
Cold Boot Key Recovery by Solving
Polynomial Systems with Noise

Martin Albrecht? and Carlos Cid

1 INRIA, Paris-Rocquencourt Center, SALSA Project
UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

CNRS, UMR 7606, LIP6, F-75005, Paris, France
malb@lip6.fr

2 Information Security Group,
Royal Holloway, University of London

Egham, Surrey TW20 0EX, United Kingdom
carlos.cid@rhul.ac.uk

Abstract. A method for extracting cryptographic key material from
DRAM used in modern computers has been recently proposed in [9]; the
technique was called Cold Boot attacks. When considering block ciphers,
such as the AES and DES, simple algorithms were also proposed in [9]
to recover the cryptographic key from the observed set of round subkeys
in memory (computed via the cipher’s key schedule operation), which
were however subject to errors due to memory bits decay. In this work
we extend this analysis to consider key recovery for other ciphers used
in Full Disk Encryption (FDE) products. Our algorithms are also based
on closest code word decoding methods, however apply a novel method
for solving a set of non-linear algebraic equations with noise based on
Integer Programming. This method should have further applications in
cryptology, and is likely to be of independent interest. We demonstrate
the viability of the Integer Programming method by applying it against
the Serpent block cipher, which has a much more complex key schedule
than AES. Furthermore, we also consider the Twofish key schedule, to
which we apply a dedicated method of recovery.

1 Introduction

The structure of block cipher key schedules has received much renewed atten-
tion, since the recent publication of high-profile attacks against the AES [4] and
Kasumi [3] in the related-key model. While the practicality of such attacks is
subject of debate, they clearly highlight the relevance of the (often-ignored) key
schedule operation from a cryptanalysis perspective. An unrelated technique,
called Cold Boot attacks, was proposed in [9] and also provided an insight into
the strength of a particular key schedule against some forms of practical attacks.

? This author was supported by the Royal Holloway Valerie Myerscough Scholarship.

The method is based on the fact that DRAM may retain large part of its content
for several seconds after removing its power, with gradual loss over that period.
Furthermore, the time of retention can be potentially increased by reducing the
temperature of memory. Thus contrary to common belief, data may persist in
memory for several minutes after removal of power, subject to slow decay. As a
result, data in DRAM can be used to recover potentially sensitive information,
such as cryptographic keys, passwords, etc. A typical application is to defeat the
security provided by disk encryption programs, such as Truecrypt [16]. In this
case, cryptographic key material is maintained in memory, for transparent en-
cryption and decryption of data. One could apply the method from [9] to obtain
the computer’s memory image, potentially extract the encryption key and then
recover encrypted information.

The Cold Boot attack has thus three stages: (a) the attacker physically removes
the computer’s memory, potentially applying cooling techniques to reduce the
memory bits decay, to obtain the memory image; (b) locate the cryptographic
key material and other sensitive information in the memory image (likely to
be subject to errors due to memory bits decay); and (c) recover the original
cryptographic key from this information in memory. While all stages present
the attacker with several challenges, from the perspective of the cryptologist the
one that poses the most interesting problems is the latter stage; we therefore
concentrate in this work on stage (c). We refer the reader to [9, 10] for discussion
on stages (a) and (b).

A few algorithms were proposed in [9] to tackle stage (c), which requires one to
recover the original key based on the observed key material, probably subject to
errors (the extent of which will depend on the properties of the memory, lapsed
time from removal of power, and temperature of memory). In the case of block
ciphers, the key material extracted from memory is very likely to be a set of
round subkeys, which are the result of the cipher’s key schedule operation. Thus
the key schedule can be seen as an error-correcting code, and the problem of
recovering the original key can be essentially described as a decoding problem.

The paper [9] contains methods for the AES and DES block ciphers (besides
discussion for the RSA cryptosystem, which we do not consider in this work).
For DES, recovering the original 56-bit key is equivalent to decoding a repeti-
tion code. Textbook methods are used in [9] to recover the encryption key from
the closest code word (i.e. valid key schedule). The AES key schedule is not as
simple as DES, but still contains a large amount of linearity (which has also
been exploited in recent related-key attacks, e.g. [4]). Another feature is that
the original encryption key is used as the initial whitening subkey, and thus
should be present in the key schedule. The authors of [9] model the memory
decay as a binary asymmetric channel, and recover an AES key up to error rates
of δ0 = 0.30, δ1 = 0.001 (see notation in Section 2 below). The results against
the AES – under the same model – were further improved in [17, 11].

Contribution of this paper. We note that other block ciphers were not con-
sidered in [9]. For instance, the popular FDE product Truecrypt [16] provides
the user with a choice of three block ciphers: Serpent [2], Twofish [14] (both
formerly AES candidates) and AES. The former two ciphers present much more
complex key schedule operations than DES and AES. Another feature is that
the original encryption key does not explicitly appear in the expanded key sched-
ule material (but rather has its bits non-linearly combined to derive the several
round subkeys). These two facts led to the belief that these ciphers were not
susceptible to the attacks in [9], and could perhaps provide an inherently more
secure alternative to AES when protecting against Cold Boot attacks1.

In this work, we extend the analysis from [9] and demonstrate that one can also
recover the encryption key for the Serpent and Twofish ciphers up to some
reasonable amount of error. We propose generic algorithms which apply a novel
method for solving a set of non-linear algebraic equations with noise based on
Integer Programming2. Our methods also allow us to consider different noise
models and are not limited to the binary asymmetric channel setting usually
considered in the Cold Boot scenario; in particular we improve the results against
the AES from [9] and extend the range of scenarios in which the attack can be
applied when compared to [9, 17, 11]. Finally, we note that our methods can
in principle be applied to any cipher and thus provide a generic (but possibly
impractical for some ciphers) solution to the Cold Boot problem.

2 The Cold Boot Problem

Cold Boot attacks were proposed and discussed in detail in the seminal work [9].
The authors of [9] noticed that bit decay in DRAM is usually asymmetric: bit
flips 0 → 1 and 1 → 0 occur with different probabilities, depending on the
“ground state”. To motivate our work, we model more formally the cold boot
problem for block ciphers below.

We define the Cold Boot problem (for block cipher) as follows. Consider an effi-
ciently computable vectorial Boolean function KS : Fn2 → FN2 where N > n, and
two real numbers 0 ≤ δ0, δ1 ≤ 1. Let K = KS(k) be the image for some k ∈ Fn2 ,
and Ki be the i-th bit of K. Now given K, compute K ′ = (K ′0,K

′
1, . . . ,K

′
N−1) ∈

1 In fact, a message in one of the most popular mailing lists discussing cryptography,
commenting at the time about the contributions of [9]: “While they did have some
success with recovering an entire AES key schedule uncorrupted, it seems important
to note that the simplistic nature of the AES and DES key schedules allowed them
to recover the entire original key even after the state had been somewhat degraded
with only moderate amounts of work. A cipher with a better key schedule (Blowfish
or Serpent, for instance) would seem to offer some defense here”[12], was one of the
initial motivations for our work in this problem.

2 We note that a similar method for key recovery on a different model of leakage,
namely side-channel analysis, was independently proposed in [13].

FN2 according to the following probability distribution:

Pr[K ′i = 0 | Ki = 0] = 1− δ1 , P r[K ′i = 1 | Ki = 0] = δ1,
P r[K ′i = 1 | Ki = 1] = 1− δ0 , P r[K ′i = 0 | Ki = 1] = δ0.

Thus we can consider such a K ′ as the output of KS for some k ∈ Fn2 except
that K ′ is noisy, with the probability of a bit 1 in K flipping to 0 is δ0 and the
probability of a bit 0 in K flipping to 1 is δ1. It follows that a bit K ′i = 0 of K ′

is correct with probability

Pr[Ki = 0 | K ′i = 0] =
Pr[K ′i = 0|Ki = 0]Pr[Ki = 0]

Pr[K ′i = 0]
=

(1− δ1)

(1− δ1 + δ0)
.

Likewise, a bit K ′i = 1 of K ′ is correct with probability (1−δ0)
(1−δ0+δ1) . We denote

these values by ∆0 and ∆1 respectively.

Now assume we are given a description of the function KS and a vector K ′ ∈ FN2
obtained by the process described above. Furthermore, we are also given a control
function E : Fn2 → {True, False} which returns True or False for a candidate k.
The task is to recover k such that E(k) returns True. For example, E could use
the encryption of some known data to check whether k is the original key.

In the context of this work, we can consider the function KS as the key schedule
operation of a block cipher with n-bit keys. The vector K is the result of the
key schedule expansion for a key k, and the noisy vector K ′ is obtained from
K due to the process of memory bit decay. We note that in this case, another
goal of the adversary could be recovering K rather than k (that is, the expanded
key rather than the original encryption key), since with the round subkeys one
could implement the encryption/decryption algorithm. In most cases, one should
be able to efficiently recover the encryption key k from the expanded key K.
However it could be conceivable that for a particular cipher with a highly non-
linear key schedule, the problems are not equivalent.

Finally, we note that the Cold Boot problem is equivalent to decoding (poten-
tially non-linear) binary codes with biased noise.

3 Block Cipher Key Expansion

In this section we briefly describe some of the relevant features of the key schedule
operation of the target ciphers.

3.1 AES

For details of the key schedule of the AES block cipher we refer the reader to [7].
In this work, we are interested in its description as a system of polynomial
equations over F2, see [6]. We note that the non-linearity of the key schedule

is provided by four S-box operations in the computation of each round subkey.
The explicit degree of the S-box Boolean functions is 7, while it is well known
that the key schedule can be described as a system of quadratic equations.

3.2 Serpent

Serpent, designed by Anderson et al. [2], was one of the five AES finalists.
The cipher key schedule operation produces 132 32-bit words of key material as
follows. First, the user-supplied key k is padded to 256 bits using known con-
stants, and written as eight 32-bit words w−8, . . . , w−1. This new string is then
expanded into the prekey words w0, . . . , w131 by the following affine recurrence:

wi = (wi−8 ⊕ wi−5 ⊕ wi−3 ⊕ wi−1 ⊕ ψ ⊕ i) ≪ 11,

where ψ is some known constant. Finally the round keys are calculated from the
prekeys wi using the S-boxes Si in bitslice mode in the following way:

{k0, k1, k2, k3} = S3(w0, w1, w2, w3)

{k4, k5, k6, k7} = S2(w4, w5, w6, w7)

{k8, k9, k10, k11} = S1(w8, w9, w10, w11)

{k12, k13, k14, k15} = S0(w12, w13, w14, w15)

{k16, k17, k18, k19} = S7(w16, w17, w18, w19)

. . .

{k124, k125, k126, k127} = S4(w124, w125, w126, w127)

{k128, k129, k130, k131} = S3(w128, w129, w130, w131).

The rounds subkeys are then Ki = {k4i, k4i+i, k4i+2, k4i+3}.
We note the following features of the cipher key schedule which are of relevance
to Cold Boot key recovery: the user-supplied key does not appear in the output
of the Serpent key schedule operation, the explicit degree of the S-box Boolean
functions is three, and every output bit of the key schedule depends non-linearly
on the user-supplied key.

3.3 Twofish

Twofish, designed by Schneier et al. [14], was also one of the five AES finalists.
The cipher is widely deployed, e.g. it is part of the cryptographic framework in
the Linux kernel and is also available in Full Disk Encryption products. Twofish
has a rather complicated key schedule, which makes it a challenging target for
Cold Boot key recovery attacks. We note that while Twofish is defined for all
key sizes up to 256 bits, we will focus here on the 128-bit version. We also follow
the notation from [14].

The Twofish key schedule operation generates 40 32-bit words of expanded key
K0, . . . , K39, as well as four key-dependent S-boxes from the user-provided key
M . Let k = 128/64 = 2, then the key M consists of 8k = 16 bytes m0, . . . ,m8k−1.
The cipher key schedule operates as follows. Each four consecutive bytes are
converted into 32-bit words in little endian byte ordering. That is, the leftmost
byte is considered as the least significant byte of the 32-bit word. This gives rise
to four words Mi. Two key vectors Me and Mo are defined as Me = (M0,M2)
and Mo = (M1,M3). The subkey words K2i and K2i+1 for 0 ≤ i < 20 are then
computed from Me and Mo by the routine gen_subkeys given in Algorithm 2
in the Appendix.

Algorithm 1 (also in the Appendix) defines the function h used in the key sched-
ule. There, we have that q0 and q1 are applications of two 8-bit S-boxes defined
in [14] and MDS(Z) is a multiplication of Z interpreted as a 4 element vector
over the field F28

∼= F2[x]/〈x8 + x6 + x5 + x3 + 1〉 by a 4× 4 MDS matrix. The
explicit degree of the S-boxes’ Boolean functions is also seven.

Finally, a third vector S is also derived from the key. This is done by combining
the key bytes into groups of eight (e.g. m0, . . . ,m7), interpreting them as a vector
over the field F28

∼= F2[x]/〈x8 + x6 + x3 + x2 + 1〉, which is multiplied by a 4× 8
matrix RS. Each resulting four bytes are then interpreted as a 32-bit word Si.
These words make up the third vector S = (S1, S0). The key-dependent S-Box
g maps 32 bits to 32 bits and is defined as g(X) = h(X,S).

Full disk encryption products use infrequent re-keying, and to provide efficient
and transparent access to encrypted data, applications will in practice precom-
pute the key schedule and store the expanded key in memory. For the Twofish
block cipher, this means that the subkey words K0, . . . , K39 as well as the key
dependent S-boxes are typically precomputed.

Storing 40 words K0, . . . ,K39 in memory is obviously straightforward (we note
however that this set of words does not contain a copy of the user-supplied key).
To store the key dependent S-box, the authors of [14] state: “Using 4 Kb of table
space, each S-box is expanded to a 8-by-32-bit table that combines both the S-
box lookup and the multiply by the column of the MDS matrix. Using this option,
a computation of g consists of four table lookups, and three XORS. Encryption
and decryption speeds are constant regardless of key size.” We understand that
most software implementations choose this strategy to represent the S-box (for
instance, the Linux kernel chooses this approach, and by default Truecrypt also
implements this technique, which can however be disabled with the C macro
TC_MINIMIZE_CODE_SIZE); we assume this is the case in our analysis.

4 Solving Systems of Algebraic Equations with Noise

In this section we model a new family of problems – solving systems of multi-
variate algebraic equations with noise – and propose a first method for solving
problems from this family. We use the method to implement a Cold Boot attack

against ciphers with key schedule with a higher degree of non-linearity, such as
Serpent.

Polynomial system solving (PoSSo) is the problem of finding a solution to a
system of polynomial equations over some field F. We consider the set F =
{f0, . . . , fm−1} ⊂ F[x0, . . . , xn−1]. A solution to F is any point x ∈ Fn such that
∀f ∈ F , we have f(x) = 0. Note that we restrict ourselves to solutions in the
base field in the context of this work.

Moreover, denote by Max-PoSSo the problem of finding any x ∈ Fn that satisfies
the maximum number of polynomials in F . Likewise, by Partial Max-PoSSo
we denote the problem of finding a point x ∈ Fn such that for two sets of
polynomials H,S ⊂ F[x0, . . . , xn−1], we have f(x) = 0 for all f ∈ H, and the
number of polynomials f ∈ S with f(x) = 0 is maximised. Max-PoSSo is Partial
Max-PoSSo with H = ∅.

Finally, by Partial Weighted Max-PoSSo we denote the problem of finding a
point x ∈ Fn such that ∀f ∈ H : f(x) = 0 and

∑
f∈S C(f, x) is minimised where

C : f ∈ S, x ∈ Fn → R≥0 is a cost function that returns 0 if f(x) = 0 and some
value v > 0 if f(x) 6= 0. Partial Max-PoSSo is Partial Weighted Max-PoSSo
where C(f, x) returns 1 if f(x) 6= 0 for all f .

The family of “Max-PoSSo” problems defined above is analogous to the well-
known Max-SAT family of problems. In fact, these problems could well be re-
duced to their SAT equivalents. However, the modelling as polynomial systems
seems more natural in this context since more algebraic structure can be pre-
served.

4.1 Cold Boot as Partial Weighted Max-PoSSo

We can consider the Cold Boot Problem as a Partial Weighted Max-PoSSo prob-
lem over F2. Let FK be an equation system corresponding to KS such that the
only pairs (k,K) that satisfy FK are any k ∈ Fn2 and K = K(k). In our task
however, we need to consider FK with k and K ′. Assume that for each noisy
output bit K ′i there is some fi ∈ FK of the form gi +K ′i where gi is some poly-
nomial. Furthermore assume that these are the only polynomials involving the
output bits (FK can always be brought into this form) and denote the set of
these polynomials by S. Denote the set of all remaining polynomials in FK as
H, and define the cost function C as a function which returns

1
1−∆0

for K ′i = 0, f(x) 6= 0,
1

1−∆1
for K ′i = 1, f(x) 6= 0,

0 otherwise.

Finally, let FE be an equation system that is only satisfiable for k ∈ Fn2 for
which E returns True. This will usually be an equation system for one or more
encryptions. Add the polynomials in FE to H. Then H,S, C define a Partial

Weighted Max-PoSSo problem. Any optimal solution x to this problem is a
candidate solution for the Cold Boot problem.

In order to solve Max-PoSSo problems, we propose below an approach which
appears to better capture the algebraic structure of the underlying problems
(compared to SAT-solvers), and should thus have further applications.

4.2 Mixed Integer Programming

Integer optimisation deals with the problem of minimising (or maximising) a
function in several variables subject to linear equality and inequality constraints,
and integrality restrictions on some or all the variables. A linear mixed integer
programming problem (MIP) is defined as a problem of the form

min
x
{cTx|Ax ≤ b, x ∈ Zk × Rl},

where c is an n-vector (n = k + l), b is an m-vector and A is an m× n-matrix.
This means that we minimise the linear function cTx (the inner product of c
and x) subject to linear equality and inequality constraints given by A and b.
Additionally k ≥ 0 variables are restricted to integer values while l ≥ 0 variables
are real-valued. The set S of all x ∈ Zk × Rl that satisfy the linear constraints
Ax ≤ b, that is

S = {x ∈ Zk × Rl | Ax ≤ b},
is called the feasible set. If S = ∅ the problem is infeasible. Any x ∈ S that
minimises cTx is an optimal solution.

Efficient MIP solvers use a branch-and-cut algorithm as one of their core com-
ponents. The main advantage of MIP solvers compared to other branch-and-cut
solvers (e.g. SAT-solvers) is that they can relax the problem to a floating point
linear programming problem in order to obtain lower and upper bounds. These
bounds can then be used to cut search branches. This relaxation also allows one
to prove optimality of a solution without exhaustively searching for all possible
solutions.

Moreover we can convert the PoSSo problem over F2 to a mixed integer pro-
gramming problem using the Integer Adapted Standard Conversion [5] as fol-
lows. Consider the square-free polynomial f ∈ F2[x0, . . . , xn−1]. We interpret the
Boolean equation f = 0 as an equation over the integers by replacing XOR by
addition and AND by multiplication. All solutions of f over F2 will correspond
to multiples of 2 when considered over the integers. Let ` be the mininum and u
the maximum value of these multiples of two. We introduce an integer variable
m and restrict it between `

2 and u
2 (inclusive). Finally we linearise f − 2m and

add equations relating the new linear variables to the original monomials. More
details of this modelling3 can be found in [5]. It then follows that solving the

3 We note that the MIP solver SCIP [1] used in this work generates linear constraints
for (among others) AND clauses automatically and thus we do not need to model
these explicitly in our experiments.

resulting MIP problem for any objective function will recover a value x that also
solves the PoSSo problem.

Moreover we can convert a Partial Weighted Max-PoSSo problem into a Mixed
Integer Programming problem as follows. Convert each f ∈ H to linear con-
straints as before. For each fi ∈ S add some new binary slack variable ei to fi
and convert the polynomial fi + ei as before. The objective function we min-
imise is

∑
ciei, where ci is the value of C(f, x) for some x such that f(x) 6= 0.

Any optimal solution x ∈ S will be an optimal solution to the Partial Weighted
Max-PoSSo problem.

We note that in our modelling of Cold Boot key recovering as a Mixed Integer
Programming problem, we are using a linear objective function, which we expect
to be a first order approximation of the true noise model. Our results will how-
ever demonstrate that this approximation is sufficient. Finally, we note that the
approach discussed above is essentially the non-linear generalisation of decoding
random linear codes with linear programming [8].

5 Cold Boot Key Recovery against Block Ciphers

The original approach proposed in [9] is to model the memory decay as a binary
asymmetric channel (with error probabilities δ0, δ1), and recover the encryption
key from the closest code word (i.e. valid key schedule) based on commonly used
decoding techniques. The model of attack used in [9] often assumes δ1 ≈ 0 (that
is, the probability of a 0 bit flipping to 1 is negligible), which appears to be a
reasonable assumption to model memory decay in practice. We will sometimes
do the same in our discussions below. However, all experimental data in this work
was generated with δ1 > 0, even where our algorithms assume δ1 = 0, in order
to estimate the success rate in practice more precisely. Thus, contrary to prior
work, when we construct experimental data we do not consider the asymmetry
to be perfect.

Under the adopted model, recovering the original 56-bit key for DES is equivalent
to decoding a repetition code, as discussed in [9]. In this section we will discuss
potential methods for recovering the user-supplied key for the key schedules
of Twofish, Serpent and the AES, under the Cold Boot attack scenario. We
note that the attack’s main parameters (the error probabilities δ0, δ1) obviously
affect the effectiveness (and the viability) of the methods discussed below; in
particular, while some methods may have a superior performance for a certain
range of δ0, δ1, they may however not be viable outside this particular range.
For instance, the technique presented in [11] relies on δ1 = 0.

5.1 Prior Work on AES

The AES key schedule is not as simple as the one from DES, but still contains a
large amount of linearity. Furthermore, the original encryption key is used as the

initial whitening subkey, and thus should be present in the key schedule output.
The method proposed in [9] for recovering the key for the AES-128 divides this
initial subkey into four subsets of 32 bits, and uses 24 bits of the second subkey as
redundancy. These small sets are then decoded in order of likelihood, combined
and the resulting candidate keys are checked against the full schedule. The idea
can be easily extended to the AES with 192- and 256-bit keys. The authors of [9]
recover up to 50% of keys for error rates of δ0 = 0.30, δ1 = 0 within 20 minutes. In
[17] an improved algorithm making better use of the AES key schedule structure
was proposed which allows one to recover the vast majority of keys within 20
minutes for δ0 = 0.70, δ1 = 0. It is noted in [17] that the algorithm can be
adapted for the case δ1 > 0.

In [11] an alternative algorithm is proposed which models the Cold Boot problem
as a SAT problem by ignoring all output bits equal to zero. In the considered
model this implies that the remaining output bits are correct (since δ1 = 0 im-
plies ∆1 = 1). Thus a set of correct SAT clauses can be constructed, which –
due to the amount of redundant information available in the AES key schedule –
still allows one to recover the encryption key. The authors of [11] report recovery
of encryption keys for δ0 = 0.80, δ1 = 0 with an average running time of about
30 minutes.

Below we discuss the different methods we have considered for cold boot key re-
covery, and our results when applied to the AES, Serpent and Twofish. We first
discuss a näıve decoding technique in order to have a base line to compare our
algebraic technique to. Our algebraic technique is then discussed in Section 5.4.

5.2 Generic Combinatorial Approach

Assuming that the cipher key schedule operation is invertible, we can still con-
sider a somewhat näıve combinatorial approach, even when the user-supplied key
does not explicitly appear in the expanded key schedule material. In order to
recover the full n-bit key, we will consider at least n bits of key schedule output.
We assume that bit-flips are biased towards zero with overwhelming probability
(i.e., we assume the asymmetry is perfect) and assume the distribution of bits
arising in the original key schedule material is uniform. Then for an appropriate
n-bit segment K in the noisy key schedule, we can expect approximately n

2 + r
zeros, where r = dn2 δ0e. We have thus to check

r∑
i=0

(
n/2 + r

i

)
candidates for the segment K. Each check entails to correct the selected bits,
invert the key schedule and verify the candidate for k using for example E . For
n = 128 and δ0 = 0.15 we would need to check approximately 240 candidates; for
δ0 = 0.30 we would have to consider approximately 264 candidates; for δ0 = 0.50

we would have to consider approximately 285 candidates. By focusing the search
around the expected error rate, we may be able to improve these times. This
approach is applicable to both Serpent and the AES. However we need to adapt
it slightly for Twofish.

5.3 Adapted Combinatorial Approach for Twofish

We recall that for the Twofish key schedule, we assume that the key dependent
S-boxes are stored as a lookup table in memory. In fact, each S-box is expanded
to a 8-by-32-bit table holding 32-bit values combining both the S-Box lookup
and the multiplication by the column of the MDS matrix (see Section 3.3) Thus,
we will have in memory a 2-dimensional 32-bit word array s[4][256], where s[i][j]
holds the result of the substitution for the input value j for byte position i. The
output of the complete S-Box for the word X = (X0, X1, X2, X3) is s[0][X0] ⊕
s[1][X1]⊕ s[2][X2]⊕ s[3][X3].

Each array s[i] holds the output of an MDS matrix multiplication by the vector
X, with three zero entries and all possible values 0 ≤ Xi < 256, with each
value occurring only once. Thus, we have exactly 256 possible values for the
32-bit words in s[i] and we can simply adjust each disturbed word to its closest
possible word. Furthermore, we do not need to consider all values, we can simply
use those values with low Hamming distance to their nearest candidate word but
a large Hamming distance to their second best candidate. We can thus implement
a simple decoding algorithm to eventually recover an explicit expression for each
of the four key-dependent S-boxes.

Using this method, we can recover all bytes of S0 and S1. More specifically, if
we assume that δ0 = δ1, we can recover the correct S0, S1 with overwhelming
probability if 30% of the bits have been flipped. If we assume an asymmetric
channel (δ1 ≈ 0) then we can recover the correct values for S0, S1 with over-
whelming probability if 60% of the bits have been flipped. This gives us 64-bit
of information about the key.

In order to recover the full 128-bit key, we can adapt the combinatorial approach
discussed above. In the noise-free case, we can invert the final modular addition
and the MDS matrix multiplication. Since these are the only steps in the key
schedule where diffusion between S-box rows is performed, we should get eight
8-bit equation systems of the form C1 = Q0(C0⊕M0)⊕M1, where Q0 is some S-
box application and C0 and C1 are known constants. Each such equation restricts
the number of possible candidates for M0,M1 from 216 to 28. Using more than
one pair C0, C1 for each user-supplied key byte pair M0,M1 allows us to recover
the unique key. Thus, although the Twofish key schedule is not as easily reversed
as the Serpent or AES key schedule, the final solving step is still very simple.
Thus, the estimates given for the combinatorial approach (δ0 = 0.15 → 236

candidates and δ0 = 0.30→ 262 candidates) also apply to Twofish.

Alternatively, we may consider one tuple of C0, C1 only and add the linear equa-
tions for S. This would provide enough information to recover a unique solution;
however S does mix bytes from M0 across S-box rows, which makes the solving
step more difficult.

5.4 Algebraic Approach using Max-PoSSo

If the algebraic structure of the key schedule permits, we can model the Cold
Boot key recovery problem as a Partial (Weighted) Max-PoSSo problem, and
use the methods discussed earlier to attempt to recover the user-supplied key or
a noise-free version of the key schedule. We applied those methods to implement
a Cold Boot attack against the AES and Serpent. We focused on the 128-bit
versions of the two ciphers.

For each instance of the problem we performed 100 experiments with randomly
generated keys. In the experiments we usually did not consider the full key
schedule but rather a reduced number of rounds of the key schedule in order to
improve the running time of our algorithms. We note however that this does not
mean we are attacking a reduced-round version of the algorithm: considering a
reduced amount of data (less redundancy) in the key schedule still allows us to
recover the entire encryption key of the full-round version of the block cipher.
The running time is increased when more data is considered due to the increase
of terms in the objective function. Furthermore, we did not include equations
for E explicitly. This is again to reduce the amount of data the solver has to
consider. Finally, we also considered at times an “aggressive” modelling, where
our algorithm assumes δ1 = 0 instead of δ1 = 0.001. In this case all values
K ′i = 1 are considered correct by the algorithm (since ∆1 = 1), and as a result
all corresponding equations are promoted to the set H. We stress, however,
that the input data in our experiments was always generated with δ1 > 0.
Thus, increasing the amount of data considered also increases the chances of
including an equation for K ′i = 1 which is not correct. We note that in the
“aggressive” modelling our problem reduces to Partial Max-PoSSo and that the
specific weights assigned in the cost function are irrelevant, since all weights are
identical.

Running times for the AES and Serpent using the MIP solver SCIP [1] are given
in Tables 1 and 2 respectively. For each cipher dedicated tuning parameters were
used and we also made use of advanced features in SCIP such as the support
for AND constraints which are not available in other MIP solvers. The column
“a” denotes whether we chose the aggressive (“+”) or normal (“–”) modelling.
The column “cutoff t” denotes the time we maximally allowed the solver to run
until we interrupted it. The column r gives the success rate, i.e. the percentage
of instances we recovered the correct key for.

For the Serpent key schedule we consider decays up to δ0 = 0.50, δ1 = 0.001. We
also give running times and success rates for the AES up to δ0 = 0.50, δ1 = 0.001
in order to compare our approach with previous work. We note that a success rate

N δ0 aggr limit t r min t avg. t max t

2 0.05 – 3600.00 59% 50.80 s 2124.90 s 3600.00 s

3 0.15 + 60.0s 63% 1.38 s 8.84 s 41.66 s
4 0.15 + 60.0s 70% 1.78 s 11.77 s 59.16 s

4 0.30 + 600.0s 66% 4.81 s 116.07 s 600.00 s
4 0.30 + 3600.0s 69% 4.86 s 117.68 s 719.99 s

4 0.35 + 600.0s 65% 4.66 s 185.14 s 600.00 s
4 0.35 + 3600.0s 68% 4.45 s 207.07 s 1639.55 s

4 0.40 + 600.0s 47% 4.95 s 284.99 s 600.00 s
4 0.40 + 3600.0s 61% 4.97 s 481.99 s 3600.00 s

5 0.40 + 3600.0s 62% 7.72 s 704.33 s 3600.00 s

4 0.50 + 3600.0s 8% 6.57 s 3074.36 s 3600.00 s
4 0.50 + 7200.0s 13% 6.10 s 5882.66 s 7200.00 s

Table 1. AES considering N rounds of key schedule output.

lower than 100% may still allow a successful key recovery since the algorithm can
be run using other data from the key schedule if it fails for the first few rounds.
Considering later rounds of the key schedule has no performance penalty for the
AES, but does decrease the performance for Serpent as indicated in the row
16� 8 which considers 16 words of key schedule output starting from the 8-th
word. Our attacks were implemented using the Sage mathematics software [15].

We note from the results in Table 1 that the Max-PoSSo based method proposed
in this work compares favourably to the results in [9]. However, it offers poorer
results when compared to the ones in [17, 11]. While there is no prior work
to compare Table 2 with, we note that our technique compares favourably to
the generic combinatorial approach discussed earlier. Furthermore, our method
has some attractive features and flexibility which allow its application to more
extended scenarios and in principle to any block cipher4.

Finally, we note that our technique does not rely on δ1 = 0 and can thus be
applied if perfect asymmetry cannot be assumed. To demonstrate this feature,
we give results against Serpent for our technique when considering symmetric
noise (i.e., δ0 = δ1) in Table 3. For comparison, for δ0 = δ1 = 0.05 a combinatorial
approach similar to Section 5.2 would have to check rougly

(
128

d0.05·128e
)
≈ 236.4

candidates. In order to make the comparison fair, we aim for a success rate of
≈ 20% and thus only have to consider roughly 1/5 of those candidates. If each
of those checks costs at least 15 ·10−8 seconds – which ammounts to ≈ 390 CPU
cycles on a 2.6 Ghz CPU – then the overall running time would be greater than
the average running time reported in Table 3.

4 We note however that this does not imply the technique is practical for all block
ciphers as demonstrated by the lack of success against Twofish.

N δ0 aggr limit t r min t avg. t max t

12 0.05 – 600.0s 37% 8.22 s 457.57 s 600.00 s

12 0.15 + 60.0s 84% 0.67 s 11.25 s 60.00 s
16 0.15 + 60.0s 79% 0.88 s 13.49 s 60.00 s

16 � 8 0.15 + 1800.0s 64% 95.52 s 1089.80 s 1800.00 s

16 0.30 + 600.0s 74% 1.13 s 57.05 s 425.48 s

16 0.50 + 1800.0s 21% 135.41 s 1644.53 s 1800.00 s
16 0.50 + 3600.0s 38% 136.54 s 2763.68 s 3600.00 s

Table 2. Serpent considering 32 ·N bits of key schedule output

N δ0 = δ1 limit t r min t avg. t max t

12 0.01 3600.0 96% 4.60 s 256.46 3600.0 s

12 0.02 3600.0 79% 8.20 s 1139.72 3600.0 s

8 0.03 3600.0 41% 3.81 s 372.85 s 3600.0 s

12 0.03 7200.0 53% 24.57 s 4205.34 s 7200.0 s

12 0.05 3600.0 18% 5.84 s 1921.89 s 3600.0 s

Table 3. Serpent considering 32 ·N bits of key schedule output (symmetric noise)

6 Conclusion and Discussions

In this paper we followed up from the original work on Cold Boot key recovery
attacks in [9, 11, 17], and extended the analysis to consider other block ciphers
such as Twofish and Serpent. Our algorithms apply a novel method for solving a
set of non-linear algebraic equations with noise based on Integer Programming.
Besides improving some existing results and extending the range of scenarios
in which the attacks can be applied, this paper also brings into attention two
topics which in our opinion should be of enough interest for future research in
cryptology:

Block Cipher Key Schedule: the structure of the key schedule of block
ciphers has recently started attracting much attention from the cryptologic re-
search community. Traditionally, the key schedule operation has perhaps received
much less consideration from designers, and other than for efficiency and protec-
tion against some known attacks (e.g. slide attacks), the key schedule was often
designed in a somewhat ad-hoc way (in contrast to the usually well-justified
and motivated cipher round structure). However the recent attacks against the
AES and Kasumi have brought this particular operation to the forefront of block
cipher cryptanalysis (and as a result, design). While one can argue that some
of the models of attack used in the recent related-key attacks may be far too
generous to be of practical relevance, it is clear that resistance of ciphers against
these attacks will from now on be used as another form of measure of security
of block ciphers.

In this spirit, we propose in this paper a further measure of security for key
schedule operations, based on the Cold Boot attack scenario. These attacks are
arguably more practical than some of the other attacks targeting the key sched-
ule operation. More importantly, we believe the model can be used to further
evaluate the strength of the key schedule operation of block ciphers. Our results
show however that it is not trivial to provide high security against Cold Boot
attacks. In fact, by proposing generic algorithms for solving the Cold Boot prob-
lem, we showed that, contrary to general belief, several popular block ciphers are
also susceptible to attack under this model. How to come up with design criteria
for a secure key schedule under this model (while preserving other attractive
features such as efficiency) remains a topic for further research.

Polynomial System Solving with Noise: another contribution of this paper,
which is very likely to be of independent interest, is the treatment of the problem
of solving non-linear multivariate equations with noise. In fact, several interesting
problems in cryptography such as algebraic attacks, side-channel attacks and the
cryptanalysis of LPN/LWE-based schemes can be naturally modeled as Max-
PoSSo problems. However, so far this problem was not considered in its general
form. This paper presents a formalisation of this problem and a novel method,
based on Integer Programming, which proved to be a powerful technique in some
situations. We expect that this will bring MIP solvers further to the attention
of the cryptography research community and consider studying and improving
(MIP-based) Max-PoSSo methods an interesting area for future research.

7 Acknowledgements

We would like to thank Stefan Heinz, Timo Berthold and Ambros M. Gleixner
for helpful discussions on mixed integer programming and for providing tuning
parameters for SCIP suitable for our problems. We would also like to thank
Kenny Paterson for helpful comments on this work.

References

1. Tobias Achterberg. Constraint Integer Programming. PhD thesis, TU Berlin 2007.
http://scip.zib.de

2. Eli Biham, R.J. Anderson, and L.R. Knudsen. Serpent: A New Block Cipher
Proposal. In S. Vaudenay, editor, Fast Software Encryption 1998, volume 1372 of
LNCS, pages 222–238. Springer–Verlag, 1998.

3. Eli Biham, Orr Dunkelman, and Nathan Keller. A Related-Key Rectangle Attack
on the Full KASUMI. In , Advances in Cryptology - ASIACRYPT 2005, volume
3788 of LNCS, pages 443–561. Springer-Verlag, 2009.

4. Alex Biryukov, Dmitry Khovratovich and Ivica Nikolić. Distinguisher and Related-
Key Attack on the Full AES-256. Advances in Cryptology - CRYPTO 2009, volume
5677 of LNCS , pages 231–249, Springer-Verlag 2009.

5. Julia Borghoff, Lars R. Knudsen and Mathias Stolpe. Bivium as a Mixed-Integer
Linear Programming Problem. Cryptography and Coding – 12th IMA International
Conference, volume 5921 of LNCS, 133–152, Springer-Verlag 2009.

6. Carlos Cid, Sean Murphy, and Matthew J.B. Robshaw. Algebraic Aspects of the
Advanced Encryption Standard. Springer–Verlag, 2007.

7. J. Daemen and V. Rijmen. The Design of Rijndael. Springer–Verlag, 2002.
8. Jon Feldman. Decoding Error-Correcting Codes via Linear Programming. PhD

thesis, Massachusetts Institute of Technology 2003.
9. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,

William Paul, Joseph A. Calandrino and Ariel J. Feldman, Jacob Appelbaum and
Edward W. Felten. Lest We Remember: Cold Boot Attacks on Encryption Keys.
USENIX Security Symposium, 45–60, USENIX Association 2009.

10. Nadia Heninger and Hovav Shacham. Reconstructing RSA Private Keys from
Random Key Bits. Cryptology ePrint Archive, Report 2008/510, 2008.

11. Abdel A. Kamal and Amr M. Youssef. Applications of SAT Solvers to AES key
Recovery from Decayed Key Schedule Images. Proceedings of The Fourth Interna-
tional Conference on Emerging Security Information, Systems and Technologies –
SECURWARE 2010, July 18 – 25, 2010 - Venice/Mestre, Italy.

12. J. Lloyd. Re: cold boot attacks on disk encryption. Message posted to The Cryp-
tography Mailing List on 21 Feb 2008, archived at
http://www.mail-archive.com/cryptography@metzdowd.com/msg08876.html

13. Y. Oren, M. Kirschbaum, T. Popp and A. Wool. Algebraic Side-Channel Analysis
in the Presence of Errors. Proceedings of CHES 2010, LNCS 6225, pp. 428–442,
Springer-Verlag 2010.

14. Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall and
Niels Ferguson. Twofish: A 128-Bit Block Cipher. http://www.schneier.com/

paper-twofish-paper.pdf, 1998.
15. William Stein et al. Sage Mathematics Software (Version 4.4.1). The Sage Devel-

opment Team, 2010, http://www.sagemath.org.
16. TrueCrypt Project, http://www.truecrypt.org/.
17. Alex Tsow. An Improved Recovery Algorithm for Decayed AES Key Schedule

Images. Proceedings of SAC 2009, volume 5867 of LNCS, pages 215–230, Springer-
Verlag 2009.

Input: Z – a 32-bit word
Input: L – a list of two 32-bit words
Result: a 32-bit word
begin

L0, L1 ←− L[0], L[1];
z0, z1, z2, z3 ←− split Z into four bytes;
z0, z1, z2, z3 ←− q0[z0], q1[z1], q0[z2], q1[z3];
z0, z1, z2, z3 ←− z0 ⊕ L1[0], z1 ⊕ L1[1], z2 ⊕ L1[2], z3 ⊕ L1[3];
z0, z1, z2, z3 ←− q0[z0], q0[z1], q1[z2], q1[z3];
z0, z1, z2, z3 ←− z0 ⊕ L0[0], z1 ⊕ L0[1], z2 ⊕ L0[2], z3 ⊕ L0[3];
z0, z1, z2, z3 ←− q1[z0], q0[z1], q1[z2], q0[z3];
z0, z1, z2, z3 ←−MDS(z0, z1, z2, z3);
return the 32-bit word consisting of the four bytes z0, z1, z2, z3;

end
Algorithm 1: h

Input: i – an integer
Input: Me – a list of 32-bit words
Input: Mo – a list of 32-bit words
Result: two 32-bit words
begin

ρ←− 224 + 216 + 28 + 20;
Ai ←− h(2iρ,Me);
Bi ←− h((2i+ 1)ρ,Mo) ≪ 8;
K2i ←− Ai +Bi mod 232;
K2i+1 ←− (Ai + 2Bi mod 232) ≪ 9;
return K2i,K2i+1;

end
Algorithm 2: gen subkeys

