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Abstract. A number of established and novel business models are based on
fine grained billing, including pay-per-view, mobile messaging, voice calls, pay-
as-you-drive insurance, smart metering for utility provision, private computing
clouds and hosted services. These models apply fine-grainedtariffs dependent on
time-of-use or place of-use to readings to compute a bill.
We extend previously proposed billing protocols to strengthen their privacy in
two key ways. First, we study the monetary amount a customer should add to their
bill in order to provably hide their activities, within the differential privacy frame-
work. Second, we propose a cryptographic protocol for oblivious billing that en-
sures any additional expenditure, aimed at protecting privacy, can be tracked and
reclaimed in the future, thus minimising its cost. Our proposals can be used to-
gether or separately and are backed by provable guarantees of security.

1 Introduction

A number of business models are based on billing customers for fine grained use of
a system or resource: mobile network providers charge per call length and type, pay-
per-view TV providers charge for the actual requested content. Newer businesses rely
heavily on fine grained recordings of activity for billing. Pay-as-you-drive automotive
insurance bills drivers per mile depending on the type of road and time of travel. Elec-
tronic tolling and congestion charging schemes have been proposed on similar lines.
Smart-metering for electricity and gas is being rolled out in the EU and the US in the
next few years. Finally, private cloud provision as well as hosted on-line service provi-
sion might rely on fine-grained measurements of CPU time usage, memory allocation,
disk storage, peak bandwidth, or even the demand and networkcongestion at the time
of day.

The downside of fine-grained metering and billing is the potential threat to privacy.
A common privacy-invasive architecture to support such billing consists of providers
collecting all usage information in order to apply the appropriate tariffs. Privacy-friendly
protocols have also been developed: it is possible to cryptographically combine certified
readings with a tariff policy to produce a certified bill thatleaks no additional informa-
tion about the detailed readings [1, 2]. Yet, even the final bill, which is for instance
aggregated over a period of usage, may leak information or beused to leak specific
readings.



This work makes two contributions to the field of privacy-friendly metering and
billing. First, we discuss how to eliminate incidental, accidental or deliberate leakages
of information resulting from disclosing the final bill. We show that by adding some,
in the long run small, amount of noise it is possible to offer strong privacy guarantees
on what an adversary can infer from the final bill. This problem is similar to covert
channel minimization [3], and we use techniques from differential privacy that could be
more widely applicable. Second, we attempt to minimise the cost of privacy through a
cryptographic oblivious billing mechanism. The true cost of service provision is tracked
across billing periods, but not revealed to the service provider, which can only verify the
deposited funds cover costs. This allows customers to determine the levels of privacy
they require and even get a rebate for the additional funds they used to protect their
privacy.

Throughout this work we motivate our protocols through the example of a leased
private computation cloud. A service provider installs a cloud of 10000 CPUs in the pre-
misses of a large government intelligence agency. In our example, billing is performed
on the basis of the compute hours actually used at a fixed rate of $0.12 per CPU instance
/ hour3. A more complex tariff scheme where each hour in the year is costed differently
is also supported. The government agency needs to settle thebill each month, but is
worried that the amount of computation on particular days isleaked to its adversaries.
We will show how our protocols can be used to reduce any leakage below a desired
level.

Discussion of the state-of-the-art.Deployed systems for fine grained billing usually
employ procedural access control mechanisms to protect privacy: usage data is gath-
ered, and often stored centrally for the purposes of billing. Access control allows only
designated parties and processes to access the data, and encryption technology might
be used to protect storage and communications. Despite those protections, the fact that
personal information is under the control of a service provider raises privacy concerns.
A pilot deployment of a pay-as-you-drive insurance scheme by Norwich Union failed,
stating privacy concerns as a leading reason for low uptake.4

Two types of privacy preserving metering and billing have been proposed in the lit-
erature. First, a meter can be entrusted with applying a fine grained tariff to the usage
data and only communicating to the service provider a final total fee. In this setting
the meter has to be trusted by the users and the service providers both for privacy and
correctness. This is usually achieved through trusted hardware and certification. In the
automotive setting, where meters record positions of cars for tolling, spot checks have
also been proposed to verify the correctness of the meter operation [1]. The second ar-
chitecture requires meters to cryptographically certify readings and securely hand them
over to a user device or service. Cryptographic operations can then be used to apply a
tariff scheme, and output a bill along with the necessary cryptographic proofs that cer-
tify its correctness. Meters are simpler, and any device canbe used to compute bills [2].

3 The value of a standard compute instance / hour on Amazon EC2 and Microsoft Azure in
December 2010.

4 Insurer stops ‘pay as you drive’, BBC Radio 4’s Money Boxhttp://news.bbc.co.uk/
2/hi/programmes/moneybox/7453546.stm



Both architectures achieve the same goal: the bill and othernecessary information are
made available to the service provider, but further information on detailed readings is
hidden from it and only available to the consumer.

In this work we are concerned with the remaining informationleakage from privacy-
preserving billing systems. The value revealed by the protocols, namely the value of the
bill, could leak information or be used as a covert channel.

To illustrate the threat, consider a resource consumed in a number ofimax distinct
time periodsi, for i ∈ [0, imax ]. Some consumption takes place at each time periodi
denoted byci ∈ [0, cmax ], that should be billed at a tariff ofpi per unit. Thus the final
bill for all periods should beB =

∑imax

i=0 ci · pi. Without making any assumptions on
the consumption patterns, as they are out of the system designer’s control, it is difficult
to estimate what information may be leaking from the final valueB. For example an
adversary may know, through some side information, that theuser consumed only in a
single time periodT . In such a case the exact value ofcT can be inferred straightfor-
wardly by computingcT = B/pT . This example threat illustrates that a solution to this
problem should make no assumptions about the consumption pattern, assume that arbi-
trary side-information is available to the adversary, and work for arbitrary (but known)
tariff schemes.

We will use a trivial solution as a benchmark to evaluate our own proposals: the user
could always pay an amount equivalent to the maximum possible consumption. In the
example used so far, this would be:maxB = cmax ·

∑imax

i=0 pi. While this is an adequate
solution from a privacy perspective, it nullifies the benefits of fine-grained billing as
users end up paying a fixed premium irrespective of their consumption. Furthermore it
is very wasteful, if the objective is to hide usage of the private cluster at the granularity
of an hour or a day.

Outline. Our techniques provide guarantees of privacy depending on the level of pro-
tection required by the customers, as well as a cryptographic scheme to amortise the
cost of such privacy provision. In Section 2 we study how muchnoise one needs to add
to a bill to ensure specific consumption windows are protected. In Section 4 we propose
a cryptographic rebate protocol that keeps a hidden track ofthe actual amounts due
accross multiple billing periods, allowing users to reclaim some of the extra payments
made. The rebate protocols also support deposits, anonymous payments using e-cash,
and negative bill noise, and prevent abuse by ensuring the funds paid cover the costs of
consumption.

2 Differential Privacy for Billing

We start from the premise that customers can add some “noise”to their bill in order
to hide their exact usage at specific times. Of course this billing noise represents real
money, so they wish to minimise it for a given level of protection required. The first
problem we tackle is to determine how much more a customer should pay to hide their
pattern of activity for a particular time frame.

Differential privacy was developed as a framework for hiding personal records
within databases [4]. A statistic extracted from a databaseis differentially private if



it is nearly as likely as if it was extracted from a database with an arbitrary record re-
moved. This definition encapsulates the intuition that a single individual’s record does
not overwhelmingly affect the statistic in a way that information about the record might
leak.

We have to modify this definition as well as its precise mathematical counterpart
to make it applicable to the billing setting. We consider as our database the set of all
readings from a meter. In the case of billing private cloud usage each record represents
the number of CPUs used for each hour of the billing period. The customer then has to
specify its privacy goal: for example they may wish to hide their activity at any arbitrary
hour or any arbitrary day of computing. Then they should determine the quality of
the protection provided, in terms of how much information the bill reveals about any
particular period. Using those parameters we can calculatethe additional amount to bill
in order to achieve the desired privacy goals.

2.1 Privacy definitions

For simplicity we consider fixed size databases corresponding to a fixed term billing pe-
riod. For our application this is sufficient, as we are primarily interested in the number of
CPU instances used during each hour of the pricing period. For this reason the domain
of all possible data sets is described as the Cartesian product:D = {0, . . . , cmax}

imax .
For our private cloud scenariocmax is the number of instances in the private cloud, and
imax is the number of records per billing period. In our concrete examplecmax = 10000
andimax is the number of hours in a month or a year.

First we define the “distance” between two sets of readings, and repeat some key
definitions and results from differential privacy [4], uponwhich we will be building.

Definition 1. The record distanceRDist(D1, D2) between two data setsD1, D2 ∈ D
corresponds to the number of elements (records) in whichD1 andD2 differ.

Definition 2. A randomized functionK givesε-differential privacy if for all data sets
D1, D2 ∈ D with RDist(D1, D2) ≤ 1, and allS ∈ ΣImage(K ),5

Pr[K(D) ∈ S|D = D1] ≤ exp(ε)× Pr[K(D) ∈ S|D = D2] .

The probability is taken over the randomness ofK.

Intuitively, mechanisms fulfilling this definition addressconcerns that an individual
might have about filling in one record truthfully, rather than arbitrarily. Differential
privacy guarantees that no output (and thus consequences ofoutputs) becomes signif-
icantly more or less likely. In our case the randomized function K will be the billing
amount increased by some random value.

A further observation about hiding multiple recordsk from a database will also
prove useful:

5 A σ-algebra over a setX is a setΣX ⊂ 2X such that∅ ∈ ΣX ; S ∈ ΣX ⇒ (X \ S) ∈ ΣX ;
and for any(Si)i∈N, Si ∈ ΣX ,

⋂

Si ∈ ΣX .



Definition 3. A randomized functionK gives(k, ε)-differential privacy if for all data
setsD1, D2 ∈ D with RDist(D1, D2) ≤ k, and allS ∈ ΣImage(K ),

Pr[K(D) ∈ S|D = D1] ≤ exp(ε · k)× Pr[K(D) ∈ S|D = D2] .

The probability is taken over the randomness ofK.

Lemma 1. A ε-differentially private privacy mechanismK is also(k, ε)-differentially
private.

Lemma 1 follows from Definition 3, and shows that the same privacy mechanismK
can obstruct inferences on multiple records. In such cases it provides a lower amount of
privacy (i.e.ε′ = ε · k). Hence if a mechanism is to be used to protect multiple records
suitable security margins should be provided.

Differentially private mechanisms.The classical differential privacy mechanism by
Dwork [4] adds Laplacian noise to the outcome of a query, parametrised by the “sensi-
tivity” of the functionf .

Definition 4. The sensitivity of a functionf : D → Rn is the maximum distance be-
tween output values for which the domain differs in at most one record:

∆f = max
D1,D2∈D

RDist(D1,D2)≤1

‖f(D1)− f(D2)‖1

For n = 1 the sensitivity off is the maximum difference|f(D1) − f(D2)| between
pairs of databasesD1, D2 that differ in only one element. It is shown in [4] that if
f : D → R is a function with sensitivity∆f , thenK(D) = Lap(f(D), ∆f/ε) is
differentially private.

Our adaptations of the differential privacy definitions.Instead of bounding the ratio be-
tween output probabilities of actual vs. arbitrary information for a single hourly record,
we want to give customers the option of hiding an arbitrary period of time. For exam-
ple we may want to hide specifics of daily (chunks of 24 records) or weekly (chunks
of 168 records) consumption. We call the period length a useris concerned with the
privacy unit. Furthermore we need to achieve this for statistics in discrete domains (not
continuous function), that can only make the bills bigger, never smaller.

Definition 5. The u-distanceDistu(D1, D2), e.g.,u ∈ {hourly, dayly,weekly} be-
tween two data setsD1, D2 ∈ D corresponds to the number ofu-units (collection
of records) in whichD1 andD2 differ.

Our pricing scheme maps eachD ∈ D, D = (c1, . . . , cimax
) to a discrete price:

price(D) =
∑imax

i=1 ci · pI , whereimax is the number of records per billing period,
andpI is the price per hour per instance. Rather than having continuous positive and
negative noise as in the original Laplacian differential privacy mechanism, we want to
only add discrete positive noise.

If we consider only privacy mechanisms with discrete outputs, we can simplify the
differential privacy definition. For discrete distributions,ΣImage(K ) = 2Image(K ), and



Pr[K(D) ∈ S] =
∑

r∈S Pr[K(D) = r]. Definition 8 can thus be restated as the
following equation:

∑

r∈S Pr[K(D) = r|D = D1] ≤ exp(ε) ·
∑

r∈S Pr[K(D) =
r|D = D2]. From this we derive an alternative definition for differential privacy for
discrete distributions:

Definition 6. A randomized functionK givesε-differentialu-privacy if for all data sets
D1, D2 ∈ D with Distu(D1, D2) ≤ 1, and allr ∈ Image(K ),

Pr[K(D) = r|D = D1] ≤ exp(ε)× Pr[K(D) = r|D = D2] .

The probability is taken over the randomness ofK.

Lemma 2. Definition 8, Definition 3, and Lemma 1 apply tou-privacy:

1. For discrete privacy mechanisms Definition 8 and Definition 6 foru = hourly are
equivalent.

2. Letnu be the number of records in au-unit. If K is (nu, ε)-differential hourly-
private, thenK is also(nu · ε)-differentialu-private.

Dwork [5] notes that, because of the multiplicative nature of the definition, an output
whose probability is zero on a given database must also have probability zero on any
neighboring database, and therefore, by repeated application of the definition, on any
other database.

Handling privacy mechanisms that result in distributions for which the support of
K(D1) andK(D2) may differ requires extra care. Such a situation arises, e.g., when
K adds only positive noise. If for instanceprice(D1) < price(D2) to whichK adds
positive noise. Letνmin be the minimum amount of noise that is added, then the value
r = price(D1) + νmin is in the support ofK(D1) but has0 probability forK(D2). It
follows that such a mechanism can never be differentially private.

To overcome this problem, we define partial differential privacy. A statistic offers
partially differential u-privacy if it is differentially private for all outputs in the overlap-
ping support of any two databasesD1 andD2 with Distu(D1, D2) ≤ 1. Furthermore
we require the probability that the output of the statistic is not in the overlapping do-
mains to be bound by a small probabilityδ. This means that the function is differentially
private most of the time (or with probability at least1− δ).

Definition 7. A randomized functionK givesδ-partially ε-differentialu-privacy if the
following two properties hold:

1. For all D1, D2 ∈ D with Distu(D1, D2) ≤ 1, and all r ∈ Supp(K(D1)) ∩
Supp(K(D2)),

Pr[K(D1) = r] ≤ exp(ε)× Pr[K(D2) = r] .

2. For all data setsD1, D2 ∈ D with Distu(D1, D2) ≤ 1,

Pr[r ← K(D1) : r /∈ Supp(K(D2))] < δ .

For both properties, the probability is taken over the randomness ofK.



As for the traditional differential privacy definitions, longer periods of privacy can be
guaranteed with lower security parameters:

Lemma 3. Let nu be the number of records in au-unit. If K is δ-partially (nu, ε)-
differential hourly-private, thenK is also(nu ·δ)-partially (nu ·ε)-differentialu-private

Proof. Consider the joint distribution ofK for all D1 andD2 with RDist(D1, D2)
≤ nu. The probability of drawing a valuer not in the domain of at least one ofK(Di)
is δ′ ≤ 1 − (1 − δ)nu ≤ nu · δ. This proves Property 2 for partial differential privacy.
If r is in the domain, Property 1 is proved as in Lemma 2. ut

Given the above definition for privacy we propose a concrete mechanism to obscure
readings. We simply add to the billf(D) for consumptionD an amount of noise drawn
from a Geometric distribution with parameterp = ε/∆f,u.6 The sensitivity∆f,u is the
maximum difference of a bill between two databasesD1 andD2 differing in at most 1
u-unit (e.g. an hour, a day, or a week). Similarly,ε is a security parameter expressing
information leakage.

Claim. Let f : D → R be a function with sensitivity∆f,u, thenK(D) = f(D) +
Geo(ε/∆f,u) is (2 · ε)-partially ε-differentiallyu-private.

Proof. We prove Property 1 as follows: assumeK(D1) outputsr that is also in the
domain ofK(D2). Forp = ε/∆f,u and making use of the bound(1 + α)k ≤ eαk:

Pr[K(D1) = t|D1]

Pr[K(D2) = t|D2]
=

(1− p)(t−f(D1))p

(1− p)(t−f(D2))p
= (1− ε/∆f,u)

(f(D2)−f(D1))

≤

(

1−
ε

(f(D1)− f(D2))

)(f(D2)−f(D1))

≤ eε

We prove Property 2 as follows: we show that the probability thatr is not in the domain
of D(D2) is bound byδ = 2ε:

Pr[r ← K(D1) : r /∈ Supp(K(D2))] =

Pr[Geo(ε/∆f,u) < ∆f,u] = 1− (1−
ε

∆f,u

)∆f,u+1 ≤ 2ε .
ut

As also noted by [7], the application of a public function on the outputs of a differ-
entially private statistic does not leak any additional information. We can modify the
billing function to only charge up to the maximum possible consumption:K ′(D) =
min(f(D) + Geo(ε/∆f,u),maxD′ f(D′)). Intuitively we use geometric noise, as this
adds the maximal uncertainty for a given mean. The variant ofthe geometric distribu-
tion with support for negative and positive integers definedasPr[k] = 1

2 (1 − p)|k|p is
the discrete equivalent of the Laplace distribution, and would also provide differentially
private guarantees. We limit ourselves to the proposed noise distribution to ensure users
only add positive noise to their bills.

6 Two-sided Geometric noise was also proposed in [6] as a differential privacy mechanism.



Interpretation of differential privacy in terms of inference. From the attackers perspec-
tive the goal of collecting statistics about the output of the privacy mechanismK is to
infer something about the underlying database. For instance, the attacker might want to
distinguish between two databasesD1 andD2, in the sense of semantic security.

Differential privacy does not guarantee anything about theprobability ratio (likeli-
hood ratio) between databasesD1 andD2 with Distu(D1, D2) ≤ 1 given an observed
outcome ofK; it merely says that this ratio will differ only by a small factor from the
ratio of the prior. Note that becauseD1 andD2 are interchangeable, the new ratio is
also bounded from below.

Lemma 4. Given an observed outcome of a differentially privateK the probability
ratio (likelihood ratio) between databasesD1 andD2 with Distu(D1, D2) ≤ 1 differs
by less than a factorexp(ε) from the ratio of the prior.

Pr[D = D1|K(D) = r]

Pr[D = D2|K(D) = r]
≤ exp (ε)×

Pr[D = D1]

Pr[D = D2]
.

Proof. From Bayes theorem we can write:

Pr[D = Di|K(D) = r] =
Pr[K(D) = r|D = Di]× Pr[D = Di]

Pr[K(D) = r]

whence, sinceK is differentially private, we can write:

Pr[D = D1|K(D) = r]

Pr[D = D2|K(D) = r]
=

Pr[K(D) = r|D = D1]

Pr[K(D) = r|D = D2]
×

Pr[D = D1]

Pr[D = D2]

≤ exp (ε)×
Pr[D = D1]

Pr[D = D2]
.

ut

The cost of privacy.Obscuring bills by adding noise may lead to paying extra for a
service. Customers have incentives to minimise their costsfor a desired level of privacy
protection. We provide a few illustrative examples of the average extra cost involved
in settling a bill for different privacy units of an hour, a day or a week. In our usual
example we consider a private cloud of 10K CPUs, billed as $0.12 a CPU / hour. We
denote asβ = f(D) the actual service cost associated with the use of the service for a
year.

It is clear from Table 1 that providing a differentially private bill for more than
a single hourly period is an expensive business. The proposed mechanism allows for
lower overheads for yearly bills when customers wish to protect arbitrary hours or days
in the year. When it comes to protecting arbitrary weeks thisprotection is only offered
with a low security parameter (ε = 0.1). Why is the cost so high? It is because the
privacy guarantee offered is very strong: no matter what side information the adversary
has, including the detailed readings for other periods, they should not be able to infer
information about an arbitrary privacy unit. For example ifthe adversary knows the
exact consumption for the other 364 days they should still not learn more than permitted
about the last day. This is a very strong guarantee and as a result it comes at a high cost,
when applied directly.



Privacy units Security (ε) Pay Monthly Pay Yearly Fixed Rate
Hourly 0.1 β + $144, 000 β + $12, 000 $10, 512, 000
(units = 1) 0.01 β + $1, 440, 000 β + $120, 000 $10, 512, 000
Daily 0.1 β + $3, 456, 000 β + $288, 000 $10, 512, 000
(units = 24) 0.01 ($10, 512, 000) β + $2, 880, 000 $10, 512, 000
Weekly 0.1 ($10, 512, 000) β + $2, 016, 000 $10, 512, 000
(units = 168) 0.01 ($10, 512, 000) ($10, 512, 000) $10, 512, 000

Table 1. Yearly average bill after the application of the privacy mechanismK′ compared with
the fixed rate privacy mechanism. Different values of the security parameter (ε), different privacy
units (hourly, daily and weekly) as well as the options of paying monthly or yearly are presented.
Amounts in parenthesis indicate that the expected cost is higher than paying for the maximum
consumption.

Table 1 also contains the cost of paying bills monthly, whichincur a 12 fold over-
head for the same level of protection. It is clear that there are advantages in paying in
batches if in fact the desired property is to hide any fixed period of time within the
billing period (an hour, a day, a week). We will see in the nextsection how we can
do better than this: we can aggregate the true cost of serviceprovision, and use cryp-
tographic methods to reclaim most of the additional cost of privacy in the long term
without sacrificing any security.

Longer guarantees.Degradation of privacy in our framework is graceful, since some
privacy guarantees are provided for periods longer than what is strictly defined by the
chosen u-units. For example a user may choose a partiallyε-differential functionKε,24

providing u-privacy for a day (i.e. 1 u-unit = 24 hourly periods) withε = 0.01. In our
standing example this means he should add an extra amount to his bill drawn from a
Geometric distribution with parameter$2, 880, 000. What does that guarantee? Let’s
assume the adversary knows the exact consumption about all days except for one. Fur-
thermore the adversary knows that the consumption on the target day could only have
taken one out of two values with equal probability: this means that the ratio of priors
Pr[D=D1]
Pr[D=D2]

= 1. Then after receiving information about the bill the adversary would at

best know that0.99 ≈ 1/(1 + ε) ≈ 1/eε ≤ Pr[D=D1|K
′(D)]

Pr[D=D2|K′(D)] ≤ eε ≈ 1 + ε = 1.01.
This is a small amount of information.

Now let’s consider an adversary that tries to infer something over a longer period,
e.g., a week. The adversary knows all user consumption outside this target week, and
furthermore knows that user consumption within the week could only have been one of
two possibilitiesD′

1 orD′
2 with equal probability as before. Due to Lemma 3 we know

that theK ′(D) scheme is also partiallyε-differentially private for a longer u-unit of a
week (1 weakly-unit =7×24hourly-units), with a new security parameterε′ = ε·7. This
means that the new posterior ratio of probabilities over thetwo only possible outcomes
is 0.93 ≈ 1/(1 + ε′) ≈ 1/eε

′

≤ Pr[D=D1|K
′(D)]

Pr[D=D2|K′(D)] ≤ eε
′

≈ 1 + ε′ = 1.07. Despite the
lower degree of privacy, some quantifiable protection is still available against longer-
term profiling.



Limitations. Our variant of differential privacy relies on only introducing positive noise.
This is desirable as it guarantees that the bill at least covers the cost of service provision.
At the same time this provides a one sided security property:a final bill can always be
confused with a lower bill, but not always with a higher bill.For example there is a
positive probability that a sensitive day passes with no consumption and then no noise
is added to the bill. If an adversary knows all other consumptions in the year, they can
infer that indeed no consumption took place on the unknown day. Our mechanism thus
assumes that the baseline of no consumption is not as sensitive as high consumption.

While information leakage about low levels of consumption is possible, it is not
very likely for high levels of security as characterised by the security parameterδ.

Summary.We have shown that adding noise to the bill can provide high levels of secu-
rity parametrised by a parameterε and a privacy unit. This security holds even against
adversaries with knowledge of many readings. At the same time this comes with a high
overhead. In the next section we show that the bulk of the costof providing privacy can
be recuperated in the long run. We achieve this by keeping hidden accounts of what is
actually due for service provision, versus what has been paid. In the long run users can
only add the necessary noise to keep their accounts positive, including negative noise –
while ensuring that their funds cover their consumption.

3 Cryptographic Building Blocks of the PBR Protocol

Signature SchemesA signature scheme consists of the algorithms(Keygen,Sign,Verify).
Keygen(1k) outputs a key pair(sk , pk ). Sign(sk ,m) outputs a signatures on message
m. Verify(pk , s ,m) outputsaccept if s is a valid signature onm andreject otherwise.
This definition can be extended to support multi-block messagesm = {m1, . . . ,mn}.
Existential unforgeability [8] requires that no p.p.t. adversary should be able to output
a message-signature pair(s ,m) unless he has previously obtained a signature onm.

Commitment schemesA non-interactive commitment scheme consists of the algorithms
ComSetup, Commit andOpen. ComSetup(1k) generates the parameters of the com-
mitment schemeparc . Commit(parc , x) outputs a commitmentcx to x and auxiliary
informationopenx. A commitment is opened by revealing(x, openx) and checking
whetherOpen(parc , cx, x, openx) outputsaccept. A commitment scheme has a hid-
ing property and a binding property. Informally speaking, the hiding property ensures
that a commitmentcx tox does not reveal any information aboutx, whereas the binding
property ensures thatcx cannot be opened to another valuex′.

Our protocols make heavy use of homomorphic commitment schemes. A commit-
ment scheme is said to be additively homomorphic if, given two commitmentscx1

and
cx2

with openings (x1, openx1
) and (x2, openx2

) respectively, there exists an operation
⊗ such that, ifc = cx1

⊗ cx2
, thenOpen(parc , c, x1 + x2, openx1

+ openx2
) outputs

accept.

Proofs of KnowledgeA zero-knowledge proof of knowledge [9] is a two-party pro-
tocol between a prover and a verifier. The prover convinces the verifier who knows
only a public proofinstance that he knows a secret input (calledwitness) that allows



him to prove that the public and the secret value together fulfill some relational state-
ment(witness , instance) ∈ R without disclosing the secret input to the verifier. The
protocol should fulfill two properties. First, it should be aproof of knowledge, i.e.,
a prover without knowledge of the secret input convinces theverifier with negligible
probability. More technically, there exists a knowledge extractor that extracts the secret
input from a successful prover with all but negligible probability. Second, it should be
zero-knowledge, i.e., the verifier learns nothing but the truth of the statement. More
technically, for all possible verifiers there exists a simulator that, without knowledge of
the secret input, yields a distribution that cannot be distinguished from the interaction
with a real prover. Witness indistinguishability is a weaker property that requires that
the proof does not reveal which witness (among all possible witnesses) was used by the
prover.

We use several existing results to prove statements about discrete logarithms: proof
of knowledge of a discrete logarithm [10]; proof of knowledge of the equality of ele-
ments in different representations [11]; proof with interval checks [12], range proof [13]
and proof of the disjunction or conjunction of any two of the previous [14]. These
results are often given in the form ofΣ-protocols but they can be turned into non-
interactive zero-knowledge arguments in the random oraclemodel via the Fiat-Shamir
heuristic [15].

When referring to the proofs above, we follow the notation introduced by Ca-
menisch and Stadler [16] for various proofs of knowledge of discrete logarithms and
proofs of the validity of statements about discrete logarithms.NIPK{(α, β, δ) : y =
g0

αg1
β ∧ ỹ = g̃0

αg̃1
δ ∧ A ≤ α ≤ B} denotes a “zero-knowledge Proof of Knowl-

edge of integersα, β, and δ such thaty = g0
αg1

β , ỹ = g̃0
αg̃1

δ andA ≤ α ≤ B
holds”, wherey, g0, g1, ỹ, g̃0, g̃1 are elements of some groupsG = 〈g0〉 = 〈g1〉 and
G̃ = 〈g̃0〉 = 〈g̃1〉 that have the same order. (Note that some elements in the represen-
tation of y and ỹ are equal.) The convention is that letters in the parenthesis, in this
exampleα, β, andδ, denote quantities whose knowledge is being proven, while all
other values are known to the verifier. We denote a non-interactive proof of signature
possession asNIPK{(x, sx) : Verify(pk , sx, x) = accept}.

4 Private Billing with Rebates

We have seen that one way of protecting privacy involves adding ‘noise’ to the bill to be
payed for a certain period. Yet, the amount of noise can become significant particularly
to achieve a high quality of privacy or privacy for longer periods within the billing time
frame. For this reason we develop a complementary obliviousbilling protocol that can
be used to alleviate those concerns. Its key features include:

– The ability to maintain a hidden bill of actual consumption that can be used to
reclaim any excess used for protecting privacy at a later time.

– A mechanism for proving that the amount payed to the utility provider exceeds the
bill for actual consumption without revealing the actual bill.

– Support for an initial deposit to support later use of positive as well as negative
noise for the bills.



– Compatibility with anonymous e-cash schemes allowing bills to be settled anony-
mously, as well as advanced privacy friendly payment mechanisms that allow users
to hide the amounts actually payed to the utilities.

We discuss in detail and prove the correctness of the billingprotocols, and the mech-
anisms to ensure payments exceed the amount consumed. The specifics of optional e-
cash protocols that allow hidden payments are beyond the scope of this work, and we
leave their detailed description to future work.

Our oblivious payment protocols can be used to reclaim in thelong run an excess
payed as a result of a differentially private billing mechanism as presented in the previ-
ous sections. With the deposit facility, adding negative noise is possible, as long as the
overall balance of payments stays positive. The protocols can also be used to support
the naive mechanism where a bill for maximal consumption is payed, and allow parties
to later reclaim some of it back. Finally given anonymous e-cash they can be used to
provide full oblivious payments without the need to add any noise to the bills, as they
never need to be revealed (technically:noise = −fee). Which variant to use therefore
depends on the infrastructure available and the degree of complexity parties are ready
to accept.

4.1 The PSM protocol

We will be building upon PSM (Privacy-Preserving Smart Metering), a cryptographic
protocol for privacy-friendly billing [2]. PSM mediates interactions among three par-
ties: a meterM that outputs consumption datacons and related informationother ; a
service providerP that establishes a pricing policyΥ and a userU that receives con-
sumption readings from meterM and at each billing period pays afee to providerP.
The pricing policyΥ is a public function that takes consumption datacons together
with other informationother (e.g., the time of consumption) and computes a price. The
overall priceprice(D) =

∑|D|
i=1 pricei is computed by adding the prices corresponding

to the individual consumptions in a billing period. For our running private cloud exam-
ple, Υ (cons , other ) = cons · 0.12 and does not depend onother . As in the original
protocols we assume a tamper resistant meter is used to provide accurate and appropri-
ately cryptographically packaged readings. These can be processed by the user to prove
their bill in zero-knowledge to the provider. At this point users may also choose to add
some noise to ensure differential privacy.

The security of PSM is shown in the simulation-based security paradigm [17–
19]. In the real world, the protocolPSM(M,P,U) is run in an adversarial environ-
ment that may corrupt some of the protocol parties, indicated by M̃, P̃, Ũ. Corrupted
parties just forward messages between the environment and honest protocol partici-
pants. In the ideal world, dummy protocol partiesDM, DP, DU run an ideal protocol
Ideal(FPSM, DM, DP, DU) by just forwarding messages to an ideal functionalityFPSM.
UncorruptedDx, x ∈ {M,P,U} interact with the environment while corrupted dummy
partiesD̃x interact with a simulatorSim.

We consider w.l.o.g. a corrupted providerP̃ and say that a protocol is secure against
P̃, if there exists a simulatorSim such that no environmentEnv can tell whether it is
interacting withPSM(M, P̃,U) or with Sim‖Ideal(FPSM, DM, D̃P, DU). Conceptually



Sim translates influence thatEnv has through̃P on the protocol into influence onFPSM

throughD̃P, and leakage that̃DP receives fromFPSM into leakage thatEnv could learn
from P̃. Similarly, PSM is proven secure against a corrupted userŨ.

Listing 1 FunctionalityFPBR

FPBR is parameterized by deposit relationR and a policy setY and interacts with dummy parties
DM , DP andDU . Initially T = ∅, d = 0, account = 0.

On (Policy, Υ ) fromDP whereΥ ∈ Y
- storeΥ ; send(Policy, Υ ) toDU

On (Consume, cons , other ) from DM

- increment counterd; add(d, cons , other ) to T ; send(Consume, cons , other) toDU

On (Deposit, (inc, wit), instance) from DU wherebalance + inc ≥ 0
- if ((inc, wit), instance) ∈ R, let balance += inc, send(Deposit, instance) toDP

On (Payment, from, until , noise) from DU where
0 ≤ from ≤ until ≤ d andbalance + noise ≥ 0

- for i = from to until , calculatepricei = Υ (consi, other i)
- let fee =

∑until

i=from
pricei + noise andbalance += noise

- send(Pay, from, until , fee) toDP

4.2 Rebate Ideal Functionality

We propose a new ideal functionalityFPBR (see Listing 1) that extends the functionality
FPSM. The functionality keeps track of the user’s consumptions in a setT containing
tuples(i, cons , other). During a payment, the policyΥ is applied to all(cons , other) in
the interval[from , until ] to compute the pricepricei = Υ (cons i, other i) per consump-
tion. The overall fee that the user has to pay is computed asfee =

∑until

i=from pricei +
noise. The valuenoise is added to thefee to improve the user’s privacy. The ideal func-
tionality also maintains a balance that corresponds to the sum of all thenoise added to
payments. Note that the user can get rebates by using negative noise, but that the balance
is never allowed to be negative.

The ideal functionality also allows to increase the balancethrough a deposit. The
user has to provide input((inc, wit), instance) ∈ R. The parameterization by relation
R allows to support both standard deposit mechanisms that reveal the deposited amount
inc as well as advanced deposit mechanisms that hide this value from the provider. In
the simple mechanism the user reveals how much he wants to deposit:wit = ε andR
corresponds to simple equality, i.e.R = {(inc, ε), inc)|inc ∈ Z}.

To obtain a more advanced privacy-friendly deposit mechanism, the witness could
correspond to a one-show anonymous credentialcred . The relation requires thatcred
is a one-show credential with an increment valueinc and serial numbers issued un-
der public keypkB , i.e, R = {((inc, cred), (s, pkB))|Verify(pkB, cred , (inc, s)) =
accept}. The real protocol cryptographically enforces this using azero-knowledge
proof.7 To obtain such a one-show credential without revealing the value ofinc to the

7 A zero-knowledge proof of knowledge [9] is a two-party protocol between a prover and a
verifier. The prover convinces the verifier, who knows only a public proof instance , that he
knows a secret input (calledwitness) that allows him to prove that the public and the secret
value together fulfill some relational statement(witness , instance) ∈ R without disclosing
the secret input to the verifier.



provider, additional infrastructure is needed. In particular such a mechanism seems to
require some form of anonymous payment, either physical cash or anonymous e-cash.
Given such a payment mechanism, the provider’s bank, after receiving an anonymous
payment of valueinc and depositing this amount on the provider’s bank account, could
blindly issue the signatureSign(pkB, (inc, s)) using a partially-blind issuing proto-
col [20]. The issue protocol guarantees that the bank does not learns, and thus even if
the provider and his bank collude they cannot link the issuing of cred to its use.

Listing 2 ProtocolPBR(M, P, U)

PartiesM, P,U are parameterized byR andY and interact over secure channels. All participants
have registered public keys generated byMkeygen, Pkeygen, Ukeygen with a key registration
authorityFREG and keep their private keys secret.P also registers commitment parametersparc .

On (Policy, Υ ) fromEnv

- P runsΥs ← SignPolicy(skP, Υ ) and sendsΥs toU
- Upon receivingΥs, U extractsΥ ; if Υ /∈ Y , he aborts
- if VerifyPolicy(pk

P
, Υs) = 1, U storesΥs, and sends(Policy, Υ ) to Env

On (Consume, cons , other ) from Env

- M incrementsdM, runsSC ← SignConsumption(skM, parc , cons , other , dM) and
sends(SC) toU

- Upon receiving(SC), U runsb← VerifyConsumption(pk
M
, parc , SC, dU + 1)

- if b = 1, U incrementsdU, addsSC to TU, parsesSC as(dM, cons , opencons , ccons ,
other , openother , cother , sc), and sends(Consume, cons , other ) to Env

On (Deposit, (inc, wit), instance) from Env where
balance + inc ≥ 0 and((inc, wit), instance) ∈ R

- U runs(aux ′, D)← Deposit(parc , (inc, wit), instance , aux , R)
- U setsbalance += inc andaux = aux ′ and sends(D, instance) toP
- Upon receiving(D, instance),P runs(c′balance , b)← VerifyDeposit(parc , D, cbalance ,
instance , R)

- if b = 1, he setscbalance = c′balance and sends(Deposit, instance) to Env

On (Payment, from, until ,noise) from Env where
0 ≤ from ≤ until ≤ dU andbalance + noise ≥ 0

- U runs(aux ′,Q)← Pay(skU, parc , Υs, TU[from : until ],noise , aux )
- U setsaux = aux ′ andbalance += noise ; U sends(Q, from, until) toP
- Upon receiving(Q, from, until), P runs (fee, c′balance , b) ← VerifyPayment(pk

M
,

pk
U
, pk

P
, parc ,Q, cbalance , from, until)

- if b=1, he setscbalance = c′balance and sends(Pay, from, until , fee) to Env

4.3 Rebate Protocol

We propose a new protocol for privacy-preserving billing with rebates (PBR) (see List-
ing 2) that extendsPSM with a mechanism for adding noise, keeping a hidden balance,
and making deposits. LikePSM, our protocol operates in theFREG hybrid-model [17]
where parties register their public keys at a trusted registration entity. As in the original
scheme the user receives signed policies from the utility providerP and signed readings
from the meterM. The payment transaction only reveals the overall fee, which now can
be subject to additional noise.

We extend this protocol with a novel oblivious rebate systemthat allows the user to
get rebates (in the amount of his noise) in future payments. The rebate is implemented



using a homomorphic updatecnoise to a balance commitmentcbalance that commits the
user to his balance towards the provider but keeps thebalance itself secret. Our protocol
supports an optionalDeposit mechanism that allows the user to add or withdraw funds
from the rebatebalance. Valueaux contains the opening for a commitmentcbalance to
balance. Through the use of zero-knowledge proofs the provider is guaranteed that the
value committed to incbalance is updated correctly and never becomes negative.

The protocol partiesP,U, andM interact with each other using algorithmsPkeygen,
Ukeygen, Mkeygen (for key generation);SignPolicy, SignConsumption, Deposit, and
Pay (for generation of input); andVerifyPolicy, VerifyConsumption, VerifyDeposit,
andVerifyPayment (for verification of input). The functionality of the meter as well
asSignPolicy, SignConsumption, VerifyPolicy, andVerifyConsumption are unchanged
from the original scheme.8 We describe the newDeposit andVerifyDeposit algorithms
and the changes toPay andVerifyPayment:

Listing 3 Algorithms
- Deposit(parc , (inc, wit), instance , aux , R). Parseaux as(balance , openbalance , cbalance).

Compute commitment(cinc , open inc) = Commit(parc , inc) and a non-interactive proof
πinc :9

πinc ← NIPK{ (inc, open inc , wit, balance , openbalance) :

(cbalance , openbalance) = Commit(parc , balance) ∧

(cinc , open inc) = Commit(parc , inc) ∧

((inc,wit), instance) ∈ R ∧ balance + inc ≥ 0} .

Let D = (πinc , cinc) andaux ′ = (balance + inc, openbalance + open inc , cbalance ⊗ cinc).
Output(aux ′, D).

- VerifyDeposit(parc , D, cbalance , instance , R). ParseD as (πbalance , cinc). Verify πinc . If
verification succeeds, setb = 1 andc′balance = cbalance ⊗ cinc , otherwise setb = 0. Output
(c′balance , b).

- Pay(skU, parc , Υs, T,noise, aux ). Parseaux as(balance , openbalance , cbalance). Compute
commitment(cnoise , opennoise) = Commit(parc ,noise) and a non-interactive proofπnoise :

πnoise ← NIPK{ (noise, opennoise , balance , openbalance) :

(cbalance , openbalance) = Commit(parc , balance) ∧

(cinc , open inc) = Commit(parc , inc) ∧

balance + noise ≥ 0} .

Let aux ′ = (balance + noise, openbalance + opennoise , cbalance ⊗ cnoise).

The rest of the algorithm follows [2]:For each(i, cons , opencons , ccons , other , openother ,
cother , sc) ∈ T wherefrom ≤ i ≤ until , calculateprice

i
= Υ (cons, other ), commitment

(cpricei , openpricei
) = Commit(parc , price), and a proofπi that price

i
was computed

correctly according to the policy and the commitmentsccons , cother . The proofπi depends
on the policyΥ and can use auxiliary values inΥs, see [2] on how to implement different
pricing policies.
Computingfee = noise+

∑until

i=from
price

i
andopen fee = opennoise+

∑until

i=from
openpricei

gives an opening to a commitment tofee. Let Q = (fee, open fee , cnoise , πbalance , {sci, i,

cconsi , cotheri , cpricei , πi}
N

i=1). Output(aux ′,Q).

8 For the sake of brevity we omit theReveal mechanism of PSM. It would add little new and
could be implemented in a straight forward manner using trapdoor commitments.

9 If R corresponds to equality, the protocol can be simplified to avoid computingcinc .



- VerifyPayment(pk
M
, pk

U
, pk

P
, parc ,Q, cbalance , from, until). ParseQ as (fee, open fee ,

cnoise , πbalance , {sci, di, cconsi , cotheri , cpricei , πi}
N

i=1). Verify πnoise . If verification fails,
setb = 0. Otherwise setc′balance = cbalance ⊗ cnoise andb = 1.

The rest of the algorithm follows [2]:Fori = from tountil , runMverify(pk
M
, sci, 〈i, cconsi ,

cotheri〉) and verifyπi. Setb = 0 if any of the signatures or the proofs is not correct. Add
the commitments to the pricesc′fee = cnoise ⊗

(

⊗N

i=1cpricei
)

and executeOpen(parc , c
′

fee ,
fee, open fee). If the output isreject setb = 0. Output(fee, c′balance , b).

Theorem 1. Given the security of its building blocks,PBR is secure against a cor-
rupted provider̃P and a corrupted user̃U. (See Appendix with supplemental material.)

UsingPBR for differential privacy. Even an ideal cryptographic billing mechanism as
described by thePSM or PBR ideal functionalities cannot protect the user’s privacy
against an adversary/environment that already knows enough about the user’s behav-
ior – possibly including all consumption or additional random noise – to infer privacy
sensitive information from the final fee alone. For our privacy analysis we assume that
the environmentEnv is divided into a partEnvU that is controlled by the user, and a
partEnvP̃ that is controlled by the adversary and that may have some influence on and
knowledge about the user’s behavior. In the originalPSM protocol all the final fee is
only the result of the individual consumptions ofEnvU for which the provider may
make inferences or gain side information. ThePBR protocol givesEnvU the possibility
to obscure the fee with random noise, which is easier to conceal fromEnvP̃.

5 Proof ofPBR Protocol

Let ≡ denote computational indistinguishability. The following two claims have been
proven about PSM [2]:

Claim (Security of PSM Against Corrupted Provider).Under the unforgeability of the
signature schemes(Mkeygen,Msign,Mverify) and (Ukeygen,Usign,Uverify), under
the hiding property of the commitment scheme, and the extractability and witness-
indistinguishability of the proofs of knowledge, there exists a p.p.t.Sim such that for
all p.p.t.Env:

Env‖PSM(M, P̃,U) ≡ Env‖Sim‖Ideal(FPSM, DM, D̃P, DU).

Claim (Security of PSM Against Corrupted User).Under the unforgeability of the sig-
nature schemes(Mkeygen,Msign,Mverify) and(Pkeygen,Psign,Pverify), under the
binding property of the commitment scheme, and under the extractability and zero-
knowledge property of the proofs of knowledge, there existsa p.p.t.Sim such that for
all p.p.t.Env:

Env‖PSM(M,P, Ũ) ≡ Env‖Sim‖Ideal(FPSM, DM, DP, D̃U).

We prove similar claims for our deposit and rebate extensions.



Claim (Security of PBR Against Corrupted Provider).Under the unforgeability of the
signature schemes(Mkeygen,Msign,Mverify) and (Ukeygen,Usign,Uverify), under
the hiding property of the commitment scheme, and the zero-knowledge property of the
proofs of knowledge,10 there exists a p.p.t.SimP̃ such that for all p.p.t.Env:

Env‖PBR(M, P̃,U) ≡ Env‖SimP̃‖Ideal(FPSM, DM, D̃P, DU).

Proof. We describe a series of game transformations that graduallychange the crypto-
graphic payload of messages as they are sent by the real protocol into the cryptographic
payload of messages of the simulation. In each step the new game is shown to be com-
putationally indistinguishable from the previous one.

– Game 0 - Game 3:These game transformations are unchanged from Appendix
A of [2]. Game 3corresponds to the execution of the real-world protocol, except
that public keyspkM andpkU are replaced by other keyspk ′

M andpk ′
U from the

same distribution, and that the game aborts ifEnv sends a message-signature pair
(m, s) verifiable under public keypk ′

M or pk ′
U but for whichEnv did not receive a

signature on messagem verifiable under public keypk ′
M or pk ′

U respectively.

Lemma 5. Under the unforgeability of the signature schemes(Mkeygen,Msign,
Mverify), (Ukeygen,Usign,Uverify) the difference|Pr[Game 3]−Pr[Game 0]|
= ν1−2(κ).

– Game 4:This game proceeds asGame 3, except that the user keeps two different
balances:balance andbalancec: balance is used for all checks, whilebalancec is
the value in commitmentcbalance . Commitmentscpricei

are replaced by commit-
ments to0, and commitmentscconsi , cother i

are replaced by commitments to tuples
(0, other ′i) that map to0 following Υ . The commitmentcnoise in the payment mes-
sageQ is replaced by a commitment tonoise ′ = fee. The proofsπi andπnoise are
recomputed according to thePay algorithm. The value ofbalance is updated with
respect tonoise, while balancec andaux are updated with respect tonoise ′.

Lemma 6. Under the assumption that the commitment scheme is perfectly hiding
and that the non-interactive proofs of knowledge are witness indistinguishable the
difference|Pr[Game 4]− Pr[Game 3]| = ν3(κ).

– Game 5:This game proceeds asGame 4, except that the proofπinc is replaced by
a simulated proof of the same statement.

Lemma 7. Under the zero-knowledge property of the proofs of knowledge the dif-
ference|Pr[Game 5]− Pr[Game 4]| = ν4(κ).

– Game 6:This game proceeds asGame 5, except that the commitmentcinc in the
payment messageD is replaced by a commitment to the largestinc′ such that
balance+ inc′ ≥ 0 and∃wit : ((inc′, wit), instance) ∈ R. The value ofbalance
is updated with respect toinc, while balancec andaux are updated with respect to
inc′.

10 Note that the zero-knowledge property implies witness indistinguishability.



Lemma 8. Under the assumption that the commitment scheme is perfectly hiding
and that the non-interactive proofs of knowledge are witness indistinguishable the
difference|Pr[Game 6]− Pr[Game 5]| = ν5(κ).

SimP̃ does the same aborts, commitments, and proofs asGame 6, and forwards and
receives messages fromFPBR as described in Listing 4. The strategy behind the simula-
tion of setupandinitialization is unchanged from Appendix A of [2]. The distribution
produced inGame 6is identical to that of our simulation. By summation we have that
|Pr[Game 6]| ≤ ν6(κ). ut

Listing 4 SimulatorSimP̃

Sim
P̃

is parameterized byR andY and interacts withFPBR through the dummy partỹDP and
with Env through the corrupted partỹP.FREG is simulated as for thePSM scheme.

On (Policy, Υ ) fromEnv throughP̃ (Initialization)
- extractΥ ; if Υ /∈ Y , abort
- if VerifyPolicy(pk

P
, Υs) = 1, storeΥs, and send(Policy, Υ ) toFPBR throughD̃P

On (Deposit, instance) fromFPBR throughD̃P (Deposit)
- pick the largestinc such that∃wit : ((inc, wit), instance) ∈ R
- compute a commitment(cinc , open inc) = Commit(parc , inc) and a simulated non-

interactive proofπinc

- letD = (πinc , cinc) andaux ′ = (balance+inc, openbalance+open inc , cbalance⊗cinc)
- setbalance += inc andaux = aux ′ and send(D, instance) to Env throughP̃

On (Pay, from, until , fee) from FPBR throughD̃P (Payment)
- setnoise = fee andcons ′i = 0 and pickother ′

i such thatΥ (cons ′i, other
′

i) = 0
- for i = from to until, runSCi ← SignConsumption(skM, parc , cons

′

i, other
′

i, i)
- create a tableTSim with the signed consumptionsSCi

- run (Q,aux ′)← Pay(skU, parc , Υs, TSim, noise, aux )
- let aux = aux ′; send(Q, from, until) to Env throughP̃.

Claim (Security of PBR Against Corrupted User).Under the unforgeability of the sig-
nature schemes(Mkeygen,Msign,Mverify) and(Pkeygen,Psign,Pverify), under the
binding property of the commitment scheme, and under the extractability property of
the proofs of knowledge, there exists a p.p.t.SimŨ such that for all p.p.t.Env:

Env‖PBR(M,P, Ũ) ≡ Env‖SimŨ‖Ideal(FPSM, DM, DP, D̃U).

Proof. We describe a series of game transformations that graduallychange the crypto-
graphic payload of messages as they are sent by the real protocol into the cryptographic
payload of messages of the simulation. In each step the new game is shown to be com-
putationally indistinguishable from the previous one.

– Game 0 - Game 4:These game transformations are unchanged from Appendix B
of [2]. Game 4corresponds to the execution of the real-world protocol, except for
the following changes: The public keyspkM andpkP and the commitment param-
etersparc are replaced by other keyspk ′

M andpk ′
P andparc ′ from the same dis-

tribution.Game 4aborts if the witnesses of the proofsπi included in the payment
messagesQ cannot be extracted, or if these witnesses contain a messagesignature
pair (〈cons , other , price〉, sp) that was not sent toEnv. Game 4also aborts if any
of the message-signature pairs(〈i, ccons , cother 〉, sc) in the payment messageQ
was not sent toEnv.



Lemma 9. Under the proof of knowledge property of the proof system andthe un-
forgeability of the signature schemes(Mkeygen,Msign,Mverify), and(Pkeygen,
Psign,Pverify) the difference|Pr[Game 4]− Pr[Game 0]|=ν1−3(κ).

– Game 5: This game proceeds asGame 4, except that it aborts if the witnesses of
the proofsπinc andπnoise cannot be extracted.

Lemma 10. Under the proof of knowledge property of the proof system thediffer-
ence|Pr[Game 5]− Pr[Game 4]| = ν4(κ).

– Game 6: This game proceeds asGame 5, except that it aborts ifEnv sends a
payment messageQ in which (fee, open fee) is a correct opening of commitment

cnoise ⊗
(

⊗N
i=1cpricei

)

, butfee 6= noise+
∑until

i=from pricei wherenoise andpricei
are taken from the witnesses ofπnoise andπi in Q.

Lemma 11. Under the binding property of the commitment scheme, the difference
|Pr[Game 6]− Pr[Game 5]| = ν5(κ).

SimŨ performs all the changes inGame 6, and forwards and receives messages from
FPBR as described in Listing 5. The strategy behind the simulation of setup, initial-
ization, andconsumption is unchanged from Appendix B of [2]. The distribution pro-
duced inGame 6 is identical to that of our simulation. By summation we have that
|Pr[Game 6]| ≤ ν6(κ). ut

Listing 5 SimulatorSimŨ

Sim
Ũ

is parameterized byR andY and interacts withFPBR through the dummy partỹDU and
with Env through corrupted partỹU. FREG is simulated as for thePSM scheme.

On (Policy, Υ ) fromFPBR throughD̃U (Initialization)

- runΥs ← SignPolicy(skP, Υ ) and sendΥs to Env throughŨ.

On (Consume, cons , other ) fromFPBR throughD̃U (Consumption)

- incrementdM, runSC← SignConsumption(skM, parc , cons , other , dM)
- send(SC) to Env throughŨ.

On (D, instance) from Env throughŨ (Deposit)

- run (c′balance , b)← VerifyDeposit(parc , D, cbalance , instance , R).
- if b = 1 and none of the conditions described inGame 5are fulfilled, setcbalance =
c′balance , extractinc, wit from πinc and send(Deposit, (inc, wit), instance) toFPBR

throughD̃U.

On (Q, from, until) from Env throughŨ, (Payment)

- run(fee, c′balance , b)← VerifyPayment(pk
M
, pk

U
, pk

P
, parc ,Q, cbalance , from, until).

- if b = 1 and none of the conditions described inGame 4, Game 5, and Game 6
are fulfilled, setcbalance = c′balance , extractnoise from πnoise and send(Payment,
from, until ,noise) toFPBR throughD̃U.



6 Conclusions

OurPBR protocol allows the user to add random noise to the final bill,to hide usage
patterns that could otherwise be deduced from the fee. The rebate protocol supports
deposits, anonymous payments using e-cash, and negative bill noise, while ensuring
that the funds paid always cover the cost of consumption. Theuse of noise, however,
comes at a cost, as it is money that the user has to pay upfront as a deposit and cannot
invest elsewhere.

Consequently, we adapt the differential privacy frameworkto study how much noise
is needed to protect specific consumption windows at different security levels. The dif-
ferential privacy framework protects users against worse case outcomes – we leave as
an open problem crafting more economical noise regimes to protect privacy by making
further assumption about the users’ typical behavior.
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A Generalized Differential Privacy

We observe that differential privacy can be defined not only for databases that differ in
exactly one record, but for any two database accepted byK that are in some relation
R ⊂ D ×D.

Definition 8. A randomized functionK givesε-differentialR-privacy if for all data
setsD1, D2 ∈ R, and allS ∈ ΣImage(K ),

Pr[K(D) ∈ S|D = D1] ≤ exp(ε)× Pr[K(D) ∈ S|D = D2] .

The probability is taken over the randomness ofK.

Existing differential privacy mechanisms can be adapted tomeet this new notion by
adjusting the sensitivity function to∆f,R.

Definition 9. The sensitivity of a functionf : D → Rn is the maximum distance be-
tween output values for pairs(D1, D2) ∈ R:

∆f,R = max
D1,D2∈R

‖f(D1)− f(D2)‖1

For n = 1 the sensitivity off is the maximum difference|f(D1) − f(D2)| between
databasesD1, D2 that are in relationR.

The fact that differential privacy can be generalized in this way is by itself not
very surprising. The new notion, however, becomes interesting when one stops using
differential privacy to define that an individual is not worse off no matter whether he
participates in a database or not, but to define that he (or in fact everyone contributing
to the database) is no worse off no matter whether he behaves in this particular way
(D1) or that particular way (D2) – for all behaviors resulting in databases related by
(D1, D2) ∈ R.

In particular ouru-privacy notion can also be defined in the following way:

Ru = {(D1, D2)|Distu(D1, D2) ≤ 1} .

Given this definition of differential privacy, one can also start with a privacy budget
that fixes∆f to examine the amount of protection one can buy by looking at

R∆f
= {(D1, D2} | ‖f(D1)− f(D2)‖1 ≤ ∆f} .


