
More Practical Fully Homomorphic Encryption

Gu Chunsheng
School of Computer Engineering

Jiangsu Teachers University of Technology
Changzhou, China, 213001
guchunsheng@gmail.com

Abstract: In this paper, we first modify the Smart-Vercauteren’s fully homomorphic
encryption scheme [SV10] by applying self-loop bootstrappable technique. The security of
the modified scheme only depends on the hardness of the polynomial coset problem,
removing the assumption of the sparse subset sum problem in the original paper in [SV10].
Moreover, we construct a non-self-loop in FHE by using cycle keys. Then, we further
improve our scheme to make it be practical. The securities of our improving FHE’s are
respectively based on the hardness of factoring integer problem, solving Diophantine equation
problem, and finding approximate greatest common divisor problem.
Keywords: Fully Homomorphic Encryption, Polynomial Coset Problem, Factoring Integer,
Diophantine Equation Problem, Approximate GCD, SSSP

1. Introduction

In this work, we first present a fully homomorphic encryption scheme (FHE) by modifying
the FHE in [SV10], which merely uses the elementary theory of algebraic number fields.
Then, we improve this scheme to make it be practical by hiding the ideal lattice in the public
key. The public key in their scheme consists of a prime p and an integer α modulo p .

The private key is an integer . To encrypt a bit , one selects a small random polynomial

, and output a ciphertext

0s m

()r x (2 ()) modc m r pα= + . To decrypt a ciphertext , one

computes the message bit as follows: . To implement FHE,

they introduce the hardness assumption of the sparse subset sum problem. Moreover, to

obtain the FHE in [SV10], they must set lattices of dimension at least , which is

beyond practical usability [GH10].

c

0(/ 0.5) mm c c s p= − × +⎢ ⎥⎣ ⎦ od 2

272n =

The aim of this paper is to remove the hardness assumption of SSSP in the
Smart-Vercauteren’s FHE [SV10], and improves our scheme to make it be practical. The
advantage of their scheme is simple, since the public key in their SHE scheme merely implies

two integers (,)p α . However, it is well know that (,)p α forms a public basis of an ideal

 1

lattice, and is equivalent to its corresponding HNF representation. So, when the dimension of
an ideal lattice is small, one can find the secret key by using lattice reduction algorithm. This
is the reason why the dimension of an ideal lattice cannot be taken too small in their FHE. n

1.1 Our Contribution

The difference between our scheme and their work is mainly located on fully homomorphic
encryption scheme. We use the approach of re-randomizing the secret key to squash
decryption polynomial, whereas they introduce the hardness assumption of SSSP to squash
decryption polynomial. The security of our scheme is only based on the hardness of the
polynomial coset problem. What is more, we further construct several variant FHEs to make
our scheme be practical. The securities of our variant schemes respectively depend on the
hardness assumption of factoring integer problem, solving Diophantine equation problem, and
approximate GCD problem. The start point of our work is to provide the public key of other

forms to hide the public key (,)p α .

Recall that our variant FHE’s can also be implemented by introducing the assumption of the
sparse subset sum problem. In this case, the public key does not have special structure of
encrypted secret key. In addition, we may construct a new public key cryptosystem based on

the decisional Diophantine equation problem without including (,)p α in the public key.

1.2 Related work

Rivest, Adleman, and Dertouzos [RAD78] first investigated a privacy homomorphism, which
now is called the fully homomorphic encryption (FHE). Many researchers [BGN05, ACG08,
SYY99, Yao82] have worked at this open problem. Until 2009, Gentry [Gen09] constructed
the first fully homomorphic encryption using ideal lattice. In Gentry’s scheme, the public key

is approximately bits, the computation per gate costs operations. Smart and

Vercauteren [SV10] presented a fully homomorphic encryption scheme with both relatively

small key bits , ciphertext size bits and computation per gate at least

 operations, which is in some sense a specialization and optimization of Gentry’s

scheme. Dijk, Gentry, Halevi, and Vaikuntanathan [vDGHV10] proposed a simple fully
homomorphic encryption scheme over the integers, whose security depends on the hardness
of finding an approximate integer GCD. Stehle and Steinfeld [SS10] improved Gentry's fully

homomorphic scheme and obtained to a faster fully homomorphic scheme, with

bits complexity per elementary binary addition/multiplication gate, but the hardness
assumption of the security of the scheme in [SS10] is stronger than that in [Gen09].

7n 6()O n

3()O n 1.5(O n)

3()O n

3.5()O n

 2

1.3 Organization

Section 2 recalls notations and related defintions, and gives Smart-Vercauteren’s somewhat
homomorphic encryption. Section 3 first transforms the somewhat homomorphic encryption
into a FHE by applying self-loop bootstrappable technique, then constructs a non-self-loop
FHE by using the method of cycle keys. Section 4 further improves our FHE to make it be
practical. Section 5 gives a concrete implementation of our scheme. Section 6 concludes this
paper.

2. Preliminaries

2.1 Notations

Let be a security parameter, n [] {0,1,..., }n n= . Let R be the ring of integer polynomials

modulo ()f x , i.e., [] / ()R Z x f x= , where ()f x is an integer monic and irreducible

polynomial of degree . For n f R∈ , we denote by f
∞

 the infinity norm of its

coefficient vector, sometimes denoted f , []2
f the polynomial of its coefficient modulo 2.

For R , its expansion factor mulγ is , that is, n u v n u v
∞ ∞

× ≤ ⋅ ⋅
∞

, where × is

multiplication in R .

2.2 Ideal Lattices

In this paper, we take with a power of . Let () 1nf x x= + n 2 I be a principal ideal of

R , namely, it only has a single generator. For the coefficient vector 0 1 1(, ,...,)T
nu u u u −= of

, we define the cyclic rotation u R∈ 1 0 2() (, ,...,)T
n nrot u u u u−= − − , and the corresponding

circulant matrix 1() (, (),..., ())n TRot u u rot u rot u−= . ()Rot u is called the rotation basis of

the ideal lattice . For ()u ,f u R∀ ∈ , []uf is the coefficient vector of f modulo the

rotation basis of , namely, u mod ()f Rot u . So, we consider each element of R as being

both a polynomial and a vector.

 3

2.3 Smart-Vercauteren’s Somewhat Homomorphic Encryption (SHE)

Smart and Vercauteren’s in the SHE of [SV10] first select a principal ideal with

 over the ring

()u x

() 1mod 2u x = R such that the determinant of the circulant matrix of

is a prime. It is easy to verify that this ideal can be represented by either two integers

()u x

(,)p α ,

where det(())p Rot u= and α is a common root of and ()u x ()f x modulo p . Then,

they evaluate a polynomial such that ()s x () () mod ()u x s x p f x× = . they finally output

the public key (,)p α , the secret key 0 () mods s x x= . To encrypt a message bit ,

the scheme chooses a random small polynomial , computes its value at

{0,1}m∈

()r x α , and outputs

a ciphertext . Given a ciphertext and the secret key

, the decryption algorithm deciphers the message bit

. Given two ciphertexts , addition operation

, and multiplication operation

() (2 ()) mod
def

c Enc m r m pα= = + c

0s

0() (/ 0.5) mod 2
def

m Dec c c c s p= = − +⎢ ⎥⎣ ⎦i 1 2,c c

1 2 1 2(,) () mod
def

Add c c c c p= + 1 2 1 2(,) () mod
def

Mul c c c c p= i .

It is known that this SHE can only evaluate low-degree polynomials. By applying the
bootstrappable technique in [Gen09], they transform the SHE scheme into a FHE scheme by
introducing the sparse subset sum problem to squash the decryption circuit depth.

3. Fully Homomorphic Encryption (FHE)

In this section, we first construct a self-loop FHE based on the Smart-Vercauteren’s SHE, and
simply analyze the security of our scheme. Then, we present a non-self-loop FHE by using
the approach of cycle keys.

3.1 Construction of Self-loop FHE

Since our SHE is same as that of [SV10], we only need to give a new Recrypt algorithm,

which freshens a ‘dirty’ ciphertext into a new ciphertext with the ‘smaller’ error

term and the same plaintext of . To do this, we generate the ciphertexts of the secret key
and add them to the public key.

c newc

c

KeyGen Algorithm.

 4

(1) Assume () 1nf x x= + with a power of 2. Choose a random polynomial

with and

n ()u x

() 1mod 2u x = () 2u x η
∞
= such that det((())) 2np Rot u x η= ≈ is a

prime. Evaluate a common root α of and ()u x ()f x modulo p , and

 such that
1

0
() []n i

ii
s x s x Z x−

=
= ∈∑ () () mod ()u x s x p f x× = .

(2) Set . 0 () mod mod(2)s s x x p=

(3) Choose at random an integer 0,1 0
2i

ii
s λ

=
= z∑ with 0,1() (logw w s n)ω= = and

, where is hamming weight of , and take . log(2)pλ = ⎢⎣ ⎥⎦)0,1(w s 0,1s 0,2 0 0,1s s s= −

(4) Encrypt each bit of : iz 0,1s () (2 ()) modi i i iz Enc z r z pα= = + such that

() / 2ir x n
∞
= for each . Let ()ir x 0,1 0

2i
ii

s zλ

=
=∑ .

(5) Output the public key 0,1 0,2(, , , , ,)pk n p w s sα= , and the secret key . 0(,)sk p s=

All Enc, Dec, Add, Mul algorithms are same as those in [SV10].

Remark 3.1: To simplify our description, we take () 1mod 2u x = same as that in [SV10].

In fact, we can select an arbitrary polynomial . In this case, we need to modify the

above SHE scheme as follows. The public key is

()u x

[] 1
,1 ,2 02

(, , , , () ,{ , })n
i i ipk n p w u x s sα −

==

such that and ,1 ,2i i is s s= + []2
()u x is the polynomial of encrypted , the

secret key is

() mod 2u x

(, () mod 2, ())sk p u x s x= . The decryption algorithm is changed into

[]2
* () 0.5 ()m c c s x h u x= − + ×⎢ ⎥⎣ ⎦ , where

1

0

n i
i

h x−

=
= ∑ .

Remark 3.2: We may also select an odd composite number det((()))p Rot u x= . To obtain

root α , we need to factor p , then solve iα for each prime factor by using extending GCD,

and compute α by applying Chinese Remainder Theorem. So, we can choose many

polynomial with different prime ()iu x det((()))i ip Rot u x= , and set .

The advantage of this scheme is easily to generate key.

() ()iu x u x=∏

Remark 3.3: It is obvious that our scheme can also use larger message space as that of
[SV10].
Recrypting algorithm (Recrypt-1(pk, c)).

 5

(1) Set , (2) /i
iv c= × p []i λ∈ , keeping only log(1) 3k w= + +⎡ ⎤⎢ ⎥ bits of precision

after the binary point for each . iv

(2) Evaluate and i ig v z= × i p0,2 0,2 /g c s= × , and sum 1λ + encrypted rational

numbers with non-zero numbers, denoted as 1w+ 0,2 0
()ii

x g gλ

=
= + mod 2∑ .

(3) Assume 0 1 2. kx x x x x− − −= . Evaluate 0, 1 0 1(,)x Add x x− −= and . mod 2u c=

(4) Output a new ciphertext 0, 1(,)newc Add u x −= .

Theorem 3.1. Recrypt algorithm correctly generates a ‘fresh’ ciphertext with the same

message of , and supports a product of two ‘fresh’ ciphertexts when

newc

c 1 log
8log 2log

nt
n

η
η

− +
≤

+
,

where . 1t w= +
Proof: By the Dec algorithm, we know

0

0,1 0,2

0,1 0,2

0,20

0,20

0

(/ 0.5) mod 2

mod 2 () / 0.5 mod 2

mod 2 / / 0.5 mod 2

mod 2 (/) 2 / 0.5 mod 2

mod 2 (2) / / 0.5 mod 2

mod 2

i
ii

i
ii

i ii

c c s p

c c s s p

c c p s c s p

c c p z c s p

c c p z c s p

c v z c s

λ

λ

λ

=

=

=

− × +⎢ ⎥⎣ ⎦
⎢ ⎥= + × + +⎣ ⎦
⎢ ⎥= + × + × +⎣ ⎦
⎢ ⎥= + × + × +⎣ ⎦
⎢ ⎥= + × × + × +⎣ ⎦

= + × + ×

∑
∑
∑ 0,2 / 0.5 mod 2p⎢ ⎥+⎣ ⎦

.

Assume 2 nρ λ= + ≈ η . Since there are non-zero encrypted rational numbers among t ρ

encrypted rational numbers, we can use symmetric polynomials with degree to evaluate
the sum of these rational numbers. The number of symmetric polynomials is at most

t

t

t
ρ

ρ
⎛ ⎞

≈⎜ ⎟
⎝ ⎠

. The number of degree monomials in the polynomial representing our rational

addition algorithm is equal to , which is less than (see

[GH10] for details). So, the polynomial corresponding to a new generating ciphertext

is satisfied to

t

...
/ 2 / 4 1
t t t

t t
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

× × ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎝ ⎠⎝ ⎠ ⎝ ⎠
tt

()r x

log 12 1 2()
tt t t t tr x t n t nρ ρ
+ 1− −

∞
≤ = , where is the infinity norm of the

polynomial corresponding to . Moreover, to support one multiplication for two ‘fresh’

n

iz

 6

ciphertexts, we require 2(()) () / 1/ 2r x s x p
∞
< according to [SV10]. Hence, we have

2 2 2(()) () / 2tr x tn n ηρ −

∞
≤ 1≤ , namely,

1 log
8log 2log

nt
n

η
η

− +
≤

+
.■

3.2 Security of FHE

For the semantic secure of our scheme, we follow the security analysis of [SV10]. The
following definition is from that in [SV10].

Definition 3.1. ([SV10] Polynomial Coset Problem (PCP)). Given , the problem is to

guess whether or , where is computed from either

(,)r pk

0b = 1b = r () modr u pα= for

, where is a random polynomial with 0b = ()u x u β≤ , or uniformly selected from

 for . U pr ← F 1b =

Theorem 3.2. ([SV10] Theorem 1). Suppose there is an algorithm A which breaks the
semantic security of our SHE with advantage ε . Then there is a distinguishing algorithm ,
which decides the PCP with advantage

D
/ 2ε .

3.3 Construction of Non-Self-loop FHE

According to [Gen09], the above FHE can not prove to be semantically secure by a standard
hybrid argument when using self-loop. In fact, the FHE in [Gen09, SV10] also reveals the
encrypted secret key bits, although it is not direct. The advantage of applying cycle keys is to
maximize possible distribution of the ciphertexts of encrypted secret key. In the following, we
present a non-self-loop FHE by using method of cycle keys. But the drawback of our
non-self-loop scheme is to require calling Recrypt two times to refresh ciphertext.
Non-self-loop-KeyGen Algortihm:
(1) Call Step (1) of KeyGen in Section 3.1 two times to generate the public keys

1 1(,)pk p 1α= , 2 2 2(,)pk p α= and the secret keys , . 1
1 1(,)sk p s= 2

2 2(,)sk p s=

(2) Set , and . 1 1
0 1mod mod(2)s s x p= 2 2

0 2mod mod(2)s s x p=

(3) Choose at random an integer 0,1 0
2j j i

ii
s zλ

=
= ∑ 1,2j =, with

and

0,1() (log)jw w s nω= =

1max{ log(2) , log(2) }p pλ = 2⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ , and take 0,2 0 0,1
j js s s j= − .

(4) Encrypt under 1
0,1s 2 2(,)pk p 2α= as 1 1 1

2 2() (2 ()) modi i i iz Enc z r z pα= = + with

random , and under 1()ir x 2
0,1s 1 1(,)pk p 1α= . Let 0,1 0

2j j
ii

s zλ

=
= i∑ .

 7

(5) Output the public key 2
0,1 0,2 1{ , , , , , }j j

j j jpk n p w s sα∗
== , and the secret key

. 2
0 1{ , }jj jsk p s ==

Assume we use 1 1(,)pk p 1α= as the public key when encrypting message. To refresh a

ciphertext , we first call Recrypt with to generate an intermediate ciphertext under c c 1c

2pk , then again call Recrypt with to obtain a new ciphertext under 1c newc 1pk .

4. Improvement of FHE

In the following, we only discuss how to improve the self-loop FHE scheme in Section 3.1.
Indeed, it is not difficult to verify that our improvement scheme can be transform into the
corresponding non-self-loop scheme.

Since the public key in our FHE is 0,1 0,2(, , , , ,)pk n p w s sα= , one can construct a principal

ideal lattice with HNF form by (,)p α . So, the dimension of an ideal lattice must be set

large enough to guarantee the security of FHE. As a result, for practical values of , the
origin scheme [SV10] can not be made FHE. The start point of our work is to hide the

parameters

n

n

(,)p α to avoid the lattice reduction attack. Hence, we can choose a small or

even a constant to make our scheme be practical. To describe simplicity, in this section we
denote by

n
τ security parameter, the dimension of ideal lattice. n

4.1 FHE Based on Factoring Integer Problem

To hide integer α , we substitute α by the ciphertexts ()
0{ (0)}O

ib Enc i
τ

== of many 0-bits,

namely, the public key becomes ()
0 0,1 0,2(, , ,{ } , ,)O

i ipk n p w b s sτ
== . To attack this scheme, one

can factor 1modnx p+ , then guess α among n roots of 1modnx p+ . However, we

observe that 1modnx p+ can be efficiently factored only when p is a prime or has been

factored. So, if we take such that 0q pq= det((()))p Rot s x= is a prime, is another

prime, then one cannot factor when hidden modulo

0q

1nx + p .

KeyGen-1 Algorithm:

(1) Generate (,)p α and as KeyGen in Section 3.1. 0s

 8

(2) Choose a random prime , and take 0q 0q pq= with 0p q≈ , where y is the length

of . y

(3) Encrypt ()Oθ τ= 0-bits: 2 () modi ib r qα= with 1() 2ir x τ −
∞
= .

(4) Choose a random fraction 0,1 0
2 i

ii
s zλ −

=
= ∑ with 0,1() (log)w s ω τ= and

, and set , keeping only log qλ = ⎡⎢ ⎤⎥ ⎤⎦0,2 0 0,1 2
/s s p s⎡= −⎣ λ bits of precision after the

binary point, and encrypt each bit as iz (2 ()) modi i iz r z qα= + with 1() 2ir x τ −
∞
= .

Let 0,1 0
2 i

ii
s zλ −

=
= ∑ .

(5) Output the public key 0 0,1 0,2(, , ,{ } , ,)i ipk n q w b s sθ
== and the secret key . 0(,)sk p s=

Encryption Algorithm (Enc). Given the public key pk and a message bit ,

choose a small random subset

{0,1}m∈

[]T θ⊂ and a random integer 12e τ −< , output a ciphertext

. (2) mii T
c b e m

∈
= + +∑ od q

The Dec, Mul, Add algorithms are identical to that in Section 3.1 except with replacing p

with . The Recrypt algorithm is modified into q []0,1 0,2 2
0.5newc c s c s c⎢ ⎥= + + +⎣ ⎦i i .

Correctness and Security:
One can easily check that this scheme is correctness. To break this scheme, one first considers

to factor and 0q pq= 1modnx p+ , then guess α among roots and solve and

. However, as far as I know, there is not an efficient algorithm which given , factors

.

n ()u x

()s x q

1nx +

Theorem 4.1. Given 0 0 0,1(, , ,{ } , ,)i i 0,2pk n q pq w b s sθ
== = , suppose factoring is

hard. Then our scheme based on factoring integer problem is semantic secure when .

1nx +

2n ≥
Remark 4.1: For , there is an interesting example. It is well known that there is 2n =

2 2p a b= + for a prime . So, for 1mod 4p = 2() 1f x x= + and a prime

large enough, we can set with

1mod 4p =

()u x ax b= + det((()))Rot u x p= , and construct a scheme

based on factoring integer problem. This special example can also adapt to our following
schemes.

 9

4.2 FHE Based on Diophantine Equation Problem

There is an efficient quantum algorithm which factors integers [Sho97]. So, the above scheme
based on factoring integer is not secure for the quantum computer. In this subsection, we
construct a new variant of our scheme, whose security depends on the hardness assumption of
solving Diophantine equation problem.

4.2.1 Costruction

KeyGen-2 Algorithm:

(1) Choose a random polynomial such that ()u x det((())) 2np Rot u x η= ≥ is a prime,

, and () 1mod 2u x = () 2u x η
∞
= . Evaluate a common root α of and

under modulo

()u x 1nx +

p , and
1

0
() []n i

ii
s x s x Z x−

=
= ∈∑ such that

. () () mod(1)nu x s x p x× = +

(2) Select a list of integers such that for 22 () modj jd r pα= (1)/ 2 j
jd p τ +≈ []j µ= ,

, where (log) / 1pµ = −⎡⎢ τ ⎤⎥
1() 2jr x τ −

∞
≤ . Recall that is a ciphertext of 0-bit. jd

(3) Encrypt a list of 0-bits: 2 () modi ib r pα= such that is a random polynomial, ()ir x

1() 2ir x τ −
∞
≤ , is an odd integer, and 0b 0ib b≤ for all [], ()i Oθ θ τ= = .

(4) Choose a random fraction 0,1 0
2 i

ii
s zλ −

=
= ∑ with 0,1() (log)w s ω τ= and

, and set log 2 2pλ = ⎢ ⎥⎣ ⎦ + 0,2 0 0,1 2[/]s s p s= − , keeping only λ bits of precision after

the binary point. Encrypt each bit of : iz 0,1s () (2 ()) modi i i iz Enc z r z pα= = +

with 1() 2ir x τ −
∞
≤ . Let 0,1 0

2 i
ii

s zλ −
=

= ∑ .

(5) Output the public key 0 0 0,1 0,(, ,{ } ,{ } , ,)j j i i 2pk n w d b s sµ θ
= == and the secret key

. 0(,)sk p s=

Remark 4.2: How to generate . We first choose at random a list of integers

, and remain all qualified , and then for other non-qualified ,

evaluate

jd

22 () modj jd r pα= jd jd

2 () modj j jd r p q pα= + , where (1)2 j
jq τ +≈ . In fact, all can be obtained by jd

 10

computing 2 () modj j jd r p q pα= + . We observe that , jd []j µ= do not reveal any

information about p except with the length of p , if suppose 2 () modjr pα is

distinguishing from the uniform distribution over the set []p .

Remark 4.3: In the KeyGen-2 algorithm, we can also replace p by 0q q p= with an odd

integer when computing 0q 2 () modi ib r pα= to further hide modulo p .

Encryption Algorithm (Enc). Given the public key pk and a message bit ,

choose a small random subset

{0,1}m∈

[]T θ⊂ and a random integer 12e τ −< , output a ciphertext

. 0(2) moii T
c b e m

∈
= + +∑ db

Add Operation (Add). Given the public key pk , and two ciphertexts , evaluate a

ciphertext .

1 2,c c

1 2() modc c c b= + 0

Multiplication Operation (Mul). Given the public key pk and two ciphertexts ,

evaluate a new ciphertext , denoted as

.

1 2,c c

1 2 1 0() mod mod ...mod modc c c d d d bµ µ−= × 0

1 2()c Opt c c= ×

Recall here that the quotient of each optimization is at most 2τ , that is, each optimization
only increase the coefficient of the polynomial corresponding to a ciphertext at most 22 τ .
Decryption Algorithm (Dec). Given the secret key and a ciphertext , decipher the

message bit .

sk c

0(/ 0.5) mm c c s p= − × +⎢ ⎥⎣ ⎦ od 2

Recrypting algorithm (Recrypt-2(pk, c)).

(1) Evaluate and
1

2 i
i ii

g c zλ −
=

= ×∑ 0,2 0,2g c s= × , and sum 1λ + encrypted rational

numbers with non-zero rational numbers: 1t w= + 0,2 0
()ii

x g gλ

=
= + mod 2∑ .

(2) Assume 0 1 2. kx x x x x− − −= . Evaluate 0, 1 0 1(,)x Add x x− −= and . mod 2u c=

(3) Output a new ciphertext 0, 1(,)newc Add u x −= .

4.2.2 Correctness

According to [SV10], it is not difficult to verify that KeyGen, Enc, Add, Dec Algorithms are

 11

correct. For Mul algorithm, the reason we use is to reduce length of ciphertext to a fixed

length, and remain the infinity norm of the polynomial corresponding to new generating
ciphertext to be controllable small.

jd

Now, we determine for what parameters all above algorithms are correct. First, we know that

the infinity norm in each polynomial corresponding to , is at most ib jd 2τ according to

KeyGen algorithm. For the Enc algorithm, the polynomial corresponding to

 is satisfied to

'()r x

' (2)ii T
c b e

∈
= + +∑ m '() | | 2 2 2r x T τ τ τθ

∞
≤ × + = , and taking modulo

 increases the norm of at most 0b '()r x 2τθ . Since 0(2)ii T
c b e m bσ

∈
= + + −∑ with

σ θ< , hence the infinity norm of corresponding to ()r x 0(2) moii T
c b e m

∈
= + + db∑

is at most 12τθ + . For the Dec algorithm, we know that if () () / 1/ 2r x s x p
∞

× < , namely,

1() 2r x η−
∞
< according to [SV10], Dec decrypts will be correct.

For the Add operation, corresponding to ()r x 1 2() modc c c b0= + is subject to

() 3 2r x τ
∞
≤ × . For the Mul operation, we use the optimization technique in [vDGHV10].

Without loss of generality, assume that (), 1, 2ir x i = are corresponding to the polynomial of

ciphertext and satisfied to ic () 2ir x κ≤ . Because 2
1 2 0'c c c b p2= × ≤ < , we need to

evaluate modulo at most jd /nµ η τ= ⎡ ⎤⎢ ⎥ times, and the infinity norm of polynomial

related to ciphertext ' increases at most c 22 τ for each time. So, the polynomial

corresponding to

()r x

1 2(c Opt c c)= × is satisfied to 2 2() 2 2 /r x n nκ τ η τ
∞
≤ × + × . When

, 2,κ τ η τ= ≤ 2 3() (1)2 2r x n τ ττ
∞
≤ + < .

Theorem 4.2. Recrypt-2 algorithm correctly generates a ‘fresh’ ciphertext with the

same message of , and supports a product of two ‘fresh’ ciphertexts when

newc

c 1
6 2log

t η τ
τ η
− +

≤
+

,

where and 1t w= + log logn tτ ≥ + .

Proof: By using same method in the proof of Theorem 3.1, we can obtain

 12

2 2 1 2 2 2(()) ((2)) ((2)) / 2 2t t t tr x t t 1τ τ τρ ρ− −

∞
≤ ≤ η≤ . So, we have

1
6 2log

t η τ
τ η
− +

≤
+

.

4.2.3 Security

In our scheme, we hide (,)p α by replacing it with the ciphertexts of many 0-bits. So, the

security of our scheme relies on the following hidden polynomial coset problem.
Definition 4.1 (Hidden Polynomial Coset Problem (HPCP)) The challenger generates the

public key 0 0 0,1 0,(, ,{ } ,{ } , ,)j j i i 2pk n w d b s sµ θ
= == and chooses a random bit {0,1}Uβ ← . If

0β = then the challenger calls Enc algorithm to generate 0(2) moii T
c b e

∈
= + db∑ . If

1β = then the challenger select a random number 0[]Uc b← . Given , the problem

is to guess whether

(,)c pk

0β = or 1β = .

Indeed, the above HPCP is equivalent to the following Diophantine equation problem.

Definition 4.2 (Diophantine Equation Problem (DEP)) Given , we

construct a Diophantine equation system as follows:

1(,{ } ,{ })j j i ic d bµ ϕ
= =0

1
,0

1
,0

1

0

2 0, 1,...,

2 0, 1,...,

2 0

n k
j k j jk

n k
i k i ik

n k
kk

r x q p d j

r x t p b i

c x vp c

µ

ϕ

−

=

−

=

−

=

⎧ − − = =
⎪
⎪ − − = =⎨
⎪

− − =⎪⎩

∑
∑
∑

 (1)

Its equivalent formula is:
1 1 12 2

, ,1 0 0 0 0
(2) (2) (2) 0n n nk k

j k j j i k i i kj k i k k
r x q p d r x t p b c x vp cµ ϕ− − −

= = = = =
2k− − + − − + − − =∑ ∑ ∑ ∑ ∑

 (2)
The problem is to decide whether there is a solution in integers for the equation (1) or (2),

such that , ,, , , n
j k i k kr r cδ δ δ δ≤ ≤ ≤ = 0b .

For an arbitrary polynomial equation with integer coefficients, called Hilbert's Tenth Problem,
this problem is undecidable [Dav73]. Since the Diophantine equation problem we define is a

bounded version problem by using the public key pk . So, it is decidable and belongs NP.

Theorem 4.3. Suppose there is an algorithm which breaks the semantic security of our
SHE with advantage

A
ε . Then there is an algorithm for solving HPCP and DEP with

advantage at least
D

/ 2ε . The running time of is polynomial in the running time of ,
and

D A
1/ ε .

Proof: The proof of theorem is same as the proof of Theorem 1 in [SV10], except with

 13

substitute the modulo p with . 0b

4.2.4 Extension of Large Message Space

We now extend our scheme to support large message space as that in [SV10]. We first use

KeyGen-2 to get the public key 1 0 0,1 0,(, ,{ } ,{ } , ,)j j i i 2pk n w d b s sµ ϕ
= == and the secret key

, and generate as (,)sk p s= ,1 ,2(,j js s) 0,1 0,2(,)s s . Then we encrypt the ciphertexts of

0-bits , and compute . Finally, we output the public

key

n

' 2 () modj jl r α= p p

1
1

'() modj
j jl l α= +

1
1 0 ,1 ,2 1(, ,{ } ,{ } ,{ , } ,{ })n n

j j i i j j j j jpk n w d b s s lµ ϕ − −
= = = == and the secret key . Now

Given the public key

(,)sk p s=

pk and a message , Enc choose a small random subset {0,1}nm∈

[]T θ⊂ and a random integer 12e τ −< , evaluate a ciphertext

. According to analysis in [SV10], we decipher the

message . We observe that there is a minor error for the

decryption algorithm of Section 6 in [SV10]. When refreshing ciphertext, we first get a

ciphertext of each bit of message by applying Recrypt algorithm, then evaluate

. When performing homomorphic operations, we first

obtain each encrypted bit of , then perform appropriately homomorphic operations for
each bit, and finally combine each encrypted bits into a ciphertext of bits message by

using same approach of computing .

1
01

(2) mon
i j ji T j

c b e l m−

∈ =
= + +∑ ∑ db

od 2

db

(/ 0.5) mm c c s p= − × +⎢ ⎥⎣ ⎦

jc m

1
00

(()) mon
new j jj

c Opt c l−

=
= ∑ i

m
n

newc

By using similar approach, it is not difficult to verify that all schemes in this paper support
large message space.

4.3 FHE Based on Approximate GCD

For the FHE based on factoring integer problem, we may replace 0q pq= with a list of

approximate multiple integers of p . So, we design a variant scheme of FHE, whose security
is based on the hardness of approximate GCD problem. Different from the scheme in
[vDGHV10], our scheme has larger message space. Indeed, this scheme is a special case in

Section 4.2. Namely, we can choose a constant polynomial and take 2 () 2jr x e= j

 14

2j jd pq e= + j

0,2

, when computing . 22 () modj jd r pα=

KeyGen-3 Algorithm:

Given the public key 0 0 0,1(, , ,{ } , ,)i ipk n q pq w b s sθ
== = and the secret key

in Section 3.1, we replace with

0(,)sk p s=

0q pq= 0'q pq e02= + with 0e Z∈ and 1
0 2e τ −< ,

and (0) 2 () mod()i ib Enc r qα= = . To get ciphertext of fixed length, we need to apply the

optimization technique in [vDGHV10] when multiplying two ciphertexts. So, we add a list of

integers with 2i id pq e= + i
12ie τ −< for [], log /i pµ µ τ∈ = ⎡ ⎤⎢ ⎥ such that

. We output the public key (1)/ ' 2 i
id q τ +≈ 0 0 0,1 0,(, ', ,{ } ,{ } , ,)i i i i 2pk n q w d b s sµ θ

= == and the

secret key . 0(,)sk p s=

Encryption Algorithm (Enc). Given the public key pk and a message bit ,

choose a small random subset

{0,1}m∈

[]T θ⊂ and a random integer 12e τ −< , output a ciphertext

. (2) moii T
c b e m

∈
= + +∑ d 'q

i

The Dec, Mul, Add, Recrypt algorithms are identical to that in Section 4.2 except with here

replacing with . The Opt algorithm in Mul now uses 0b 'q 2i id pq e= + .

Semantic Security:
Definition 4.4. (Approximate-GCD over the Integers (AGCD)) Given a list of approximate

multiples of p : 1
0{ : , , . . 2i i i i i i id pq e a e Z s t e }τ µ−

== + ∈ < , find p .

Theorem 4.4. ([vDGHV10], Theorem 4.2) Suppose there is an algorithm A which breaks
the semantic security of our SHE with advantage ε . Then there is an algorithm for
solving AGCD with advantage at least

D
/ 2ε . The running time of is polynomial in the

running time of , and
D

A 1/ ε .

5. Implementation

To describe simplicity, we discuss a concrete implementation of the FHE in Section 4.2. Take

, 4n = 50τ = , 14w = , 2200η = , , log 8800p =⎡ ⎤⎢ ⎥ 8192λ = , 1024ϕ = , 200µ = .

We now analyze how to implement our FHE and its security.

For 0,1 1
2 i

ii
s zλ −

=
=∑ and encrypted 0,1s , assume we can continuously separate it to 1023

groups, each group has 8 binary bits, but at most single 1-bit in them, and only
groups with single 1-bit among these groups.

14w =

 15

To refresh ciphertext , we evaluate c /8 1 8 (8)
1 81 0 1

2 (2i j
i ji j i

g c z c zλ λ −− −
+= = =

= × = ×)i
i

+∑ ∑ ∑

and to get 1024 encrypted rational numbers with non-zero

numbers. Hence, we can apply symmetric polynomial technique to sum these encrypted
rational numbers. According to analysis of [GH10], it is not hard to verify that the decryption

polynomial is about degree-15 monomials. What is more, we need to

support a product of two refreshing ciphertexts, our scheme requires to evaluate polynomials
with degree-30 monomials.

2g c s= × 0,2 1 15w+ =

34 15 1842 1024 2× =

3682

Since corresponding to encrypted is satisfied to 2 ()ir x iz
502 () 2 2ir x τ

∞
≤ = , so

corresponding to the ciphertext of each bit of

()r x

1, jg is satisfied to 50 54() 2 10 2r x
∞
≤ × < . It

is easy to verify that the infinity norm of a degree-32 monomial is at most . So, 18212

log () 1821 368 2189u x
∞
> + = . Thus, log () 2200u xη

∞
= = is feasible for our

scheme. When taking above parameters, the expansion rate of ciphertext in our scheme is
about . 8800 / 4 2200=

6. Conclusion

By using self-loop bootstrappable technique, we modify the fully homomorphic encryption
scheme in [SV10], whose security only depends on the hardness of the polynomial coset
problem, removing the assumption of the sparse subset sum problem. Then to obtain better
performance, we construct three variant schemes based on hardness assumption of different
problems. In addition, we assume our scheme is KDM-secure, since the public key in our
scheme implies the ciphertexts of the secret key to implement FHE. s s

References

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In Proc.
of STOC 1996, pages 99-108, 1996.
[ACG08] C. Aguilar Melchor, G. Castagnos, and G. Gaborit. Lattice-based homomorphic
encryption of vector spaces. In IEEE International Symposium on Information Theory,
ISIT'2008, pages 1858-1862, 2008.
[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on
ciphertexts. Lecture Notes in Computer Science, 2005, Volume 3378, pages 325-341, 2005.
[Dav73] M. Davis. Hilbert’s tenth problem is unsolvable. American Mathematical Monthly,
80:233–269, 1973.
[vDGHV10] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In Proc. of Eurocrypt, volume 6110 of LNCS, pages 24-43.
Springer, 2010.

 16

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proc. of STOC,
pages 169-178, 2009.
[GH10] C. Gentry and S. Halevi. Implementing Gentry's Fully-Homomorphic Encryption
Scheme. Cryptology ePrint Archive: Report 2010/520: http://eprint.iacr.org/2010/520.
[GHV10] C. Gentry and S. Halevi and V. Vaikuntanathan. A Simple BGN-type Cryptosystem
from LWE. In Proc. of Eurocrypt, volume 6110, pages 506-522, 2010.
[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Proc. of STOC, pages 197-206, 2008.
[LPR10] V. Lyubashevsky and C. Peikert and O. Regev. On Ideal Lattices and Learning with
Errors over Rings. In Proc. of Eurocrypt, volume 6110, pages 1–23, 2010.
[Mic07] D. Micciancio Generalized compact knapsaks, cyclic lattices, and efficient one-way
functions. Computational Complexity, 16(4):365-411.
[MR07] D. Micciancio and O. Regev. Worst-case to average-case reductions based on
Gaussion measures. SIAM Journal Computing, 37(1):267-302, 2007.
[Reg09] O. Regev, On lattices, learning with errors, random linear codes, and cryptography,
Journal of the ACM (JACM), v.56 n.6, pages1-40, 2009.
[Sho97] Shor P. W., Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997); Extended abstract in
FOCS 1994 (1994).
[SS10] D. Stehle and R. Steinfeld. Faster Fully Homomorphic Encryption. Cryptology ePrint
Archive: Report 2010/299: http://eprint.iacr.org/2010/299.
[SV10] N. P. Smart and F. Vercauteren Fully Homomorphic Encryption with Relatively Small
Key and Ciphertext Sizes. Lecture Notes in Computer Science, 2010, Volume 6056/2010,
420-443.
[SYY99] T. Sander, A. Young, and M. Yung. Non-interactive CryptoComputing for NC1. In
40th Annual Symposium on Foundations of Computer Science, pages 554{567. IEEE, 1999.
[RAD78] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy
homomorphisms. In Foundations of Secure Computation, pages 169-180, 1978.
[Yao82] A. C. Yao. Protocols for secure computations (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science (FOCS '82), pages 160-164. IEEE, 1982.

 17

	More Practical Fully Homomorphic Encryption
	Introduction
	Our Contribution
	Related work
	Organization

	Preliminaries
	Notations
	Ideal Lattices
	Smart-Vercauteren’s Somewhat Homomorphic Encryption (SHE)

	Fully Homomorphic Encryption (FHE)
	Construction of Self-loop FHE
	Security of FHE
	Construction of Non-Self-loop FHE

	Improvement of FHE
	FHE Based on Factoring Integer Problem
	FHE Based on Diophantine Equation Problem
	Costruction
	Correctness
	Security
	Extension of Large Message Space

	FHE Based on Approximate GCD

	Implementation
	Conclusion
	References

