
Another Look at Affine-Padding RSA Signatures

Jean-Sébastien Coron1, David Naccache2, and Mehdi Tibouchi3

1 Université du Luxembourg
6, rue Richard Coudenhove-Kalergi, l-1359 Luxembourg, Luxembourg.

jean-sebastien.coron@uni.lu
2 École normale supérieure, Département d’informatique

45, rue d’Ulm, f-75230, Paris Cedex 05, France.
david.naccache@ens.fr

3 ntt Secure Platform Laboratories – Okamoto Research Laboratory
3-9-11 Midori-cho, Musashino-shi, Tokyo, jp-180-8585, Japan.

tibouchi.mehdi@lab.ntt.co.jp

Abstract. Affine-padding rsa signatures consist in signing ω · m + α
instead of the message m for some fixed constants ω, α. A thread of pub-
lications progressively reduced the size of m for which affine signatures
can be forged in polynomial time. The current bound is logm ∼ N

3
where

N is the rsa modulus’ bit-size. Improving this bound to N
4

has been an
elusive open problem for the past decade.

In this invited talk we consider a slightly different problem: instead of
minimizing m’s size we try to minimize its entropy. We show that affine-
padding signatures on N

4
entropy-bit messages can be forged in polyno-

mial time. This problem has no direct cryptographic impact but allows
to better understand how malleable the rsa function is. In addition, the
techniques presented in this talk might constitute some progress towards
a solution to the longstanding N

4
forgery open problem.

We also exhibit a sub-exponential time technique (faster than factoring)
for creating affine modular relations between strings containing three
messages of size N

4
and a fourth message of size 3N

8
.

Finally, we show than N
4
-relations can be obtained in specific scenarios,

e.g. when one can pad messages with two independent patterns or when
the modulus’ most significant bits can be chosen by the opponent.

1 Introduction

To prevent forgers from exploiting rsa’s multiplicative homomorphism
[6], it is a common practice not to sign raw messages m but to first apply
to them a padding function µ(m).

This paper considers one of the simplest padding functions called
affine padding (or fixed-pattern padding):

σ = µ(m)d mod n = (ω ·m+ α)d mod n

Here d denotes the rsa private exponent and n the public modulus.
Throughout this paper |x| will denote the bit-size of x. Let N = |n|.

Following [1], we use the following notations:

µ(m) = ω ·m+ α where

{
w is the multiplicative redundancy
α is the additive redundancy

(1)

Since no proof of security is known for rsa signatures using such a µ,
those signatures should not be used in practice. Nonetheless, the study
of such simple padding formats is useful for understanding how malleable
the rsa function is.

In 1985, [2] exhibited forgeries for ω = 1 when m ∼ 3
√
n2. This attack

was extended by [3] in 1997 to any values of ω, α and for m ∼
√
n. Finally,

[1] exhibited in 2001 forgeries when m ∼ 3
√
n. This remains the best

polynomial-time result to date. Relaxing the polynomial time constraint
[4] showed that smaller message sizes can be tackled in complexity lower
than that of all currently known factorization algorithms.

It was conjectured that a polynomial time forgery should exist for
m ∼ 4

√
n, but this remained an elusive open problem for the past decade.

Our contribution. This paper does not directly address them ∼ 4
√
n

conjecture, but presents several new results in that general direction.
Rather than minimizing logm we try to minimize m’s entropy. Using a
variant of [1], we show (§3) how to craft N

4 entropy signatures instead of
N
3 ones. This has no specific cryptographic impact but allows to further
explore rsa’s malleability.

§4 shows how to obtain4 a relation between four padded messages,
three of which are of size N

4 and the fourth of size 3N
8 .

Finally, §5, investigates special scenarios in which we obtain N
4 -relations

by allowing the use of two independent padding patterns or by allowing
the opponent to select the most significant bits of n.

2 Brier-Clavier-Coron-Naccache’s Algorithm

In this section we briefly recall the attack of Brier et alii [1] using a slightly
different exposition. [1] will serve as a building block in most of the results
to come.

4 in a time equivalent to that needed to factor a 3N
8
-bit number.

The goal is to find four distinct messages x, y, z, t ∈ Z each of size N
3 ,

such that:

(ω · x+ α) · (ω · y + α) = (ω · z + α) · (ω · t+ α) mod n (2)

which enables to forge the signature of x using:

(ω · x+ α)d =
(ω · z + α)d · (ω · t+ α)d

(ω · y + α)d
mod n

Denoting ∆ = α/ω mod n, from (2) it is sufficient to solve the fol-
lowing equation:

(∆+ x)(∆+ y) = (∆+ z)(∆+ t) mod n

Theorem 1 (Brier et alii). Given n,∆ ∈ Z with ∆ ̸= 1, the equation:

(∆+ x)(∆+ y) = (∆+ z)(∆+ t) mod n

has a solution x, y, z, t ∈ Z computable in polynomial time, with 0 ≤
x, y, z, t ≤ 8 · 3

√
n and with y ̸= z and y ̸= t.

Proof. The previous equation gives:

∆ · (x+ y − z − t) = z · t− x · y mod n

By developing ∆/n as a continued fraction, we find U, V ∈ Z such that
∆ · U = V mod n where − 3

√
n ≤ U < 3

√
n and 0 < V < 2 · 3

√
n2 and

gcd(U, V) = 1. Therefore it suffices to solve the following system:{
x · y − z · t = V

x+ y − z − t = −U (3)

A solution can be found using the following lemma:

Lemma 1. Let A,B,C ∈ Z with gcd(B,C) = 1. The system of equa-
tions:

x · y − z · t = A
x− z = B
y − t = C

has a solution given by

t = y − C = A−C·(A·C−1 mod B)
B − C

x = B + z = B + (A · C−1 mod B)

y = A−C·z
B = A−C·(A·C−1 mod B)

B

z = A · C−1 mod B

Proof. Letting x = B+z and t = y−C, the first equation can be replaced
by:

(B + z) · y − z · (y − C) = A

which gives:
B · y + C · z = A (4)

Since gcd(B,C) = 1 we get:

z = A · C−1 mod B

Moreover from equation (4) we obtain:

y =
A− C · z

B
(5)

which is an integer since A−C ·z = 0 mod B. This concludes the lemma’s
proof. ⊓⊔

We return now to the proof of Theorem 1.

Let A = V and choose B such that 3
√
n < B < 2 · 3

√
n and gcd(B,U) =

1. Let C = −U −B which gives B + C = −U ; therefore from system (3)
it suffices to solve the system:

x · y − z · t = A
x− z = B
y − t = C

Since gcd(B,C) = gcd(B,−U−B) = gcd(B,U) = 1, the previous system
can be solved using Lemma 1. Moreover we have 0 ≤ z < B ≤ 2 · 3

√
n and

0 ≤ x ≤ 3 · 3
√
n. From C = −U −B we have:

1 ≤ −C ≤ 3 · 3
√
n

which gives 0 ≤ y ≤ 5 · 3
√
n, and eventually 0 ≤ t ≤ 8 · 3

√
n.

Finally since C ̸= 0 we have y ̸= t. Moreover if y = z from equation
(5) we get A = (B + C) · z = −U · z = −V which gives V = U · z;

– if z ̸= 1 this gives gcd(U, V) ̸= 1, a contradiction;
– if z = 1 this gives U = V and therefore ∆ = 1, a contradiction.

therefore y ̸= z, which concludes the proof of the theorem. ⊓⊔

3 Minimal Entropy Forgeries

We now consider a slightly different equation. Let λ = 2⌊
N
4
⌋ and consider

the equation:

(∆+ x) · (∆+ λy) = (∆+ z) · (∆+ λt) mod n (6)

The following explains how to find in polynomial time four distinct
solutions x, y, z, t of size ∼ N

4 . Therefore this gives a relation between four
messages m1 = x, m2 = λy, m3 = z and m4 = λt of size ∼ N

2 but an
entropy of ∼ N

4 bits only.

By expanding equation (6) we get:

∆ (x− z + λ(y − t)) = λ(z · t− x · y) mod n

As previously, by developing ∆′/n as a continued fraction with ∆′ = ∆/λ
mod n, we can find U, V such that ∆ · U = λV mod n where this time
we take −

√
n ≤ U ≤

√
n and 0 ≤ V ≤ 2

√
n. Then it suffices to solve the

system: {
x− z + λ(y − t) = −U

x · y − z · t = V

Using Euclidean division we write U = Hλ+L with 0 ≤ L < λ; then
it suffices to solve the system:

x · y − z · t = V
x− z = −L
y − t = −H

which can be solved thanks to Lemma 1. Since V ∼
√
n and the size of

both L and H is roughly N
4 , one obtains four solutions x, y, z and t of

size N
4 in polynomial time.

However, for the lemma to apply, we must assume that gcd(L,H) =
1; this makes the algorithm heuristic. If we assume that L and H are
uniformly distributed, we have:

Pr[gcd(L,H) = 1] ∼=
6

π2

We illustrate the process in Appendix B using rsa Laboratories’ offi-
cial 1024-bit challenge modulus rsa-309.

Note that one can improve the algorithm’s success probability by con-
sidering:

(L′,H ′) = (L+ rλ,H − r)

instead of (L,H), for small values of r ∈ Z. Assuming independent
probabilities, after ℓ trials the failure probability drops to (1 − 6/π2)ℓ,
which is negligible even for small values of ℓ (and experiments suggest
that in practice failure probability decreases even faster than this rough
estimate).

The idea lends itself to many variants. For instance 5N
4 entropy bit

relations can be found by solving (mod n)

(∆+tλ+x)(∆+tλ+y) = (∆+tλ+z)(∆+tλ+w)⇒ ∆+tλ =
xy − wz

w − x− y + z

Letting ∆ = A
B mod n with |A| = 3N

4 and |B| = N
4 we get ∆ + tλ =

A+tλ·B
B and fixing t = −⌊ A

λB ⌋ ⇒ ∆+ tλ = C
B for some |C| = N

2 .

We can hence solve this equation using Lemma 1 by identifying:C = xy − wz

B = w − x− y + z

3.1 Message Entropy

We now define more precisely message entropy in the context of affine-
padding rsa forgery.

Let ∆ be a fixed pattern5 and n a random variable denoting the
rsa modulus. We denote by GenKey the rsa key generation algorithm.
Let F be a forging algorithm making q signature queries for messages
M = {m1, . . . ,mq} and producing a forgery mq+1. We regard M and
mq+1 as random variables induced by n (and possibly by the random
tape of F). We consider the entropy of individual messages separately
and take the maximum entropy over all messages:

H∆ := max{H(mi) | (M,mq+1)← F(n, e,∆), (n, e)← GenKey(1k)}

We define the forgery’s entropy as the maximum over all possible
values of the pattern ∆:

5 i.e. the integer ∆ appearing in the padding function µ(m) = (∆+m)

H := max{H∆ | ∆ ∈ Z}

We see that in the described algorithm, the message entropy is roughly
N
4 , whereas it was

N
3 in [1].

Note that in the previous definition we consider the maximum en-
tropy of all messages required for the forgery and not only the entropy
of the message whose signature is forged. For example [3] is selective,
which means that the attacker can forge a signature for a message of his
choosing; therefore the forged message can have zero entropy; however
the remaining messages in [3] are half the size of n and their entropy is
roughly N

2 .

4 Sub-Exponential Strategies

We start by noting that for N
4 forgeries of the form

(∆+x)(∆+ y) = (∆+ z)(∆+w) mod n ⇒ ∆ =
z + w − x− y

xy − wz
mod n

This means that ∆ can be written as a modular ratio of two integers
(namely z + w − x− y and xy − wz) that are respectively N

4 and N
2 bits

long. As this is expected to occur with probability ∼ 2−N/4 we infer that
for arbitrary ∆ values, such forgeries shouldn’t exist in general.

Consider a forgery of the form:

(∆+ x)(∆+ y) = ∆(∆+ x+ y + z) mod n

Hence, if x, y, z exist, they are such that:

∆ =
xy

z
mod n

Write:

∆ =
A

B
mod n where |A| = 5N

8
and |B| = 3N

8

Then

∀u, ∆+ u =
A+ uB

B
mod n

Thus, if we fix:

u′ = −⌊A
B
⌋

we get

∆+ u′ =
A+ u′B

B
=

A′

B
mod n

where |A′| = |B| = 3N
8 . We can attempt to factor A′ = x× y into two

factors smaller than N
4 bits each. If this factorization fails add one to u′

and start over again.

The result is a N
4 ,

N
4 ,

N
4 ,

3N
8 forgery such as the one given in Appendix

C.

Again, the idea lends itself to a number of variants. For instance,
relations of the form

(∆+ tx)(∆+ ty) = (∆+ tz)(∆+ tw)⇒ ∆ =
t(xy − wz)

w − x− y + z

can be found by writing ∆ = A
B mod n with |A| = |B| = N

2 , factoring
A to find t and continuing with Lemma 1.

5 Further Research

While computing N
4 forgeries remains an open problem, neighboring prob-

lems may lead to surprising algorithms. We give here two such variants
as departure points for future research.

5.1 The Case of Two Interchangeable Padding Patterns

Let ∆ and ∆′ be two independently generated padding patterns and as-
sume that the signer can sign messages using either ∆ or ∆′. We have:

(∆+ x)(∆′ + y) = (∆+ z)(∆′ + t) mod n
⇓

∆(y − t) +∆′(x− z) + xy − zt = 0 mod n

Find A,B,C of respective sizes N
2 ,

N
4 ,

N
4 such that ∆C +∆′B +A =

0 mod n and solve the system
x · y − z · t = A

x− z = B
y − t = C

as before. Note that this yields an N
4 forgery only if ∆ and ∆′ are

”independent”. If ∆ = ∆′ + α for a small α then a N
3 forgery is found.

5.2 Allowing The Attacker to Influence n

Assume that the attacker can select the most significant half of n (e.g. [5]
and [7] report that such a practice does not seem to weaken n). Let ∆ be
an arbitrary padding pattern and:

(∆+ x)(∆+ y) = (∆+ x′)(∆+ y′) mod n
⇓

∆(x+ y − x′ − y′) + xy − x′y′ = 0 mod n

where x, y, x′, y′ are all of size N
4 . This is solved by writing:

∆ · a+ b = 0 mod n
x+ y − x′ − y′ = a
xy − x′y′ = b

Hence, for a given ∆ we need to find an n for which a and b are of
respective sizes N

4 and N
2 . We then find x, y, x′, y′ exactly as previously

but of size N
4 (to do so define x− x′ = α for an arbitrary α and solve the

two equations). Write ∆a+ b = kn as we can select the most significant
bits of n, let n = n1 + n0 where n1 (of size 1) is chosen by the attacker
and where n0 (of size N

2) is not under the attacker’s control.

This boils-down to∆a+b = k(n1+n0). Selecting n1 = 2∆ the attacker
gets ∆a+b = k(2∆+n0). Hence k = 1, a = 2 and b = n0 is a satisfactory
choice for which a and b are of respective sizes N

4 and N
2 (as a matter of

fact a is much smaller but this is not an issue).

The attack’s Sage code is given in Appendix A.

References

1. E. Brier, C. Clavier, J.S. Coron and D. Naccache, Cryptanalysis of RSA signatures
with fixed pattern padding. Proceedings of Crypto’01, lncs vol. 2139, Springer-
Verlag, 2001, pp. 433-439.

2. W. De Jonge and D. Chaum, Attacks on some rsa signatures. Proceedings of
Crypto’85, lncs vol. 218, Springer-Verlag, 1986, pp. 18-27.

3. M. Girault and J.-F. Misarksy, Selective forgery of rsa signatures using redun-
dancy, Proceedings of Eurocrypt’97, lncs vol. 1233, Springer-Verlag, 1997, pp.
495-507.

4. A. Joux, D. Naccache, E. Thomé,When e-th Roots Become Easier Than Factoring.
Proceedings of Asiacrypt’07, lncs vol. 4833, Springer-Verlag, 2007, pp. 13-28, pp.
13-28.

5. A.K. Lenstra, Generating rsa moduli with a predetermined portion, Advances in
Cryptology Asiacrypt’98, lncs vol. 1514, Springer, pages 1-10, 1998.

6. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures
and public key cryptosystems, cacm 21(2), pp. 120-126, 1978.

7. A. Shamir, rsa for paranoids, CryptoBytes (The Technical Newsletter of rsa Lab-
oratories) 1(3) (1995).

8. http://sites.google.com/site/bbuhrow/home

A Allowing The Attacker to Influence n (Sage code)

def hex(x):

s=x.digits(base=16,digits=’0123456789abcdef’)

s.reverse()

return "".join(s)

def invmod(a,b):

g,c,d=xgcd(a,b)

return c

def testattack(n=512):

P=ZZ.random_element(2^n)

N1=2*P

q=random_prime(2^(n//2))

p=N1//q

NN=p*q

print "N=",NN

print "N/2=",NN//2

print "P=",P

a=2

b=NN-N1

al=ZZ.random_element(2^(n//4))

while gcd(al,a)!=1:

al=ZZ.random_element(2^(n//4))

xp=ZZ(mod(b*invmod(a-al,al),al))

y=(b-xp*(a-al))/al

x=xp+al

yp=y-(a-al)

print "x=",x

print "y=",y

print "x\’=",xp

print "y\’=",yp

print "(delta+x)(delta+y)=(delta+x\’)(delta+y\’) mod N ",mod((P+x)*(P+y)-(P+xp)*(P+yp),NN)==0

B Minimum Entropy Forgery

µ(m1) · µ(m2) = µ(m3) · µ(m4) mod n309 with ω = 1 and α = ∆ =
21023 − 2516.

n309 is rsa Laboratories’ unfactored challenge modulus RSA-309.

The entropy of messages m1, m2, m3 and m4 is ∼= |n309|
4 .

n309 = RSA-309
= bdd14965 645e9e42 e7f658c6 fc3e4c73 c69dc246 451c714e b182305b 0fd6ed47

d84bc9a6 10172fb5 6dae2f89 fa40e7c9 521ec3f9 7ea12ff7 c3248181 ceba33b5

5212378b 579ae662 7bcc0821 30955234 e5b26a3e 425bc125 4326173d 5f4e25a6

d2e172fe 62d81ced 2c9f362b 982f3065 0881ce46 b7d52f14 885eecf9 03076ca5

µ(m1) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffff0

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

0a22096c f25655f4 104b2971 bc8b4f4f 817e6f4c d0ca8b25 ac5e8377 819e9d23

µ(m2) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffff0

e1bdb579 4ad9e45a 7b17ee62 bf736d1c 8d897862 ce2c3349 72600b8b 44a8d4fb

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

µ(m3) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffff0

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

113271f6 527c0815 fbf55d24 4883207b 827b9fb9 dd3ba8a6 2af1b776 d550a12d

µ(m4) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffff1

0c9ca82a 80d6e82a e84d12a7 6415e27e d6d909da c2331285 aca27f4e 632d1556

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

C Fast Sub-Exponential Forgery

µ(m′1)·µ(m′2) = µ(m′3)·µ(m′4) mod n309. Factorization for obtaining this
relation was done with yafu [8] using fast mpqs and siqs implementations
for Core2 processors.

∆′ = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008 ← note the 8

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

µ(m′
1) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008

78dfd16f afa9c95b 2fecb797 21eae4a7 5217f260 0a9b852a 01dee0cf 315aea20

µ(m′
2) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008

78dfd16f afaa4c53 011c40cf ce5ff1d9 f9d2f822 3bf3b3ad c770bdd4 4644e869

µ(m′
3) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008

78dfd16f afa9c95b 2fefcd95 a1f55dd7 1f55b73a b29e0570 f72a86d2 940f34d1

µ(m′
4) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

00000000 00000000 00000000 00000000 98fb10e4 ef8f2456 b2ab14a2 236dadea

6b28b31b 1bfb2493 8f74d85e eceb7450 2d848353 fe9f1dec b40f041b bbb2a1f8

