strategies
that could assist us in creating secure future generations of
SIMPLs.

1) Employing PUFs with Reduced Complexity:One generic
further strategy for the realization of SIMPL systems, which
has been suggested already in [16], is the following: Employa
PUF or a PUF-like structure; and reduce its inner complexity
until it can be characterized by measurements and simulated,
or until it can successfully be machine learned. If the levelof
complexity is still sufficient, then this simulation will bemore
time consuming than the real-time behavior of the system.
In fact, some suggestions of the previous subsections used
this strategy already, since both CNNs and integrated optical
structures have already been suggested as PUFs in earlier work
[53], [12].

2) Simulation vs. Verification:Another idea is to exploit
the well-known asymmetry between actively computing a
solution for a certain problem and verifying the correctness
of a proposed solution (as also implicit in the infamous P vs.
NP question) [16]. Exploiting this asymmetry could lead to
protocols of the following kind: A SIMPL system provides
the verifier in an identification/authentication protocolswith
some extra information that allows the verifier toverify its
answers fast. To illustrate our point, imagine an analog,
two-dimensional, cellular computing array whose behavioris
governed by partial differential equations (PDEs), such as
the CNN described in section VII-B. Then, verifying the



12

correctness of a given final state of such a PDE-driven system
(i.e. verifying that this state is indeed a solution of the PDEs
driving the system) could be much more time efficient than
computing this solution from scratch. Furthermore, the verifier
could not only be given external outputs of such a two-
dimensional array (e.g. values in boundary cells), but also
internal sub-measurements (e.g. values in inner cells) that help
him to verify the output quickly.

The simulation vs. verification strategy can help to relieve
the tension between the requirement for fast simulation on the
side of the verifier (who may not be well equipped on the
hardware side) and the necessary time margin to any attackers
(who may be very well equipped on the hardware side), which
we already mentioned in Section VII-A.

VIII. S UMMARY, DISCUSSION, AND FUTURE WORK

A. Summary

This paper introduced and discussed a security concept
termedSIMPL system. We started out by explaining the basic
idea behind this new concept, and developed a semi-formal
specification of the exact security properties of SIMPL systems
in Section II. Some basic properties that follow from this
specification were discussed in the same section, for example
the impossibility for cloning a SIMPL system, or for reading
out its entire CRP-space. Next, we presented several protocols
that can be realized by SIMPL systems in Sections III to
V. They include identification, message authentication and
key exchange schemes, as well as two-party protocols like
coin-flipping, bit commitment, and zero-knowledge proofs of
NP-complete languages. We argued that the time restrictions
required for these protocols (i.e., the fact that some of them
must be executed withint a certain time bound in order to
guarantee their security) do not too strongly diminish their
practical usability in many relevant settings. Our work reveals
the substantialcryptographic potential of SIMPL systems,
including their application to classical two-party problems,
which was previously undiscovered.

Concrete application scenarios of SIMPLs were discussed
in Section VI. We described communication infrastructures
that work without permanent secret key information in the
hardware, and where the hardware can remotely prove its
functionality to other parties. Other applications we inves-
tigated were unforgeable product labels and digital rights
management. In all of these scenarios, SIMPL systems allow
us to design cryptographic hardware that does not contain
any secret key information, that is, any information whose
disclosure breaks the security of the system. This can lead to
future generations of hardware that does not require costly
protection mechanisms on the physical and software level
– there simply is no secret key to protect in SIMPL based
hardware. This could make future security hardware more
lightweight, mobile and secure at the same time.

Finally, the implementation of SIMPL systems was ad-
dressed in Section VII. Due to the large body of existing work,
we focused on surveying current implementation candidates,
and provided the reader with references to the literature. We
covered electrical implementations based on special SRAM

memories, two-dimensional analog arrays known as cellular
non-linear networks (CNNs), and addressed suggestions by
other groups based on circuit glitches and FPGAs. We also
pointed to a recent, promising, and integrated optical candi-
date.

B. Discussion and Analysis

Let us conclude this work by a detailed comparative analysis
of SIMPL systems. As said earlier, there are some obvious
similarities between classical private/public key cryptoschemes
and SIMPL systems: The numeric descriptionD(S) is some
analog to a public key, while the physical systemS itself
constitutes some equivalent to a private key. This provides
SIMPLs with a public-key like functionality. It allows new
protocols and leads to several practicality advantages, as
discussed in previous sections.

Still, there is one important difference to classical, math-
ematical public-key systems: Our “private key” is no secret
number, but a randomly structured, hard-to-clonephysical
system, the SIMPL systemS. It has the interesting feature
of not containing any form of secret information: Neither in
an explicit digital form like a digital key in classical hardware.
Nor in a hidden, analog form such as internal PUF parameters
(for example the mentioned delay values in Arbiter PUFs, or
the parameters determining SRAM behavior in SRAM PUFs).
All internal characteristics of a SIMPL, including its precise
internal configuration, can be publicly known without com-
promising the security of the derived cryptographic protocols.

The security of SIMPL systems is not free of assumptions,
though. Instead of presupposing the secrecy of some sort of
information, it rests on the following two hypotheses: (i) on
the computational assumption that no other, well-controllable,
configurable, or even programmable hardware can generate
the complex responses of a SIMPL with the same speed, and
(ii) on the physical assumption that it is practically infeasible
for Eve to exactly clone or rebuild the SIMPL system, even
though she knows its internal structure and properties.2

It is long accepted that computational assumptions play a
standard role in mathematical cryptography, and they are also
a part of the security assumptions for SIMPL systems; but
SIMPLs show that one can trade the need for secret infor-
mation in the hardware against assumptions on the physical
unclonability of the system. This can surprisingly obviatethe
familiar requirement that cryptographic hardware must contain
secret key information of some sort. By the protocols presented
in this paper, the communicants can nevertheless execute
a very large number of cryptographic protocols and tasks,
without employing long-term present secret key information.

C. Future Work and Prospects

Future work on SIMPLs will likely concentrate on devel-
oping new protocols for SIMPL systems, and on devising

2The reader can verify the plausibility of the latter unclonability property by
considering the optical implementation of section VII-C: Even if the positions
of all scattering centers and the other irregularities in the scattering medium
were known in full detail, it would still be infeasible to rebuild the scattering
medium with perfect precision.
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formal security proofs for these protocols. For example, it
seems interesting if time-restricted, but still useful variants
of secure multi-party computation could be implemented by
SIMPLs, and how the security of such constructions could be
proven. But perhaps the greater challenge lies on the hardware
side: Even though there are several promising candidates (see
Section VII), the issue of finding a highly secure, practical,
and cheap implementation appears not to be fully settled
yet. If such an implementation is found, or if the existing
implementation candidates are shown to possess all necessary
properties, this could potentially change the way we exercise
cryptography and security today.
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