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Abstract. ARMADILLO2 is the recommended variant of a multi-pur-
pose cryptographic primitive dedicated to hardware which has been pro-
posed by Badel et al. in [1]. In this paper, we describe a meet-in-the-
middle technique relying on the parallel matching algorithm that allows
us to invert the ARMADILLO2 function. This makes it possible to per-
form a key recovery attack when used as a FIL-MAC. A variant of this
attack can also be applied to the stream cipher derived from the PRNG
mode. Finally we propose a (second) preimage attack when used as a
hash function. We have validated our attacks by implementing cryptanal-
ysis on scaled variants. The experimental results match the theoretical
complexities.
In addition to these attacks, we present a generalization of the parallel
matching algorithm, which can be applied in a broader context than
attacking ARMADILLO2.

Keywords: ARMADILLO2, meet-in-the-middle, key recovery attack,
preimage attack, parallel matching algorithm.

1 Introduction

ARMADILLO is a multi-purpose cryptographic primitive dedicated to hard-
ware which was proposed by Badel et al. in [1]. Two variants were presented:
ARMADILLO and ARMADILLO2, the latter being the recommended version.
In the following, the first variant will be denoted ARMADILLO1 to distin-
guish it from ARMADILLO2. Both variants comprise several versions, each
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one associated to a different set of parameters and to a different security level.
For both primitives, several applications are proposed: fixed input-length MAC
(FIL-MAC), pseudo-random number generator/pseudo-random function
(PRNG/PRF), and hash function. In [6], authors present a polynomial attack
on ARMADILLO1. Even if the design of ARMADILLO2 is similar to the design of the
first version, authors of [6] claim that this attack can not be applied on ARMADILLO2.

The ARMADILLO family uses a parameterized internal permutation as a build-
ing block. This internal permutation is based on two bitwise permutations σ0 and σ1.
In [1], these permutations are not specified, but some of the properties that they must
satisfy are given.

In this paper we provide the first cryptanalysis of ARMADILLO2, the recom-
mended variant. As the bitwise permutations σ0 and σ1 are not specified, we have
performed our analysis under the reasonable assumption that they behave like random
permutations. As a consequence, the results of this paper are independent of the choice
for σ0 and σ1.

To perform our attack, we use a meet-in-the-middle approach and an evolved vari-
ant of the parallel matching algorithm introduced in [2] and generalized in [5, 4]. Our
method enables us to invert the building block of ARMADILLO2 for a chosen value
of the public part of the input, when a part of the output is known. We can use
this step to build key recovery attacks faster than exhaustive search on all versions of
ARMADILLO2 used in the FIL-MAC application mode. Besides, we propose several
trade-offs for the time and memory needed for these attacks. We also adapt the attack
to recover the key when ARMADILLO2 is used as a stream cipher in the PRNG appli-
cation mode. We further show how to build (second) preimage attacks faster than ex-
haustive search when using the hashing mode, and propose again several time-memory
trade-offs. We have implemented the attacks on a scaled version of ARMADILLO2,
and the experimental results confirm the theoretical predictions.

Organization of the paper. We briefly describe ARMADILLO2 in Section 2. In Sec-
tion 3 we detail our technique for inverting its building block and we explain how to
extend the parallel matching algorithm to the case of ARMADILLO2. In Section 4, we
explain how to apply this technique to build a key recovery attack on the FIL-MAC
application mode. We briefly show how to adapt this attack to the stream cipher sce-
nario in Section 4.2. The (second) preimage attack on the hashing mode is presented
in Section 5. In Section 6 we present the experimental results of the verification that
we have done on a scaled version of the algorithm. Finally, in Section 7, we propose
a general form of the parallel matching algorithm derived from our attacks which can
hopefully be used in more general contexts.

2 Description of ARMADILLO2

The core of ARMADILLO is based on the so-called data-dependent bit transposi-
tions [3]. We recall the description of ARMADILLO2 given in [1] using the same
notations.

2.1 Description

Let C be an initial vector of size c and U be a message block of size m. The size of
the register (C‖U) is k = c + m. The ARMADILLO2 function transforms the vector



(C,U) into (Vc, Vt) as described in Figure 1:

ARMADILLO2 : Fc2 × Fm2 → Fc2 × Fm2
(C,U) 7→ (Vc, Vt) = ARMADILLO2(C,U).

The function ARMADILLO2 relies on an internal bitwise parameterized permu-
tation denoted by Q which is defined by a parameter A of size a and is applied to a
vector B of size k:

Q : Fa2 × Fk2 → Fk2
(A,B) 7→ Q(A,B) = QA(B)
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Fig. 1. ARMADILLO2.

Let σ0 and σ1 be two fixed bitwise permutations of size k. In [1], the permutations
are not defined but some criteria they should fulfil are given. As the attacks presented in
this paper are valid for any bitwise permutations, we do not describe these properties.
We just stress that in the following, when computing the complexities we assume that
these permutations behave like random ones. We denote by γ a constant of size k
defined by alternating 0’s and 1’s: γ = 1010 · · · 10.
Using these notations, we can define Q which is used twice in the ARMADILLO2
function. Let A be a parameter and B be the internal state, the parameterized permu-
tation Q (that we denote by QA when indicating the parameter is necessary) consists
in a = |A| simple steps. The i-th step of Q (reading A from its least significant bit to
its most significant one) is defined by:

– an elementary bitwise permutation: B ← σAi(B), that is:
• if the i-th bit of A equals 0 we apply σ0 to the current state,
• otherwise (if the i-th bit of A equals 1) we apply σ1 to the current state,

– a constant addition (bitwise xor) of γ: B ← B ⊕ γ.

Using the definition of the permutationQ, we can describe the function ARMADILLO2.
Let (C,U) be the input, then ARMADILLO2(C,U) is defined by:

– first compute X ← QU (C‖U)
– then compute Y ← QX(C‖U)
– finally compute (Vc‖Vt)← Y ⊕X, the output is (Vc, Vt).

Actually c and m can take different values depending on the required security
level. A summary of the sets of parameters for the different versions (A, B, C, D or E)
proposed in [1] is given in Table 1.



Version k c m

A 128 80 48
B 192 128 64
C 240 160 80
D 288 192 96
E 384 256 128

Table 1. Sets of parameters for the different versions of ARMADILLO2.

2.2 A Multi-Purpose Cryptographic Primitive

The general-purpose cryptographic function ARMADILLO2 can be used for three types
of applications: FIL-MAC, hashing, and PRNG/PRF.

ARMADILLO2 in FIL-MAC mode. The secret key is C and the challenge, consid-
ered known by the attacker, is U . The response is Vt.

ARMADILLO2 in hashing mode. It uses a strengthened Merkle-Damg̊ard construc-
tion, where Vc is the chaining value or the hash digest, and U is the message block.

ARMADILLO2 in PRNG/PRF mode. The output sequence is obtained by taking
the first t bits of (Vc, Vt) after at least r iterations. For ARMADILLO2 the proposed
values are r = 1 and t = k (see [1, Sec. 6]). When used as a stream cipher, the secret
key is C. The keystream is composed of k-bit frames indexed by U which is a public
value.

3 Inverting the ARMADILLO2 Function

In [1] a sketch of a meet-in-the-middle (MITM) attack on ARMADILLO1, the first
variant of the primitive, is given by the authors to prove lower bounds for the com-
plexity and justify the choice of parameters. However, they do not develop further their
analysis.

In this section we describe how to invert the ARMADILLO2 function when a part
of the output (Vc, Vt) is known and U is chosen in the input (C‖U). Inverting means
that we recover C. The method we present can be performed for any arbitrary bitwise
permutations σ0 and σ1. To conduct our analysis we suppose that they behave like
random ones. Indeed, if the permutations σ0 and σ1 were not behaving like random
ones, one could exploit their distributions to reduce the complexities of the attacks
presented in this paper. Therefore, we are considering the worst case scenario for an
attacker.

First, we describe the meet-in-the-middle technique we use. It provides two lists
of partial states in the middle of the main permutation QX . To determine a list of
possible values for C, we need to select a subset of the cartesian product of these two
lists containing consistent couples of partial states. To build such a subset efficiently, we
explain how to use an adaptation of the parallel matching algorithm presented in [2, 5].
Then we present and apply the adapted algorithm and compute its time and memory
complexities.
All cryptanalysis, we present, on the different applications of ARMADILLO2 relies on
the technique for recovering C presented in this section.



3.1 The Meet-in-the-Middle Technique

Whatever mode ARMADILLO2 is embedded in, we use the following facts:

– We can choose the m-bit vector U , in the input vector (C‖U).

– We know part of the output vector (Vc‖Vt): the m-bit vector Vt in the FIL-MAC,
the (c + m)-bit vector (Vc‖Vt) in the PRNG/PRF and the c-bit vector Vc in the
hash function.

We deal with two permutations: the pre-processing QU which is known as U is
known and the main permutation QX which is unknown, and we exploit the three
following equations:

– The permutation QU used in the pre-processing X = QU (C‖U) is known. This
implies that all the known bits in the input of the permutation can be traced to
their corresponding positions in X. For instance, there are m coordinates of X
whose values are determined by choosing U .

– The output of the main permutation Y = (Vc‖Vt)⊕X implies we know some bits
of Y . The amount of known bits of Y is denoted by y and is depending on the
mode we are focusing on through (Vc‖Vt).

– In the sequel, we divide X in two parts: X = (Xout‖Xin). Then, the main per-
mutation Y = QX(C‖U) can be divided in two parts: QXin and QXout separated
by a division line we call the middle, hence we perform the meet-in-the-middle
technique between QXin and Q−1

Xout
.

As (Xout‖Xin) = QU (C‖U), we denote by min (resp. mout) the number of bits of
U that are in Xin (resp. Xout). We have mout +min = m. We denote by `in (resp. `out)
the number of bits coming from C in Xin (resp. Xout). We have `out + `in = c. The
meet-in-the-middle attack is done by guessing the `in unknown bits of Xin and the `out
unknown bits of Xout independently.

First, consider the forward direction. We can trace the `in unknown bits of Xin back
to C with Q−1

U . Next, for each possible guess of Xin, we can trace the corresponding
`in bits from C plus the m bits from U to their positions in the middle by computing
QXin(C‖U). Then consider the backward direction, we can trace the y known bits of Y
back to the middle for each possible guess of Xout, that is computing Q−1

Xout
(Y ). This

way we can obtain two lists Lin and Lout, of size 2`in and 2`out respectively, of elements
that represent partially known states in the middle of QX .

To describe our meet-in-the-middle attack we represent the partial states in the
middle of QX as ternary vectors with coordinate values from {0, 1,−}, where − denotes
a coordinate (or cell) whose value is unknown. We say that a cell is active if it contains
0 or 1 and inactive otherwise. The weight of a vector V , denoted by wt(V ), is the
number of its active cells. Two partial states are a match if their colliding active cells
have the same values.

The list Lin contains elements QXin(C‖U) whose weight is x = `in + m. The list
Lout contains elements Q−1

Xout
(Y ) whose weight is y. When taking one element from

each list, the probability of finding a match will then depend on the number of collisions
of active cells between these two elements.

Consider a vector A in {0, 1,−}k with weight a. We denote by P[k,a,b](i) the prob-
ability over all the vectors B ∈ {0, 1,−}k with weight b of having i active cells at the
same positions in A and B. This event corresponds to the situation where there are i
active cells of B among the a active positions in A and the remaining (b − i) active
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Fig. 2. Overview of the inversion of the ARMADILLO2 core function.

cells of B lie in the (k− a) inactive positions in A. As the number of vectors of length
k and weight b is

(
k
b

)
, we have:

P[k,a,b](i) =

(
a
i

)(
k−a
b−i

)(
k
b

) =

(
b
i

)(
k−b
a−i

)(
k
a

) .

Taking into account the probability of having active cells at the same positions in a
pair of elements from (Lin,Lout) and the probability that these active cells do have the
same value, we can compute the expected probability of finding a match for a pair of
elements, that we will denote 2−Ncoll . We have:

2−Ncoll =

y∑
i=0

2−iP[k,x,y](i).

This means that there will be a possible match with a probability of 2−Ncoll . In
total we will find 2`in+`out−Ncoll pairs of elements that pass this test. Each pair of
elements defines a whole C value. Next, we just have to check which of these values is
the correct one.

The big question now is that of the cost of checking which elements of the two lists
Lin and Lout pass the test. The ternary alphabet of the elements and the changing
positions of the active cells make it impossible to apply the approach of traditional
MITM attacks — having an ordered list Lin and checking for each element in the list
Lout if a match exists with cost 1 per element. Even more, a priori, for each element in
Lin we would have to try if it matches each of the elements from Lout independently,
which would yield the complexity of exhaustive search.

For solving this problem we adapt the algorithm described in [5, Sec. 2.3] as parallel
matching to the case of ARMADILLO2. A generalized version of the algorithm is ex-
posed in Section 7 with detailed complexity calculations and the link to our application
case.

3.2 ARMADILLO2 Matching Problem: Matching Non-Random
Elements

Recently, new algorithms have been proposed in [5] to solve the problem of merging
several lists of big sizes with respect to a given relation t that can be verified by tuples



of elements. These new algorithms take advantage of the special structures that can be
exhibited by t to reduce the complexity of solving this problem. As stated in [5], the
problem of merging several lists can be reduced to the problem of merging two lists.
Hereafter, we recall the reduced Problem 1 proposed in [5] that we are interested in.

Problem 1 ([5]). Let L1 and L2 be 2 lists of binary vectors of size 2`1 and 2`2 re-
spectively. We denote by x a vector of L1 and by y a vector of L2.

We assume that vectors x and y can be decomposed into z groups of s bits, i.e.
x,y ∈ ({0, 1}s)z and x = (x1, . . . , xz) (resp. y = (y1, . . . , yz)). The vectors in L1 and
L2 are drawn uniformly and independently at random from {0, 1}sz.

Let t be a Boolean function, t : {0, 1}sz × {0, 1}sz → {0, 1} such that there exist
some functions tj : {0, 1}s × {0, 1}s → {0, 1} which verify:

t(x,y) = 1 ⇐⇒ ∀j, 1 ≤ j ≤ z, tj(xj , yj) = 1.

Problem 1 consists in computing the set Lsol of all 2-tuples (x,y) of (L1×L2)
verifying t(x,y) = 1. This operation is called merging the lists L1 and L2 with respect
to t.

One of the algorithms proposed in [5] to solve Problem 1 is the parallel matching
algorithm, which is the one that provides the best time complexity when the number
of possible associated elements to one element is bigger than the size of the other list,
i.e., when we can associate by t more than |L2| elements to an element from L1 as well
as more than |L1| elements to an element from L2.

In our case, the lists Lin and Lout correspond to the lists L1 and L2 to merge but the
application of this algorithm differs in two aspects. The first one is the alphabet, which
is not binary anymore but ternary. The second aspect is the distribution of vectors
in the lists. In Problem 1, the elements are drawn uniformly and independently at
random while in our case the distribution is ruled by the MITM technique we use. For
instance, all the elements of Lin have the same weight x and all the elements of Lout

have the same weight y, which is far from the uniform case.
The function t is the association rule we use to select suitable vectors from Lin and

Lout. We say that two elements are associated if their colliding active cells have the
same values. We can now specify a new Problem 1 adapted for ARMADILLO2:

ARMADILLO2 Problem 1. Let Lin and Lout be 2 lists of ternary vectors of size
2`in and 2`out respectively. We denote by x a vector of Lin and by y a vector of Lout,
with x,y ∈ {0, 1,−}k
The lists Lin and Lout are obtained by the MITM technique described in Paragraph 3.1.
Let t : {0, 1,−}k × {0, 1,−}k → {0, 1} be the function defined by t = t1 · t2 · · · tk−1 · tk
and:

∀j, 1 ≤ j ≤ k, tj : {0, 1,−} × {0, 1,−} → {0, 1},
xj 0 0 0 1 1 1 − − −
yj 0 1 − 0 1 − 0 1 −

tj(xj , yj) 1 0 1 0 1 1 1 1 1

We say that x and y are associated if t(x,y) = 1.
ARMADILLO2 Problem 1 consists in merging the lists Lin and Lout with respect
to t.

We can now adapt the parallel matching algorithm to ARMADILLO2 Problem 1.



3.3 Applying the Parallel Matching Algorithm to ARMADILLO2

The principle of the parallel matching algorithm is to consider in parallel the possible
matches for the α first cells and the next β cells in the lists Lin and Lout. The underlying
idea is to improve, when possible, the complexity to find all the elements that are a
match for the (α+ β) first cells. To have a match between a vector in Lin and a vector
in Lout, the vectors should satisfy:

– the vector in Lin has u of its x active cells among the (α+ β) first cells;
– the vector in Lout has v of its y active cells among the (α+ β) first cells;
– looking at the (α + β) first cells, both vectors should have the same value at the

same active position.

As x and y are the number of known bits from (C‖U) and from Y resp. (see Fig. 2),
the matching probability on the first (α+ β) cells is:

2−N
α+β
coll =

x∑
u=0

P[k,α+β,x](u) ·
y∑
v=0

P[k,α+β,y](v) ·
v∑

w=0

2−wP[α+β,v,u](w).

This means that we will find 2c−N
α+β
coll partial solutions. For each pair passing the

test we will have to check next if the remaining k − α− β cells are verified.

k k
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Fig. 3. Lists used in the parallel matching algorithm.

In a pre-processing phase, we first need to build three lists, namely LA, LB , L′B ,
which are represented in Fig. 3.

List LA contains all the elements of the form (xA1 . . . x
A
α , y

A
1 . . . y

A
α ) with (xA1 . . . x

A
α ) ∈

{0, 1,−}α and (yA1 . . . y
A
α ) being associated to (xA1 . . . x

A
α ). The size of LA is:

|LA| =
α∑
i=0

((
α

i

)
2i3α−i2i

)
= 7α.

List LB contains all the elements of the form (xB1 . . . x
B
β , y

B
1 . . . y

B
β ) with (xB1 . . .x

B
β ) ∈

{0, 1,−}β and (yB1 , . . . , y
B
β ) being associated to (xB1 , . . . , x

B
β ). The size of LB is:

|LB | =
β∑
i=0

((
β

i

)
2i3β−i2i

)
= 7β .

List L′B contains for each element (xB1 , . . . , x
B
β , y

B
1 , . . . , y

B
β ) in LB all the elements x

from Lin such that (xα+1 . . . , xα+β) = (xB1 , . . . , x
B
β ). Elements in L′B are of the

form (yB1 , . . . , y
B
β , x1, . . . , xk) indexed7 by (yB1 . . . , y

B
β , x1, . . . , xα). The probability

7We can use standard hash tables for storage and look up in constant time.



for an element in Lin to have i active cells in its next β cells is P[k,β,x](i). The size
of L′B is:

|L′B | =
β∑
i=0

(
β

i

)
2i3β−i2i2`in

P[k,β,x](i)

2i
(
β
i

) =

β∑
i=0

3β−i2i2`inP[k,β,x](i).

The cost of building L′B is upper bounded by (|L′B | + 3β), where 3β captures the
cases where no element in Lin corresponds to elements in LB and is normally
negligible.

Next, we do the parallel matching. The probability for an element in Lout to have
i active cells in its α first cells being P[k,α,y](i), for each element (xA1 . . .x

A
α,y

A
1 . . .y

A
α)

in LA we consider the 2`out
P[k,α,y](i)

2i(αi)
elements y from Lout such that (y1, . . . , yα) =

(yA1 , . . . , y
A
α ). Then we check in L′B if elements indexed by (yα+1. . .yα+β , x

A
1 . . .x

A
α ) exist.

If this is the case, we check if each found pair of the form (x, y) verifies the remaining

(k − α− β) cells. As we already noticed, we will find about 2c−N
α+β
coll partial solutions

for which we will have to check whether or not they meet the remaining conditions.
The time complexity of this algorithm is:

O

(
2c−N

α+β
coll + 7α + 7β +

β∑
i=0

3β−i2i2`inP[k,β,x](i) +

α∑
i=0

3α−i2i2`outP[k,α,y](i)

)
.

The memory complexity is determined by 7α + 7β + |L′B |. We can notice that if
β∑
i=0

3β−i2i2`inP[k,β,x](i) >

α∑
i=0

3α−i2i2`outP[k,α,y](i),

we can exchange the roles of Lin and Lout, so that the time complexity remains the
same but the memory complexity will be reduced. The memory complexity is then:

O

(
7α + 7β + min

{
β∑
i=0

3β−i2i2`inP[k,β,x](i),

α∑
i=0

3α−i2i2`outP[k,α,y](i)

})
.

4 Meet in the Middle Key Recovery attacks

4.1 Key Recovery Attack in the FIL-MAC Setting

In the FIL-MAC usage scenario, C is the secret key and U is the challenge. The
response is the m-bit size vector Vt. In order to minimize the complexity of our attack,
we want the number of known bits y from Y to be maximal. As Y = (Vc‖Vt)⊕X and
X = QU (C‖U) it means that we are interested in having the maximum number of bits
from U among the m less significant bits of X.

As we have m bits of freedom in U for choosing the permutation QU , we need the
probability of having i known bits (from U) among the m first ones (of X), P[k,m,m](i),
to be bigger than 2−m. Then to maximize the number of known bits in Y , we choose
y as follows:

y = max
0≤i≤m

{
i : P[k,m,m](i) > 2−m

}
. (1)

For instance for ARMADILLO2-A, we have y=38 with a probability of 2−45.19>2−48.
Then, from now on, we assume that we know y among the m bits of the lower part

of X and y bits at the same positions of Y .
Now, we can apply our meet-in-the-middle technique which allows us to recover the

key. We have computed the optimal parameters for the different versions of



ARMADILLO2, with different trade-offs — the generic attack has a complexity of
2c. The results appear in Table 2.

For each version of ARMADILLO2 presented in Table 2, the first line corresponds
to the (log2 of the) size of the lists Lin and Lout with the smallest time complexity. The
second line corresponds to the best parameters when limiting the memory complexity
to 245. In all cases, the complexity is determined by the parallel matching part of the
attack. The data complexity of all the attacks is 1, that is, we only need one pair of
plaintext/ciphertext to succeed.

Version c m `out `in α β log2(Time compl.) log2(Mem. compl.)

ARMADILLO2-A 80 48
34 46 24 20 72.54 68.94
18 62 16 9 75.05 45

ARMADILLO2-B 128 64
58 70 35 35 117.97 108.87
38 90 2 16 125.15 45

ARMADILLO2-C 160 80
76 84 43 43 148.00 135.90
35 125 4 16 156.63 45

ARMADILLO2-D 192 96
92 100 50 50 177.98 160.44
29 163 11 12 187.86 45

ARMADILLO2-E 256 128
125 131 65 65 237.91 209.83
29 227 11 13 251.55 45

Table 2. Complexities of the meet-in-the-middle key recovery attack on the FIL-MAC
application

4.2 Key Recovery Attack in the Stream Cipher Setting

As presented in [1], ARMADILLO2 can be used as a PRNG by taking the t first bits
of (Vc, Vt) after at least r iterations. For ARMADILLO2, the authors state in [1, Sc.
6] that r = 1 and t = k is a suitable parameter choice. If we want to use it as a stream
cipher, the secret key is C. The keystream is composed of k-bit frames indexed by U
which is a public value.

In this setting, we can perform an attack which is similar to the one on the FIL-
MAC, but with different parameters. As we know more bits of the output of QX ,
y = m+ `out, complexities of the key recovery attack are lower.

In general, the best time complexity is obtained when `in = `out, as the number
of known bits at each side is now x = m + `in in the input and y = m + `out in
the output. In this context it also appears that the best time complexity occurs when
α = β. There might be a small difference between α and β when the leading term of

the time complexity is 2c−N
α+β
coll .

We present the best complexities we have computed for this attack in Table 3 — the
generic attack has a complexity of 2c. Other time-memory trade-offs would be possible.
As in the previous section, we give as an example the best parameters when limiting
the memory complexity to 245.

5 (Second) Preimage Attack on the Hashing Applications

We recall that the hash function built with ARMADILLO2 as a compression function
follows a strengthened Merkle-Damg̊ard construction, where the padding includes the
message length. In this case C represents the input chaining value, U the message block



Version c m `out `in α β log2(Time compl.) log2(Mem. compl.)

ARMADILLO2-A 80 48
40 40 19 19 65.23 62.91
27 53 11 16 71.62 45

ARMADILLO2-B 128 64
64 64 31 32 104.71 101.75
29 99 9 16 119.69 45

ARMADILLO2-C 160 80
80 80 39 40 130.53 127.49
26 134 14 14 151.29 45

ARMADILLO2-D 192 96
96 96 47 48 156.35 153.23
30 162 8 16 184.37 45

ARMADILLO2-E 256 128
128 128 64 64 207.96 205.93
30 226 8 16 248.66 45

Table 3. Complexities of the meet-in-the-middle key recovery attack for the stream
cipher with various trade-offs.

and Vc the generated new chaining value and the hash digest. In [1] the authors state
that (second) preimages are expected with a complexity of 2c, the one of the generic
attack. We show, in this section, how to build (second) preimage attacks with a smaller
complexity.

5.1 Meet-in-the-Middle (Second) Preimage Attack

The principle of the attack is represented in Fig. 5.1. We first consider that the
ARMADILLO2 function is invertible with a complexity of 2q, given an output Vc
and a message block. In the preimage attack, we choose and fix `, the number of blocks
of the preimage. In the second preimage attack, we can consider the length of the given
message. Then, given a hash value h:

In the backward direction:
– We invert the insertion of the last block Mpad (padding). This step costs 2q in

a preimage scenario and 1 in a second preimage one. We get

ARMADILLO2−1(h,Mpad) = S′.

– From state S′, we can invert the compression function for 2b different mes-
sage blocks Mb with a cost 2b+q, obtaining 2b different intermediate states:
ARMADILLO2−1(S′,Mb) = S′′.

In the forward direction: From the initial chaining value, we insert 2a messages of
length (` − 2) blocks, M = M1‖M2‖ . . . ‖M`−2, obtaining 2a intermediate states
S. This can be done with a complexity of O((`− 2)2a).

If we find a collision between one of the 2a states S and one of the 2b states S′′, we
have obtained a (second) preimage that is M‖Mb‖Mpad.

A collision occurs if a + b ≥ c. The complexity of this attack is 2a + 2q + 2b+q

in time, where the middle term appears only in the case of a preimage attack and is
negligible. The memory complexity is about 2b (plus the memory needed for inverting
the compression function). So if 2q < 2c, we can find a and b so that 2a + 2b+q < 2c.

5.2 Inverting the Compression Function

In the previous section we showed that inverting the compression function for a chosen
message block and for a given output can be done with a cost of 2q < 2c. In this section
we show how this complexity depends on the chosen message block, as the inversion
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Fig. 4. Representation of the meet-in-the-middle (second) preimage attack.

can be seen as a key recovery similar to the one done in Section 4. In this case we know
U (the message block) and Vc, and we want to find C. When inverting the function
with the blocks Mb, we choose message blocks (U) that define permutations QU which
put most of the m bits from U among the c most significant bits of X. This will result
in better attacks, as the bits in Y known from U do not cost anything and this gives
us more freedom when choosing the parameters `in and `out.

As before, we have 2m possibilities for QU . We denote by n the number of bits of
U in the c most significant bits of X. The number of message blocks (U) verifying this
condition is: Nblock(n) = 2mP[k,c,m](n).

In fact we are interested in the values of n which are the greatest possible (to lower the
complexity) that still leaves enough message blocks to invert in order to obtain S′′. It
means that these values belong to a set {ni} such that:∑

{ni}

Nblock(ni) ≥ 2b.

As the output is Vc, the `out bits guessed from X are also known bits from the output
of QX . The number of known bits of the output of QX is then defined by:

y = min(c, `out + n)

Compared to the key recovery attack, the number of known bits at the end of the
permutation QX is significantly bigger, as we may know up to c bits, while in the
previous case the maximal number for y was y = maxi

{
i : P[k,m,m](i) > 2−m

}
. To

simplify the explanations, we concentrate on the case of ARMADILLO2-A, that can
be directly adapted to any of the other versions. For n = 48 we have a probability
P[128,80,48] = 2−44.171. This leaves 248−44.171 = 23.829 message blocks to invert which
allow us to know y = min(80, `out + 48) bits from the output of QX . As we need to
invert 2b message blocks, if b is bigger than 3.829, we have to consider next the message
blocks with n = 47, that allow us to know y = min(80, `out + 47) bits, and so on. For
each n considered, the best time complexity (2qn) for inverting ARMADILLO2 might
be different, but in practice, with at most two consecutive values of n we have enough
message blocks for building the attack, and the complexity of inverting the compression
function for these two different types of messages is very similar.

For instance, in ARMADILLO2-A, we consider n = 48, 47, associated each to 23.829

and 29.96 possible message blocks respectively. The best time complexity for inverting
the compression function in both cases is 2q48 = 2q47 = 265.9, as we can see from
Table 4. If we want to find the best parameters for a and b in the preimage attack, we can
consider that a+b = c and 2b = 2b48+2b47 , and we want that 2a = 2b48265.9+2b47265.9 =
265.9(2b48 + 2b47), as the complexity of the attack is O(2a + 265.9(2b48 + 2b47)). So if we
choose the parameters correctly, the best time complexity will be O(2a+1).



Version c m `out `in n
log2(

Nblock(n))
α β

log2(Time
compl.)

log2(Mem.
compl.)

ARMADILLO2-A 80 48

35 45 47 9.95 22 16 65.90 63.08
35 45 48 3.83 22 16 65.90 63.08

20 60 47 9.95 16 8 71.36 45
27 53 48 3.83 11 16 71.62 45

ARMADILLO2-B 128 64
62 66 64 15.89 33 30 104.67 102.35
33 95 64 15.89 6 16 120.41 45

ARMADILLO2-C 160 80
78 82 80 19.82 41 38 130.48 128.08
26 134 80 19.82 11 16 152.24 45

ARMADILLO2-D 192 96
94 98 96 23.74 49 46 156.31 153.82
30 162 96 23.74 8 16 184.37 45

ARMADILLO2-E 256 128
126 130 128 31.58 65 62 207.96 205.30
34 222 128 31.58 5 16 249.47 45

Table 4. Complexities for inverting the compression function.

In this particular case the time complexity for n = 48 and for n = 47 is the same,
so finding the best b and a can be simplified by b = c−q

2
and a = c − b. We obtain

b = 7.275, a = 72.95. We see that we do not have enough elements with n = 48 for
inverting 2b blocks, but we have enough with n = 47 alone. As the complexities are
the same in both cases, we can just consider b = b47. The best time complexity for the
preimage attack that we can obtain is then 273.95, with a memory complexity of 263.08.
Other trade-offs are possible by using other parameters for inverting the function, as
shown in Table 5.

For the other versions of ARMADILLO2, the number of message blocks associated
to y = m is big enough for performing the 2b inversions, so we do not consider other

n’s for computing the (second) preimage complexity. Then, b = bm =
c−q{n=m}

2
and

a = c− bm.

Complexities for preimage attacks on the different versions of ARMADILLO2 are given
in Table 5, where we can see two different complexities with different trade-offs for each
version.

Best time Time-memory trade-off

Version c m
log2(Time

compl.)

log2(Mem.

compl.)

log2(Time

compl.)

log2(Mem.

compl.)

ARMADILLO2-A 80 48 73.95 63.08 76.81 45

ARMADILLO2-B 128 64 117.34 102.35 125.21 45

ARMADILLO2-C 160 80 146.24 128.08 157.12 45

ARMADILLO2-D 192 96 175.16 153.82 191.19 45

ARMADILLO2-E 256 128 232.98 205.30 253.74 45

Table 5. Complexities of the (second) preimages attacks.



6 Experimental Verifications

To verify the above theoretical results, we implemented the proposed key recovery
attacks in the FIL-MAC and stream cipher settings against a scaled version of AR-
MADILLO2 that uses a 30-bit key and processes 18-bit messages, i.e. c = 30 and
m = 18. We performed the attack 10 times for both the FIL-MAC and the PRNG
settings where at each time we chose random permutations for both σ0 and σ1 and
random messages U (in the FIL-MAC case U was chosen so that we got y bits from U
among the m least significant bits of X).

As for each application the key is a 30-bit key, the generic attack requires a time
complexity of 230. Using the parallel matching algorithm we decrease this complexity.
Table 6 shows that the implementation results are very close to the theoretical esti-
mates, confirming our analysis. We can also mention that we exchanged the role of Lin

and Lout in our implementation of the attacks to minimize the memory needs.

c m `out `in α β y log2(|L′B |)
log2(c−
Nα+β

coll )

log2(Time
compl.)

log2(Mem.
compl.)

FIL-MAC
Impl. 30 18 12 18 8 6 14 23.477 27.537 27.874 24.066

Theory 30 18 12 18 8 6 14 23.475 27.538 27.874 24.064

PRNG
Impl. 30 18 14 16 7 6 32 22.530 24.728 25.396 22.738

Theory 30 18 14 16 7 6 32 22.530 24.735 25.401 22.738

Table 6. Key recovery attacks against a scaled version of ARMADILLO2 in the FIL-
MAC and PRNG modes.

7 Generalization of the Parallel Matching Algorithm

In Section 3, we managed to apply the parallel matching algorithm to invert the
ARMADILLO2 function by modifying the merging Problem 1 of [5].

When the number of possible associated elements to one element is bigger than the
other list as it is the case for ARMADILLO2, we cannot apply a basic algorithm like
the instant matching algorithm proposed in [5]. Instead, we can use either the gradual
matching or the parallel matching algorithms also proposed in [5]. We are going to
concentrate on the parallel matching algorithm which allows a significant reduction of
the time complexity of solving Problem 1, while allowing several time-memory trade-
offs.
We can state the generalized problem that also covers our attack on ARMADILLO2
and give the corresponding parallel matching algorithm. We believe that this more
general problem will be useful for recognizing situations where the parallel matching
can be applied, and solving them in an automatized way.

7.1 The Generalized Problem 1

As stated in [5], Problem 1 for N lists can be reduced to 2 lists, therefore we will
only consider the problem of merging 2 lists in the sequel.

Generalized Problem 1. We are given 2 lists, L1 and L2 of size 2`1 and 2`2 respec-
tively. We denote by x a vector of L1 and by y a vector of L2. Coordinates of x and
y belong to a general alphabet A.

We assume that vectors x and y can be decomposed into z groups of s coordinates,
i.e. x,y ∈ (As)z and x = (x1, . . . , xz) (resp. y = (y1, . . . , yz)).



We want to keep pairs of vectors verifying a given relation t: t(x,y) = 1. The
relation t is group-wise,and is defined by t : (As)z × (As)z → {0, 1} such that there
exist some functions tj : As ×As → {0, 1}, verifying:

t(x,y) = 1 ⇐⇒ ∀j, 1 ≤ j ≤ z, tj(xj , yj) = 1.

Generalized Problem 1 consists in merging these 2 lists to obtain the set Lsol of
all 2-tuples of (L1 × L2) verifying t(x,y) = 1. We say that x and y are associated in
this case.

In order to analyze the time and memory complexities of the attack we need to
compute the size of Lsol. This quantity depends on the probability that t(x,y) = 1.
More precisely the complexities of the generalized parallel matching algorithm depends
on the conditional probabilities: Pryj [tj(xj , yj) = 1|xj = a], a ∈ As. We will denote
these probabilities by pj,a, a ∈ As.

In [5] the elements of the lists L1 and L2 were binary (i.e. A = {0, 1}) and random,
and the probability of each tj of being verified did not depend on the elements xj or
yj . Let us consider as an example the case where s = 1 and tj tests the equality of xj
and yj . We have: ∀j, 1 ≤ j ≤ z, pj,0 = pj,1 =

1

2
.

In the case of the ARMADILLO2 cryptanalysis that we present in this paper, the
alphabet is ternary (i.e. A = {0, 1,−}) and the association rule (see. ARMADILLO2
Problem 1 ) gives:

∀j, 1 ≤ j ≤ z, pj,0 =
2

3
, pj,1 =

2

3
and pj,− = 1

7.2 Generalized Parallel Matching Algorithm

First we need to build the three following lists:

List LA, of all the elements of the form (xA1 , . . . , x
A
α , y

A
1 , . . . , y

A
α ) with

(xA1 , . . . , x
A
α ) ∈ (As)α and (yA1 , . . . , y

A
α ) being associated by t to (xA1 , . . . , x

A
α ). The

size of LA is:
|LA| =

∑
a∈(As)α

α∏
j=1

|A|s pj,aj , (2)

where aj is the j-th coordinate of a ∈ (As)α.
List LB, of all the elements of the form (xB1 , . . . , x

B
β , y

B
1 , . . . , y

B
β ) with

(xB1 , . . . , x
B
β ) ∈ (As)β and (yB1 , . . . , y

B
β ) being associated by t to (xB1 , . . . , x

B
β ). The

size of LB is

|LB | =
∑

b∈(As)β

β∏
j=1

|A|s pj,bj ,

where bj is the j-th coordinate of b ∈ (As)β .
List L′B, containing for each element (xB1 , . . . , x

B
β , y

B
1 , . . . , y

B
β ) in LB all the elements

x from L1 such that (xα+1 . . . , xα+β) = (xB1 , . . . , x
B
β ). Elements in L′B are of

the form (yB1 , . . . , y
B
β , x1, . . . , xz) indexed8 by (yB1 . . . , y

B
β , x1, . . . , xα). If we de-

note by Pb,[α+1,α+β],L1
the probability of having an element x from L1 such that

(xα+1, . . . , xα+β) = b, the size of L′B is:

|L′B | =
∑

b∈(As)β

(
β∏
j=1

|A|s pj,bj

)
2`1Pb,[α+1,α+β],L1

.

8We can use standard hash tables for storage and look up in constant time.



The cost of building this list is upper-bounded by (|L′B |+(|A|)β), where the second
term captures the cases where no element in L1 corresponds to elements in LB and
should be negligible.

In the case where∑
a∈(As)α

(
α∏
j=1

|A|s pj,aj

)
2`2Pa,[β+1,α+β],L2

<
∑

b∈(As)β

(
β∏
j=1

|A|s pj,bj

)
2`1Pb,[α+1,α+β],L1

we can swap L1 and L2, to reduce the memory complexity of the attack.

Next, we do the parallel matching. For each element (xA1 , . . . , x
A
α , y

A
1 , . . . , y

A
α ) in

LA we consider the 2`2P(yA1 ,...,y
A
α ),[1,α],L2

elements y from L2 such that (y1. . .yα) =

(yA1 , . . . , y
A
α ) and we check in L′B if elements indexed by (yα+1. . .yα+β , x

A
1 . . .x

A
α ) exist.

If this is the case, we check if each found pair of the form (x, y) verifies the remaining
(k − α − β) cells. We denote by Ω the number of partial solutions for which we will
have to check whether or not they meet the remaining conditions:

Ω = 2`1+`2
∑

b∈(As)α+β

(
α+β∏
j=1

pj,bj

)
Pb,[1,α+β],L1

The time complexity of this algorithm is:

O

Ω + |LA|+ |LB |+ |L′B |+
∑

a∈(As)α

(
α∏
j=1

|A|s pj,aj

)
2`2Pa,[β+1,α+β],L2


The memory complexity is determined by the size of the lists LA, LB and L′B . Therefore
the memory complexity is:∑

a∈(As)α

α∏
j=1

|A|s pj,aj +
∑

b∈(As)β

β∏
j=1

|A|s pj,bj +
∑

b∈(As)β

(
β∏
j=1

|A|s pj,bj

)
2`1Pb,[α+1,α+β],L1

7.3 Link with Formulas in the Case of ARMADILLO

Using the previous formulas for the time and memory complexities, we can rediscover
formulas of the time and memory complexities we have computed for ARMADILLO2
(see. Section 3.3). As these formulas depend essentially on the size of the different lists,
we simply expose how to find the size of the list |LA| using equation (2).

For ARMADILLO2, the probabilities pj,a are independent of the position j and
pj,a = 2/3 if and only if a is an active cell. Moreover, in this case, each cell is composed
of one letter of the alphabet which means that s = 1. And we have:

|LA| =
∑

a∈(As)α

α∏
j=1

|A|s pj,aj =
∑

a∈{0,1,−}α

α∏
j=1

3

(
2

3

)wt(a)

=

α∑
i=0

# {a : wt(a) = i} 3α
(

2

3

)i
=

α∑
i=0

(
α

i

)
2i
(

2

3

)i
3α

The same method can be applied to find the size of the list LB and L′B . Here we have

Ω = 2c−N
α+β
coll .



8 Conclusion

In this paper, we have presented the first cryptanalysis of ARMADILLO2, the recom-
mended variant of the ARMADILLO family. We propose a key recovery attack on all
its versions for the FIL-MAC and the stream cipher mode, which works for any bitwise
permutations σ0 and σ1. We give several time-memory trade-offs for its complexity.
We also show how to build (second) preimage attacks when using the hashing mode.

Besides the results on ARMADILLO2, we have generalized the parallel matching
algorithm presented in [5] for solving a wider Problem 1 which includes the cases
where the lists to merge do not have random elements. We believe that new types of
meet-in-the-middle attacks might appear now given this algorithm that is cheaper than
exhaustive search.
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