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Abstract—There are two active and independent lines of
research that aim at quantifying the amount of information
that is disclosed by computing on confidential data. Each line
of research has developed its own notion of confidentiality: on
the one hand, differential privacy is the emerging consensus
guarantee used for privacy-preserving data analysis. On the
other hand, information-theoretic notions of leakage are used
for characterizing the confidentiality properties of programs in
language-based settings.

The purpose of this article is to establish formal connections
between both notions of confidentiality, and to compare them
in terms of the security guarantees they deliver. We obtain
the following results. First, we establish upper bounds for the
leakage of every ε-differentially private mechanism in terms
of ε and the size of the mechanism’s input domain. We achieve
this by identifying and leveraging a connection to coding theory.

Second, we construct a class of ε-differentially private
channels whose leakage grows with the size of their input
domains. Using these channels, we show that there cannot
be domain-size-independent bounds for the leakage of all ε-
differentially private mechanisms. Moreover, we perform an
empirical evaluation that shows that the leakage of these
channels almost matches our theoretical upper bounds, demon-
strating the accuracy of these bounds.

Finally, we show that the question of providing optimal
upper bounds for the leakage of ε-differentially private mech-
anisms in terms of rational functions of ε is in fact decidable.

Keywords-Quantitative Information-Flow, Differential Pri-
vacy, Information Theory.

I. Introduction

Confidentiality is a property that captures that no secret
information is exposed to unauthorized parties; it is one of
the most fundamental security properties and an essential
requirement for most security-critical applications.

Unfortunately, perfect confidentiality is often difficult or
even impossible to achieve in practice. In some cases, perfect
confidentiality is in conflict with the functional requirements
of a system. For example, the result of a statistical query
on a medical database necessarily reveals some information
about the individual entries in the database. In other cases,
perfect confidentiality is in conflict with non-functional
requirements such as bounds on the resource-usage. For
example, variations in the execution time of a program
may reveal partial information about the program’s input;
however a (perfectly secure) implementation with constant
execution time may have inacceptable performance.

Because such conflicting requirements are ubiquitous,
there is a need for tools that enable formal reasoning about
imperfect confidentiality. Quantitative approaches to confi-
dentiality can provide such tools: first, quantitative notions
of confidentiality can express a continuum of degrees of
security, making them an ideal basis for reasoning about the
trade-off between security and conflicting requirements such
as utility [11] or performance [21]. Second, despite their
flexibility, a number of quantitative notions of confidentiality
are backed up by rigorous operational security guarantees
such as lower bounds on the effort required for brute-forcing
a secret.

While convergence has been achieved for definitions of
perfect confidentiality (they are subsumed under the cover
term noninterference and differ mainly in the underlying
system and adversary models) this is not the case for
their quantitative counterparts: there is a large number of
proposals for quantitative confidentiality properties, and their
relationships (e.g. in terms of the assumptions made and the
guarantees provided) are often not well-understood.

In particular, there are two active and independent lines of
research dealing with quantitative notions of confidentiality.
The first line is motivated by the privacy-preserving publish-
ing of data, with differential privacy [11] as the emerging
consensus definition. The second line is motivated by track-
ing the information-flow in arbitrary programs, where most
approaches quantify leakage as reduction in entropy about
the program’s input. In this paper, we focus on min-entropy
as a measure of leakage because it is associated with strong
operational security guarantees, see [34].

There have been efforts to understand the connections
between the different notions of confidentiality proposed
within each line of research (see [13] and [16], [34],
respectively). The first studies of the relationship between
differential privacy and quantitative notions of information-
flow are emerging [2], [8], however, they do not directly
compare leakage and differential privacy in terms of the
security guarantees they deliver (see the section on related
work). Such a comparison could be highly useful, as it
could enable one to transfer existing analysis techniques and
enforcement mechanisms from one line of research to the
other.

It is not difficult to see that there can be no general upper
bound for differential privacy in terms of the leakage about



the entire input.1 However, it has been an open question
whether it is possible to give upper bounds for the leakage
in terms of differential privacy.

In this paper, we will address this open question. To
begin with, we identify information-theoretic channels as a
common model for casting differential privacy and leakage,
where we assume that the input domain is fixed to {0, 1}n.
Based on this model, we formally contrast the composi-
tionality properties of differential privacy and leakage under
sequential and parallel composition.

We observe a difference in the behavior of leakage and dif-
ferential privacy under parallel composition, and we exploit
this difference to construct, for every n, a channel that is ε-
differentially private and that leaks an amount of information
that grows linearly with n. This result implies there can be
no general (i.e. independent of the domain size) upper bound
for the leakage of all ε-differentially private channels.

The situation changes, however, if we consider channels
on input domains of bounded size. For such channels,
we exhibit the following connections between leakage and
differential privacy.

For the case n = 1, we give a complete characterization
of leakage in terms of differential privacy. More precisely,
we prove an upper bound for the leakage of every ε-
differentially private channel. Moreover, we show that this
bound is tight in the sense that, for every ε, there is an
ε-differentially channel whose leakage matches the bound.

For the case n > 1, we prove upper bounds for the leakage
of every ε-differentially private channel in terms of n and ε.
Technically, we achieve this by covering the channel’s input
domain by spheres of a fixed radius (with respect to the
Hamming metric). The definition of ε-differential privacy
ensures that the elements within each sphere produce similar
output, where similarity is quantified in terms of ε and
the sphere radius. Based on this similarity and a recent
characterization of the maximal leakage of channels [4],
[23], we establish upper bounds for the information leaked
about the elements of each sphere. By summing over all
spheres, we obtain bounds for the information leaked about
the entire input domain.

Our bounds are parametric in the number and the radius
of the spheres used for covering the domain. We show how
coding theory can be used for obtaining good instantiations
of these parameters. In particular, we give examples where
we derive bounds based on different classes of covering
codes. We also exhibit limits for the bounds that can be
obtained using our proof technique in terms of the sphere-
packing bound. We perform an empirical evaluation that
shows that the bounds we derived are close to this theoretical

1Intuitively, the leakage of a single sensitive bit (e.g. from a medical
record) can entirely violate an individual’s privacy; on a technical level,
no deterministic program satisfies differential privacy even if it leaks only
a small amount of information, because differentially private programs are
necessarily probabilistic.

limit; moreover, we give an example channel whose leakage
is only slightly below this limit, demonstrating the accuracy
of our analysis.

Finally, although an explicit formula that precisely char-
acterizes leakage in terms of privacy for finite input domains
is still elusive, we show that such a characterization is in fact
decidable. More precisely, we show that, for all n and all
rational functions r (i.e. all quotients of polynomials with
integer coefficients), one can decide whether the leakage of
all ε-differentially channels is upper-bounded by log2 r(ε).

In summary, our main contribution is to prove formal
connections between leakage and differential privacy, the
two most influential quantitative notions of confidentiality to
date. In particular, (i) we prove upper bounds for the leakage
in terms of differential privacy for channels with bounded
input domain, and (ii) we show that there can be no such
bounds that hold for unbounded input domains. Finally, (iii)
we show that the question of a precise characterization of
leakage in terms of differential privacy is in fact decidable.

The remainder of this paper is structured as follows. In
Section II we introduce differential privacy and leakage. We
cast both properties in a common model and compare their
compositionality in Section III. We prove bounds for the
leakage in terms of differential privacy in Sections IV and V,
and we show their decidability in Section VI. We present
related work in Section VII before we conclude in Section
VIII.

II. Preliminaries

In this section we review the definitions of min-entropy
leakage and differential privacy, the two confidentiality
properties of interest for this paper. For completeness, we
also briefly review the most important analysis tools and
enforcement mechanisms for each property.

A. Min-entropy Leakage

In quantitative information-flow, one typically character-
izes the security of a program in terms of the difficulty of
guessing the input to the program when only the output is
known. The difficulty of guessing can be captured in terms
of information-theoretic entropy, where different notions of
entropy correspond to different kinds of guessing [5]. In
this paper, we focus on min-entropy as a measure, because
it is associated with strong security guarantees, see [34].
However, instead of characterizing the security of a program
in terms of the remaining entropy, we characterize the
amount of leaked information in terms of the reduction
in entropy about the program’s input when the output is
observed. Both viewpoints are informally related by the
equation

initial entropy = leaked information + remaining entropy.

Formally, we model the input to a probabilistic program as
a random variable X and the output as a random variable Y .
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The dependency between X and Y is formalized as a
conditional probability distribution PY |X and is determined
by the program’s semantics. Such a conditional probability
distribution PY |X forms an information-theoretic channel
from X to Y . As is standard in the literature on quantitative
information-flow, we will use the notion of a channel as the
basis for our analysis.

We consider an adversary that receives the outcomes Y
of a channel PY |X and wants to determine the corresponding
value of X, where we assume that X is distributed according
to PX . The initial uncertainty about the chosen element of
X is given by the min-entropy [31]

H∞(X) = − log2 max
x

PX(x)

of X, which captures the probability of correctly guessing
the outcome of X in one shot.

The conditional min-entropy H∞(X|Y) of X given Y is
defined by

H∞(X|Y) = − log2

∑
y

PY (y) max
x

PX|Y (x, y)

and captures the probability of guessing the value of X in
one shot when the outcome of Y is known.

The (min-entropy) leakage L of a channel PY |X with re-
spect to the input distribution PX characterizes the reduction
in uncertainty about X when Y is observed,

L = H∞(X) − H∞(X|Y) ,

and is the logarithm of the factor by which the probability
of guessing the value of X is reduced by observing Y .
Note that L is not a property of the channel PY |X alone
as it also depends on PX . We eliminate this dependency by
considering the maximal leakage over all input distributions.

Definition 1 (Maximal Leakage). The maximal leakage ML
of a channel PY |X is the maximal reduction in uncertainty
about X when Y is observed

ML(PY |X) = max
PX

(H∞(X) − H∞(X|Y)) , (1)

where the maximum is taken over all possible input distri-
butions.

The following result appears in [4], [23] and shows how
the maximal leakage can be computed from the channel
PY |X . For completeness, we include its proof in the appendix.

Theorem 1. The maximal leakage of a channel PY |X can be
computed by

ML(PY |X) = log2

∑
y

max
x

PY |X(y, x) ,

where the maximum is assumed (e.g.) for uniformly dis-
tributed input.

If the channel is deterministic, i.e. if for every x there
is a y such that PY |X(y, x) = 1, we obtain ML(PY |X) =

log2 |Range(Y)|. A direct consequence of this observation is
that, for deterministic programs, any algorithm for comput-
ing the size of Range(Y) (which corresponds to the size of
the set of reachable final states of the program) can be used
for computing ML, see also [22].

B. Differential Privacy

In research on privacy-preserving data publishing, differ-
ential privacy by Dwork et al. [11] is the most popular
definition of privacy to date; it quantifies the influence of
individual records of an input dataset on the output of a
publishing algorithm.

Informally, a probabilistic algorithm satisfies ε-differential
privacy if its output is robust (i.e. bounded in terms of ε) with
respect small changes in the input. This robustness ensures
privacy because if two datasets differ only in one individual
record, the algorithm’s output on both datasets will be almost
indistinguishable. An adversary will not be able to deduce
from the output the value (or the presence) of any individual
record in the dataset.

Formally, we consider algorithms M that take as input
subsets of a set D of elements without further substructure.
The distance between two input sets D1,D2 ⊆ D is the size
of their symmetric difference D1 	 D2 defined as

D1 	 D2 = (D1 \ D2) ∪ (D2 \ D1) .

The following definition is a variant from [27] of the
definition by Dwork et al. [12].

Definition 2 (Differential Privacy). A randomized algo-
rithm M satisfies ε-differential privacy if, for all input sets
D1,D2 ⊆ D and for all S ⊆ Range(M)

P[M(D1) ∈ S ] ≤ eε|D1	D2 | P[M(D2) ∈ S ] . (2)

Notice that in the literature, differential privacy is some-
times defined using alternative metrics on D, leading to
different security guarantees. The metric used in Definition 2
protects the presence (resp. absence) of individual elements
in a dataset; other metrics protect (non-binary) values of the
individual records in a database [12], a setting which we do
not consider in this paper.

Observe that that Definition 2 requires that the secret
data is released by a randomized algorithm: a determin-
istic algorithm with non-constant output will not satisfy
ε-differential privacy for any finite ε. Dwork et al. [12]
have proposed a method for making deterministic programs
differentially private by adding a certain amount of noise to
the algorithm’s output. The amount of noise that is required
for achieving ε-differential privacy depends on ε and the
degree of sensitivity of the program, which is a form of
Lipschitz-continuity.
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Definition 3 (Sensitivity). For a function F that maps
subsets of D to real numbers, one defines the sensitivity
S (F) of F by

max
D1,D2⊆D

| f (D1) − f (D2)|
|D1 	 D2|

.

The so-called Laplacian mechanism turns a deterministic
algorithm F into an ε-differentially private probabilistic
algorithm. This is achieved by adding symmetric, exponen-
tially distributed noise to the output of F. The center of the
noise is the output of F and the standard deviation of the
noise is calibrated to S (F) and ε. One obtains the following
theorem, which is fundamental for most applications of
differential privacy to date.

Theorem 2 (Laplacian Mechanism [12]). For a function
F mapping subsets of D to real numbers and a random
variable N distributed according to N ∼ Lap(S ( f )/ε), the
probabilistic algorithm

M = F + N

defined by M(D) = F(D) + N satisfies ε-differential privacy.

While the Laplacian mechanism is the most influential
enforcement mechanism to date, there are several variants
and alternative mechanisms emerging, see e.g. [24], [30],
[32], [36]. In this paper, we analyze the leakage of differ-
entially private algorithms without making any assumptions
about the mechanism used to achieve differential privacy. In
particular, this implies that our results apply to all existing
and future differentially private mechanisms.

III. Contrasting Leakage and Differential Privacy

In this section, we cast leakage and differential privacy in
a common model. Based on this model, we will formally
compare the basic assumptions made, and guarantees de-
livered by, both notions. Moreover, the model enables us
to compare both notions in terms of their behavior under
sequential and parallel composition. This comparison serves
two purposes. First, it systematizes and completes existing
knowledge. Second, the exposed differences form the basis
for our results in Section V.

A. A Common Model for Leakage and Differential Privacy

Differential privacy and leakage are properties of objects
of different types. Differential privacy (Definition 2) is a
property of algorithms that take as input sets of (a possibly
infinite number of) basis elements, whereas leakage (Def-
inition 1) is a property of programs that take as input the
elements of a fixed finite set.

We cast both properties in a common model by assuming
that the base set D of the data-publishing algorithm has finite
size n, i.e. D = {d1, . . . , dn}. With this assumption, we can
describe every subset D′ ⊆ D by a vector x′ ∈ {0, 1}n,
where the kth component πk(x′) is set to 1 if and only

if dk ∈ D′. Notice that for two sets D′,D′′ ⊆ D with vector
representations x′, x′′ ∈ {0, 1}n, the set distance |D′ 	 D′′|
corresponds to the number of positions in which x′ and x′′

differ, i.e. to their Hamming distance.
Furthermore, we will assume that the range of the algo-

rithm is also finite. Although in theory, differentially private
algorithms typically map to a continuum of real numbers,
the active range of most practical implementations will be
discrete, bounded, and finite.

For a given algorithm M according to definition 2, we
hence define a channel PY |X with Range(X) = {0, 1}n

by PY |X(y, x) = P[M(D′) = y], where x is the characteristic
vector of D′ ⊆ D. In the remainder of this paper we
will always assume that Range(X) = {0, 1}n, that Range(Y)
is finite, and that the program is given in terms of a
channel PY |X .

B. Security Guarantees

Definitions 1 and 2 do not bear much structural resem-
blance at first sight. We will recast both definitions in a form
that better exhibits their differences and similarities.

We first introduce additional notation. For x ∈ {0, 1}n,
i ∈ {1, . . . , n}, and ẋ ∈ {0, 1}, let x[i/ẋ] denote the bit vector
that is equal to x except that the ith component πi(x) is
replaced by ẋ, i.e. πi(x[i/ẋ]) = ẋ and π j(x[i/ẋ]) = π j(x) for
i , j. Let Ẋ denote a random variable that models the choice
of one bit, i.e. Range(Ẋ) = {0, 1}. Then x[i/Ẋ] denotes the
random variable with range {x[i/0], x[i/1]} that is distributed
according to Ẋ. The condition X = x[i/Ẋ] denotes that the
value assumed by X corresponds to that of x, except for bit
i which is distributed according to Ẋ.

The following lemma states that a differentially private
mechanism protects every individual bit of any input vector,
in the sense that even if the input is completely known
except for a single bit, the result of the mechanism does
not significantly influence the probability of that bit being
set to 1. The result and the proof are inspired by the one
sketched in the appendix of [12].

Lemma 1. A channel PY |X guarantees ε-differential privacy
if and only if, for all x ∈ {0, 1}n, all i ∈ {1, . . . , n}, all
distributions PẊ of Ẋ, and all y ∈ Range(Y),

P[Ẋ = 1] ≤ eε P[Ẋ = 1 | Y = y ∧ X = x[i/Ẋ]] . (3)

A proof of Lemma 1 can be found in the appendix.
The following lemma is obtained by a direct reformulation
of Definition 1; it exhibits the structural similarity behind
Definition 1 and the statement in Lemma 1.

Lemma 2. The leakage of channel PY |X is upper-bounded
by ML(PY |X) ≤ l if and only if, for all distributions PX we
have that

Ey[max
x

P[X = x|Y = y]] ≤ 2l max
x

P[X = x] , (4)

where Ey denotes the expected value over y.
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The comparison of the statements in Lemmas 1 and 2 ex-
hibits the differences in the guarantees provided by leakage
and differential privacy.

Security guarantees based on leakage (Lemma 2) protect
entire bit-vectors from being guessed, under the assumption
that they are hard to guess a priori, i.e. before observing
the system’s output. Leakage-based guarantees are hence the
adequate tool for protecting high-entropy secrets, such as
cryptographic keys, passwords, or biometric data. However,
leakage-based guarantees do not make immediate assertions
about the difficulty of guessing individual bits, which is
fundamental for the protection of privacy.

In contrast, differential privacy protects each individual bit
in a bit-vector, even if all other bits are known (Lemma 1).
This guarantee is adequate for protecting secrets in contexts
where one cannot make reasonable assumptions about an
adversary’s background knowledge, such as the value of
other bits or the distribution from which the secret bit is
drawn.

C. Compositionality

Well-behavedness under composition is an essential pre-
requisite for any meaningful notion of security. Without
good composition properties, two secure systems may be-
come insecure when combined.We next compare the com-
positionality properties of leakage and differential privacy.

1) Sequential Composition: We define sequential com-
position as the subsequent application of two queries to
the same dataset, where the second query may also take
the output of the first query into account. Formally, we
model this by requiring that the input domain of the second
channel is the cartesian product of the range of the first
channel and the dataset. It was already known that the
differential privacy of two sequentially composed channels
is upper-bounded by the sum of the differential privacy
of the individual channels [27]. We next show that the
leakage shows the same additive behavior under this notion
of sequential composition.

We begin by defining the sequential composition of chan-
nels.

Definition 4. The sequential composition C1+C2 of channels
C1 = PY1 |X and C2 = PY2 |Y1×X is defined as C1+C2 = PY1×Y2 |X ,
where

PY1×Y2 |X((y1, y2), x) = PY1 |X(y1, x)PY2 |Y1×X(y2, (y1, x)) .

We obtain the following properties of leakage and privacy
of the sequential composition of two channels.

Lemma 3. Let Ci be channels that are εi-differentially
private (i = 1, 2). Then

1) C1 + C2 is ε1 + ε2-differentially private, and
2) ML(C1 + C2) ≤ ML(C1) + ML(C2).

Proof: For the original proof of Assertion 1), refer
to [27]. For a proof on basis of our model, see the appendix.
For Assertion 2), consider

ML(C1 + C2)
(∗)
= log

∑
(y1,y2)

max
x

PY1×Y2 |X((y1, y2), x)

(∗∗)
= log

∑
(y1,y2)

max
x

PY1 |X(y1, x)PY2 |Y1×X(y2, (y1, x))

≤ log
∑

y1

∑
y2

max
x

PY1 |X(y1, x) max
x,y1

PY2 |Y1×X(y2, (y1, x))

= log

∑
y1

max
x

PY1 |X(y1, x)


∑

y2

max
y1,x

PY2 |Y1×X(y2, (y1, x))


=ML(C1) + ML(C2),

where x1, x2, y1, and y2 range over X1, X2, Y1, and Y2
respectively. Note that (*) follows from Theorem 1 and (**)
follows from Definition 4.

2) Parallel Composition: We define the parallel composi-
tion of channels as their application to disjoint subsets of the
same dataset. It was already known that the maximum of the
differential privacy bounds of the individual channels is also
a bound for the differential privacy of their parallel compo-
sition [27]. As we will show next, the situation is different
for leakage, which adds up under parallel composition.

Definition 5. The parallel composition C1 ×C2 of channels
C1 = PY1 |X1 and C2 = PY2 |X2 is defined as C1 × C2 =

PY1×Y2 |X1×X2 , where

PY1×Y2 |X1×X2 ((y1, y2), (x1, x2)) = PY1 |X1 (y1, x1)PY2 |X2 (y2, x2) .

Notice that the cartesian product of characteristic bit-
vectors corresponds to the disjoint union of the underlying
sets, as discussed in Section III-A. That is, Definition 5 in-
deed captures the application of channels to disjoint subsets
of a dataset.

We can prove the following properties about leakage and
privacy of the parallel composition of two channels.

Lemma 4. Let Ci be channels that are εi-differentially
private (i = 1, 2). Then

1) C1 ×C2 is max{ε1, ε2}-differentially private, and
2) ML(C1 ×C2) = ML(C1) + ML(C2).

Proof: For the original proof of Assertion 1), see [27].
For a proof in our channel-based model, see the appendix.
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For Assertion 2) consider

ML(C1 ×C2)
(∗)
= log

∑
(y1,y2)

max
(x1,x2)

PY1×Y2 |X1×X2 ((y1, y2), (x1, x2))

= log
∑

y1

∑
y2

max
x1

max
x2

PY1 |X1 (y1, x1)PY2 |X2 (y2, x2)

= log
∑

y1

max
x1

PY1 |X1 (y1, x1)
∑

y2

max
x2

PY2 |X2 (y2, x2)

= ML(C1) + ML(C2) ,

where x1, x2, y1 and y2 range over X1, X2, Y1, and Y2
respectively. Note that (*) follows from Theorem 1.

Lemma 4 exhibits a difference in the behavior under
parallel composition of differential privacy and leakage. In
Section V, we will exploit this difference for proving the
impossibility of general bounds for the leakage in terms of
differential privacy.

IV. Characterizing the Leakage of Differentially Private
Mechanisms – The Case n = 1

In this section, we provide a characterization of the
leakage of differentially private channels that take only a
single bit of input. In particular, we prove upper bounds
in terms of ε for the leakage of any ε-differentially private
channel. Moreover, we show that there is a channel whose
leakage matches this bound. In Section V we consider the
general case.

A. Channels with 1-bit range

We first consider the case of channels whose range is
also a single bit, i.e. Range(X) = Range(Y) = {0, 1}. For
simplicity of presentation, we will assume that all channels
PY |X are given in one of the two canonical forms C1(ε, p) and
C2(ε, p) defined by the matrix in Figure 1. As the following
Lemma shows, this assumption is not a restriction.

Lemma 5. Let PY |X be a channel. Then there are p ∈ [0, 1],
ε > 0, and i ∈ {1, 2} such that

PY |X = Ci(ε, p) .

Proof: Choose i = 1, 2 depending on which of the
probabilities PY |X(0, 0) and PY |X(0, 1) is larger. There is
always an ε > 0 such that the ratio between the entries in
the first column is given by eε . The statement follows from
the observation that the entries of each row must sum to 1.

For what follows it is irrelevant whether we are dealing
with the canonical representation C1 or C2 of a channel.
We will hence drop the index and refer to the canonical
representation as C(ε, p).

We obtain the following privacy guarantees for the canon-
ical representation C(ε, p).

C1(ε, p) = PY |X Y = 0 Y = 1
X = 0 p 1 − p
X = 1 peε 1 − peε

C2(ε, p) = PY |X Y = 0 Y = 1
X = 0 peε 1 − peε

X = 1 p 1 − p

where 0 ≤ p ≤ 1 and peε ≤ 1.

Figure 1. The canonical representations C1(ε, p) and C2(ε, p) of chan-
nels PY |X .

Lemma 6. The channel C(ε, p) is ε-differentially private if
and only if

p ≤
1

eε + 1
.

Proof: It suffices to show that PY |X(y, x) ≤ eεPY |X(y, x′)
for all x, x′, y ∈ {0, 1}. A direct calculation shows that this
condition is satisfied if and only if p ≤ eε−1

e2ε−1 = 1
eε+1 .

The following theorem characterizes the leakage of ε-
differentially private channels with 1-bit domain and range:
It gives an upper bound for the leakage of every channel,
and it shows that this bound can be matched.

Theorem 3. Let Range(X) = Range(Y) = {0, 1}.

1) If a channel PY |X is ε-differentially private, then

ML(PY |X) ≤ log2
2eε

eε + 1
.

2) The channel PY |X = C(ε, 1
eε+1 ) is ε-differentially pri-

vate and

ML(PY |X) = log2
2eε

eε + 1
.

Proof: For the proof of Assertion 1), consider an ε-
differentially private channel PY |X . From Lemma 6 it follows
that there is a p ≤ 1

eε+1 such that PY |X = C(ε, p). We apply
Theorem 1 to compute the maximal leakage of C(ε, p) as
the sum of the column maximums of the matrix in Figure 1.
We obtain

ML(C(ε, p)) = log2(1 + p (eε − 1)) .

Since p ≤ 1
eε+1 , we conclude

ML(C(ε, p)) ≤ log2
2eε

eε + 1
.

For the proof of Assertion 2), we compute the maximal
leakage of C(ε, 1

eε+1 ) along the same lines as in the proof of
Assertion 1. The ε-differential privacy of the channel follows
from Lemma 6.

6



B. Channels of arbitrary range

We now show that the characterization of the leakage
of channels with binary range extends to channels with
arbitrary (but finite) range.

Formally, we let X = {0, 1}, Y = {y1 . . . yk} and let PY |X be
a channel. Then PY |X can be represented by a matrix

PY |X Y = y1 . . . Y = yk

X = 0 p1 . . . pk

X = 1 q1 . . . qk

where p1 + . . . + pk = q1 + . . . + qk = 1.
The following corollary states that the upper bounds for

the leakage given in Theorem 3 also hold for channels of
arbitrary range.

Corollary 1. If PY |X is ε-differentially private, then the
maximal leakage ML of PY |X verifies

ML(PY |X) ≤ log2
2eε

eε + 1
.

Proof: We construct an ε-differentially private channel
PȲ |X with Range(Ȳ) = {0, 1} such that the leakage of PȲ |X
matches that of PY |X . Technically, let I = {i | pi ≤ qi},
p̄ =

∑
i<I pi and q̄ =

∑
i∈I qi. Then we define PȲ |X as:

PȲ |X Y = 0 Y = 1
X = 0 p̄ 1 − p̄

X = 1 1 − q̄ q̄

Note that 1 − p̄ =
∑

i∈I pi, 1 − q̄ =
∑

i<I qi, hence we have
p̄ ≥ 1 − q̄ and q̄ ≥ 1 − p̄. Applying Theorem 1 to PY |X , we
obtain

ML(PY |X) = log2

∑
y

max
x

PY |X(y, x)

= log2(
∑
i<I

pi +
∑
i∈I

qi)

= log2( p̄ + q̄)
= ML(PȲ |X)

Moreover, as PY |X is ε-differentially private, we know that,
for every i ∈ I, qi ≤ eε pi, and for every i < I, pi ≤ eεqi. We
obtain

∑
i∈I qi ≤ eε

∑
i∈I pi and

∑
i<I pi ≤ eε

∑
i<I qi. Hence

PȲ |X is also differentially private, which concludes this proof.

Tightness of the bound, as expressed in Theorem 3.2,
immediately extends to channels with arbitrary output size,
since one can view any channel with output of size 2 as a
channel with output of size k.

V. Bounds on the Leakage of Differentially Private
Mechanisms on Arbitrary Input Domains

In Section IV, we have characterized the maximal leakage
of differentially private channels with input domains of
size 2. In this section, we consider the case of differentially
private channels with input domains of arbitrary size. It turns

out that a complete characterization of the leakage of such
channels is a challenging problem. We take the following
two steps towards such a characterization: first, we establish
upper bounds for the leakage of any ε-differentially private
channel with an n-bit input domain. We obtain this result by
exhibiting a connection to coding theory, through which we
derive both concrete bounds for the leakage, and limits for
the bounds that can be achieved using this connection.

Second, we construct an ε-differentially channel that takes
inputs of n bits and leaks at least n log2

2eε
eε+1 of those bits.

By increasing n, one can hence leak an arbitrary amount
of information, while retaining the privacy guarantee. This
result implies that there can be no general (i.e. independent
of the size of the input domain) upper bound for the leakage
of ε-differentially private channels.

A. Bounds for Input Domains of Fixed Size

To obtain our bounds, we first cover the channel’s input
domain by spheres of a fixed radius with respect to the
Hamming metric ∆. Using Theorem 1 we obtain upper
bounds for the information leaked about the elements of each
sphere. By summing over all spheres, this yields bounds for
the information leaked about the entire input domain. These
bounds are parametric in the number of spheres and their
radius. We observe that each sphere covering corresponds
to a covering code, and we show how a given code can
be used to instantiate the parameters and obtain a concrete
bound for the leaked information; moreover, we show how
the Hamming bound leads to limits for the bounds that can
be obtained in this way.

Formally, a subset {x1, . . . , xm} ⊆ {0, 1}n is a d-covering
code of length n and size m if, for every x ∈ {0, 1}n there
is an i ∈ {1, . . . ,m} such that ∆(x, xi) ≤ d. This definition
corresponds to the requirements that the spheres Ud(xi) with
radius d and center xi, defined by

Ud(xi) = {x ∈ {0, 1}n | ∆(x, xi) ≤ d} ,

cover the whole space. For an overview of research on
covering codes, see [9].

For a given d-covering code, we obtain the following
bounds for the leakage of differentially private mechanisms.

Theorem 4. Let PY |X be a channel with Range(X) = {0, 1}n

and let {x1, . . . , xm} be a d-covering code of length n. If PY |X

satisfies ε-differential privacy, then its maximal leakage is
upper-bounded by

ML(PY |X) ≤ d ε log2 e + log2 m .
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Proof of Theorem 4.:

ML(PY |X)
(∗)
= log2

∑
y

max
x

PY |X(y, x)

≤ log2

∑
y

m∑
i=1

max
x∈Ud(xi)

PY |X(y, x)

(∗∗)
≤ log2

∑
y

m∑
i=1

PY |X(y, xi)eεd

= log2 eεd
m∑

i=1

∑
y

PY |X(y, xi)

= d ε log2 e + log2 m ,

where (∗) follows from Theorem 1 and (∗∗) follows from
the definition of differential privacy (Definition 2).

Note that the bounds obtained using Theorem 4 are of
interest only for instantiations with εd log2 e + log2 m ≤ n
since, trivially, ML(PY |X) ≤ n for a channel with inputs
of n bits. Moreover, note that a covering code is required
for obtaining concrete bounds for ML(PY |X) in terms of n
and ε. We next give two example instantiations with simple
covering codes.

For the first instantiation, we consider a trivial n-covering
code of size 1. With this code, we obtain the following
corollary of Theorem 4.

Corollary 2. Let PY |X be a channel with Range(X) = {0, 1}n.
If PY |X satisfies ε-differential privacy, then

ML(PY |X) ≤ n ε log2 e .

For the second instantiation, we consider an n-ary repe-
tition code of size 2. More precisely, we consider the code
{0n, 1n} ⊆ {0, 1}n. Observe that for this code d =

⌊
n
2

⌋
, because

each x ∈ {0, 1}n has a Hamming distance of at most
⌊

n
2

⌋
to

either one of the codewords. Using this code, we obtain the
following corollary of Theorem 4.

Corollary 3. Let PY |X be a channel with Range(X) = {0, 1}n.
If PY |X satisfies ε-differential privacy, then

ML(PY |X) ≤
⌊n
2

⌋
ε log2 e + 1 .

For a fixed n, Figures 2 and 3 depict the bounds obtained
by trivial covering codes (Corollary 2) and repetition codes
(Corollary 3) as functions of ε. The corresponding curves
cross, which illustrates that each of the codes gives tighter
(i.e. lower) upper bounds for the leakage for different ranges
of ε.

While there is a large number of codes with which
Theorem 4 can be instantiated and with which the bounds
from Corollaries 2 and 3 could potentially be improved [9],
the so-called Hamming-bound puts a theoretical limit on
what can be achieved using our proof technique.
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Figure 2. For a fixed input size of n = 10 bits, this figure depicts different
upper and lower bounds for the maximal leakage of ε-differentially private
channels as functions of ε ∈ [0, 1] (horizontal axis). The upper curve depicts
the upper bounds obtained using trivial covering codes in Corollary 2. The
second curve depicts the upper bounds obtained using repetition codes in
Corollary 3. The intersection of both curves shows that each code leads to
better bounds for different ranges of ε. The third curve depicts the limit of
what we can achieve using our proof technique, as stated in Corollary 4.
Finally, the lower curve depicts the leakage of the channel constructed in
Theorem 5. The small gap between the second curve and the third curve
illustrates the good quality of the bounds obtained using repetition codes;
the small gap between the second curve and the lower curve illustrates that,
for small n, the leakage of the channel constructed in Theorem 5 is not far
from optimal.
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Figure 3. The curves in this figure depict the bounds as described in
Figure 2, but for the case of n = 100 bits.
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Corollary 4. For given n and ε > 0, any bound B(ε, n) for
the maximal leakage obtained by Theorem 4 will satisfy

B(ε, n) ≥
n

min
d=0

εd log2 e + n − log2

d∑
i=0

(
n
i

) .

Proof: Formally the Hamming bound

m
d∑

i=0

(
n
i

)
≥ 2n

is obtained by observing that a necessary requirement for any
d-covering code of length n and size m is that the number of
elements in the corresponding spheres sums to 2n. Inserting
this bound into Theorem 4 yields the assertion.

Figures 2 and 3 depict the limit given by Corollary 4 as a
function of ε. They also illustrate that, for n = 10, n = 100,
and ε ∈ [0, 1], the bounds obtained by repetition codes are
close to this limit.

B. Impossibility of General Bounds for the Leakage of
Differentially Private Mechanisms

Theorem 4 and Corollaries 2 and 3 give bounds for the
leakage in terms of n and ε. In this section, we show that
there can be no such bounds that are independent of n.

To this end we construct, for every ε > 0 and every
n ∈ N, a channel that is ε-differentially private and that leaks
n log2

2eε
eε+1 bits. Technically, we achieve this by n-fold paral-

lel composition of the 1-bit channel from Theorem 3.2. The
composition results developed in Section III-C then show
that differential privacy remains invariant under composition,
but that the leakage increases by a factor of n. We obtain
the following theorem.

Theorem 5. There is an ε-differentially private channel PY |X

with Range(X) = {0, 1}n whose maximal leakage satisfies

ML(PY |X) = n log2
2eε

eε + 1
.

Proof: Theorem 3.2 shows that there is a 1-bit channel
C that leaks log2

2eε
eε+1 bits. Consider the n-fold parallel

composition Cn = C × · · · ×C of C. Lemma 4.1 shows that
Cn is still ε-differentially private. Lemma 4.2 shows that Cn

leaks n log2
2eε

eε+1 bits, which concludes this proof.
In Figures 2 and 3, we depict the leakage of the channel

constructed in Theorem 5 as a function of ε. It should be
noted that for ε → ∞, n log2

2eε
eε+1 converges from below to

n log2 2 = n, which is the maximal leakage of a channel with
input set {0, 1}n.

An important consequence of Theorem 5 is that there
cannot be domain-size-independent bounds for the leakage
in terms of differential privacy.

Corollary 5. For every ε > 0 and l > 0, there exists an
ε-differentially private channel C such that ML(C) > l.

It is sufficient to consider the channel Cn with a suffi-
ciently large value for n, since the channel is ε-differentially
private for all n and ML(Cn)→ ∞ as n→ ∞.

VI. Decidability of Bounds for the Leakage of
Differentially Private Channels

In contrast to the case n = 1 (see Theorem 3), our upper
bounds for the leakage of differentially private mechanisms
are not tight for the case n > 1. In particular, there is a
gap between the upper bounds derived in Theorem 4 and
the leakage of the channel constructed in Theorem 5, see
Figures 2 and 3. Although we do not give a closed expression
characterizing the leakage for n > 1, we next show that it
is decidable whether a given rational function constitutes
such a characterization. Our proof proceeds by reducing the
problem to a system of polynomial inequalities over the
reals.

A. Background on decidability of real closed fields

For completeness, we provide a brief overview of the
decidability results that are needed for our reduction; we
refer the interested reader to [17] for further details.

A real closed field is an ordered field F such that every
positive element of F is a square, and every polynomial P
with coefficients in F that is of odd degree has at least one
root. Formally, the theory of ordered fields is obtained from
the theory of closed fields by adding a binary relation ≤ that
satisfies the axioms of partial orders: reflexivity, transitivity,
and anti-symmetry, plus the axiom of totality

∀a b ∈ F. a ≤ b ∨ b ≤ a

and compatibility axioms for addition and multiplication:

∀a b c ∈ F. a ≤ b⇒ a + c ≤ b + c
∀a b ∈ F. (0 ≤ a ∧ 0 ≤ b)⇒ 0 ≤ a b

Then, the theory of real closed fields is obtained from the
theory of ordered fields by adding an axiom for the existence
of square roots

∀x ∈ F. x > 0 =⇒ ∃y ∈ F. x = y2

and an axiom scheme for the existence of a root for
polynomials Q of odd order

∃x ∈ F. Q(x) = 0 .

Any sentence of the theory of real closed fields is valid if and
only if it is valid for the real numbers. Moreover, Tarski [35]
proved that the theory admits elimination of quantifiers, i.e.
for every sentence φ of the theory, there exists an equivalent
sentence ψ that is quantifier-free, and then concluded that
the theory of real closed fields is decidable. However, the
decision procedure that can be extracted from Tarski’s result
is highly inefficient. More efficient algorithms have been
devised subsequently, such as the Cylindrical Algebraic
Decomposition method [10], or Hörmander’s method [19].
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It should be noted that many useful constructions can
be expressed in the theory of real closed fields. For in-
stance, one can use 1 and addition to encode any natural
number, and hence any polynomial expression with integer
coefficients. Moreover, one can encode the maximum of two
expressions e and e′ by introducing a fresh variable x and
requiring that

e ≤ x ∧ e′ ≤ x ∧ (x = e ∨ x = e′) .

One could use such an encoding to express that the leakage
of a channel is bounded by the logarithm of an expression
that depends on ε. For the sake of readability, we prefer to
give a more direct formalization.

B. Reduction

We prove the decidability of the existence of (optimal)
rational upper bounds by characterizing them in the theory
of real closed fields. In the following, we assume channels
PY |X with Range(X) = {0, 1}n and Range(Y) = {y1, . . . , ym}

arbitrary but finite. The following theorem formalizes our
results.

Theorem 6 (Decidability of Rational Bounds). Let r and s
be polynomials with coefficients in Z, such that r and s are
strictly positive over [1,∞). Then the following questions
are decidable.

1) For all ε > 0 and for all ε-differentially private
channels PY |X it holds that

ML(PY |X) ≤ log2
r(eε)
s(eε)

2) For all ε > 0 there exists an ε-differentially private
channel PY |X such that

ML(PY |X) = log2
r(eε)
s(eε)

.

Proof: It is sufficient to find formulae of the theory
of reals expressing that log2 r/s is an upper bound (resp. a
tight upper bound) of the leakage of every ε-differentially
private channel. As a first step, it is convenient to rephrase
the problems by considering λ = eε instead of ε. Formally,
Assertion 1) of Theorem 6 is equivalent to the following
assertion: for all λ > 1 and for all ln λ-differentially private
channels PY |X it holds that

ML(PY |X) ≤ log2
r(λ)
s(λ)

.

As a further step, for all x ∈ {0, 1}n and y ∈ {y1, . . . , ym}

we introduce variables px,y for representing the entries of a
matrix representation of channels PY |X . The requirement that
a matrix represents a valid channel can be expressed by the
following formula

VC ≡

∧
x,y

0 ≤ px,y

 ∧
∧

x

∑
y

px,y = 1

 ,

where variables x, y range over Range(X) and Range(Y),
respectively. The requirement that a channel is log2 λ-
differentially private can be expressed by the following
formula

DP ≡
∧

{x,x′,y |∆(x,x′)=1}

px′,y ≤ λpx,y

where ∆ denotes the Hamming distance.
Finally, we can express the requirement that the sum of

the maximal elements of each column of a channel is upper-
bounded by r(λ)/s(λ), or equivalently that the maximal leak-
age of this channel is upper-bounded by log2 (r(eε)/s(eε)),
for ε = ln λ, using the following formula

UB ≡
∧

0≤x1,...,xm≤2n−1

 ∑
1≤i≤m

pxi,yi

 s(λ) ≤ r(λ) .

Notice that UB bounds the sum over all possible combi-
nations of column entries. In particular, it bounds the sum
over the largest entries in each column, whose logarithm
corresponds to the maximal leakage (see Theorem 1).

It follows immediately that the following formula is
equivalent to Assertion 1) of Theorem 6

∀λ ∀(px,y) : λ ≥ 1⇒ VC⇒ DP⇒ UB

In other words, the validity of a rational upper bound on
the exponential of the leakage can be expressed in terms
of polynomial inequalities, which concludes the proof for
Assertion 1).

By a similar reasoning, one can establish that the follow-
ing formula is equivalent to Assertion 2) of Theorem 6

∀λ : λ ≥ 1⇒ ∃(px,y) : VC ∧ DP ∧ EB

where the formula EB indicates that the rational function is
reached for some values.

EB ≡
∨

0≤x1,...,xm≤2n−1

 ∑
1≤i≤m

pxi,yi

 s(λ) = r(λ) .

A particular consequence of Theorem 6 is that, for every
fixed n, it is decidable whether for every ε ≥ 0, n log2

2eε
eε+1

is an upper bound of the leakage for ε-differentially private
channels.

VII. Related work

We studied the relationship between two quantitative no-
tions of confidentiality that have proposed in the context of
two independent lines of research. The first line focuses on
privacy-preserving data publishing; the second line focuses
on information-flow analysis.

Privacy-preserving data publishing is a long-standing and
well-studied problem, see e.g. the survey by Fung et al. [13].
Differential privacy by Dwork et al. [11] is the emerg-
ing consensus definition of privacy in the field. This is
due to the fact that differential privacy enjoys desirable
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properties such as independence of adversary knowledge,
well-behavedness under composition of queries, and that it
comes with enforcement mechanisms such as the Laplacian
mechanism [12], [24], [30]. Despite the strong security
guarantees it provides, differential privacy has proven to be
useful in several applications [27], [33].

Information-theoretic notions of confidentiality have
emerged from research on information-flow security and
were initially targeted towards the analysis of covert chan-
nels [15], [25], [28]. More recently, they have also been
applied for the analysis of side-channels in cryptographic
algorithms [20], [21], [34], and for the quantitative analysis
of anonymity protocols [6]. Moreover, a number of auto-
matic analysis techniques have recently been proposed [3],
[7], [18], [26], [29].

We are aware of two independent and concurrent stud-
ies that aim at understanding the connections between
differential privacy and information-theoretic notions of
confidentiality. Alvim et al. [2] perform an information-
theoretic analysis of differential privacy mechanisms based
on output pertubation, such as the Laplacian mechanism
(see Section II-B). In particular, they give upper bounds
for the mutual (min-)information between the outputs of
the original query and the outputs of the perturbed query.
Our analysis is more general in that it does not focus on
a particular mechanism for achieving differential privacy;
rather, it yields an information-theoretic characterization of
the end-to-end confidentiality guarantees provided by any
differentially private query. In more recent work, Alvim et
al. [1] extend the model presented in the paper at hand
to capture differentially private mechanisms with different
metrics on the input domain. They also consider the question
of bounds for the min-entropy leakage; moreover, they study
the trade-off between leakage and utility.

Clarkson and Schneider [8] consider differential privacy
in their study of quantitative integrity. In particular, they
characterize differential privacy in terms of the mutual in-
formation between the output of a query and the input of the
query, conditioned on knowledge of all but one individual
in the input. This characterization bears resemblance to our
analysis of the case n = 1 in Section IV; the main difference
lies in the security guarantees provided and the notions of
entropy used: Clarkson and Schneider give bounds on the
transmission of information using Shannon entropy, whereas
our approach gives bounds on the probability of guessing
the input using min-entropy. Our approach goes beyond the
leakage about one individual in that we give upper and lower
bounds, together with decidability results, for the leakage of
differentially private queries on arbitrary input domains.

VIII. Conclusion

We performed an information-theoretic analysis of differ-
ential privacy. In particular, we established the first upper
bounds for the min-entropy leakage of differentially private

mechanisms and provided empirical evidence of their accu-
racy. On a practical level, our contributions pave the way
for applying tools from differential privacy for bounding the
leakage of programs. On a conceptual level, we unveiled
a connection to coding theory, and we demonstrated how
this connection can be leveraged for deriving precise bounds
from covering codes.
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[6] K. Chatzikokolakis, C. Palamidessi, and P. Panangaden.
Anonymity protocols as noisy channels. Inf. Comput., 206(2-
4):378–401, 2008.

[7] D. Clark, S. Hunt, and P. Malacaria. A static analysis for
quantifying information flow in a simple imperative language.
Journal of Computer Security, 15(3):321–371, 2007.

[8] M. R. Clarkson and F. B. Schneider. Quantification of
integrity. Cornell Computing and Information Science Tech-
nical Reports, 2011. http://hdl.handle.net/1813/22012.

[9] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein. Covering
Codes. Elsevier Science, 1997.

[10] G. E. Collins. Hauptvortrag: Quantifier elimination for real
closed fields by cylindrical algebraic decomposition. In
H. Barkhage, editor, Automata Theory and Formal Lan-
guages, volume 33 of Lecture Notes in Computer Science,
pages 134–183. Springer, 1975.

11



[11] C. Dwork. Differential Privacy. In Proc. 33rd Intl. Colloquium
on Automata, Languages and Programming (ICALP ’06),
volume 4052 of LNCS, pages 1–12. Springer, 2006.

[12] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
Noise to Sensitivity in Private Data Analysis. In Proc. 3rd
Theory of Cryptography Conference (TCC ’06), volume 3876
of LNCS, pages 265–284. Springer, 2006.

[13] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-
preserving data publishing: A survey of recent developments.
ACM Comput. Surv., 42(4), 2010.

[14] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith. Compo-
sition attacks and auxiliary information in data privacy. In
Proc. 14th ACM Conference on Knowledge Discovery and
Data Mining (KDD ’08), pages 265–273. ACM, 2008.

[15] J. W. Gray. Toward a Mathematical Foundation for Infor-
mation Flow Security. Journal of Computer Security, 1(3-
4):255–294, 1992.

[16] S. Hamadou, V. Sassone, and C. Palamidessi. Reconciling
belief and vulnerability in information flow. In Proc. 31st
IEEE Symposium on Security and Privacy (S&P ’10), pages
79–92. IEEE Computer Society, 2010.

[17] J. Harrison. Handbook of Practical Logic and Automated
Reasoning. Cambridge University Press, 2009.

[18] J. Heusser and P. Malacaria. Quantifying information leaks
in software. In 26th Annual Computer Security Applications
Conference, (ACSAC ’10), pages 261–269. ACM, 2010.
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Appendix

Theorem 1 ([23]). The maximal leakage of a channel PY |X

can be computed by

ML(PY |X) = log2

∑
y

max
x

PY |X(y, x) ,

where the maximum is assumed (e.g.) for uniformly dis-
tributed input.
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Proof: Assume a fixed distribution PX . Then

L = log2

∑
y PY (y) maxx PX|Y (x, y)

maxx PX(x)

(∗)
= log2

∑
y maxx(PX(x)PY |X(y, x))

maxx PX(x)
(∗∗)
≤ log2

∑
y maxx PY |X(y, x)(maxx PX(x))

maxx PX(x)

= log2

∑
y

max
x

PY |X(y, x)) ,

where (*) is Bayes’ rule. Note that (**) is an equality if PX

is uniformly distributed, from which the assertion follows.

Lemma 1. A channel PY |X guarantees ε-differential privacy
if and only if, for all x ∈ {0, 1}n, all i ∈ {1, . . . , n}, all
distributions PẊ of Ẋ, and all y ∈ Range(Y),

P[Ẋ = 1] ≤ eε P[Ẋ = 1 | Y = y ∧ X = x[i/Ẋ]] . (5)

Proof: Assume that PY |X is ε-differentially private but
does not satisfy (5). Then there are x ∈ {0, 1}n, i ∈ {0, . . . , n},
PẊ and y ∈ Range(Y) such that

P[Ẋ = 1]

P[Ẋ = 1 | Y = y ∧ X = x[i/Ẋ]]
> eε

Applying Bayes’ rule to the denominator we obtain

P[Y = y ∧ X = x[i/Ẋ]]

P[Y = y ∧ X = x[i/Ẋ] | Ẋ = 1]
> eε . (6)

We observe that the denominator in (6) is equivalent to

P[Y = y ∧ X = x[i/1]]

and conclude that
P[Y = y ∧ X = x[i/0]]
P[Y = y ∧ X = x[i/1]]

> eε . (7)

Here (7) follows by observing that the numerator in (6) is
equivalent to

P[Ẋ =0]P[Y =y∧X = x[i/0]]+ P[Ẋ =1] P[Y =y∧X = x[i/1]] .

Note that (7) contradicts the assumption that PY |X is ε-
differentially private because x[i/0] and x[i/1] differ only
in one bit.

For the other direction, assume that PY |X satisfies (5) but
is not ε-differentially private. I.e. there are x ∈ {0, 1}n, i ∈
{1, . . . , n}, and y ∈ Range(Y) such that

P[Y = y | X = x[i/0]]
P[Y = y | X = x[i/1]]

> eε (8)

We obtain a contradiction by showing that

P[Ẋ = 1]

P[Ẋ = 1 | Y = y ∧ X = x[i/Ẋ]]
> eε (9)

for some distribution PẊ . To this end, observe that the left-
hand side of (9) is equal to

P[Y = y ∧ X = x[i/Ẋ]]
P[Y = y ∧ X = x[i/1]]

(10)

which is obtained by applying Bayes rule to the denominator
of (9). We define PẊ such that PẊ(0) = α. Then

P[Y = y ∧ X = x[i/Ẋ]] = (1 − α) P[Y = y ∧ X = x[i/1]]
+ α P[Y = y ∧ X = x[i/0]]

By inserting this expansion into (10) and applying (8) we
obtain

P[Y = y | X = x[i/Ẋ]]
P[Y = y | X = x[i/1]]

> (1 − α) + α
P[Y = y | X = x[i/0]]
P[Y = y | X = x[i/1]]

which becomes larger than eε if α converges to 1 and
concludes this proof.

Lemma 3. Let Ci be channels that are εi-differentially
private (i = 1, 2). Then

1) C1 + C2 is ε1 + ε2-differentially private, and
2) ML(C1 + C2) ≤ ML(C1) + ML(C2).

Proof: For 1), choose an arbitrary (y1, y2) ∈ Y1×Y2 and
consider x, x′ ∈ X that differ exactly in one position. Then
we have∣∣∣∣∣∣log

PY1×Y2 |X((y1, y2), x)
PY1×Y2 |X((y1, y2), x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣log
PY1 |X(y1, x)PY2 |Y1×X(y2, (y1, x))

PY1 |X(y1, x′)PY2 |Y1×X(y2, (y1, x′))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣log
PY1 |X(y1, x)
PY1 |X(y1, x′)

∣∣∣∣∣∣ +

∣∣∣∣∣∣log
PY2 |Y1×X(y2, (y1, x))
PY2 |Y1×X(y2, (y1, x))

∣∣∣∣∣∣
≤ ε1 + ε2 ,

from which the assertion follows directly. A proof of 2) is
given in the body of the paper.

Lemma 4. Let Ci be channels that are εi-differentially
private (i = 1, 2). Then

1) C1 ×C2 is max{ε1, ε2}-differentially private, and
2) ML(C1 ×C2) = ML(C1) + ML(C2).

Proof: For the proof of 1), consider arbitrary y =

(y1, y2) ∈ Y1 × Y2 and x = (x1, x2), x′ = (x′1, x
′
2) ∈ X1 × X2 =

{0, 1}n that differ in one single bit. Consider first the case
that the differing bit is in the first component, i.e. x1 , x′1
and x2 = x′2. Then∣∣∣∣∣∣log

PY1×Y2 |X(y, x)
PY1×Y2 |X(y, x′)

∣∣∣∣∣∣ =

∣∣∣∣∣∣log
PY1 |X1 (y1, x1)PY2 |X2 (y2, x2)
PY1 |X1 (y1, x′1)PY2 |X2 (y2, x′2)

∣∣∣∣∣∣
(∗)
=

∣∣∣∣∣∣log
PY1 |X1 (y1, x1)
PY1 |X1 (y1, x′1)

∣∣∣∣∣∣
(∗∗)
≤ ε1 ,
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where (∗) follows because x2 = x′2 and (∗∗) follows because
C1 is ε1-differentially private. For the case that x1 = x′1
and x2 , x′2, we obtain a symmetric bound in terms of ε2.
Combining both bounds yields the assertion. A proof of 2)
can be found in the body of the paper.
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