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Abstract: In this paper, we first modify the Smart-Vercauteren’s fully homomorphic 
encryption scheme [SV10] by applying self-loop bootstrappable technique. The security of 
the modified scheme only depends on the hardness of the polynomial coset problem, 
removing the assumption of the sparse subset sum problem in the original paper in [SV10]. 
Moreover, we construct a non-self-loop in FHE by using cycle keys. Then, we further 
improve our scheme to make it be practical. The securities of our improving FHE’s are 
respectively based on the hardness of factoring integer problem, solving Diophantine equation 
problem, and finding approximate greatest common divisor problem.  
Keywords: Fully Homomorphic Encryption, Polynomial Coset Problem, Factoring Integer, 
Diophantine Equation Problem, Approximate GCD, SSSP 
 

1. Introduction 

In this work, we first present a fully homomorphic encryption scheme (FHE) by modifying 
the FHE in [SV10], which merely uses the elementary theory of algebraic number fields. 
Then, we improve this scheme to make it be practical by hiding the ideal lattice in the public 
key. The public key in their scheme consists of a prime p  and an integer α  modulo p . 

The private key is an integer . To encrypt a bit , one selects a small random polynomial 

, and output a ciphertext  

0s m

( )r x ( 2 ( )) modc m r pα= + . To decrypt a ciphertext , one 

computes the message bit as follows: . To implement FHE, 

they introduce the hardness assumption of the sparse subset sum problem. Moreover, to 

obtain the FHE in [SV10], they must set lattices of dimension at least , which is 

beyond practical usability [GH10]. 

c

0( / 0.5 ) mm c c s p= − × +⎢ ⎥⎣ ⎦ od 2

272n =

The aim of this paper is to remove the hardness assumption of SSSP in the 
Smart-Vercauteren’s FHE [SV10], and improves our scheme to make it be practical. The 
advantage of their scheme is simple, since the public key in their SHE scheme merely implies 

two integers ( , )p α . However, it is well know that ( , )p α  forms a public basis of an ideal 
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lattice, and is equivalent to its corresponding HNF representation. So, when the dimension of 
an ideal lattice is small, one can find the secret key by using lattice reduction algorithm. This 
is the reason why the dimension of an ideal lattice  cannot be taken too small in their FHE. n

1.1 Our Contribution 

The difference between our scheme and their work is mainly located on fully homomorphic 
encryption scheme. We use the approach of re-randomizing the secret key to squash 
decryption polynomial, whereas they introduce the hardness assumption of SSSP to squash 
decryption polynomial. The security of our scheme is only based on the hardness of the 
polynomial coset problem. What is more, we further construct several variant FHEs to make 
our scheme be practical. The securities of our variant schemes respectively depend on the 
hardness assumption of factoring integer problem, solving Diophantine equation problem, and 
approximate GCD problem. The start point of our work is to provide the public key of other 

forms to hide the public key ( , )p α .  

Recall that our variant FHE’s can also be implemented by introducing the assumption of the 
sparse subset sum problem. In this case, the public key does not have special structure of 
encrypted secret key. In addition, we may construct a new public key cryptosystem based on 

the decisional Diophantine equation problem without including ( , )p α  in the public key. 

1.2 Related work 

Rivest, Adleman, and Dertouzos [RAD78] first investigated a privacy homomorphism, which 
now is called the fully homomorphic encryption (FHE). Many researchers [BGN05, ACG08, 
SYY99, Yao82] have worked at this open problem. Until 2009, Gentry [Gen09] constructed 
the first fully homomorphic encryption using ideal lattice. In Gentry’s scheme, the public key 

is approximately  bits, the computation per gate costs  operations. Smart and 

Vercauteren [SV10] presented a fully homomorphic encryption scheme with both relatively 

small key  bits , ciphertext size  bits and computation per gate at least 

 operations, which is in some sense a specialization and optimization of Gentry’s 

scheme. Dijk, Gentry, Halevi, and Vaikuntanathan [vDGHV10] proposed a simple fully 
homomorphic encryption scheme over the integers, whose security depends on the hardness 
of finding an approximate integer GCD. Stehle and Steinfeld [SS10] improved Gentry's fully 

homomorphic scheme and obtained to a faster fully homomorphic scheme, with   

bits complexity per elementary binary addition/multiplication gate, but the hardness 
assumption of the security of the scheme in [SS10] is stronger than that in [Gen09].  

7n 6( )O n

3( )O n 1.5(O n )

3( )O n

3.5( )O n
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1.3 Organization 

Section 2 recalls notations and related defintions, and gives Smart-Vercauteren’s somewhat 
homomorphic encryption. Section 3 first transforms the somewhat homomorphic encryption 
into a FHE by applying self-loop bootstrappable technique, then constructs a non-self-loop 
FHE by using the method of cycle keys. Section 4 further improves our FHE to make it be 
practical. Section 5 gives a concrete implementation of our scheme. Section 6 concludes this 
paper. 

2. Preliminaries 

2.1 Notations 

Let  be a security parameter, n [ ] {0,1,..., }n n= . Let R  be the ring of integer polynomials 

modulo ( )f x , i.e., [ ] / ( )R Z x f x= , where ( )f x  is an integer monic and irreducible 

polynomial of degree . For n f R∈ , we denote by f
∞

 the infinity norm of its 

coefficient vector, sometimes denoted f , [ ]2
f  the polynomial of its coefficient modulo 2. 

For R , its expansion factor mulγ  is , that is, n u v n u v
∞ ∞

× ≤ ⋅ ⋅
∞

, where ×  is 

multiplication in R . 

2.2 Ideal Lattices 

In this paper, we take  with  a power of . Let ( ) 1nf x x= + n 2 I  be a principal ideal of 

R , namely, it only has a single generator. For the coefficient vector 0 1 1( , ,..., )T
nu u u u −=  of 

, we define the cyclic rotation u R∈ 1 0 2( ) ( , ,..., )T
n nrot u u u u−= − − , and the corresponding 

circulant matrix 1( ) ( , ( ),..., ( ))n TRot u u rot u rot u−= . ( )Rot u  is called the rotation basis of 

the ideal lattice . For ( )u ,f u R∀ ∈ , [ ]uf  is the coefficient vector of f  modulo the 

rotation basis of , namely, u mod ( )f Rot u . So, we consider each element of R  as being 

both a polynomial and a vector. 
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2.3 Smart-Vercauteren’s Somewhat Homomorphic Encryption (SHE) 

Smart and Vercauteren’s in the SHE of [SV10] first select a principal ideal  with 

 over the ring 

( )u x

( ) 1mod 2u x = R  such that the determinant of the circulant matrix of  

is a prime. It is easy to verify that this ideal can be represented by either two integers 

( )u x

( , )p α , 

where det( ( ))p Rot u=  and α  is a common root of  and ( )u x ( )f x  modulo p . Then, 

they evaluate a polynomial  such that ( )s x ( ) ( ) mod ( )u x s x p f x× = . they finally output 

the public key ( , )p α , the secret key 0 ( ) mods s x x= . To encrypt a message bit , 

the scheme chooses a random small polynomial , computes its value at 

{0,1}m∈

( )r x α , and outputs 

a ciphertext . Given a ciphertext  and the secret key 

, the decryption algorithm deciphers the message bit 

. Given two ciphertexts , addition operation 

, and multiplication operation 

( ) (2 ( ) ) mod
def

c Enc m r m pα= = + c

0s

0( ) ( / 0.5 ) mod 2
def

m Dec c c c s p= = − +⎢ ⎥⎣ ⎦i 1 2,c c

1 2 1 2( , ) ( ) mod
def

Add c c c c p= + 1 2 1 2( , ) ( ) mod
def

Mul c c c c p= i . 

It is known that this SHE can only evaluate low-degree polynomials. By applying the 
bootstrappable technique in [Gen09], they transform the SHE scheme into a FHE scheme by 
introducing the sparse subset sum problem to squash the decryption circuit depth. 

3. Fully Homomorphic Encryption (FHE) 

In this section, we first construct a self-loop FHE based on the Smart-Vercauteren’s SHE, and 
simply analyze the security of our scheme. Then, we present a non-self-loop FHE by using 
the approach of cycle keys.  

3.1 Construction of Self-loop FHE 

Since our SHE is same as that of [SV10], we only need to give a new Recrypt algorithm, 

which freshens a ‘dirty’ ciphertext  into a new ciphertext  with the ‘smaller’ error 

term and the same plaintext of . To do this, we generate the ciphertexts of the secret key 
and add them to the public key.  

c newc

c

KeyGen Algorithm. 
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(1) Assume ( ) 1nf x x= +  with  a power of 2. Choose a random polynomial  

with  and 

n ( )u x

( ) 1mod 2u x = ( ) 2u x η
∞
=  such that det( ( ( ))) 2np Rot u x η= ≈  is a 

prime. Evaluate a common root α  of  and ( )u x ( )f x  modulo p , and 

 such that 
1

0
( ) [ ]n i

ii
s x s x Z x−

=
= ∈∑ ( ) ( ) mod ( )u x s x p f x× = . 

(2) Set . 0 ( ) mod mod(2 )s s x x p=

(3) Choose at random an integer 0,1 0
2i

ii
s λ

=
= z∑  with 0,1( ) (logw w s n)ω= =  and 

, where  is hamming weight of , and take .  log(2 )pλ = ⎢⎣ ⎥⎦ )0,1(w s 0,1s 0,2 0 0,1s s s= −

(4) Encrypt each bit  of : iz 0,1s ( ) (2 ( ) ) modi i i iz Enc z r z pα= = +  such that 

( ) / 2ir x n
∞
=  for each . Let ( )ir x 0,1 0

2i
ii

s zλ

=
=∑ . 

(5) Output the public key 0,1 0,2( , , , , , )pk n p w s sα= , and the secret key . 0( , )sk p s=

All Enc, Dec, Add, Mul algorithms are same as those in [SV10]. 

Remark 3.1: To simplify our description, we take ( ) 1mod 2u x =  same as that in [SV10]. 

In fact, we can select an arbitrary polynomial . In this case, we need to modify the 

above SHE scheme as follows. The public key is 

( )u x

[ ] 1
,1 ,2 02

( , , , , ( ) ,{ , } )n
i i ipk n p w u x s sα −

==  

such that  and ,1 ,2i i is s s= + [ ]2
( )u x  is the polynomial of encrypted , the 

secret key is 

( ) mod 2u x

( , ( ) mod 2, ( ))sk p u x s x= . The decryption algorithm is changed into 

[ ]2
* ( ) 0.5 ( )m c c s x h u x= − + ×⎢ ⎥⎣ ⎦ , where 

1

0

n i
i

h x−

=
= ∑ .  

Remark 3.2: We may also select an odd composite number det( ( ( )))p Rot u x= . To obtain 

root α , we need to factor p , then solve iα  for each prime factor by using extending GCD, 

and compute α  by applying Chinese Remainder Theorem. So, we can choose many 

polynomial  with different prime ( )iu x det( ( ( )))i ip Rot u x= , and set . 

The advantage of this scheme is easily to generate key. 

( ) ( )iu x u x=∏

Remark 3.3: It is obvious that our scheme can also use larger message space as that of 
[SV10]. 
Recrypting algorithm (Recrypt-1(pk, c)). 
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(1) Set , ( 2 ) /i
iv c= × p [ ]i λ∈ , keeping only log( 1) 3k w= + +⎡ ⎤⎢ ⎥  bits of precision 

after the binary point for each . iv

(2) Evaluate  and i ig v z= × i p0,2 0,2 /g c s= × , and sum 1λ +  encrypted rational 

numbers with  non-zero numbers, denoted as 1w+ 0,2 0
( )ii

x g gλ

=
= + mod 2∑ . 

(3) Assume 0 1 2. kx x x x x− − −= . Evaluate 0, 1 0 1( , )x Add x x− −=  and . mod 2u c=

(4) Output a new ciphertext 0, 1( , )newc Add u x −= . 

Theorem 3.1. Recrypt algorithm correctly generates a ‘fresh’ ciphertext  with the same 

message of , and supports a product of two ‘fresh’ ciphertexts when 

newc

c 1 log
8log 2log

nt
n

η
η

− +
≤

+
, 

where . 1t w= +
Proof: By the Dec algorithm, we know 

0

0,1 0,2

0,1 0,2

0,20

0,20

0

( / 0.5 ) mod 2

mod 2 ( ) / 0.5 mod 2

mod 2 / / 0.5 mod 2

mod 2 ( / ) 2 / 0.5 mod 2

mod 2 ( 2 ) / / 0.5 mod 2

mod 2

i
ii

i
ii

i ii

c c s p

c c s s p

c c p s c s p

c c p z c s p

c c p z c s p

c v z c s

λ

λ

λ

=

=

=

− × +⎢ ⎥⎣ ⎦
⎢ ⎥= + × + +⎣ ⎦
⎢ ⎥= + × + × +⎣ ⎦
⎢ ⎥= + × + × +⎣ ⎦
⎢ ⎥= + × × + × +⎣ ⎦

= + × + ×

∑
∑
∑ 0,2 / 0.5 mod 2p⎢ ⎥+⎣ ⎦

. 

Assume 2 nρ λ= + ≈ η . Since there are  non-zero encrypted rational numbers among t ρ  

encrypted rational numbers, we can use symmetric polynomials with degree  to evaluate 
the sum of these rational numbers. The number of symmetric polynomials is at most 

t

t

t
ρ

ρ
⎛ ⎞

≈⎜ ⎟
⎝ ⎠

. The number of degree  monomials in the polynomial representing our rational 

addition algorithm is equal to , which is less than  (see 

[GH10] for details). So, the polynomial  corresponding to a new generating ciphertext 

is satisfied to 

t

...
/ 2 / 4 1
t t t

t t
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

× × ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎝ ⎠⎝ ⎠ ⎝ ⎠
tt

( )r x

log 12 1 2( )
tt t t t tr x t n t nρ ρ
+ 1− −

∞
≤ = , where  is the infinity norm of the 

polynomial corresponding to . Moreover, to support one multiplication for two ‘fresh’ 

n

iz
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ciphertexts, we require 2( ( )) ( ) / 1/ 2r x s x p
∞
<  according to [SV10]. Hence, we have 

2 2 2( ( )) ( ) / 2tr x tn n ηρ −

∞
≤ 1≤ , namely, 

1 log
8log 2log

nt
n

η
η

− +
≤

+
.■ 

3.2 Security of FHE 

For the semantic secure of our scheme, we follow the security analysis of [SV10]. The 
following definition is from that in [SV10]. 

Definition 3.1. ( [SV10] Polynomial Coset Problem (PCP)). Given , the problem is to 

guess whether  or , where  is computed from either 

( , )r pk

0b = 1b = r ( ) modr u pα=  for 

, where  is a random polynomial with 0b = ( )u x u β≤ , or uniformly selected from 

 for . U pr ← F 1b =

Theorem 3.2. ( [SV10] Theorem 1). Suppose there is an algorithm A  which breaks the 
semantic security of our SHE with advantage ε . Then there is a distinguishing algorithm , 
which decides the PCP with advantage 

D
/ 2ε . 

3.3 Construction of Non-Self-loop FHE 

According to [Gen09], the above FHE can not prove to be semantically secure by a standard 
hybrid argument when using self-loop. In fact, the FHE in [Gen09, SV10] also reveals the 
encrypted secret key bits, although it is not direct. The advantage of applying cycle keys is to 
maximize possible distribution of the ciphertexts of encrypted secret key. In the following, we 
present a non-self-loop FHE by using method of cycle keys. But the drawback of our 
non-self-loop scheme is to require calling Recrypt two times to refresh ciphertext. 
Non-self-loop-KeyGen Algortihm: 
(1) Call Step (1) of KeyGen in Section 3.1 two times to generate the public keys 

1 1( , )pk p 1α= , 2 2 2( , )pk p α=  and the secret keys , . 1
1 1( , )sk p s= 2

2 2( , )sk p s=

(2) Set , and . 1 1
0 1mod mod(2 )s s x p= 2 2

0 2mod mod(2 )s s x p=

(3) Choose at random an integer 0,1 0
2j j i

ii
s zλ

=
= ∑ 1,2j =,  with  

and 

0,1( ) (log )jw w s nω= =

1max{ log(2 ) , log(2 ) }p pλ = 2⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ , and take 0,2 0 0,1
j js s s j= − . 

(4) Encrypt  under 1
0,1s 2 2( , )pk p 2α= as 1 1 1

2 2( ) (2 ( ) ) modi i i iz Enc z r z pα= = +  with 

random , and  under 1( )ir x 2
0,1s 1 1( , )pk p 1α= .  Let 0,1 0

2j j
ii

s zλ

=
= i∑ . 
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(5) Output the public key 2
0,1 0,2 1{ , , , , , }j j

j j jpk n p w s sα∗
== , and the secret key 

. 2
0 1{ , }jj jsk p s ==

Assume we use 1 1( , )pk p 1α=  as the public key when encrypting message. To refresh a 

ciphertext , we first call Recrypt with  to generate an intermediate ciphertext  under c c 1c

2pk , then again call Recrypt with  to obtain a new ciphertext  under 1c newc 1pk . 

4. Improvement of FHE 

In the following, we only discuss how to improve the self-loop FHE scheme in Section 3.1. 
Indeed, it is not difficult to verify that our improvement scheme can be transform into the 
corresponding non-self-loop scheme. 

Since the public key in our FHE is 0,1 0,2( , , , , , )pk n p w s sα= , one can construct a principal 

ideal lattice with HNF form by ( , )p α . So, the dimension  of an ideal lattice must be set 

large enough to guarantee the security of FHE. As a result, for practical values of , the 
origin scheme [SV10] can not be made FHE. The start point of our work is to hide the 

parameters 

n

n

( , )p α  to avoid the lattice reduction attack. Hence, we can choose a small or 

even a constant  to make our scheme be practical. To describe simplicity, in this section we 
denote by 

n
τ  security parameter,  the dimension of ideal lattice. n

4.1 FHE Based on Factoring Integer Problem 

To hide integer α , we substitute α  by the ciphertexts ( )
0{ (0)}O

ib Enc i
τ

==  of many 0-bits, 

namely, the public key becomes ( )
0 0,1 0,2( , , ,{ } , , )O

i ipk n p w b s sτ
== . To attack this scheme, one 

can factor 1modnx p+ , then guess α  among n  roots of 1modnx p+ . However, we 

observe that 1modnx p+  can be efficiently factored only when p  is a prime or has been 

factored. So, if we take  such that 0q pq= det( ( ( )))p Rot s x=  is a prime,  is another 

prime, then one cannot factor  when hidden modulo 

0q

1nx + p . 

KeyGen-1 Algorithm:  

(1) Generate ( , )p α  and  as KeyGen in Section 3.1. 0s
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(2) Choose a random prime , and take 0q 0q pq=  with 0p q≈ , where y  is the length 

of . y

(3) Encrypt ( )Oθ τ=  0-bits: 2 ( ) modi ib r qα=  with 1( ) 2ir x τ −
∞
= . 

(4) Choose a random fraction 0,1 0
2 i

ii
s zλ −

=
= ∑  with 0,1( ) (log )w s ω τ=  and 

, and set , keeping only log qλ = ⎡⎢ ⎤⎥ ⎤⎦0,2 0 0,1 2
/s s p s⎡= −⎣ λ  bits of precision after the 

binary point, and encrypt each bit  as iz (2 ( ) ) modi i iz r z qα= +  with 1( ) 2ir x τ −
∞
= . 

Let 0,1 0
2 i

ii
s zλ −

=
= ∑ .  

(5) Output the public key 0 0,1 0,2( , , ,{ } , , )i ipk n q w b s sθ
==  and the secret key . 0( , )sk p s=

Encryption Algorithm (Enc). Given the public key pk  and a message bit , 

choose a small random subset 

{0,1}m∈

[ ]T θ⊂  and a random integer 12e τ −< , output a ciphertext 

. ( 2 ) mii T
c b e m

∈
= + +∑ od q

The Dec, Mul, Add algorithms are identical to that in Section 3.1 except with replacing p  

with . The Recrypt algorithm is modified into q [ ]0,1 0,2 2
0.5newc c s c s c⎢ ⎥= + + +⎣ ⎦i i . 

Correctness and Security:  
One can easily check that this scheme is correctness. To break this scheme, one first considers 

to factor  and 0q pq= 1modnx p+ , then guess α  among  roots and solve  and 

. However, as far as I know, there is not an efficient algorithm which given , factors 

. 

n ( )u x

( )s x q

1nx +

Theorem 4.1. Given 0 0 0,1( , , ,{ } , , )i i 0,2pk n q pq w b s sθ
== = , suppose factoring  is 

hard. Then our scheme based on factoring integer problem is semantic secure when . 

1nx +

2n ≥
Remark 4.1: For , there is an interesting example. It is well known that there is 2n =

2 2p a b= +  for a prime . So, for 1mod 4p = 2( ) 1f x x= +  and a prime  

large enough, we can set  with 

1mod 4p =

( )u x ax b= + det( ( ( )))Rot u x p= , and construct a scheme 

based on factoring integer problem. This special example can also adapt to our following 
schemes. 
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4.2 FHE Based on Diophantine Equation Problem 

There is an efficient quantum algorithm which factors integers [Sho97]. So, the above scheme 
based on factoring integer is not secure for the quantum computer. In this subsection, we 
construct a new variant of our scheme, whose security depends on the hardness assumption of 
solving Diophantine equation problem. 

4.2.1 Costruction 

KeyGen-2 Algorithm: 

(1) Choose a random polynomial  such that ( )u x det( ( ( ))) 2np Rot u x η= ≥  is a prime, 

, and ( ) 1mod 2u x = ( ) 2u x η
∞
= . Evaluate a common root α  of  and  

under modulo 

( )u x 1nx +

p , and 
1

0
( ) [ ]n i

ii
s x s x Z x−

=
= ∈∑  such that 

. ( ) ( ) mod( 1)nu x s x p x× = +

(2) Select a list of integers  such that  for 22 ( ) modj jd r pα= ( 1)/ 2 j
jd p τ +≈ [ ]j µ= , 

, where (log ) / 1pµ = −⎡⎢ τ ⎤⎥
1( ) 2jr x τ −

∞
≤ . Recall that  is a ciphertext of 0-bit. jd

(3) Encrypt a list of 0-bits: 2 ( ) modi ib r pα=  such that  is a random polynomial, ( )ir x

1( ) 2ir x τ −
∞
≤ ,  is an odd integer, and 0b 0ib b≤  for all [ ], ( )i Oθ θ τ= = . 

(4) Choose a random fraction 0,1 0
2 i

ii
s zλ −

=
= ∑  with 0,1( ) (log )w s ω τ=  and 

, and set log 2 2pλ = ⎢ ⎥⎣ ⎦ + 0,2 0 0,1 2[ / ]s s p s= − , keeping only λ  bits of precision after 

the binary point. Encrypt each bit  of : iz 0,1s ( ) (2 ( ) ) modi i i iz Enc z r z pα= = +  

with 1( ) 2ir x τ −
∞
≤ . Let 0,1 0

2 i
ii

s zλ −
=

= ∑ . 

(5) Output the public key 0 0 0,1 0,( , ,{ } ,{ } , , )j j i i 2pk n w d b s sµ θ
= ==  and the secret key 

. 0( , )sk p s=

Remark 4.2: How to generate . We first choose at random a list of integers 

, and remain all qualified , and then for other non-qualified , 

evaluate 

jd

22 ( ) modj jd r pα= jd jd

2 ( ) modj j jd r p q pα= + , where ( 1)2 j
jq τ +≈ . In fact, all  can be obtained by jd
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computing 2 ( ) modj j jd r p q pα= + . We observe that , jd [ ]j µ=  do not reveal any 

information about p  except with the length of p , if suppose 2 ( ) modjr pα  is 

distinguishing from the uniform distribution over the set [ ]p . 

Remark 4.3: In the KeyGen-2 algorithm, we can also replace p  by 0q q p=  with an odd 

integer  when computing 0q 2 ( ) modi ib r pα=  to further hide modulo p . 

Encryption Algorithm (Enc). Given the public key pk  and a message bit , 

choose a small random subset 

{0,1}m∈

[ ]T θ⊂  and a random integer 12e τ −< , output a ciphertext 

. 0( 2 ) moii T
c b e m

∈
= + +∑ db

Add Operation (Add). Given the public key pk , and two ciphertexts , evaluate a 

ciphertext . 

1 2,c c

1 2( ) modc c c b= + 0

Multiplication Operation (Mul). Given the public key pk  and two ciphertexts , 

evaluate a new ciphertext , denoted as 

. 

1 2,c c

1 2 1 0( ) mod mod ...mod modc c c d d d bµ µ−= × 0

1 2( )c Opt c c= ×

Recall here that the quotient of each optimization is at most 2τ , that is, each optimization 
only increase the coefficient of the polynomial corresponding to a ciphertext at most 22 τ . 
Decryption Algorithm (Dec). Given the secret key  and a ciphertext , decipher the 

message bit . 

sk c

0( / 0.5 ) mm c c s p= − × +⎢ ⎥⎣ ⎦ od 2

Recrypting algorithm (Recrypt-2(pk, c)). 

(1) Evaluate  and 
1

2 i
i ii

g c zλ −
=

= ×∑ 0,2 0,2g c s= × , and sum 1λ +  encrypted rational 

numbers with  non-zero rational numbers: 1t w= + 0,2 0
( )ii

x g gλ

=
= + mod 2∑ . 

(2) Assume 0 1 2. kx x x x x− − −= . Evaluate 0, 1 0 1( , )x Add x x− −=  and . mod 2u c=

(3) Output a new ciphertext 0, 1( , )newc Add u x −= . 

4.2.2 Correctness 

According to [SV10], it is not difficult to verify that KeyGen, Enc, Add, Dec Algorithms are 
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correct. For Mul algorithm, the reason we use  is to reduce length of ciphertext to a fixed 

length, and remain the infinity norm of the polynomial corresponding to new generating 
ciphertext to be controllable small. 

jd

Now, we determine for what parameters all above algorithms are correct. First, we know that 

the infinity norm in each polynomial corresponding to ,  is at most ib jd 2τ  according to 

KeyGen algorithm. For the Enc algorithm, the polynomial  corresponding to 

 is satisfied to 

'( )r x

' ( 2 )ii T
c b e

∈
= + +∑ m '( ) | | 2 2 2r x T τ τ τθ

∞
≤ × + = , and  taking modulo 

 increases the norm of  at most 0b '( )r x 2τθ . Since 0( 2 )ii T
c b e m bσ

∈
= + + −∑  with 

σ θ< , hence the infinity norm of  corresponding to ( )r x 0( 2 ) moii T
c b e m

∈
= + + db∑  

is at most 12τθ + . For the Dec algorithm, we know that if ( ) ( ) / 1/ 2r x s x p
∞

× < , namely, 

1( ) 2r x η−
∞
<  according to [SV10], Dec decrypts will be correct. 

For the Add operation,  corresponding to ( )r x 1 2( ) modc c c b0= +  is subject to 

( ) 3 2r x τ
∞
≤ × . For the Mul operation, we use the optimization technique in [vDGHV10]. 

Without loss of generality, assume that ( ), 1, 2ir x i =  are corresponding to the polynomial of 

ciphertext  and satisfied to ic ( ) 2ir x κ≤ . Because 2
1 2 0'c c c b p2= × ≤ < , we need to 

evaluate modulo  at most jd /nµ η τ= ⎡ ⎤⎢ ⎥  times, and the infinity norm of polynomial 

related to ciphertext '  increases at most c 22 τ  for each time. So, the polynomial  

corresponding to 

( )r x

1 2(c Opt c c )= ×  is satisfied to 2 2( ) 2 2 /r x n nκ τ η τ
∞
≤ × + × . When 

, 2,κ τ η τ= ≤ 2 3( ) ( 1)2 2r x n τ ττ
∞
≤ + < . 

Theorem 4.2. Recrypt-2 algorithm correctly generates a ‘fresh’ ciphertext  with the 

same message of , and supports a product of two ‘fresh’ ciphertexts when 

newc

c 1
6 2log

t η τ
τ η
− +

≤
+

, 

where  and 1t w= + log logn tτ ≥ + . 

Proof: By using same method in the proof of Theorem 3.1, we can obtain 
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2 2 1 2 2 2( ( )) ( (2 ) ) ( (2 ) ) / 2 2t t t tr x t t 1τ τ τρ ρ− −

∞
≤ ≤ η≤ . So, we have 

1
6 2log

t η τ
τ η
− +

≤
+

. 

4.2.3 Security  

In our scheme, we hide ( , )p α  by replacing it with the ciphertexts of many 0-bits. So, the 

security of our scheme relies on the following hidden polynomial coset problem. 
Definition 4.1 (Hidden Polynomial Coset Problem (HPCP)) The challenger generates the 

public key 0 0 0,1 0,( , ,{ } ,{ } , , )j j i i 2pk n w d b s sµ θ
= ==  and chooses a random bit {0,1}Uβ ← . If 

0β =  then the challenger calls Enc algorithm to generate 0( 2 ) moii T
c b e

∈
= + db∑ . If 

1β =  then the challenger select a random number 0[ ]Uc b← . Given , the problem 

is to guess whether 

( , )c pk

0β =  or 1β = . 

Indeed, the above HPCP is equivalent to the following Diophantine equation problem. 

Definition 4.2 (Diophantine Equation Problem (DEP)) Given , we 

construct a Diophantine equation system as follows:  

1( ,{ } ,{ } )j j i ic d bµ ϕ
= =0

      

1
,0

1
,0

1

0

2 0, 1,...,

2 0, 1,...,

2 0

n k
j k j jk

n k
i k i ik

n k
kk

r x q p d j

r x t p b i

c x vp c

µ

ϕ

−

=

−

=

−

=

⎧ − − = =
⎪
⎪ − − = =⎨
⎪

− − =⎪⎩

∑
∑
∑

                        (1) 

Its equivalent formula is: 
1 1 12 2

, ,1 0 0 0 0
(2 ) (2 ) (2 ) 0n n nk k

j k j j i k i i kj k i k k
r x q p d r x t p b c x vp cµ ϕ− − −

= = = = =
2k− − + − − + − − =∑ ∑ ∑ ∑ ∑  

                                                                     (2) 
The problem is to decide whether there is a solution in integers for the equation (1) or (2), 

such that , ,, , , n
j k i k kr r cδ δ δ δ≤ ≤ ≤ = 0b . 

For an arbitrary polynomial equation with integer coefficients, called Hilbert's Tenth Problem, 
this problem is undecidable [Dav73]. Since the Diophantine equation problem we define is a 

bounded version problem by using the public key pk . So, it is decidable and belongs NP. 

Theorem 4.3. Suppose there is an algorithm  which breaks the semantic security of our 
SHE with advantage 

A
ε . Then there is an algorithm  for solving HPCP and DEP with 

advantage at least 
D

/ 2ε . The running time of  is polynomial in the running time of , 
and 

D A
1/ ε . 

Proof: The proof of theorem is same as the proof of Theorem 1 in [SV10], except with 
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substitute the modulo p  with . 0b

4.2.4 Extension of Large Message Space 

We now extend our scheme to support large message space as that in [SV10]. We first use 

KeyGen-2 to get the public key 1 0 0,1 0,( , ,{ } ,{ } , , )j j i i 2pk n w d b s sµ ϕ
= ==  and the secret key 

, and generate  as ( , )sk p s= ,1 ,2( ,j js s ) 0,1 0,2( , )s s . Then we encrypt the ciphertexts of  

0-bits , and compute . Finally, we output the public 

key 

n

' 2 ( ) modj jl r α= p p

1
1

'( ) modj
j jl l α= +

1
1 0 ,1 ,2 1( , ,{ } ,{ } ,{ , } ,{ } )n n

j j i i j j j j jpk n w d b s s lµ ϕ − −
= = = ==  and the secret key . Now 

Given the public key 

( , )sk p s=

pk  and a message , Enc choose a small random subset {0,1}nm∈

[ ]T θ⊂  and a random integer 12e τ −< , evaluate a ciphertext 

. According to analysis in [SV10], we decipher the 

message . We observe that there is a minor error for the 

decryption algorithm of Section 6 in [SV10]. When refreshing ciphertext, we first get a 

ciphertext  of each bit of message  by applying Recrypt algorithm, then evaluate 

. When performing homomorphic operations, we first 

obtain each encrypted bit of , then perform appropriately homomorphic operations for 
each bit, and finally combine each encrypted bits into a ciphertext of  bits message by 

using same approach of computing . 

1
01

( 2 ) mon
i j ji T j

c b e l m−

∈ =
= + +∑ ∑ db

od 2

db

( / 0.5 ) mm c c s p= − × +⎢ ⎥⎣ ⎦

jc m

1
00

( ( )) mon
new j jj

c Opt c l−

=
= ∑ i

m
n

newc

By using similar approach, it is not difficult to verify that all schemes in this paper support 
large message space. 

4.3 FHE Based on Approximate GCD 

For the FHE based on factoring integer problem, we may replace 0q pq=  with a list of 

approximate multiple integers of p . So, we design a variant scheme of FHE, whose security 
is based on the hardness of approximate GCD problem. Different from the scheme in 
[vDGHV10], our scheme has larger message space. Indeed, this scheme is a special case in 

Section 4.2. Namely, we can choose a constant polynomial  and take 2 ( ) 2jr x e= j
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2j jd pq e= + j

0,2

, when computing . 22 ( ) modj jd r pα=

KeyGen-3 Algorithm: 

Given the public key 0 0 0,1( , , ,{ } , , )i ipk n q pq w b s sθ
== =  and the secret key  

in Section 3.1, we replace  with 

0( , )sk p s=

0q pq= 0'q pq e02= +  with 0e Z∈  and 1
0 2e τ −< , 

and (0) 2 ( ) mod( )i ib Enc r qα= = . To get ciphertext of fixed length, we need to apply the 

optimization technique in [vDGHV10] when multiplying two ciphertexts. So, we add a list of 

integers  with 2i id pq e= + i
12ie τ −<  for [ ], log /i pµ µ τ∈ = ⎡ ⎤⎢ ⎥  such that 

. We output the public key ( 1)/ ' 2 i
id q τ +≈ 0 0 0,1 0,( , ', ,{ } ,{ } , , )i i i i 2pk n q w d b s sµ θ

= ==  and the 

secret key . 0( , )sk p s=

Encryption Algorithm (Enc). Given the public key pk  and a message bit , 

choose a small random subset 

{0,1}m∈

[ ]T θ⊂  and a random integer 12e τ −< , output a ciphertext 

. ( 2 ) moii T
c b e m

∈
= + +∑ d 'q

i

The Dec, Mul, Add, Recrypt algorithms are identical to that in Section 4.2 except with here 

replacing  with . The Opt algorithm in Mul now uses 0b 'q 2i id pq e= + . 

Semantic Security: 
Definition 4.4. (Approximate-GCD over the Integers (AGCD)) Given a list of approximate 

multiples of p : 1
0{ : , , . . 2i i i i i i id pq e a e Z s t e }τ µ−

== + ∈ < , find p . 

Theorem 4.4. ([vDGHV10], Theorem 4.2) Suppose there is an algorithm A  which breaks 
the semantic security of our SHE with advantage ε . Then there is an algorithm  for 
solving AGCD with advantage at least 

D
/ 2ε . The running time of  is polynomial in the 

running time of , and 
D

A 1/ ε . 

5. Implementation 

To describe simplicity, we discuss a concrete implementation of the FHE in Section 4.2. Take 

, 4n = 50τ = , 14w = , 2200η = , , log 8800p =⎡ ⎤⎢ ⎥ 8192λ = , 1024ϕ = , 200µ = . 

We now analyze how to implement our FHE and its security. 

For 0,1 1
2 i

ii
s zλ −

=
=∑  and encrypted 0,1s , assume we can continuously separate it to 1023 

groups, each group has 8 binary bits, but at most single 1-bit in them, and only  
groups with single 1-bit among these groups.  

14w =

 15



To refresh ciphertext , we evaluate c /8 1 8 (8 )
1 81 0 1

2 ( 2i j
i ji j i

g c z c zλ λ −− −
+= = =

= × = × )i
i

+∑ ∑ ∑  

and  to get 1024 encrypted rational numbers with  non-zero 

numbers. Hence, we can apply symmetric polynomial technique to sum these encrypted 
rational numbers. According to analysis of [GH10], it is not hard to verify that the decryption 

polynomial is about  degree-15 monomials. What is more, we need to 

support a product of two refreshing ciphertexts, our scheme requires to evaluate polynomials 
with  degree-30 monomials. 

2g c s= × 0,2 1 15w+ =

34 15 1842 1024 2× =

3682

Since  corresponding to encrypted  is satisfied to 2 ( )ir x iz
502 ( ) 2 2ir x τ

∞
≤ = , so  

corresponding to the ciphertext of each bit of 

( )r x

1, jg  is satisfied to 50 54( ) 2 10 2r x
∞
≤ × < . It 

is easy to verify that the infinity norm of a degree-32 monomial is at most . So, 18212

log ( ) 1821 368 2189u x
∞
> + = . Thus, log ( ) 2200u xη

∞
= =  is feasible for our 

scheme. When taking above parameters, the expansion rate of ciphertext in our scheme is 
about . 8800 / 4 2200=

6. Conclusion 

By using self-loop bootstrappable technique, we modify the fully homomorphic encryption 
scheme in [SV10], whose security only depends on the hardness of the polynomial coset 
problem, removing the assumption of the sparse subset sum problem. Then to obtain better 
performance, we construct three variant schemes based on hardness assumption of different 
problems. In addition, we assume our scheme is KDM-secure, since the public key in our 
scheme implies the ciphertexts  of the secret key  to implement FHE. s s
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