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Abstract. We present Selections, a new cryptographic voting protocol that is end-to-end verifiable
and suitable for Internet voting. After a one-time in-person registration, voters can cast ballots in an
arbitrary number of elections. We say a system provides over-the-shoulder coercion-resistance if a voter
can undetectably avoid complying with an adversary that is present during the vote casting process.
Our system is the first in the literature to offer this property without the voter having to anticipate
coercion and precompute values. Instead, a voter can employ a panic password. We prove that Selections
is coercion-resistant against a non-adaptive adversary.

1 Introductory Remarks

From a security perspective, the use of electronic voting machines in elections around the world continues
to be concerning. In principle, many security issues can be allayed with cryptography. While cryptographic
voting has not seen wide deployment, refined systems like Prêt à Voter [13,33] and Scantegrity II [11] are
representative of what is theoretically possible, and have even seen some use in governmental elections [9].
Today, a share of the skepticism over electronic elections is being apportioned to Internet voting.1 Many
nation-states are considering, piloting or using Internet voting in elections. In addition to the challenges of
verifiability and ballot secrecy present in any voting system, Internet voting adds two additional constraints:

• Untrusted platforms: voters should be able to reliably cast secret ballots, even when their devices may
leak information or do not function correctly.
• Unsupervised voting: coercers or vote buyers should not be able to exert undue influence over voters

despite the open environment of Internet voting.

As with electronic voting, cryptography can assist in addressing these issues. The study of cryptographic
Internet voting is not as mature. Most of the literature concentrates on only one of the two problems
(see related work in Section 1.2). In this paper, we are concerned with the unsupervised voting problem.
Informally, a system that solves it is said to be coercion-resistant.

1.1 Contributions

Coercion-resistant, end-to-end verifiable Internet voting systems have been proposed [1,4,17,27,36,41]. How-
ever, these systems all require the voter to remember cryptographic information after registration. Since the
information is too long to memorize, authentication can be considered to be based on “something you have.”
Voters must prepare for the possibility of coercion by creating fake values, proofs, or transcripts. Our system
works with passwords, “something you know,” and it allows a voter to supply a panic password during ballot
casting that can be created mentally in real-time by the voter. In summary, our system provides:

• Password-based authentication and cognitive coercion-resistance,
? An extended abstract of this paper appeared at Financial Cryptography 2011.
1 One noted cryptographer, Ronald Rivest, infamously opined that “best practices for Internet voting are like best
practices for drunk driving” [28].



• In-person registration that can be performed bare-handed,
• Tallying that is linear in the number of voters, and
• Efficient revocation of voters from the roster during and between elections.

We compare Selections to three systems: JCJ [27], Civitas [17], and AFT [4] (see Section 1.2). Of these
properties, only Selections meets each while AFT achieves the third and both JCJ and Civitas achieve the
fourth.

1.2 Related Work

The field of cryptographic voting is mature. One dissertation in 2011 reviews over 90 systems [14]. At this
point, any new proposals for systems should be soundly motivated. Our system addresses the problem of
coercion and vote selling when voters are not required to vote in a private booth. Only a small number of
the most recent papers in cryptographic voting address this threat.

Coercion-resistance was first formalized by Juels et al. [27], who also provide a coercion-resistant system,
often referred to as JCJ. JCJ was independently implemented as Civitas [17]. The main drawback of both
is that tallying is quadratic in the number of voters. Aquisti [1] refined JCJ to use Paillier encryption and
support write-in candidates, while both Smith [36] and Weber et al. [41] made the first attempts at reducing
the complexity of tallying to linear. Unfortunately, all three are considered broken [4,17,6]. More recently
(concurrent with Selections), Spycher et al. have proposed a different approach to making JCJ linear [37].

Araujo et al. provide a linear-time system we refer to as AFT [4]. Although no proofs are provided, the
system appears sound. Both JCJ/Civitas and AFT provide registered voters with anonymous credentials. A
voter submits a credential along with her vote and a procedure for computing a fake credential is provided
(but cannot be done without a computer). In JCJ/Civitas, the credentials of registered voters are posted
and these are anonymously and blindly compared to the credential accompanying each submitted vote. In
AFT, the credentials of registered voters are essentially signed and the presence of a valid signature on a
credential submitted during casting is anonymously and blindly checked. Due to the difficulty of revoking a
signed value, voters cannot be revoked in AFT without a change of cryptographic keys.

Some Internet systems are designed for low-coercion elections. These include Helios [2], which was used in
a binding university election [3]. Other Internet voting systems concentrate on the untrusted platform issue.
A common approach is “code voting,” where acknowledgement codes are returned to voters upon receipt of
a vote. The codes are a function of the vote and not known in advance to the network carrier. This principle
can be seen in SureVote [10], CodeVoting [26], Pretty Good Democracy [34], and Heiberg et al. [21].

2 Preliminaries

2.1 Selections: High-Level Overview

Selections is a protocol designed to allow voters to cast ballots over the Internet during a window of time
prior to traditional in-person voting. Voters can opt out of Selections at any time prior to election day and
cast a ballot in-person.

To be eligible for Selections, voters first complete a one-time, in-person registration protocol in a private
booth without needing her own computational device. After this registration, the voter can vote in future
elections over a tappable channel (see Section 2.3). The registration involves the voter choosing a password to
be used for vote casting. However this password is non-traditional—it is a password from a panic password
system (see Section 2.5). A semantically-secure homomorphic encryption of this password is posted on a
public roster. The roster has an entry for each registered voter containing this ciphertext. The voter must
be convinced that her entry is a correct encryption without being able to prove what it encrypts to anyone.

During vote submission, the voter asserts what her password is: it may be her actual password or a panic
password. The voter creates a binding commitment to this asserted password. The voter then rerandomizes
her entry off the roster. The voter proves in zero-knowledge the latter ciphertext is a re-encryption of some
random subset of passwords off the public roster, without revealing which one. The commitment to her
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asserted password, re-encrypted roster entry, proof (and some additional proofs that things are well-formed),
and an encryption of her vote are submitted over an anonymous channel to a public bulletin board.

When the voting period expires, a distributed group of trustees will eliminate submissions with invalid
proofs, eliminate duplicate votes based on the password commitment, and then use a verifiable mix network
to shuffle the order of the remaining submissions. After shuffling, voters can no longer determine where
their submission is in the new permuted list. For each submission, the trustees will determine if the asserted
password matches the roster entry without revealing either. If it does not, the entry is eliminated. The output
of Selections is a list of encrypted votes from registered voters without duplicates. The entire protocol can
be verified for soundness.

2.2 Coercion-resistance

Informally, Juels et al. define coercion-resistance as providing receipt-freeness, while preventing three attacks:
randomization, abstention, and simulation [27]. A voting system is said to be receipt-free if the voter cannot
produce a transcript that constitutes a sound argument for how they voted [8]. Adversaries should not be
able to force a registered voter to cast a random vote or to abstain from voting. Finally, the system should
protect against voters surrendering their credentials and allowing a coercer or vote buyer to cast their vote
for them. The dominant approach to preventing such a simulation is providing voters with the ability to
create fake credentials. If an adversary cannot distinguish a real credential from a fake one, he will only be
willing to pay what a fake credential is worth, which is nothing.

2.3 Untappable Channels

The main challenge for coercion-resistant Internet voting is dealing with the elimination of the private voting
booth, modelled as an untappable channel. One approach is to use multiple secure channels and assume that
while any individual channel can be tapped, no adversary can tap all channels simultaneously. The second
is to use an untappable channel just once, and bootstrap the output of this interaction into an arbitrary
number of future interactions over secure (or anonymous) channels. We use the latter approach.

2.4 Registration Authority

In most coercion-resistant Internet voting systems, voters interact with a distributed registration author-
ity [1,4,27]. To achieve coercion-resistance, it is assumed that at least one registrar is not corrupted by the
adversary. Voters may be corrupted to retain a transcript, however the transcript has deniability by using a
designated verifier proof [24].

While distributing trust is usually an effective approach for achieving correctness and secrecy in a protocol,
it is more complex with coercion-resistance. The voter must be aware of which entity she trusts, so she can
fake a proof that will not be compared to the original. If the voter discloses her private key to an adversary,
it only requires a single malicious registrar to collude with the adversary and undetectably issue the voter
an incorrect credential share (while retaining the correct value for potential adversarial use).

These concerns leave it unclear if the benefits of a distributed registration authority are worthwhile. While
Selections is amenable to a distributed registration authority (voters would submit encryptions of shares of
their password, which are homomorphically combined to create an encryption of the password), we describe
the protocol using a single registrar that is assumed to not collude with a coercer (but may still misbehave
in any other regard).

2.5 Panic Passwords

A panic password system [15] initializes three categories of passwords: a password, a set of panic passwords,
and the residual set of inadmissible passwords. From the user’s view, submission of a password or a panic
password is indistinguishable, while an inadmissible password will prompt the user to try again. If the user
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registers a password and one panic password, an adversary can demand two distinct admissible passwords
and submit the coerced vote with each—therefore, the number of panic passwords should be arbitrarily large
to prevent these “iteration” attacks. If a user registers a password and all other values are panic passwords, an
accidental mistyping will result in the vote being discarded—therefore, the distance between admissible and
inadmissible passwords should be maximized. Finally, with an arbitrarily large number of panic passwords
distributed sparsely among inadmissible passwords, set-membership tests for panic passwords should be
cognitively easy to perform.

Clark and Hengartner propose the 5-Dictionary panic password system to meet these requirements [15].
Admissible passwords consist of five words from an agreed upon dictionary: the user chooses one combination
as her password and any other combination is a panic password. A typo is likely to mutate the intended word
into a string not found in the dictionary. With the Unix dictionary of English words, this system offers up
to 70 bits of entropy, making exhaustive search infeasible at this time.2 The authors also propose the 5-Click
alternative based on graphical passwords, and new panic password schemes could be developed based on, for
example, preferences [25]. Voters would be free to choose which to use.

3 The Selections Protocol

Selections involves four participants: a set of voters, a set of election trustees, an election authority, and
a registrant. The system has six main protocols: registration set-up, voter preparation, registration, election
set-up, casting, and pre-tallying. Let 〈DKG,Enc,DDec〉 be a threshold encryption scheme. Distributed key
generation DKG(n,m) generates public key, e, and a private key share, di, for each of n trustees. Encryption,
Ence(m, r), is semantically secure and homomorphic with respect to one operation. Distributed decryption,
DDecdi(c), on ciphertext c can be performed with m + 1 trustees submitting shares di.3 We use threshold
Elgamal [31], which is CPA-secure [39].

3.1 Registration Setup

The registration set-up protocol involves a set of n trustees: T1, . . . , Tn and the election authority. Primes p
and q are chosen such that the DL-problem and DDH-problem are hard in the multiplicative subgroup Gq of
Z∗p. Each Tj participates in DKG(n,m). Commitments are sent to the election authority, who posts them to
an append-only broadcast channel called the Bulletin Board. At the end of the protocol, each Tj has private
key share dj and public key e is posted. The protocol is standard and will not be described here [31].

3.2 Voter Preparation

The voter preparation procedure is performed by each voter Vi on a trusted computational client. Let 〈P, I〉
be the domain of a panic password system. P represents the set of admissible passwords and I = ¬P is the
set of inadmissible passwords. Vi chooses a password ρ̂. The client runs PassSubmit(ρ̂), which tests if ρ̂ ∈ P .
If ρ̂ ∈ I, PassSubmit(ρ̂) returns an error. The set of panic passwords are the remaining passwords in P :
{∀ρ̂∗ ∈ P |ρ̂∗ 6= ρ̂}. PassSubmit(ρ̂∗) will behave identically upon submission of a panic password (otherwise
an adversary could distinguish the case where he is given a panic password).

Once PassSubmit(ρ̂) accepts ρ̂, the client encodes ρ̂ as a bitstring and appends a non-secret salt to prevent
accidental collisions with other users. This string is supplied as input to a password-based key derivation
function (PBKDF) for strengthening and encoding into Z∗q . For brevity, we denote this entire password
processing procedure as φ: ρ← φ(ρ̂) = PBKDF(PassSubmit(ρ̂)‖salt).

Perhaps through a user-guided tutorial familiarizing the voter with the system, the voter will generate α
admissible passwords: ρ̂1, . . . , ρ̂α. The value of α will determine the soundness of the registration protocol.
2 In reality, users are unlikely to choose uniformly from the entire dictionary and reach this maximum. The number
of words can be increased to compensate for this.

3 Proactive security can maintain the secrecy of the shares over time, both the number of shares and the threshold
can be adjusted without a dealer, and more a complex access structure than m-out-of-n can be created.
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Algorithm 1: Registration Protocol
Participants : Voter Vi and registrant R
Public Input: Encryption parameters p, q, g, public key e, and soundness parameter α > 1
Private Input (Vi): Ciphertexts {c1, . . . , cα} as described below

Prior to the protocol, each voter should:
for k from 1 to α do

1 Choose a password ρ̂k.
2 Process password: ρk ← φ(ρ̂k).
3 Encrypt gρk with random rk: ck ← Ence(g

ρk , rk).
4 Complete a NIZKP of knowledge of plaintext gρk :

πk ← NIZKPpok{(ρk, rk) : ck = Ence(g
ρk , rk)}.

5 Record 〈ck, πk〉.

Registrar should:
6 Receive {〈c1, πi〉 , . . . , 〈cα, πα〉}.
7 for k from 1 to α do
8 Check πk.
9 Rerandomize ck with random r′k: c

′
k ← ReRand(ck, r

′
k).

10 Print 〈c′k, (ck, r′k)〉.

Each voter should:
11 Receive for each k: 〈c′k, (ck, r′k)〉.
12 Optionally, rewind to line 7.
13 Choose s← [1, α].
14 Erase (cs, r

′
s).

15 Send s to R.

Registrar should:
16 Receive s.
17 Publish 〈VoterID, c′s〉 on the Roster.

Each voter should:
18 After leaving, check that c′k ← ReRand(ck, r

′
k) for all k 6= s.

19 Check that received c′s matches 〈VoterID, c′s〉 on the Roster.

Remarks: This protocol is completed bare-handed [32] with pre-computations and erasures. The proof of
knowledge of an Elgamal plaintext is standard. The option to rewind is included to prevent coercion
contracts [16].

An example value for α is 10. The password the voter wishes to register is in a random location in the list.
Each is encrypted by the voter under the trustees’ public key e. The voter prints out the list of ciphertexts on
to a piece of paper, e.g., with the ciphertexts encoded into barcodes. The registration protocol in Algorithm
1 includes the voter preparation protocol.

3.3 Registration

The registration protocol is completed by each voter Vi. It is a two-party cut-and-choose protocol between a
voter Vi and the registrar R. The protocol is described in Algorithm 1. It is an adaptation of the Benaloh’s
voter initiated auditing [7], with a predetermined number of challenges. The voter enters the protocol with
a list of α encrypted passwords {c1, . . . , cα} and the protocol completes with a re-encryption of one of the
ρ’s being posted to an append-only broadcast channel, called the Roster. The protocol itself is conducted over
an untappable channel which is instantiated as an in-person protocol.

The voter presents identification and is authorized to register. The voter is given a blank transcript card
and enters a private booth that has a computer in it capable of printing and scanning barcodes. A transcript
card has α rows and two columns. The second column for each row has a scratch-off surface. The voter is
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provided the option of downloading and printing a document from the Internet—with the intention that
the voter could print her voter preparation sheet in the event that an adversary ensured she entered the
registration process without her sheet. The computer has a barcode scanner, which the voter uses to submit
her α ciphertexts.

The computer will rerandomize each ciphertext and print the value in the first column of the transcript
card. Beside this value on the scratch-off surface, it will print the original ciphertext and the randomization
used. The voter chooses one password to register: for that password, the voter will erase the original ciphertext
and randomization by scratching off the appropriate cell.4 It is assumed the voter cannot memorize or copy
the randomization (e.g., it is encoded into a barcode). The voter shreds her preparation sheet and retains
the transcript card. The remaining α− 1 re-encryptions can be shown to anyone and checked for correctness
at home.

3.4 Election Set-up

The Roster is a universal registration. To prepare for an election, entries from the Roster are copied to
smaller lists, called ElectionRosters. An ElectionRoster is specific to a particular election, precinct or district.
The trustees will also modify the encrypted message in each entry from gρ to gρ0 , where g0 is a unique
publicly-known generator for that election. This prevents information leakage across elections.

Recall that Roster entries are encrypted with ρ in the exponent: {c1, c2} = {gr, gρyr}. For each Elec-
tionRoster, each trustee chooses bi ←r Gq. Then each trustee will in turn blind each ciphertext on the
ElectionRoster as follows: output gbi , cbi1 and cbi2 , and prove knowledge of bi such that g, c1, c2, gbi , cbi1 , c

bi
2

form a threewise DH-tuple with a NIZKP (cf. [12]). The next trustee will repeat the process using the pre-
vious trustee’s output as input. All outputs are posted to an appendix on the ElectionRoster. Let b0 =

∏
bi

and g0 = gb0 . The blinding sequence re-randomizes each ciphertext from r to r′ = r · b0 and changes the
encrypted message from gρ to gρ0 . The public and private key shares are the same. The public value g0 will
be used during the casting protocol.

3.5 Casting

The casting protocol involves a voter Vi and the election authority. The protocol is described in Algorithm 2.
The communication occurs over an anonymous channel. The anonymity is to be built into the voter’s client
using an anonymous remailer or onion routing technology.
Vi submits a commitment to her asserted (i.e., real or panic) password, gρ

∗

0 , and a rerandomization of
her entry on the ElectionRoster, c′. If ρ∗ matches the ρ encrypted in c′, the pre-tallying protocol will ensure
the ballot is included in the final result. Otherwise if it does not match, it will be discarded in a way that is
unlinkable to the original submission.
Vi must prove that c′ is from the ElectionRoster. Simply including her entry without rerandomizing

it reveals that she submitted a vote. To prevent abstention attacks, she instead rerandomizes it, draws
an additional β − 1 entries randomly from the ElectionRoster, and proves in zero-knowledge that c′ is a
rerandomization of one of these β entries (her entry plus the additional ones). β acts as an anonymity set.
Most voters will use a small value of β, however privacy-conscious voters can also (at extra computational
cost) cast a stealth vote where β includes all the entries on the ElectionRoster.

Selections is designed to be versatile with different options for capturing and tallying the votes themselves.
Thus we leave the information the voter submits with regard to their vote abstractly asB while only requiring
that B is submittable to a mix-network. For example, B could be an encryption of the preferred candidate(s)
or a tuple of cryptographic counters for each option, accompanied by proofs of validity as appropriate. Note
that our coercion-resistance guarantee extends only to the delivery of valid, eligible, and unique B values,
and care should be taken to ensure that tallying these values does not break coercion-resistance.
4 Under each scratch-off could be a pre-committed code in the form of a barcode, which the voter could scan to
prove to the system that she scratched off the correct cell. We leave the details for such an augmented transcript
card for future work.
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Algorithm 2: Casting Protocol
Participants : Voter Vi and election authority
Public Input: Encryption parameters g, p, q, election parameter g0, public key e, ElectionRoster, and

anonymity parameter β
Private Input (Vi): Password (either real or panic) ρ̂∗

Each voter should:
1 Find c for her VoterID from ElectionRoster.
2 Rerandomize c with random r: c′ ← ReRand(c, r).
3 Randomly select β-1 other ck from the ElectionRoster.
4 Form set C = {c, c1, . . . , cβ−1} in order of appearance on ElectionRoster.
5 Generate a NIZKP that r rerandomizes 1-out-of-β of C.

π1 ← NIZKPpok{(r) : c′ = (ReRand(c, r) ∨ ReRand(c1, r) ∨ . . .)}.
6 Encode asserted password into Z∗q : ρ∗ ← φ(ρ̂∗).
7 Commit to ρ∗: gρ

∗

0 .
8 Complete an NIZKP of knowledge of ρ∗:

π2 ← NIZKPpok{(ρ∗) : g0, gρ
∗

0 }.
9 Complete a ballot and retain ballot information B.

10 Send
〈
gρ
∗

0 , c′,B, π1, π2

〉
to A.

Authority should:
11 Publish

〈
gρ
∗

0 , c′,B, π1, π2

〉
on AllVotes.

Remarks: Rerandomization proofs are formed with a knowledge of a DDH-tuple proof due to Chaum and
Pedersen [12]. 1-out-of-m proofs are due to a heuristic by Cramer, Damgard and Schoenmakers [18]. Proof of
knowledge of a discrete log is due to Schnorr [35]. Parameter β represents the voter’s anonymity set.

Each ZKP uses the Fiat-Shamir heuristic to make it non-interactive, and each uses the values
〈
gρ
∗

0 , c′,B
〉

in creating the challenge. This prevents an adversary from replaying any of the proofs individually. The
submission is posted to an append-only broadcast channel called AllVotes.

If the voter is under coercion, she makes up a panic password and follows the rest of the protocol as
specified. She can later cast a stealth vote with her real password. If a voter wants to overwrite a previous
vote submitted under password ρ∗, the inclusion of the same gρ

∗

0 will indicate in cleartext that it is an
overwrite. Therefore, she should use the same β entries from the ElectionRoster as her anonymity set. Also
note that the inclusion of the same gρ

∗

0 across multiple elections would also be linkable if the value g0 was
not changed in each election.

3.6 Pre-tallying

The pre-tallying protocol involves an authorized subset of the N election trustees. The protocol is described
in Algorithm 3. The protocol takes AllVotes and produces a shorter list of only the most recently cast votes
for voters that supply the correct, registered password. Checking the validity of each vote is linear in β.
For these voters, the list includes just the ballot information, B, in an order that is unlinkable to the order
of submission. How this list is further processed to produce a tally is dependent on the voting system our
system interfaces with (which is why this is called a pre-tally). In a simple case, B is an encryption of the
voter’s selections (with a proof of knowledge) and the final step is jointly-decrypting each B from the list.

3.7 Voter Revocation

Between elections, Selections offers a way of choosing which registered voters are eligible or not to vote in
a particular election. In Selections, it is also possible to revoke a voter at any point before the pre-tallying
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Algorithm 3: Pre-Tallying Protocol
Participants : Authorized set of trustees T1, . . . , Tm and election authority
Public Input: AllVotes
Private Input (Ti): Share of private key, di
Authority should:

1 For each entry, check π1 and π2.
2 Remove all tuples with invalid proofs to form list ProvedVotes
3 Find all entries in ProvedVotes with duplicate values for gρ0 .
4 Remove all but the most recent to form list UniqueVotes.

Each participating trustee should:
5 Participate in verifiable mix network for shuffling UniqueVotes.

Note: the initial gρ
∗

0 is treated as cρ = Ence(g
ρ∗

0 , 0).
6 Output is AnonUniqueVotes.

Each participating trustee should:
7 for each entry in AnonUniqueVotes do
8 Read entry 〈cρ, c′,B〉.
9 Participate in a plaintext-equality test of cρ and c′:

{T, F} ← PETdi(cρ, c
′).

Authority should:
10 Remove all tuples with PET outcome of False to form list ValidVotes.

Each participating trustee should:
11 for each entry in ValidVotes do
12 Participate in threshold decryption of B.

Remarks: Various protocols exist for verifiable mix networks. An efficient technique with statistical soundness
is randomized partial checking [22]. The plaintext equality test (PET) is due to Juels and Jakobsson [23]. The
output of this protocol is the ballot information for unique and registered voters in an order that is unlinkable
to the order of submission.

protocol. This could arise because the voter forgot their password (and is issued a new one) or registered to
vote online but decides to vote in person. For every submitted vote that includes the revoked voter among
its β registered voters in its anonymity set (which will include any potentially valid vote by the revoked
voter herself), the submitted password is checked against the revoked voter’s entry on the ElectionRoster
using a plaintext-equality test. Revocation of this type is the same in Civitas and is not possible in AFT.
Coercion-resistance does not necessarily extend to all types of revocation.

4 Performance

We compare the performance of Selections to JCJ as implemented in Civitas [17] and to AFT [4]. We make
a number of standardizing assumptions to facilitate a better comparison. We assume a single registrar, T
trustees, R registered voters, and V0 submitted votes. We do not use the “blocking” technique of Civitas,
which could improve the performance of all three systems. Of the V0 submitted votes, V1 ≤ V0 have correct
proofs, V2 ≤ V1 are not duplicates, and V3 ≤ V2 correspond to registered voters. Recall that for Selections, α
are the number of submitted ciphertexts in registration and β is the size of the voter’s anonymity set during
casting.

We use Elgamal encryption in each system, with proofs of knowledge of plaintexts where appropriate.
We assume each trustee participates in decryption (i.e., distributed instead of threshold). We assume that
ballot material is encrypted with only a proof of knowledge (no additional proofs of well-formedness). The
pre-tallying protocol ends with a list of V3 encrypted ballots. Finally, we assume mixing is done with a re-
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Civitas AFT Selections
Registration Registrar 7 9 2α

Voter 11 10 4α-1
Casting Voter 10 24 (2β + 9)

Pre-Tally Check Proofs 4V0 20V0 (4β + 6)V0

Remove Duplicates (1/2)(V 2
1 − V1)(8T + 1) — —

Check Removal (1/2)(V 2
1 − V1)(8T + 1) — —

Mix 8V2T + 4RT 20V2T 12V2T

Check Mix 4V2T + 2RT 10V2T 6V2T

Remove Unregistered (8A+ 1)V2R (16T + 8)V2 (8T + 1)V2

Check Removal (8A+ 1)V2R (16T + 10)V2 (8T + 1)V2

Table 1. Comparison of the efficiency of the main protocols in Civitas, AFT, and Selections, measured with modular
exponentiations.

Fig. 1. Pre-tallying efficiency in modular exponentiations with T = 5 and variable R = V0 = V1 = V2.

encryption mixnet and randomized partial checking [22], where each authority produces two mixes and half
of these re-encryptions are checked. The complete details of our comparison are in Appendix A.

Table 1 shows the efficiency in terms of modular exponentiations and Figure 4 shows a comparison of
the pre-tallying protocols. With full forced-abstention, Selections is quadratic like Civitas but with a smaller
constant. When β is a constant, Selections is linear in the number of submitted votes like AFT. The exact
value of β dictates which is exactly faster. Recall our goal was not to improve the efficiency of AFT but
rather to create a password-based system with similar performance to AFT. To this end, we are successful.

5 Security Analysis (Abstract)

5.1 Soundness of Registration

In Appendix B, we show that the Registration protocol is a cut-and-choose argument for {(c, r) : c′ =
ReRande(c, r)}. It takes soundness parameter α (e.g., α = 10). It is complete and has statistical soundness of
1 − α−1 for a single run. After k runs, soundness increases to 1 − α−k. Designing a bare-handed argument
with stronger soundness (e.g., 1 − 2−α for a single run) is open. With erasures, the protocol has deniability
for c and computational secrecy for r.

The protocol does not protect against covert channels. This has been addressed in the literature with
verifiable random functions [20] or pre-committed randomness [19]. The protocol protects against coercion
contracts [16] with rewinds. Rewinds can be eliminated if the voter commits to their choice of password at
the beginning of the protocol.
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5.2 Coercion-Resistance

In Appendix C, we show several results concerning the coercion-resistance (cr) of Selections. Juels et al.
define an experiment Expcr

ES,A′ for non-adaptive adversary A in election system ES, as well as an ideal
Expcr−ideal

ES,A′ . The critical component in Expcr
ES,A′ is a coin flip b ←r {0, 1} defining a corrupted voter’s

behaviour. If b = 0, the voter provides (in Selections) a panic password to the adversary and casts a vote
with her real password. If b = 1, the voter complies with the adversary and provides her real password. In
both cases, the adversary can use the supplied password to submit a vote. We define the advantage of A,
where an output of 1 is the adversary correctly stating b, as,

advcr
ES,A = |Pr[Expcr

ES,A′(·) = 1]−Pr[Expcr−ideal
ES,A′ (·) = 1]|.

Case 1: β = R. We show that when β is the full roster R, advcr
ES,A for Selections is negligible. Setting β = R

does impact performance. Vote casting is linear in the size of the ElectionRoster and Pre-Tallying is quadratic.
However the only quadratic component is checking the 1-out-of-β rerandomization proof, where the proof
length is linear in the size of the roster. These proofs can be pre-checked, while voters submit votes.

Case 2: β = const. We show that when β is constant (e.g., 5 or 100), advcr
ES,A < δ, where δ is small but

non-negligible. Recall there are V2 votes with valid proofs and R entries on the ElectionRoster. Let F(k; p, n)
be the cumulative distribution function of a Binomial distribution with n trials, success probability p, and k
successes. We show that δ for this case is,

δ =
1

2
(F (

βV2
R

;V2,
β

R
) + 1− F (βV2

R
− 1;V2 − 1,

β

R
)).

Case 3: β ≥ const. Finally we consider the case where β is required to be at least a constant value (e.g., 5 or
100) but voters can submit stealth votes where β = R. We show that if a corrupted voter’s coercion-resistant
strategy is to submit their real vote as a stealth vote, advcr

ES,A is negligible. We do make one small change
to Expcr

ES,A′ : instead of the corrupted voter’s real vote being appended to the cast ballots, it is inserted at
a random place (i.e., she votes her real ballot at some arbitrary time after being coerced).

6 Concluding Remarks

Selections has many benefits: users can evade coercion without computations, registration does not require
a computer, tallying the votes is linear in the number of voters, and voters can have their registration effi-
ciently revoked. Future work includes providing protection against untrusted platforms, perhaps by merging
Selections with existing work on code voting.
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A Performance Comparison

Selections and Civitas both use Elgamal encryption, while JCJ and AFT use a modified variant of Elgamal
that adds one modular exponentiation to encryption, re-randomization, and decryption. For performance
comparison, we use Elgamal. Elgamal requires 2 modular exponentiations for encryption, 2 for reencryption,
and 1 for decryption. Proof of knowledge of a plaintext requires 3 exponentiations to compute and 4 to verify.

Selections, JCJ, and AFT use threshold decryption while Civitas uses distributed decryption. For stream-
lining tasks involving all trustees with ones involving an authorized set, we assume all trustees are needed.
Thus we use distributed decryption for performance comparison. In addition to the 1 modular exponentia-
tion for plain decryption, we need an additional 3T where T are the number of trustees. To verify that the
decryption was done correctly requires 4T + 1 exponentiations.

Part of the distributed decryption process involves each trustee proving that a tuple of values is a Diffie-
Hellmen tuple. With Chaum-Pedersen, this is 2 exponentiations to compute and 4 to verify. This proof can
also prove values are rerandomized correctly. The knowledge of discrete log, with Schnorr, is 1 to compute
and 2 to verify. Knowledge of a representation requires 1 to compute and 3 to verify. For one of the proofs
during casting, AFT requires knowledge of a representation with 3 generators. This requires 1 to compute
and 4 to verify.

ZKPs can be made 1-out-of-m by scaling both the computing and verifying requirements by m. ZKPs
can be made designated verifier by adding 1 exponentiation to both computing and verifying (if the verifier’s
key is known in advanced). We assume all commitments are based on hash functions, with the exception of
the Chameleon commitment used in a designated verifier proof. We assume this commitment is a Pedersen
commitment. As is standard, we also assume Pedersen commitments (and accumulators of a similar structure)
require a single exponentiation while they actually contain multiple exponents.

A plaintext equality test requires each of the T trustees to blind both ciphertext components: 2T expo-
nentiations; compute a Chaum-Pedersen proof: 2T ; and perform a distributed decryption: 4T+1. This totals
8T + 1 for computing the test and 8T + 1 to verify it was performed correctly.

Finally, a mix-network requires each of the T trustees to reencrypt each of N ciphertexts in the input: 2N
exponentiations. With randomized partial checking, each trustee actual performs two mixes: increasing the
workload to 4N . Finally, the input is not a list of single ciphertexts but rather tuples that include multiple
ciphertexts: each of which has to be individually reencrypted. If there are N tuples with τ ciphertexts in
each tuple, mixing costs 4NTτ . With randomized partial checking, half of the recencryptions have their
randomization revealed. Checking these requires half the cost of mixing: 2NTτ .

A.1 Civitas

During registration, the registrar computes an encryption (2) and proves knowledge (3). It then computes a
second encryption of the same value (2) and proves it is a rerandomization. This second proof is designated
verifier (2+1). The voter is supplied with the plaintext and randomization for the second value. She checks
the ciphertext is correct through encryption (2), verifies the knowledge of plaintext (4), and verifies the proof
of randomization (4+1).

Vote casting consists of two encryptions (4) and a proof of simultaneous knowledge (6) of the plaintexts.
Tallying begins by checking each proof (4V0). Then PETs are performed between each pair of submitted

votes with correct proofs (
(
V1

2

)
(8T+1)) and checking these PETs (same). The V1 tuples, with two ciphertexts

in each tuple, are mixed (8V2T ) and checked (4V2T ). The R values on the Roster are also mixed, with one
ciphertext in each tuple: mix (4RT ) and check (2RT ). Finally, PETs are performed between each pair of
entries in R and V2 ((8T + 1)V2R) and checked ((8T + 1)V2R).

A.2 AFT

For the comparison, we use the 2010 version of AFT [5] (cf. [4])
During registration, the registrar forms a credential (3) and proves it’s validity with respect to two keys

using two designated verifier Chaum-Pedersen proofs (6). The voter checks these proofs (10).
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Vote casting consists of four encrypted values (8), where two of the plaintexts were computed prior to
encryption (2) and one submitted value is computed but not encrypted (1). The voter proves knowledge of
the four encryptions (12). The voter also proves a representation (1) that relates an encrypted value to the
non-encrypted value.

Tallying begins by checking the plaintext proofs (16) and representation (4). Duplicates can be removed
without computing any exponentiations. AFT includes a step where a submitted value is encrypted: we omit
this step as the first mix can perform this at no additional cost. The mixing is performed on tuples with five
ciphertexts each (20V2T plus 10V2T to check). Finally, removing unregistered voters requires, per vote, an
exponentiation (1), Chaum-Pedersen to prove matching exponents (2), a PET (8T + 1), and then the same
three steps a second time. Finally, the two PETs and proofs are checked (16T + 10) for each vote left.

A.3 Selections

Prior to registration, the voter prepares α encryptions (2α). The registrar rerandomizes each (2α). The voter
checks the rerandomization of all but one (2(α− 1)).

Vote casting consists of a computed value (1), a proof of knowledge of this value (1), a rerandomization
(2), a 1-out-of-β proof of rerandomization (2β), an encrypted value (2), and a proof of knowledge of the
plaintext for this value (3).

During tallying, the three proofs are checked (2 + 4β + 4) for each cast vote. Duplicates are removed
without any exponentiations. The mix is of tuples with three ciphertexts (12V2T plus 8V2T to check). Finally,
a single PET is performed for each remaining tuple (8T + 1).

B Registration

The Registration protocol is a cut-and-choose argument given by registrarR to Vi for {(c, r) : c′ = ReRande(c, r)}.
It is a variant of Benaloh’s voter initiated auditing [7]. The protocol actually includes α > 1 ciphertexts,
c1, . . . , cα, and the sth one will be chosen for submission. In discussing general properties of Registration, we
refer to cs as simply c to keep the discussion applicable to protocols that do not have a set of ciphertexts
(i.e., are not based on cut-and-choose).

We first sketch informally several properties one may want from a registration (and voting) protocol.

1. Integrity : Vi should be convinced that c′ rerandomizes c.
2. Secrecy : An adversary A should not be able to determine that c was rerandomized from the output of

the protocol.
3. Receipt-Free: A in collusion with Vi should not be able to determine that c was rerandomized from any

of the following: supplying inputs, examining the output, or examining a transcript of the protocol kept
by Vi.

4. Covert-Free:R cannot inject information into the transcript that would be useful for coercion or breaking
secrecy.

5. Dispute-Free: If R does not follow the protocol, Vi can prove the protocol was not followed.
6. Bare-Handed : Vi can complete the protocol without performing computations during the protocol.

We will show that the protocol we provide has integrity (correctness and soundness), secrecy, receipt-
freeness and is bare-handed. We do not attempt to prevent covert channels in the basic protocol but provide
some discussion toward this point, as well as only discussing disputes.

Given a transcript of the Registration protocol, the c′ can be either accepted or rejected as a rerandomiza-
tion of c. If Registration is run correctly, the decision will always be to accept (completeness). If the protocol
is not correct, the decision will be to reject with a high probability (soundness). Finally, the outputs do
not provide any information that can be used by a computationally bounded adversary to determine any
non-negligible information about the secrets in the protocol: c and r (computational secrecy). Finally, we
show Vi has a coercion-resistant strategy (receipt-freeness).
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Assumptions. We make the following assumptions regarding the security of Registration:

1. An adversary A can corrupt Vi prior to the protocol and provide Vi with inputs to the protocol,
2. A can corrupt Vi prior to the protocol and require Vi to provide a plausible transcript of the protocol

afterward,
3. The protocol between Vi and R is run over an untappable channel unaccessible to A,
4. Vi complies with erasures,
5. A cannot corrupt R, and
6. A is bounded to probabilistic polynomial time (PPT).

For the proof, R is unbounded in computation power, while Vi is PPT-bounded. These bounds are used
to demonstrate that soundness is statistical and not computational. Either entity may employ a malicious
strategy and we denote this with a prime (R′,V ′i).

Completeness. If R follows the protocol, he will produce correct rerandomizations for each of the α cipher-
texts, including the one chosen. Vi will accept this transcript by checking the α− 1 ciphertexts and finding
they are correct. Note that we are demonstrating the protocol is complete, not the rerandomization of the
chosen ciphertext. It is possible that the rerandomization for the chosen ciphertext is correct but it is not
correct for another ciphertext. In this case, the Vi will reject the transcript despite it being correct for the
only value of importance. Completeness does not capture false-negatives.

Soundness. We now consider whether V′ will ever accept a transcript when c′ is not a rerandomization of c.
If the probability of rejecting a false proof is much greater than 1/2, we say Registration is sound. Let cs be
the ciphertext chosen for submission and let c−s be one ciphertext that is not cs.

We assume that the transcript will be checked by Vi. In reality, only a fraction of Vi’s will check. Any
probabilities should be appropriately scaled according to the fraction of Vi’s checking. For simplicity, we
omit this factor.

A malicious R′ rerandomizes c1, . . . , cα before learning the value of s. If R′ incorrectly rerandomizes
more than one ciphertext, the transcript will be rejected with certainty. Therefore R′ must choose one. If
Vi chooses s at random, R′ can do no better than choosing randomly. Denote R′’s choice as cŝ. If s 6= ŝ,
Vi rejects R′’s false transcript. If s = ŝ, Vi accepts R′’s false transcript. The probability Pr[s = ŝ] = α−1.
Therefore, the soundness of Registrar is:

Pr[REJECT(R′,Vi)] = 1− α−1. (1)

If R′ creates false transcripts for k voters, the probability of at least one V1, . . . ,Vk rejecting the false
transcript is:

Pr[REJECT(R′,V1) ∨ . . . ∨ REJECT(R′,Vk)] = 1− α−k. (2)

For example, to achieve a probability of detection of at least 99.9%, {α = 10, k = 3} or {α = 2, k = 10}
are sufficient.

Computational Secrecy. Under assumption 4, Vi complies with erasures. We assume additionally under this
compliance that Vi cannot commit the values to memory. We do not consider here the issue of a voter
memorizing a few bits of the values, which could make for interesting future work. We also note that while
the voter could record the values with a device, this device could also be used to record how they vote in an
in-person voting protocol. We only claim our system to be as secure as the baseline of an in-person voting
protocol. Erasures can be enforced by having an erasure confirmation code printed under the scratch-off. In
Section D, we collect features for enhanced verification cards to be explored in future work.

With erasures, a transcript of the protocol does not contain the values (cs, rs) for c′s. However V ′i (i.e.,
malicious Vi) has the value cs. Therefore V ′i can assert that the value of cs is ĉs, which may or may not
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be true. The adversary must decide if the asserted ĉs and the rerandomized value c′s encrypt the same
plaintext ρ. Toward a contradiction, assume the adversary has an efficient plaintext equality (peq) algorithm
{T, F} ← APEQ(ĉs, c

′
s) to determine this equality.

A can use APEQ to win the CPA game. In the CPA game, A provides p0 and p1 to oracle O, O flips
coin b←r {0, 1}, and returns challenge ciphertext cb = Ence(pb, r). A encrypts p0 as c0 and submits queries
APEQ(c0, cb). If T, A guesses b = 0 and otherwise b = 1. Since the encryption is CPA-secure, APEQ(ĉs, c

′
s)

cannot be efficient against the encryption and the PPT-bounded adversary (assumption 6) cannot decide if
V ′i asserted a correct value.

Receipt-Freeness. Under assumption 1, A can provide inputs for V ′i. For example, A could provide a list of
α ciphertexts c1, . . . , cα for V ′i to use. V ′i however can replace one of A’s ciphertexts with her desired cs and
choose it for submission. After the erasure, A cannot distinguish if she supplied his ciphertext or her own
ciphertext under the argument given above for computational secrecy.

However, V ′i has one further input to the protocol and that is the value of s itself. A can exploit this with
a coercion contract. Assume A provides V ′i with α ciphertexts and V ′i substitutes her own for one of them.
Further assume that a communication channel exists between A and V ′i . If such a channel existed, V ′i could
tell A the values she received and A could tell her a value of s. Unless if Vi placed her substituted value in
the correct place, her non-compliance will be caught.
A’s best strategy is to chose a random value for s. The goal of a coercion contract is to replace the

interactive channel between A and V ′i (which does not actually exist) with a non-interactive call to a random
oracle made by the voter to receive s and re-queried by A to verify compliance. For example, A could require
Vi to submit the smallest rerandomized value c′i generated by R. If this generation is random, then the
implied value of s will be random as well. Since the voter has to choose where to substitute her value before
seeing what such an s will be, she will get caught with probability 1− α−1.

In order to provide receipt-freeness, Registration allows Vi to rewind the protocol upon seeing the list
of rerandomized values. In practice, they could be displayed and rewound until satisfactory and only then
printed. An alternative approach is to have the voter commit to s prior to the protocol. This could be
accomplished bare-handed by having the voter mark beside the cell she will scratch-off or putting s in a
sealed envelope, which will be checked when she leaves.

Covert-Freeness. The protocol does not protect against covert channels. The issue of covert channels has
been addressed in the literature with verifiable random functions [20] or pre-committed randomness [19].
However if R is printing values, it is very easy for R to leak information with slight variations in how things
are printed. Further, R cannot prove anything that is interesting to the adversary. It can assert what V ′i
supplied it with but these values could be easily simulated: the erased values are c and r′ for c′. A simulator
can generate such values: just rerandomize c′ with r′′ to get c′′ and claim c′′ and r′′ were submitted by the
voter.

Since under assumption 5 A cannot corrupt R, A cannot trust any assertions leaked covertly by R on
the face of the assertion itself. The assertions must include a sound argument for (or proof of) what is being
asserted.

C Coercion-Resistance

We now turn our attention to the entire protocol and consider whether it is coercion-resistant under the
game-based definition from Juels et al. [27]. Moving forward, we will model registration as an abstract
protocol possessing the properties demonstrated. Following Juels et al., we will also replace portions of
the protocol with idealized primitives. These include the password-based key derivation function, mixing,
plaintext equality tests, zero-knowledge proofs of knowledge, and hash functions used to make the proofs
simultaneous, non-malleable, and non-interactive (i.e., secure against a dishonest verifier).

Other cryptographic definitions of coercion-resistance (or the related receipt-freeness) exist in the liter-
ature. Kusters et al. provides another game-based definition [29] that can be seen as a generalization of the
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Algorithm 4: Experiment Expcr
ES,A′

Input: Security parameters k1 (encryption) and k2 (mixing), number of voters nV , number of corrupted
voters nA, trustees public key e, distribution of types of votes cast by honest voters D.

Private Input (Ti): Private key shares constituting dT .

1 (V,U)← A(VoterIDs, “corrupt”) //A corrupts nA voters
2 {(ρi,Ence(gρi))← Register(i, e, k1)}nV

i=1 //All voters register
3 {ρi}i∈V ← A(VoterIDs, “obtain”) //A obtains corrupted passwords
4 j ← A(VoterID, “coerce”) //A coerces one voter j
5 Check |V | = nA and j /∈ V (upon failure, output ⊥) //Validity check on A

6 b←r {0, 1} //Flip coin b
if b = 0 then

7 AllVotes ⇐ Cast(ρj ,Bj , βj , k1) //Voter casts ballot B
8 ρ∗ ← PanicPassword(ρj) //Voter sets ρ∗ to a panic password

else
9 ρ∗ ← ρj //Voter sets ρ∗ to real registered password

10 AllVotes ⇐ {Cast(ρi,Bi, βi, k1,D)}i 6=j,i/∈V //Honest voters cast ballots
11 AllVotes ⇐ A({ρi,Bi, βi, k1}i6=j,i∈V , “cast”) //A casts corrupt ballots
12 AllVotes ⇐ A(ρ∗,B, β, k1, “cast”) //A casts coerced ballot
13 (ValidVotes, Π, Γ )← PreTally(Roster,AllVotes, dT , k2) //PreTally is conducted

14 b′ = A(UniqueVotes, Π, Γ , “guess”) //A guesses
15 Output 1 if b′ = b, else 0.

Juels et al. definition to voting systems that do not fit the general architecture of the Juels et al. scheme
(Selections does fit this general architecture). Gardner et al. provide a definition focused more on the elimi-
nation of covert channels and it is specific to the architecture of Benaloh’s voter initiated auditing [20]. Other
researchers have used simulation-based proofs [30,38,40]. See Kusters et al. [29] for an excellent overview of
the different approaches as of 2010.

C.1 Security Game

High-level Overview. We present the experiment Expcr
ES,A′ in Algorithm 4 and experiment Expcr−ideal

ES,A in
Algorithm 5. These experiments are quite faithful to the original experiments proposed by Juels et al., except
we have modified them to correspond to user-chosen passwords instead of registrar-chosen credentials. We
have replaced some of the notation to better integrate with Selections as presented in Section 3. Here we will
briefly describe the game.

The game involves a challenger running the game, an adversary A, and a set of voters. There are nV
voters and they are partitioned into three sets throughout the game. At the beginning of the protocol, the
adversary corrupts nA voters. We call this set of corrupted voters V and the remaining uncorrupted voters
are U . The adversary then specifies a single voter from U to coerce. We call this voter j. So the makeup of
the voters is nA corrupted voters, 1 coerced voter, and nV − nA − 1 uncoerced (or honest) voters.

The adversary is non-adaptive: he must specify at the beginning of the protocol which voters are to be
corrupted. He does this with a “corrupt” command. All voters register. The adversary is given the passwords
registered by the corrupt voters (using the “obtain” command). The adversary then chooses the voter to
coerce (using the “coerce” command). This voter cannot already be corrupted (i.e., the adversary does not
know her registered password). The challenger then makes sure the adversary did not cheat in how voters it
corrupted or who it selected to coerce.

At the heart of the game, the adversary will decide between one of two scenarios selected with uniform
randomness by the challenger. In the first scenario, the coerced voter does everything she can to escape
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Algorithm 5: Experiment Expcr−ideal
ES,A

1 (V,U)← A′(VoterIDs, “corrupt”)
2 {(ρi,Ence(gρi))← Register(i, e, k1)}nV

i=1

3 � //A′ does not obtain corrupted passwords
4 j ← A′(VoterID, “coerce”)
5 Check |V | = nA and j /∈ V (upon failure, output ⊥)

6 b←r {0, 1}
if b = 0 then

7 AllVotes ⇐ Cast(ρj ,Bj , βj , k1)

8 ρ∗ ← ρj //A′ always gets real password

else
9 ρ∗ ← ρj //A′ always gets real password

10 AllVotes ⇐ {Cast(ρi,Bi, βi, k1,D)}i 6=j,i/∈V
11 AllVotes ⇐ A′({�,Bi,�, k1}i6=j,i∈V , “cast”) //A′ just submits intent
12 AllVotes ⇐ A′(ρ∗,B,�, k1, “cast”) //A′ does not see AllVotes

13 (ValidVotes, Π, Γ )← IdealPreTally (Roster,AllVotes, dT , k2) //Idealized

14 b′ = A′(ValidVotes,�, Γ, “guess”) //A′ guesses without Π
15 Output 1 if b′ = b, else 0.

Remarks: Boxed items represent changes from Expcr
ES,A′ .

coercion: she posts the ballot she wants to using her real password and provides a panic password to the
adversary. In the second scenario, the coerced voter does everything she can to cooperate with the adversary:
she does not cast any votes and she provides the adversary with her real password.

The election then proceeds with the honest voters casting their ballots, the adversary casting ballots
on behalf of the corrupted voters (while having a full view of what the honest voters cast), and finally the
adversary casting a ballot on behalf of the coerced voter using the password supplied to him (both through
the “cast” command). The votes go through the pre-tally, and list of encrypted valid votes is returned, along
with Π, a full transcript of the entire PreTally process, including all the proofs, and Γ which replicates a
subset of the information in Π (see below). Based on this information, the adversary guesses which scenario.
If the adversary cannot distinguish the scenarios, then he effectively cannot distinguish between the success
or failure of his coercion.

Ideal Game. We can ask ourselves, what is the highest level of security we can achieve? It is tempting to
conclude it is the scenario where a bounded adversary cannot distinguish between the scenarios. In other
words, his advantage at guessing is ε-close to 1/2. Juels et al. point out this not always the case. In systems
like JCJ, Civitas, and AFT, the final output of the protocol is the tally. In Selections, the protocol ends
before this final decryption stage however consider for a moment that it produced the final tally as well. If
the adversary were to cast a ballot for Alice using the password provided to him by the coerced voter and the
final tally produced no votes for Alice, then the adversary could distinguish with certainty which scenario
occurred in Expcr

ES,A′ .
However from this, we should not conclude anything about the coercion-resistance of Selections: the

distinguishability of the scenarios in this case is invariant to the election system used. Since we are interested
in the advantage an adversary would have with a particular election system, we need to measure it against
an experiment that preserves the distinguishers that are invariant to the election system. To this end, Juels
et al. define Expcr−ideal

ES,A where the election is conducted in a very similar manner but the adversary does not
get any access to the cryptographic data involved.
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In Selections, because a final tally is not produced, this illustrative distinguisher does not work. However,
the adversary does learn Γ which contains four quantities: the number of cast votes, number of submissions
eliminated due to invalid proofs, the number of submissions eliminated because they were duplicates, and the
number of submissions eliminated for having invalid passwords. The last quantity could be distinguishing:
if no other honest voters cast ballots in the election and the adversary abstains from casting the coerced
voter’s vote, he will learn if the coerced voter cast a vote of her own by the number of valid votes (relative to
the number he cast through corrupted voters). In general, the number of votes cast will always be greater by
one when the coin flip is 0, as opposed to 1. In order to negate the significance of this fact on the adversary’s
advantage, we introduce a notion of adversarial uncertainty.

Adversarial Uncertainty. If the adversary knows how all the other voters will vote, then he can easily
and consistently win the game even without seeing the final tally. He will simply count how many votes
were submitted. This number differs according to the coin flip. Juels et al. address this by specifying a
distribution D over the honest voter’s votes which specifies the number of ballots they will cast (voters can
abstain, submit one, or submit more than one), and whether submitted ballots contain a valid proof and/or
use a valid credential. D acts a “noise” that masks the coerced voter’s actions. Additionally, they note, noise
can be injected into the system by any interested party.

In Selections, voters rerandomize their registered encrypted password from Roster and include it in their
vote, but do not reveal it is from their entry in Roster. They do this by forming an anonymity set of β − 1
other entries. When the size of β is not specified by the system (Case 3 below), we assume that D also
specifies a distribution for the β values used by voters. It is likely to be bimodal, with voters either using the
minimum β (for efficiency) or the largest β (for maximal privacy). We assume adversarial uncertainty with
respect to this distribution.

C.2 Ideal Components

• D̃KG(k1) is a distributed key generation algorithm that shares a secret decryption key. In the idealized
form, we assume only the challenger learns the key. k1 is a security parameter.
• ˜PBKDF (ρ̂) is a password-based key derivation function. It takes input from an unspecified distribution

and returns a value that is computationally indistinguishable from a uniform random selection in Gq. It
may rely on a random oracle.
• P̃OK1(β) is a proof of knowledge that a given ciphertext reencrypts 1-out-of-β other ciphertexts. The

computational secrecy of the witness is εwh−pok (“wh” for witness hiding) and it is non-interactive through
a random oracle assumption. Using standard techniques, the component can output a simulated proof
(by control of the random oracle) or the witness can be extracted (through rewinds).
• P̃OK2 is a proof of knowledge of a discrete log. It has the same properties as P̃OK1.
• M̃IX(UniqueVotes, k2) is a mix network. In the idealized form, it shuffles and rerandomizes a list of

ciphertexts. k2 is a security parameter that describes how unlinkable an output ciphertext is from its
corresponding input (it differs from k1 because some implementations reveal partial information about
the permutation used).
• P̃ET is a plaintext equality test. In the idealized form, it simply returns a bit describing whether two

ciphertexts encrypt the same message or not.

C.3 Case 1: β = R

We define the advantage of A, where an output of 1 is the adversary correctly stating b, as,

advcr
ES,A = |Pr[Expcr

ES,A′(·) = 1]−Pr[Expcr−ideal
ES,A (·) = 1]|.

Recall that when voter submit a ballot, they prove they re-encrypted one of β registered passwords. β
represents the size of the anonymity set for the voter. We show that when β is the full roster R for all voters,
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advcr
ES,A for Selections is negligible. Setting β = R does impact performance. Vote casting is linear in the

size of the ElectionRoster and Pre-Tallying is quadratic.
We approach the proof through a series of modified games, beginning with a detailed implementation of

Expcr
ES,A′ in Game 0 and ending with a game that, from inspection, has the same advantage as Expcr−ideal

ES,A .
For each modification, we will show that A’s advantage in distinguishing which game he is playing is bounded
by a quantity that is negligible in some security parameter.

Game 0. We now describe the initial game. Note that the item numbers in this game correspond to the same
step in Expcr

ES,A′ and Expcr−ideal
ES,A . For modified games, we will only include the modified lines.

Set-up assumptions. The experiment takes as input a number of parameters that were generated during
some set-up phase. This includes a uniformly random private key dT ←r Zq which we assume is output in
shares to a set of trustees with the D̃KG(k1) oracle. The corresponding public key e ∈ Gq is published.
Security parameter k1 is specified such that computing dτ from e is negl(k1). A generator of g0 ←r Gq is
also chosen by the trustees at random.

1. Corrupt voters. The adversary A selections a subset of the nV eligible voters to corrupt. He outputs
two sets: U the uncorrupted voters and V the corrupted voters.

2. Registration. For each voter i, the challenger chooses a random password ρ̂, queries ˜PBKDF (ρ̂) and
obtains a random ρ. With r ←r Zq, the challenger encrypts ρ under key e. The output is Roster, which
includes for each voter an entry of the form: 〈VoterIDi,Ence(gρi0 , ri)〉.

3. Obtain corrupted passwords. For each voter in V , the challenger supplies the adversary with the
passwords: 〈ρi〉i∈V and a proof of correctness using P̃OK1(1).

4. Choose coercion target. From the uncorrupted voters U , A selects voter j to coerce. Voter j is removed
from set U .

5. Validity Check. The challenger checks that the subset of corrupted voters is according to input param-
eter nA and that A did not obtain the password for the coerced voter j in step 4. If any test fails, the
game halts and outputs ⊥.

6. Flip coin. The challenger flips a coin b←r {0, 1}.
7. Heads: Cast real ballot. If b = 0, the challenger constructs a ballot for coerced voter j using password
ρj . Let cj = Ence(g

ρj
0 , rj) for voter j from Roster and c′j be a rerandomization of cj . The challenger

appends to AllVotes a ballot of the form
〈
g
ρj
0 ,ReRand(cj),Bj , π1, π2

〉
where π1 is the output of P̃OK1(β)

and π2 is the output of P̃OK2.5 Recall our assumption that the knowledge error for both oracles is
negl(k1), the same security parameter for the encryption. Also note that due to the use of an append
operation, the adversary knows exactly where this ballot, if it exists, will be posted—a point we will
return to later.

8. Heads: Generate panic password. Continuing the case that b = 0, the challenger chooses a random
password ρ̂∗, queries ˜PBKDF (ρ̂∗), and obtains a random ρ∗. He sets ρ(A,j) = ρ∗ and provides the
adversary with ρ(A,j).

9. Tails: Give real password. The challenger sets ρ(A,j) = ρj and provides the adversary with ρ(A,j).
10. Honest voters vote. For each voter remaining in U , the challenger posts a ballot following the procedure

used in step 7 for the coerced voter. The output to AllVotes is 〈gρi0 ,ReRand(ci),Bi, π1, π2〉i∈U .
11. Corrupt voters vote. A constructs votes for the remaining candidates. The adversary is not bound

to the protocol and can post tuples of any form (e.g., duplicate votes, invalid votes, votes with invalid
proofs, etc.). These are provided to the challenger, who appends them to AllVotes.

12. Coerced voter votes. A constructs one remain vote for the coerced voter j, potentially using the ρ(A,j)
he was provided with.

5 Note that in JCJ, the adversary can specify the candidate the voter votes (so that the security does not depend on
the adversary not knowing) for however in Selections, we never decrypt the ballots and we leave ballot information
B generic. However, we if assume B to be a ciphertext, we can allow the adversary to choose the corresponding
plaintext.
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13. PreTally. The challenger operates the PreTally protocol. It is detailed earlier in the paper, so we only
briefly outline it here. The challenger first verifies the proofs and removes tuples with invalid proofs, pro-
ducing ProvedVotes. The challenger then inspects the tuples for duplicate values for gρi . For pairs with the
same value, he only retains the most recent. The new list is UniqueVotes. He queries M̃IX(UniqueVotes, k2)
which produces a shuffled output and proof of correctness. Each output entry is distinguishable from
its corresponding input by a negl(k2) factor. Finally, for each tuple, the first two entries are supplied to
P̃ET . If the test is negative, the entry is removed. The remaining list ValidVotes is output to A along
with each preceding list.

14. Guess. The adversary produces a guess b′ ∈ {0, 1}. If b′ = b, Game 0 outputs a 1. Otherwise, it outputs
0.

Intuition. The intuition behind our modifications is as follows. The coerced voter behaves differently in at
least two regards depending on the coin flip: (1) she submits a second vote and (2) she supplies either a
real or panic password to the adversary. The second vote has two potentially distinguishing features: (1a)
the rerandomized value from the Roster belongs to the voter6 and (1b) the asserted password matches the
value on the Roster. Game 1 addresses (1a) and (1b) and Game 2 addresses (2). These games will show
that a bounded adversary cannot use values associated with the coerced voter directly. However he could
potentially learn the actions of all the honest voters in the system. If he were successful, he would know the
actions of everyone except the coerced voter and could then indirectly determine the actions of the coerced
voter based on the result. We address the honest voters in Game 3.

Game 1. For Game i, define Si = Pr[Game i = 1]. We describe Game 1 and show that |S1 − S0| ≤
εcpa + εwh−pok + εddh + εwh−pok.

2 Registration. Registration proceeds as in Game 0.
6 Flip coin. Coin is flipped as in Game 0.
7 Heads: Cast ballot. The challenger chooses a random value ẑ ∈ Zq, computes ĉ = Ence(g

ẑ
0 , r), and

simulates a proof π̂1 that ĉ is one of β entries on the Roster using P̃OK1(β). The challenger appends〈
gẑ0 , ĉ ,Bj , π̂1 , π̂2

〉
to AllVotes.

8 Heads: Generate panic password. A is provided ρ(A,j) = ρ∗ as in Game 0.
9 Tails: Give real password. A is provided ρ(A,j) = ρj as in Game 0.
13 PreTally. PreTally proceeds as in Game 0.

We now consider whether A can distinguish is he is playing Game 0 or Game 1. If b = 1, then the games
are identical and he will have no advantage. For this reason, the advantage we compute should be scaled by
a factor of 1/2, however since we will be dealing with negligible quantities, we omit this. If b = 0, A is asked
to distinguish

〈
g
ρj
0 ,ReRand(cj),Bj , π1, π2

〉
from

〈
gẑ0 , ĉ ,Bj , π̂1 , π̂2

〉
. Since votes are appended, A can

find this submission when b = 0.
We first consider if A can distinguish gẑ0 for a random ẑ from g

ρj
0 . The adversary can see an encryption of

ρj , (c(1,j), c(2,j)) = Enc(g
ρj
0 , r), from the coerced voter’s entry on the Roster. In Game 0, the following values

form a Diffie-Hellman tuple:
〈
g, gr = c(1,j), y, y

r = c(2,j)/g
ρj
0

〉
. In Game 1, the last element of this tuple is

masked by z and is distributed randomly in Gq. Thus distinguishing them is an example of the decisional
Diffie-Hellman problem.

Toward a contradiction, let AG1 be an efficient algorithm for distinguishing Game 1 from Game 0 based on
this potentially distinguishing factor (we deal with three others next). We can use AG1 to gain a non-negligible
advantage at the DDH game in the underlying group. The adversary receives challenge tuple 〈a1, a2, a3, a4〉
where ax1 = a2 for some x. A must decide if ax3 = a4. A computes a random exponent ω ←r Zq, sets g = a1,

6 Note that this is a necessary but not sufficient condition for the submission being a second vote from the coerced
voter. There is no restriction on other voters submitting votes using the coerced voter’s Roster entry. These will be
eliminated.
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sets e = a3, replaces RosterEntry with c′j = 〈a2, a4 ∗ gω0 〉, and places gω0 in the submitted vote. He submits
this transcript to AG1. Upon output Game 0, A guesses it is a Diffie-Hellman tuple and upon output Game
1, he guesses it is not. Let εddh be the adversary’s advantage at the DDH game.

Next, A again obtains the coerced voter’s entry, cj , from the Roster. Now he guesses if the submitted
vote contains a rerandomization of cj or not. Let the submitted value, either ReRand(cj) or ĉ, be c∗.

Toward a contradiction, let AG2 be an efficient algorithm for distinguishing Game 1 from Game 0 based
on this potentially distinguishing factor. We can use AG2 to gain a non-negligible advantage at the CPA
game of the underlying encryption. A submits two random messages, m1,m2 ←r Gq and receives challenge
ciphertext cmb

. The adversary takes a transcript of a game, replaces voter j’s entry of Roster with Ence(m1, r)
and replaces c∗ with cmb

. A submits this to AG1 and upon a guess of Game 0, A guess m0. Let εcpa be the
adversary’s advantage at the CPA game.

There are two other values in the transcript of the Game that are functionally dependent on ẑ. First, π1
will be constructed the same in both games, but will rely on different witnesses. We assumed an idealized
proof of knowledge, and recall that we assumed it is witness hiding. Let we bound the information A can
gain from π1 about the witness at εwh−pok. Second, the submission contains a transcript π2 that proves
knowledge of ẑ in gẑ0 . We assume A’s advantage at extracting ẑ from this transcript is εwh−pok.

By the triangle inequality, |S1 − S0| ≤ εcpa + εwh−pok + εddh + εwh−pok

Game 2. We now describe Game 2 and show that |S2 − S1| ≤ εcpa

6 Flip coin.
7 Heads: Cast ballot. As in Game 1.
8 Heads: Give real password . A is provided ρ(A,j) = ρj instead of ρ∗.
9 Tails: Give real password. As in Game 1.

We now consider whether A can distinguish is he is playing Game 1 or Game 2. As before, if b = 1, then
the games are identical and he will have no advantage. If b = 0, A is asked to distinguish ρj from ρ∗ given
an encryption of ρj from Roster. Distinguishing the games provides an advantage in the CPA game following
almost the identical reduction already used in Game 1.

Toward a contradiction, let AG3 be an efficient algorithm for distinguishing Game 2 from Game 1 based
on this potentially distinguishing factor. We can use AG3 to gain a non-negligible advantage at the CPA
game of the underlying encryption. A submits the messages, m0,m1 and receives challenge ciphertext cmb

.
The adversary replaces the coerced voter’s entry on Roster with cmb

and uses m1 as the provided value. He
submits this to AG3. Upon output Game 1, A guesses m0 (since in Game 1, the roster and provided value
are different) and upon Game 2, it guesses m1 (since in Game 2, the values are the same).

Game 3. We describe Game 3 and show that |S3 − S2| ≤ εcpa + εwh−pok + εddh + εwh−pok and that S3 =

Pr[Expcr−ideal
ES,A (·) = 1].

10 Honest voters vote. For each voter remaining in U , the challenger posts a ballot following the procedure
used in Game 2 for the coerced voter, except the commitments and encryptions do not match. The output

to AllVotes for each voter is
〈
gẑ10 , Ence(g

ẑ2
0 , r) ,Bj , π̂1 , π̂2

〉
for a random values ẑ1 and ẑ2. If the

vote is chosen to be not valid, the simulated submission is modified in the same way (e.g., invalid proof).
If the vote is a duplicate, the same ẑ1 value is used. If the vote is not supposed to match the Roster, this
is noted by the challenger.

11 Corrupt voters vote. Same as in Game 2.
12 Coerced voter votes. Same as in Game 2.
13 PreTally. The challenger operates the PreTally protocol as in Game 2 with some modifications. Since

none of the honest votes will having matching gẑ10 and Ence(g
ẑ2
0 , r) values, the challenger will track

the votes through the protocol. The challenger eliminates submissions with invalid proofs or duplicate
committed passwords as in Game 2, and outputs UniqueVotes. Instead of querying M̃IX(UniqueVotes, k2),

22



Fig. 2. Adversary’s advantage over one half (δ) versus β and votes cast (V2) in Case 2.

the challenger simulates a mix (as a reencryption mix, it does not depend on dT ) and remembers where
each honest vote ends up. For each corrupted or coerced tuple, it submits the first two entries to P̃ET .
If the test is negative, the entry is removed. For honest votes, it simulates a positive or negative output
of P̃ET according to whether the submission was intended to match the Roster. The remaining list
ValidVotes is output to A along with each preceding list.

In Game 1, we have seen an argument for why replacing commitments to passwords with a random gẑ10
and rerandomized roster entries with a random Ence(g

ẑ2
0 , r) cannot be distinguished with advantage greater

than εddh + εcpa. The rest of the modifications consist of replacing queries to the ideal components with
simulations. This could be detected if the witnesses could be extracted from the real proofs in Game 2 as
opposed to the simulated proofs in Game 3. We denote this advantage as εmix + εpet for the mixing and
plaintext equality tests.

Since AllVotes, ProvedVotes, UniqueVotes, and ValidVotes contains only random values in each vote sub-
mission other than the adversary’s own submissions (through corrupt voters and/or the coerced voter), the
only useful information it provides is the final output,ValidVotes, and the relative size of each list, Γ . This is
exactly the output of Expcr−ideal

ES,A .
Putting everything together,

|S3 − S0| = |Pr[Expcr−ideal
ES,A (·) = 1]−Pr[Expcr

ES,A′(·) = 1]|
= εcpa + εwh−pok + εddh

= advcr
ES,A

C.4 Case 2: fixed β

We show that when β is constant (e.g., 5 or 100), advcr
ES,A < δ, where δ is small but non-negligible. Recall

there are V2 votes with valid proofs and R entries on the ElectionRoster. Each voter submits a vote within an
anonymity set. Assume the members of this set are chosen with uniform randomness. The expected number
of votes cast in which the coerced voter j is in one or more anonymity set can be described with a binomial
distribution.

When b = 0, at least one vote will include j in an anonymity set because the coerced voter must include
herself in the vote to be valid. The additional inclusions are distributed randomly. When b = 1, all the
inclusions are distributed randomly. Thus, there is a measurable difference between these distributions,
which we call δ. Let F(k; p, n) be the cumulative distribution function of a Binomial distribution with n
trials, p success probability, and k successes. The adversary’s advantage is δ,

δ =
1

2
(F (

βV2
R

;V2,
β

R
) + 1− F (βV2

R
− 1;V2 − 1,

β

R
)).
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While we could perhaps provide a bound on this value, we are ultimately uninterested in Case 2 and are
considering it only to motivate Case 3. Therefore we simply note it is a non-negligible amount, and provide
in Figure 2 some values of δ plotted against the number of cast votes and β.

In Case 1, we made assumptions about adversarial uncertainty with respect to certain voting behaviours.
For example, the total number of votes cast will always differ by one between b = 0 and b = 1 but it also
differs according to D. (Similarly the number of votes in the final output will as well, but in Expcr−ideal

ES,A , the
number of votes in the final output is also provided to A.) Unfortunately, the anonymity set membership
distribution cannot be described within adversarial uncertainty: in Expcr−ideal

ES,A , A does not have access to
any information posted to AllVotes and the protocol clearly provides an expected value for j’s inclusion in
an anonymity set. Therefore, we conclude Case 2 is not secure.

Game 0-weak. We consider a modified experiment, Expcr−weak
ES,A′ , for which advcr−weak

ES,A is negligible for Case 2.
We do this to clearly illustrate what blocks the proof from going through. We hope this makes the motivation
for and solution in Case 3 easier to understand. We illustrate this through a game: Game 0-weak.

6 Flip coin.
7 Heads: Cast ballot. As in Game 0.
8 Heads: Give panic password. As in Game 0.
9 Tails: Give real password. As in Game 0.
10 Honest voters vote. Iff b = 1, the challenger will select for the first honest voter an anonymity set that

includes voter j. The other members of the set are chosen randomly, and the process for the rest of the
honest voters proceeds as in the original Game 0 (with randomly selected, β-sized anonymity sets).

Game 0-weak is too strong of a modification to consider Case 2 coercion resistant; however were it made,
the security would follow as in Case 1 (with this modification preserved through the sequence of games).

C.5 Case 3: stealth votes

We consider the case where β is required to be at least a constant value (e.g., 5 or 100) but voters can submit
stealth votes where β = R. We show that if a coerced voter’s coercion-resistant strategy is to submit their
real vote as a stealth vote, advcr

ES,A is negligible. We do make one small change to Expcr
ES,A′ : instead of the

coerced voter’s real vote being appended to the cast ballots, it is inserted at a random place (i.e., she votes
her real ballot at some arbitrary time after being coerced). If we used Game 0 directly, the use of appends
means that the coerced voter’s vote will always be first (when b = 0). A can simply inspect this vote and
see if it is a stealth vote. It will always be when b = 0 and will only be so with non-certain probability when
b = 1. We believe this gives the adversary unnecessary power. We describe our change as Game 0-iii and
then argue for its validity.

Game 0-iii.

6 Flip coin.
7 Heads: Cast ballot. If b = 0, the challenger constructs a ballot for coerced voter j using password ρj
as in Game 0. Likewise, the challenger constructs a ballot of the form

〈
g
ρj
0 ,ReRand(cj),Bj , π1, π2

〉
where

π1 is the output of P̃OK1(β) and π2 is the output of P̃OK2. In Game 0, due to the use of an append
operation, the adversary knows exactly where this ballot, if it exists, will be posted. In this game, the
challenger holds the ballot until he posts the votes from the honest voters and at that time, he posts this
ballot as well in a random location .

8 Heads: Give real password. As in Game 0.
9 Tails: Give real password. As in Game 0.

Given the adversary is passive and must corrupt voters at the beginning of the protocol, we believe that
Game 0 gives the adversary too much power. This is not a problem until we have a protocol where the
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security should hold under reasonable assumptions but the proof will not go through, as is the case here.
We propose Game 0-iii as reasonable modification to Expcr

ES,A′ that preserves the security of the system
against a passive adversary, who must corrupt voters at the beginning of the protocol. With a non-adaptive
adversary, the coerced voter knows they are being coerced and in the b = 0 case, they are attempting to
deceive the adversary. Game 0-iii simply adds another dimension to the deception.

In the real-world, the original Expcr
ES,A′ does not model the intended strategy for a coerced voter. If a

coercer demands a voter’s password, the voter cannot cast a real vote immediately because they are in the
presence of the adversary. It is likely they may have already voted with their real password, or will wait some
period of time before submitting. In other words, the timing of when they submit their real vote is invariant
to the time that they are coerced, unless if they happen to coincide.

If we accept Game 0-iii as a definition of coercion resistance against a passive adversary, then security
of Case 3 follows from the negligible distinguishability between Game 0-iii and a similarly adjusted Game
1-iii and on through the same steps we used in Case 1. If we consider this potentially distinguishing feature
that not all votes have anonymity sets of the full size in isolation (Case 1 proof covers the others), we must
introduce a new assumption: we assume that other voters are submitting stealth votes (because they are
privacy sensitive) and the adversary has no reliable expected value for the quantity of stealth votes in the
election. To accomplish this, we expand D to include the distribution of stealth and non-stealth votes, and
as with the other aspects of this distribution, we assume adversarial uncertainty.

D Augmented Transcript Cards

Future work could explore the creation of an augmented transcript card that provides verifiable, bare-handed
mechanisms for erasures, pre-committed randomness and a voter commitment to which of the α submissions
they will choose. It could include the following features,

• A serial number.
• A commitment to the contents for the Roster prior to the protocol.
• A place for the voter to commit to which ciphertext she will retain prior to the reencryptions being

printed. This could be accomplished with a simple hole-punch. The voter performs the hole-punch in
front of the registration agent and the card is checked before the voter leaves to ensure the scratched off
cell matches the committed spot.

• Confirmation codes printed under each scratch-off surface for the voter to prove to the registrar she
complied with the erasure.

• To eliminate covert channels, randomization is precommitted to.
• The randomization values could be supplied to a one-way function to generate the erasure codes.
• A commitment to the contents of the Roster after the protocol.
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