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ABSTRACT

As a generalization of double base chains, multibase number system is very suit-
able for efficient computation of scalar multiplication of a point of elliptic curve
because of shorter representation length and hamming weight. In this paper
combined with the given formulas for computing the 7- Fold of an elliptic curve
point P an efficient scalar multiplication algorithm of elliptic curve is proposed
using 2, 3 and 7 as basis of the multi based number system. The algorithms
cost less compared with Shamirs trick and interleaving with NAFs method.

Key words: scalar multiplication, elliptic curve, double base number sys-
tem, multibase number system, double chain, septupling.

1 Introduction

Public key cryptography has been widely studied and used since Rivest, Shamir
and Adleman invented the cryptography or cryptosystem RSA [1] in 1975. The
system heavily depends on integer factorization problem [IFB] using large key
bits of the order 1024 bits or 2048 bits. Later on Diffie- Hellman [2] developed the
public key exchange algorithm using the discrete logarithmic problem [DLP]. El-
gammel also used DLP in encryption and digital signature authentication [DSA]
scheme. However, these conventional public key cryptographic systems, such as
RSA and DSA are impractical in WSNs due to low processing power of sensor
nodes. Koblitz [3] and Miller [4] independently used elliptic curves for cryptog-
raphy using Elliptic curve Discrete Logarithmic Problem [ECDLP] and provided
elliptic curve cryptographic [ECC]. In recent years ECC has received increased
acceptance and has been included in standards room bodies such as ANSI, IEEE,
ISO and NIST. Compared to traditional cryptographic systems like RSA, ECC
offers smaller key sizes and more efficient arithmetic, which results in faster com-
putation, lower power consumption as well as memory and band width savings.
Thus ECC is especially useful for mobile constrained devices like WSN, which
enables wireless mobile devices to perform secure communication efficiently and
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establishes secure end to end connections. In ECC, points on elliptic curves
over finite fields are used to generate finite abelian groups to implement public
key cryptographic primitives. Cryptosystems in ECC are based on the group
of points on an elliptic curve over a finite field. They rely on the difficulty of
finding the value of a scalar, given a point and the scalar multiple of that point.
This corresponds to solving the discrete logarithm problem. However, it is more
difficult to solve the Elliptic curve DLP than its original counterparts. Thus el-
liptic curve cryptosystems provide equivalent security as the existing public key
cryptosystems, but with much smaller key lengths. In addition another benefit
is that each user may select a different curve E even though the underlying field
K remains the same for all users. Thus the hardware which depends on the
field remains the same and the curve E can be changed periodically for extra
security. Traditionally ECCs has been developed over finite fields which have
either prime order or binary fields of order 2m. The fundamental operation for
generating a finite abelian group over an elliptic curve is the addition of two
points on it. If point P on EC is added to itself (k − 1) times then we obtain
a new point kP on elliptic curve and kP is termed as the scalar multiplication
of point P by scalar k. Among the many arithmetic operations like addition,
inversion, scalar multiplication involved in ECC, the scalar multiplication is the
most important, energy and time consuming operation. A key factor for its fast
implementation in ECC is to compute the scalar multiplication efficiently, when
k is a large integer. Various fast algorithms have been proposed for this pur-
pose. Traditionally the integer k is represented in binary form and the double
and add method is applied to calculate kP . In this paper we first compute the
7-fold of an elliptic curve point P, i.e. 7P . The formulas of doublings (2P ),
tripling (3P ), triple and add (3P ) + P , quadrupling (4P ), quadruple and add
(4P ) +P and quintupling (5P ) are available in literature. Double base number
representation of an integer in bases 2,3 ; 2,5 and 3,5 and their generalizations
to triple base representation base {2,3,5} was recently reported in [5]. In this
paper, an efficient scalar multiplication algorithms of a point P on an elliptic
curve is proposed using triple base representation of the scalar using 2,3 and 7
as basis of the multibase number system. We obtain a sparser representation of
the scalar, and the present algorithm costs less compared to the existing algo-
rithms. We restrict our work on non super-singular elliptic curves defined over
the field (F2m),however this can be suitably modified for any other type of el-
liptic curve. The rest of the paper is organized as following: In the next section
we report the related work. In Section-3 we evaluate sep-tupling 7P = (x7, y7)
of a point P = (x, y) and calculate its cost in terms of multiplications, squaring
and inversions. The costs of addition and subtraction are ignored which are
negligible in comparison to other costs. The triple base representation of an
integer is in section 4. Multi base number representation (MBNR) and multi
base chain representation and their implementation in scalar multiplication are
discussed in section 5 and 6 respectively. Concluding remarks are given in the
end.

2 Related Work

The classical approach of representing the integer k in binary form and then
performing the scalar multiplication by a standard double and add method has
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efficient triple (3P ) and double (2P ) of point P , a ternary (binary approach for
fast scalar multiplication is presented in [6]. For general curves a DBNS repre-
sentation of the scalars using 2 and 3 as bases has been proved quite efficiently
[7]. For last couple of years double base number system [DBNS] has been pro-
posed to be used in this context by several authors [8, 9, 10, 11]. In search of sub
linear scalar multiplication algorithms, authors of [8] have been used complex
bases, 3 and for Koblitz curves. As a new approach for fast scalar multiplica-
tion, point halving was proposed independently by Knudsen [12] and Schroeppel
[13]. They suggested that point doubling in the double and add method can be
replaced by a faster point halving operation. A detailed analysis of the speed
advantage of employing point halving instead of point doubling is available in
[9]. Further point halving can be combined with frobenius endomorphism so as
to speed up the corresponding operation in Koblitz curve by 25 percent [14, 15].
In yet another development the double base number representation of integer
was generalized to multibase number representation with 2, 3 and 5 as basis
elements and is included in [16,17]. The efficient scalar multiplication using
multibase number representation included in [16] which also includes quintu-
ple formula. Multibase multiplication using MBNR is included in [17], Scalar
multiplication combining MBNR with point halving is discussed in [18]. Our
contribution in this paper is computing 7 fold (7P) of an elliptic curve point P
for a curve over binary field and using the same in scalar multiplication. The
scalar multiplication uses the representation of the scalar as sum/ difference of
product of powers 2, 3 and 7.

3 Septupling

In this section we consider Sep-tupling (7P ) of a point P on an elliptic curve.
We begin with a discussion of an elliptic curve.

3.1 Elliptic Curve

An elliptic curve over a finite field GF (Galois field) K is defined by an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1)

where a1, a2, a3, a4, a5, a6 ∈ K are the parameters of the curve and ∆ 6= 0,∆
being the discriminate of the curve E.
In the case of binary field K = F2m , the non- super singular curves are used
for cryptography, whose Weierstrass equation can be simplified to the form.
y2 + xy = x3 + ax2 + b, where a, b ∈ F2m and ∆ = b 6= 0 .
If P = (x1, y1) and Q = (x2, y2) are two points on E(F2m) then their sum P+Q
is also a point (x3, y3) on E, where x3 and y3 are given by.

x3 = λ2 + λ+ x1 + x2 + a

y3 = λ(x1 + x3) + x3 + y1,

where λ = y1+y2
x1+x2
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Further double of P i.e. 2P is also a point (x4, y4) on curve E, where

x4 = µ2 + µ+ a = x2
1 +

b

x2
1

y4 = x2
1 + µx4 + x4,

µ = x1 +
y1
x1

The usual scalar multiplication {kP} of {P} by scalar {k} is obtained us-
ing the above described two operations add and double. For example 25P is
calculated as

25P = 2(2(2(P + 2P ))) + Por2(2(2(2P ) + P )) + (2(2P ) + P )

These group operations in affine coordinates required field inversion besides
multiplication and squaring. We denote by i and m the cost of one inversion ,
one squaring and one multiplication respectively. The cost of additions of two
points P +Q and of double of a point{P},{2P} are equal and equals to i+ 2m.
However we shall neglect the cost of field additions in case of elliptic curves over
binary fields. It may be noted that cost of squaring in case of binary fields is
almost free. The cost of a repeated doubling w −DBLP = 2wP is (4w− 2)m
as reported in [8]. The costs of : (i)double and add, DA(P,Q)→ 2P ±Q,(ii) re-
peated tripling, wTPR(P )→ 3wP and (iii) triple and add TA(P,Q)→ 3P ±Q
are given in [8] as (i) i+ am, (ii) i+ 7m and (iii) 2i+ am, respectively.

3.2 Point Septupling

Let P be (x,y) be a point on an elliptic curve given by equation (1) over a binary
field. We shall calculate the 7-fold of P given by,7P = (x7, y7), that is we shall
obtain expression for x7 and y7 in terms of {x} and {y}.
For non-super singular curves over a binary field, the division polynomials are
given by
ψ1 = 1
ψ2 = x
ψ3 = x4 + x3 + a = A
ψ4 = x6 + ax2 = x2(A− x3) = B

The higher degree division polynomials are obtained using the following re-
currence relations:
ψ2n+1 = ψn+2ψ

3
n − ψn−1ψ

3
n+1

ψ2ψ2n = ψn+2ψnψ
2
n−1 − ψn−2ψ(n)ψ2

n+1

Using these relations we obtain
ψ5 = ψ4x

3 − ψ3
3 = Bx3 −A3 = C

ψ6 = ψ5ψ3x
2−ψ3ψ

2
4

x = CAx2−AB2

x = D
ψ7 = ψ3 + 2ψ3

3 − ψ2ψ4 = A+ 2A3 − xB3 = E

ψ8 = ψ6ψ4ψ
2
3−ψ2ψ4ψ

2
5

ψ2
= DBA2−xBC2

x = F
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For any point P (x, y) on E, its n-fold n(3P ) is given by

[n]P = (x+ ψn+1ψn−1
ψ2

n
, y + x+ ψn+1ψn−1

ψ2
n

+ ψ2
n+1ψn−2

ψ2ψ3
n

+ (x2 + y)ψn+1ψn−1
ψ2ψ2

n
)

So the value of (x7, y7) for the 7-fold over binary field. Thus one can be
computed from the above equation as follows:
x7 = x+ ψ8ψ6

ψ2
7

x7 = x+ FD
E2

y7 = x+ y + ψ8ψ6
ψ2

7
+ ψ2

8ψ5

ψ2ψ3
7

+ (x2 + y)ψ8ψ6
ψ2ψ2

7

y7 = x+ y + FD
E2

+ F2C
xE3 + (x2 + y) FDxE2

Table 1: The cost of evaluating various polynomials defined above are:

polynomials operations

A = x4 + x3 + a 2[s] + 1[m]
B = x6 + ax2 = x2(A− x3) 1[m]

C = ψ5 = ψ4x
3 − ψ3

3 = Bx3 −A3 1[s] + 2[m]
D = CAx2−AB2

x 1[i] + 1[s] + 4[m]
E = A+ 2A3 − xB3 1[s] + 1[m]
F = DBA2−xBC2

x 1[s] + 3[m]
FD
E2 1[i] + 1[s] + 1[m]
F 2C
xE3 1[i] + 1[s] + 4[m]

Thus the total cost of the hepta tupling is 3[i] + 7[s] + 18[m]. Neglecting
the cost of squaring (in case of EC over binary fields ) the total cost turns out
to be 3[i] + 18[m]. We can also compute 7P as 2(2P ) + 3Por2(3P ) + P . Using
the generic method the costs of TPL(P) and DBL(P) are respectively i+7m
and i+2m. Further the costs of DA(P,Q) are 2i + 9m. Hence the total cost
7P = 2(3P ) + P = 4i + 18m. If we consider 7P as 2(2P ) + 3P then the total
cost is 5i + 20m.Hence cost calculated by us is the least. The following table
represents the costs of different operations used for the efficient scalar multipli-
cation using the binary field method.

Table 2 : Table of costs for different operations used in the septupling.

s.no. Operations Binary field costs
1 P +Q 1[i] + 1[s] + 2[m]
2 2P 1[i] + 1[s] + 2[m]
3 2P +Q 1[i] + 2[s] + 9[m]
4 3P 1[i] + 4[s] + 7[m]
5 3P +Q 2[i] + 3[s] + 9[m]
6 4P 1[i] + 5[s] + 8[m]
7 5P 1[i] + 5[s] + 13[m]
8 7P 3[i] + 7[s] + 18[m]
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4 Multibase Number Representation(MBNR)

First we review double base number system (DBNS)

4.1 Double Base Number System(DBNS)

Improving the classical methods of double and add for scalar multiplication a
new method (DBNS), using bases besides 2, were introduced [2, 3, 5].In this
system one can represent k as the sum of terms of the form si2bi3ci, wheresi ∈
1,−1 such representation always exists and in fact this number system is quite
redundant. One of the most interesting properties of the representation is that
among all the possible representation for a given integer, some of them are really
sparse, that is to say that the number of non-zero terms is quite low. To compute
DBNS representation of an integer, one usually uses a greedy algorithm. It
consists of the following: find the closest integer of the form2bi3ci to k, subtract
it from k and repeat the process withk′ = k − 2bi3ci till it is equal to zero.
Performing a point scalar multiplication using this number system is relatively
easy. Letting k be equal to

∑n
i=1 si2

bi3ci one just needs to compute [si2bi3ci]P
for i=1 to n and then add all the points.

Example : 21036 + 2935 + 2834 + 2733 + 2632 + 2531 + 2430 + 2130

Even if the number of additions is quite low, in practice such a method requires
too many doublings and triplings. For this reason the general DBNS represen-
tation has been considered to be not suitable for scalar multiplication.
To overcome this problem the concept of double base chains was introduced in
[3]. In this system, an integer kis still represented as

∑n
i=1 si2

bi3ci, but with the
restriction that allowing a Horner like evaluation of kP using only doublings and
triplings, however, with significantly increase in the number of point additions.

4.2 Multibase Number Representations (MBNR)

LetB = b1, b2...bl be set of small integers .A representations of integer k as a
sum of powers of elements of B of the formk =

∑m
j=1 sjb

cj1
1 ...bcjll , sj ∈ {1,−1}

is called a multibase representations of k using the base B. The integer m is the
length of the representation of k using the base B. The integer m is the length
of the representation or Double base number system (DBNS) or double base
number representation discussed in previous section. (DBNR) is a special case
with with . In this paper we are particularly interested in multibase represen-
tation with B= 2, 3, 7. The multi base representations with B= 2, 3, 5 have
been discussed by many authors [4, 6].Authors in [17] combined with MBNR
with point halving.

The double base number system is highly redundant. Further these repre-
sentation are very short in length, a 160bit integer can be represented using
around 23 terms using the base B = 2, 3. The results on length of DBNS repre-
sentation are included in [2]. The multi base representation is even shorter and
more redundant than the DBNS. The same 160 bit integer can be represented
using around 15 terms using a triple base B = 2, 3, 5.
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Example : 895712 = 243752 + 243551 + 243450 + 213450 + 203250 + 203150

The multi base representation of a number using a triple base B=2, 3,7 is
even shorter and sparse as compared to its representation using the triple base
2,3,5.

Example : 293571 + 273371 + 253171 + 253170

In this article, unless otherwise stated, by a multi base representation of k, we
mean a representation of the form.

k =
∑
i

si2bi3ci7di

Where si ∈ {−1, 1} and the terms of the form 2bi3ci7di will be termed as 3-
integers. A general multibase representation although very short is not suitable
for a scalar multiplication algorithm. So we include a special representation with
restricted exponents. Definition: A multi base representationk =

∑
i si2

bi3ci7di

using the base B= 2, 3, 7 is called a step multibase representation (SMBR) if
the exponents bi,ci and di form three separate monotonic decreasing sequence.
We consider an example illustrating this definition for the same number.

Example : 253473 + 243272 − 233072 − 233070

An integer k has several SMBR, the simplest one being the binary repre-
sentation. If k is represented in SMBR, then we can write it using Horner’s
rule and an addition chain, like double base chain in [1], for scalar multiplica-
tion can easily be developed. In case of our base system {2,3,7}, we require
b1doublings,c1tripling and d1 sep tuplings.
An integer can be converted to a multi base representation with base {2,3,7}
using the Greedy Algorithm as detailed below.

GREEDY ALGORITHM:
while k¿0

let z be the largest integer 2b3c7d

output(b, c, d)
replace k by k-z

k− z← 0
else
end.

In this process the pre-computed points are extensively used to accelerate
the scalar multiplication in applications where extra memory is available. So we
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have used a new method multi base chain representation in which one does not
require any pre-computations but in this method the expansion of the scalar
reduces the cost of the scalar multiplication making it faster.
The important contribution in [7] was the new ternary-binary method to perform
the efficient scalar multiplication. Ciet et al.[7] have proposed a ternary-binary
method for fast ECC scalar multiplication. It makes use of efficient doubling
(2P ), tripling (3P ), quadrupling (4P ). In this paper a new septenary /ternary
/binary approach for fast ECC scalar multiplication is proposed, which makes
the use of septupling (7P) for the efficient scalar multiplication.
In this base system only b1 doublings, c1 tripling and d1 sep- tuplings are needed
for the scalar multiplication; in the next section we give implementation of this
method and develop Septupling, 7P, for point P.

5 Scalar Multiplication Implementation and Al-
gorithm

We have already suggested that an integer k can be represented in multi base
number system as the sum or difference of the mixed powers of 2, 3 and 7, as
given in the following equation

k =
∑
i

si2bi3ci7di with si ∈ {−1, 1} and bi, ci, di ≥ 0

The sequence of the binary and ternary exponents decreases monotonically,
i.e. b1 ≥ b2 ≥ b3... ≥ bm ≥ 0,c1 ≥ c2 ≥ c3... ≥ cm ≥ 0 and d1 ≥ d2 ≥ d3... ≥
dm ≥ 0, and thus a multi base chain is formed.
For implementing the scalar multiplication we use a recursive formula for the
fast computation of scalar multiplication using following equation for recursive
calculations.

K1 = 1,Ki = 2u3u7wKi−1 + si with i ≥ 2, si ∈ {−1, 1}

where u is the difference of two consecutive binary exponents, v is the difference
of two consecutive ternary exponents and w is the difference of two consecutive
septenary exponents.
To implement it we have used the following algorithm. An integer k, can be
converted to a multi base representation

k =
∑
i

2bi3ci7di with si ∈ {−1, 1} and bi, ci, di ≥ 0

using greedy algorithm as already explained in Section.5 . Now we describe the
algorithm:
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ALGORITHM:
Input: An integre k =

∑m
i=1 si2

bi3ci7di , si ∈ {−1, 1}
And such thatb1 ≥ b2 ≥ b3... ≥ bm ≥ 0,

c1 ≥ c2 ≥ c3... ≥ cm ≥ 0 and d1 ≥ d2 ≥ d3... ≥ dm ≥ 0,
and a point P ∈ E(F2m).

Output: The point kP ∈ E(F2m)
z ← s1P

for i = 1, ...,m− 1 do
u← bi − bi+1

v ← ci − ci+1

w ← di − di+1

if u = 0 then
Z ← 7wZ

if v 6= 0 then
Z ← 3(3v−1Z) + si+1P // TA used here

else
Z ← Z + si+1P
else Z ← 7wZ
Z ← 3vZ
z ← 2u−1Z

Z ← 2Z + si+1P // DA is used here
Return Z.

As an example for illustration of this algorithm we consider computing
895712P. We first develop the multi base chain as given below.

895712 = 253473 + 243272 − 233072 − 233070

Now we can compute 127P, 2285P, 111964P and finally 895712P successively
using the above algorithm.

Table3 : Method of calculating 895712P in different iterations for septupling

i K s u v w
1 1 1 0 0 0
2 126K1 + 1 = 127 1 1 2 1
3 18K2 − 1 = 2285 −1 1 2 0
4 49K3 − 1 = 111964 −1 0 0 2
5 8K4 = 895712 0 3 0 0

This algorithm has used a multibase representation of the scalar with 2, 3
and 7 as the base numbers and it uses group operation like ADD, DBL,w −
DBL, DA, TA for efficient computation. The new multi base chain method
and proposed septenary/ternary/binary method is much faster than any other
methods mentioned above for scalar multiplication for the binary fields without
requiring any pre computations.
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6 Conclusion

In this paper we have presented fast and secure scalar multiplication algo-
rithms.In our work we have proposed a new algorithm for MBNR representation
of an integer and combining with the scalar multiplication. We have shown that
the length of the MBNR is shorter than the DBNR and is also more redundant,
since the number of representation grows faster as the number of base element
is higher. For the MBNR representation we have used 2, 3 and 7 as the bases
which makes the representation sparser.
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