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Abstract

We show how the study of the geometry of the nine flex tangents to a cubic produces pseudo-
parameterizations, including the ones given by Icart, Kammerer, Lercier, Renault and Farashahi,
and infinitely many new ones.

To Jean-Jacques Quisquater, on the occasion of his éméritat

1 Introduction

Much attention has been focused recently on the problem of computing pointson a given elliptic
curve over a finite field in deterministic polynomial time. This problem arises in a very natural man-
ner in many cryptographic protocols when one wants to encode messages into the group of points
of an elliptic curve. A good example of the algorithmic and cryptologic motivations infinding these
parameterizations can be found in the identity-based encryption from [4].The difficulty is to deter-
ministically find a field elementx such that some polynomial inx is a square, see [14], Section 6.1.8.
For example, when the curve is given by a reduced Weierstrass equationy2 = x3 + ax + b, we
deterministically searchx such thatx3 + ax+ b is a square in the field.

In 2006, Shallue and Woestjine [20] proposed a first practical deterministic algorithm. In 2009,
Icart [12] proposed another deterministic encoding for elliptic curves over a fieldk with q elements,
whenq is congruent to2 modulo3. Icart’s algorithm has quasi-quadratic complexity inlog q. Kam-
merer, Lercier and Renault [13] proposed a different encoding under the additional condition that
the elliptic curve has a rational point of order3, and even for a special class of hyperelliptic curves.
Farashahi [8] found yet another parameterization for such elliptic curves too. A crucial point in
[12, 13, 8] is that the mapx 7→ x3 is bijective for a finite fieldk having cardinality congruent to
2 modulo 3. Its inverse map isx 7→ xe wheree mod q − 1 is the inverse of3 mod q − 1 and
0 ≤ e < q − 1. Exponentiation bye can be computed in deterministic time(log q)2+o(1) using the
fast exponentiation algorithm. So in order to deterministically compute points on anelliptic curveC
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over such a finite field, one can afford the usual field operations together with cubic roots. In other
words, one looks for a parameterization of the elliptic curve by cubic radicals. Such a parameteriza-
tion will be called apseudo-parameterizationin this article. Finding such a pseudo-parameterization
is a special case of the problem of finding parameterizations of curves byradicals [19].

We show how such pseudo-parameterizations can be obtained from the study of the dual curve of
the elliptic curveC. In a nutshell, we produce points onC as intersection points betweenC and well
chosen lines. IfD is a line in the projective plane, then the intersectionD.C consists of three points,
counting multiplicities. These three points can be computed by solving a cubic equation. We recall
in Section 2 how to derive the Tartaglia-Cardan formulae for this purpose.Recall these formulae
run in two steps. One first has to compute a square root of the discriminant. The three solutions are
then calculated using the field operations and cubic roots. Since cubic rootsare not a problem in our
context, the only remaining difficulty is computing the square root of the discriminant. So we choose
the lineD in such a way that the discriminant of the intersectionD.C is a square, and we assume that
we have an algebraic formula for its square root. More precisely, we consider a lineDt depending
on a rational formal parametert. This means that the coefficients in the projective equation ofDt are
polynomials in the indeterminatet. The discriminant∆(t) of the intersectionLt.C is then a rational
fraction in t. We ask that this discriminant be a square ink(t). We compute once for all a formal
square rootδ(t) of ∆(t). For every value oft we can then produce a point onC using only the field
operations and cubic roots.

We recall in Section 3 that the projective lines inP are parametrized by the dual planeP̂. The line
in P with projective equationUX + V Y +WZ = 0 is represented by the point[U : V : W ] ∈ P̂. A
rational family of linest 7→ Dt thus gives rise to a rational curveL insideP̂. Indeed, if the projective
equation ofDt isU(t)X+V (t)Y +W (t)Z = 0 then the mapt 7→ [U(t) : V (t) :W (t)] parametrizes
a rational curve insidêP. The discriminant∆(t) vanishes wheneverDt.C has a multiple root. This
happens if and only ifDt is tangentto C. Not every projective line is tangent toC. The subset of
P̂ corresponding to lines that are tangent toC is a curve denoted̂C and called thedual curve ofC.
So∆(t) describes the intersection between the rational curveL and the dual curvêC. And ∆(t) is
a square if and only if every point in the intersection betweenL andĈ has even multipicity. So we
will be interested in rational curvesL in P̂ that have even intersection with the dual curve to the cubic
curveC. The connection between such curves and pseudo-parameterizations isdetailed in Section 4.

Because the dual curvêC plays such an important role we will study it in Section 3. This curve
has genus1 and9 singularities, all cusps. Indeed the nine cusps ofĈ correspond to the nine flex
tangents toC, while the smooth points on̂C parametrize the tangent lines toC that are not flexes.
These nine points in the dual plane form an interresting configuration that we study in Section 5. We
are particularly interested in rational curvesL passing through several among these nine points. We
will find that many such curvesL have even intersection witĥC. We will show in Section 6 that these
curves give rise to all the known pseudo-parameterizations ofC found by Icart, Farashahi, Kammerer,
Lercier, Renault, and to several new ones. It is then natural to ask howmany rational curves on̂P have
even intersection witĥC. We shall see in Section 7 that there are infinitely many such rational curves,
giving rise to infinitely many inequivalent pseudo-parameterizations. These curves lift to rational
curves on the degree two coveringΣ of the dual plane ramified alonĝC. This will lead us to the
classical and beautiful topic of rational curves onK3 surfaces.

Throughout the paper, we denote byk a field with characteristic different from2 and3, by k̄ ⊃ k
an algebraic closure ofk, and byζ3 ∈ k̄ a primitive third root of unity. We set

√
−3 = 2ζ3 + 1.

The Maple [17] code for the calculations in this article can be found on the authors’ web pages.
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2 Solving cubic equations

In this section we recall the Tartaglia-Cardan formulae for solving cubic equations by radicals. A
modern treatment can be found in [6]. We believe it is worth stating these equations in an unambiguous
form, that is well adapted to our context, and does not make excessive use of radicals and roots of unity.
In other words we need regular and generic formulae. Leth(x) = x3 − s1x2 + s2x− s3 be a degree
3 separable polynomial ink[x]. Call r0, r1 andr2 the three roots ofh(x) in k̄. Set

δ =
√
−3(r1 − r0)(r2 − r1)(r0 − r2)

and∆ = δ2. Note that∆ is the usual discriminant multiplied by−3. We call it thetwisted discrimi-
nant. Since it is a symmetric function of the roots, it can be expressed as a polynomial in s1, s2 and
s3. Indeed

∆ = 81s23 − 54s3s1s2 − 3s21s
2
2 + 12s31s3 + 12s32.

In particular∆ lies in k. Let l = k(ζ3, δ) ⊂ k̄ be the field obtained by adjoiningδ and a primitive
third root of unity tok. We setm = l(r1, r2, r0).

If the extensionl ⊂ m is non-trivial then it is a cyclic cubic extension. Sincel contains a primitive
third root of unity, this cubic extension is a Kummer extension: it is generated by the cubic root of
some element inl. Let σ be the generator of the Galois group that sendsri to ri+1 for i ∈ {0, 1, 2},
with the convention that indices make sense modulo3. We set

ρ = r0 + ζ−1
3 r1 + ζ−2

3 r2

and we check thatσ(ρ) = ζ3ρ. We setR = ρ3 and we check thatR is invariant byσ. SoR is an
invariant for the alternate group acting on{r1, r2, r3} and it can be expressed as a polynomial ins1,
s2, s3 andδ. Indeed we find

R = ρ3 = s31 +
27

2
s3 −

9

2
s1s2 −

3

2
δ.

Similarly we set
ρ′ = r0 + ζ3r1 + ζ23r2

and we check that

R′ = ρ′3 = s31 +
27

2
s3 −

9

2
s1s2 +

3

2
δ.

We note thatρρ′ = r20 + r21 + r22 − r0r1 − r1r2 − r2r0 is invariant by the full symmetric group
and is indeed equal tos21 − 3s2. So bothρ andρ′ are computed by extracting a single cubic root.

Finally, the three rootsr0, r1, r2 can be expressed in terms ofρ by solving the linear system:










r0 + r1 + r2 = s1
r0 + ζ−1

3 r1 + ζ3r2 = ρ

r0 + ζ3r1 + ζ−1
3 r2 = ρ′

In particular the formula for the root

r0 =
s1 + ρ+ ρ′

3
(1)

does not involveζ3.
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3 The dual curve of a cubic

In this section we review the properties of the dual of a cubic curve. A thorough treatment of the
duality for plane curves can be found in [9] , [11] and [10]. LetE = k3 and letÊ be the dual of
E. Let U = (1, 0, 0), V = (0, 1, 0) andW = (0, 0, 1). So (U, V,W ) is the canonical basis ofE.
Let (X,Y, Z) be the dual basis of(U, V,W ). Let P = Proj(E) = Proj k[X,Y, Z] be the projective
plane overk. Let P̂ = Proj(Ê) = Proj k[U, V,W ] be the dual projective plane. The main idea of
projective dualy is that points in̂P parametrize lines inP, and conversely. The point[U : V : W ] in
P̂ corresponds to the line with equationUX + V Y +WZ = 0 in P. And the point[X : Y : Z] in P

parametrizes the lineXU + Y V + ZW = 0 in P̂.
Now letC ⊂ P be an absolutly integral curve with equationF (X,Y, Z) = 0. Let FX = ∂F

∂X
,

FY = ∂F
∂Y

, FZ = ∂F
∂Z

be the three partial derivatives ofF . The tangent toC at a smooth point
P = [XP : YP , ZP ] has equation

FX(XP , YP , ZP )U + FY (XP , YP , ZP )V + FZ(XP , YP , ZP )W = 0.

The corresponding point in̂P is [FX(XP , YP , ZP ) : FY (XP , YP , ZP ) : FZ(XP , YP , ZP )]. The
Zariski closure of the set of all such points is thedual Ĉ of C. SoĈ is the closure of the image of the
so called Gauss morphism

ωC : Csmo //

P̂

[X : Y : Z] �

// [FX(X,Y, Z), FY (X,Y, Z), FZ(X,Y, Z)],

whereCsmo is the locus of smooth points onC.
We assume that the characteristic ofk is odd, and that not every point on the curveC is a flex or

a singular point (in particularC is not a line). Then̂C is an absolutely integral curve. And the dual of
Ĉ isC. This is the biduality theorem [11, Theorem 5.91]. Duality is very useful because it translates
properties ofC into properties ofĈ and conversely. In particular the Gauss mapωC is a birational
map fromC to Ĉ. It maps the flexes ofC onto the cusps of̂C.

The first non-trivial example of duality concerns conics (smooth plane projective curves of degree
2). The dual of conic is a conic.

We now assume thatC is a smooth cubic. Then̂C has degree6 and to each of the nine flexes
of C there corresponds an ordinary cusp onĈ. SinceĈ has geometric genus1 and arithmetic genus
10 = (6 − 1)(6 − 2)/2 we deduce that there is no other singularity on it than these nine cusps. For
example, ifC has equationF (X,Y, Z) = 0 where

F (X,Y, Z) = X3 + Y 3 + Z3 − 3aXY Z, (2)

then the dual curve has equationG(U, V,W ) = 0 where

G(U, V,W ) = U6 + V 6 +W 6 − 6a2(U4VW + UV 4W + UVW 4)

+(4a3 − 2)(U3V 3 + U3W 3 + V 3W 3) + (12a− 3a4)U2V 2W 2.
(3)

The equation of the dual is found by eliminatingX, Y , andZ in the system










U = FX(X,Y, Z)
V = FY (X,Y, Z)
W = FZ(X,Y, Z)
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The real loci of the two curvesC andĈ are represented in Figure 1 and Figure 2 respectively in the
casea = 0.

Figure 1: The cubic with equationX3 + Y 3 + Z3 = 0

Figure 2: The dual curve with equationU6 + V 6 +W 6 − 2U3V 3 − 2V 3W 3 − 2U3W 3 = 0

The equation of the dual curve arises naturally when one studies the intersection of the cubicC
with a projective lineD. Indeed such a lineD ⊂ P meetsC in exactly three points unless it is a
tangent line toC (in which case we have one simple point and one double point) or even a flex(in
which case we have one triple point). Assume thatD is the line with equation

UX + V Y +WZ = 0. (4)

The intersectionD.C is described by the homogeneous system consisting of Equation (4) and the
equation of the cubicC. We can use Equation (4) to eliminate one of the three variablesX, Y , Z
in the equation ofC. We obtain a binary cubic homogeneous form in the two remaining variables,
whose twisted discriminant∆(U, V,W ) is the equation of the dual curvêC (up to a square). This is
because this discriminant cancels exactly when the intersectionD.C has multiplicities.

4 Pseudo-parameterizations

Let C be an absolutely integral plane projective curve over a fieldk. A parameterizationof C is a
non-constant map fromP1 ontoC. In more concrete terms we have a pointPt = [X(t) : Y (t) : Z(t)]
onC, depending on one formal parametert, the three projective coordinates beeing polynomials in
k[t]. It is well known [19, theorem 4.11.] that a necessary condition for such a parameterization to
exist is thatC has geometric genus zero. In particular this never happens for an elliptic curve. One
may relax the condition that the coordinatesX(t), Y (t) andZ(t) should lye ink[x] and allow for
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more general algebraic functions. A typical restriction would be to ask thatX(t), Y (t) andZ(t)
should belong to a radicial extension ofk(t). In other words they should be rational fractions int and
e

√

R(t) for some positive integere and someR(t) in k(t). As explained in the introduction we will
be interested in the case whenC is a smooth cubic,k is a field with characteristic different from2
and3, ande = 3. We want to parametrize plane cubics by cubic radicals. Such a parameterization
will be called apseudo-parameterizationto avoid any confusion with rational parameterizations that
do not exist for genus one curves. We will assume thatC(k) is non-empty. This is not a restriction if
k is a finite field. We will even assume thatC has ak-rational flexO. This is not a restriction either,
because every cubic with a rational point isk-isomorphic to a plane cubic with a rational flex.

We sketched in the introduction how we claim to find pseudo-parameterizations. We consider a
line

Dt : U(t)X + V (t)Y +W (t)Z = 0

in P, depending on one rational parametert. Since every line inP corresponds to a point in̂P we can
associate to the familyDt a rational curveL ⊂ P̂ which is the image of the map

t 7→ [U(t) : V (t) :W (t)]. (5)

We saw in Section 3 that the intersectionDt.C is described by a cubic form whose twisted
discriminant∆(t) is, up to a square, equal toG(U(t), V (t),W (t)) whereG(U, V,W ) = 0 is the
projective equation of the dual̂C. So we look for polynomialsU(t), V (t) andW (t) such that
G(U(t), V (t),W (t)) is a square ink(t). A geometric interpretation of the latter condition is that
the rational curveL meets the dual̂C with all even multiplicities. So we look for a rational curve
L ⊂ P̂ that intersects the dual curvêC with even multiplicities. Such a rational curve may be given
by its projective equation, or as the image of a parameterization as in (5).

One may wonder if every pseudo-parameterization occurs in that way. Webriefly explain why this
is essentially the case. A pseudo-parameterizationt 7→ Pt is a surjective map from a cyclic covering
of P

1 ontoC. So we have two conjugated pointsP ′t andP ′′t . SinceC has a rational flexO, we have
a chord and tangent group law, denoted⊕, on it. We consider the sumQt = Pt ⊕ P ′t ⊕ P ′′t . This
is a point onC defined overk(t), or equivalently a mapt 7→ Qt. We saw that such a map must be
constant becauseC has genus1. SoPt ⊕ P ′t ⊕ P ′′t is a constant pointA ∈ C(k). If A is the origin
O then for every value of the parametert, the three pointsPt, P ′t andP ′′t are colinear. They lye on
a lineDt with equationU(t)X + V (t)Y +W (t)Z = 0 whereU(t), V (t) andW (t) are ink[t]. So
the pseudo-parameterizationt 7→ Pt is of the type studied above. IfA is notO, we may look for
a pointB ∈ C(k) such thatB ⊕ B ⊕ B = A. Such a point always exists ifk is a finite field and
#C(k) is not divisible by3. Then we setRt = Pt ⊖ B and check thatRt ⊕ R′t ⊕ R′′t = O. So the
pseudo-parameterizationt 7→ Pt is of the type studied above, up to translation by a constant factor. In
general, we setRt = Pt ⊕ Pt ⊕ Pt ⊖A and check thatRt +R′t +R

′′
t = O. Sot 7→ Pt is of the type

studied above, up to a translation and a multiplication by3 isogeny.
We will say that two pseudo-parameterizationst 7→ Pt andt 7→ Qt areequivalentif there exists

a birational fractionφ(t) such thatQt = Pφ(t). We may wonder if two different families of projective
linest 7→ Dt andt 7→ Et can give rise to equivalent pseudo-parameterizationt 7→ Pt andt 7→ Qt. In
that casePφ(t) = Qt lies in the intersection ofDφ(t) andEt. If these two lines are distinct then their
intersection consists of a single pointPφ(t) = Qt defined overk(t). Since everyk(t)-rational point
onC is constant we deduce thatPt andQt are constant. A contradiction. SoDφ(t) = Et and the two
families correspond by a change of variable. In particular the two associated rational curves in the
dual plane are the same.
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The conclusion is that finding pseudo-parameterizations boils down to finding rational curvesL
in the dual planêP having even intersection witĥC. It is natural to study first rational curves going
through several cusps of̂C, because the multiplicity intersection at a singular point is greater than and
generically equal to2. In the next section we look for such rational curves with a low degree.

5 The geometry of flexes

Let C ⊂ P be a smooth plane projective cubic. The nine flex points ofC define a configuration in
the planeP. More interestingly, the nine flex tangents correspond to nine points in the dual planeP̂.
We study the latter configuration. We are particularly interested in low degreerational curves going
through many of these nine cusps ofĈ. Remind arational curve is a curve with geometric genus
0 and a rational point. This is equivalent to the existence of a rational parameterization, see [19],
theorem 4.11. We will first assume thatC is the Hessian plane cubic given by Equation (2). Indeed,
any smooth plane cubic can be mapped onto such an Hessian cubic by a projective linear transform,
possibly after replacingk by a finite extension of it. The modular invariant ofC is

j(a) =
27a3(a+ 2)3(a2 − 2a+ 4)3

(a− 1)3(a2 + a+ 1)3
.

The nine flexes ofC are the three points in the orbit ofO = (0 : −1 : 1) under the action ofS3, plus
the six points in the orbit of(−1 : ζ3 : 0) under the action ofS3. Let

ωC : (X : Y : Z) 7→ (X2 − aY Z : Y 2 − aXZ : Z2 − aXY )

be the Gauss map associated withC. The images byωC of the nine flexes are the three points in the
orbit of (a : 1 : 1) under the action ofS3 plus the six points in the orbit of(ζ23 : ζ3 : a) under the action
of S3. Figure 3 lists these flexes and their images by the Gauss map. We setO = A0 = (0 : −1 : 1)
andÔ = B0 = (a : 1 : 1).

Flex ofC Cusp onĈ
A0 = (0 : −1 : 1) B0 = (a : 1 : 1)
A1 = (−1 : 1 : 0) B1 = (1 : 1 : a)
A2 = (1 : 0 : −1) B2 = (1 : a : 1)
A3 = (−1 : ζ3 : 0) B3 = (ζ23 : ζ3 : a)
A4 = (ζ3 : 0 : −1) B4 = (ζ3 : a : ζ23 )
A5 = (0 : −1 : ζ3) B5 = (a : ζ23 : ζ3)
A6 = (ζ3 : −1 : 0) B6 = (ζ3 : ζ23 : a)
A7 = (−1 : 0 : ζ3) B7 = (ζ23 : a : ζ3)
A8 = (0 : ζ3 : −1) B8 = (a : ζ3 : ζ23 )

Figure 3: Flexes ofC and the corresponding cusps on its dual

These nine points in the dual plane form an interesting configuration, depending on the single
parametera.

Position with respect to lines One can first check, e.g. by exhaustive search, that no three among
these nine cusps in the dual plane are colinear unless the modular invariantis zero. See the proof of
Proposition 1 in Section 7.2 of [5]. So the nine points in the dual plane corresponding to the nine flex
lines are in general position with respect to lines. We deduce the following lemmaby duality.

7



Lemma 1 A smooth plane projective cubic over a field with prime to six characteristic hasno three
concurrent tangent flexes, unless its modular invariant is zero.

Position with respect to conics We now consider the configuration of the nine flex tangents from
the point of view of pencils of conics. Remember that six points in general position do not lie on any
conic. Six pairwise distinct points lying on a conic are said to becoconic. Six pairwise distinct lines
are said to becoconicif they all are tangent to a smooth conic.

Lemma 2 Consider a smooth plane projective cubic over a field with prime to six characteristic and
assume that its modular invariant is not zero. Remove3 colinear flex points. The six tangents at the
six remaining flexes are coconic. There are twelve such configurationsof six coconic flex tangents.

Note that we claim that the six flex tangents are coconic. Not the six flex points. Equivalently we
claim that the six points in the dual plane corresponding to the six flex tangentsare coconic.

We first note that the conic with equationUW − aV 2 = 0 meetsĈ at (a : 1 : 1), (1 : 1 : a),
(ζ23 : ζ3 : a), (a : ζ23 : ζ3), (ζ3 : ζ23 : a), and(a : ζ3 : ζ23 ). The three remaining flexes inP are
(1 : 0 : −1), (ζ3 : 0 : −1) and(1 : 0 : ζ3) and they lie on the line with equationY = 0. The action of
S3 produces two more similar conics.

The conic with equationU2 + V 2 + W 2 + (a + 1)(UV + UW + VW ) = 0 meetsĈ at the
six points in the orbit of(ζ23 : ζ3 : a) under the action ofS3. The three remaining flexes inP are
(0 : −1 : 1), (−1 : 1 : 0), and(1 : 0 : −1). They lie on the line with equationX + Y + Z = 0.

The conic with equationU2 + ζ3V
2 + ζ23W

2 + (a + 1)(ζ23UV + ζ3UW + VW ) = 0 meetsĈ
at the three points in the orbit of(a : 1 : 1) under the action ofS3. And also at the three points in
the orbit of(ζ23 : ζ3 : a) under the action ofS3. The three remaining flexes inP are(0 : ζ3 : −1),
(ζ3 : −1 : 0), and(−1 : 0 : ζ3). They lie on the line with equationX + ζ3Y + ζ23Z = 0. The action
of S3 produces one more such conic.

The conic with equationζ3U2 + V 2 + ζ3W
2 + (a+ ζ23 )(UV + ζ23UW + VW ) = 0 meetsĈ at

(a : 1 : 1), (1 : 1 : a), (ζ3 : a : ζ23 ), (a : ζ23 : ζ3), (ζ3 : ζ23 , a), (ζ23 : a : ζ3). The three remaining
flexes inP are(1 : 0 : −1), (−1 : ζ3 : 0), and(0 : ζ3 : −1). They lie on the line with equation
ζ3X + Y + ζ3Z = 0. The action ofS3 produces five more conics.

We thus obtain twelve smooth conics that cross the dual curveĈ at six out of its nine cusps. Each
of these conics is associated with one of the twelve triples of colinear flexes. 2

Four among these twelve conics are especially interesting because their equations do not involve
ζ3. We note that three among these four conics are clearly rational overk(a) because they have an evi-
dentk(a) rational point. The last one is rational also because its quotient by the evident automorphism
of order3 is P

1 overk(a).

Position with respect to cubics Next we study the pencil of cubics going through the nine points in
the dual plane associated with the nine flex tangents. It has projective dimension zero in general. The
cubic with equation

a(U3 + V 3 +W 3) = (a3 + 2)UVW

goes through all these nine points in the dual plane. This cubic is in generalnon-singular. So it is not
particularly interesting for our purpose.
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Position with respect to quartics We now consider curves of degree4 in the dual plane. The
projective dimension of the space of plane quartics is14. So we can force a quartic to meet the
9 points we are interested in and there remains5 degrees of freedom. Since we are particularly
interested in rational curves we use these remaining degrees of freedomto impose a big singularity at
Ô = B0 = (a : 1 : 1). Indeed, two degrees of freedom suffice to cancel the degree1 part in the Taylor
expansion at̂O. And three more degrees of freedom suffice to cancel the degree2 part also. We find
a rational quarticQ in P̂ passing through the nine cusps ofĈ and having intersection multiplicity at
least two at each of them (because they are cusps) and at least six at the cuspÔ. The equation of this
rational quarticQ is

U4 + a(V 4 +W 4)− 2a(U3V + U3W + V 3W + VW 3)− (a3 + 1)U(V 3 +W 3)

+3a2U2(V 2 +W 2) + (a4 + 2a)V 2W 2 + (1− a3)UVW (V +W ) = 0.

This quartic is irreducible as soon as the modular invariant ofC is non-zero, which we assume
from now on. Computing the intersection with all lines throughÔ we find the following parameteri-
zation of this quartic

U(t) = a2t4 − 2at3 + (a3 + 2)t2 − 2a2t+ a,

V (t) = a4t4 + (1− 3a3)t3 + 3a2t2 − 2at+ 1,

W (t) = at4 − (a3 + 1)t3 + 3a2t2 − 2at+ 1.

SubstitutingU , V , andW by U(t), V (t), andW (t) in the equation ofĈ we find the degree24
polynomial

t6(t+ 1)2(t2 − t+ 1)2(at− 2)2((a+ 1)t− 1)2((a2 − a+ 1)t2 + (1− 2a)t+ 1)2(a2t2 + 1− at)2.

We check thatQ has two branches at̂O. One branch corresponds tot = 0, and it has intersection
multiplicity 6 with Ĉ. The other branch corresponds tot = 2/a, and it has intersection multiplicity2
with Ĉ. This is illustrated by Figure 4 where the real locus ofĈ is in black and the real locus ofQ is
in red. So the total multiplicity ofQ.Ĉ at Ô is 8. And the intersectionQ.Ĉ only consists of cusps of
Ĉ; one with multiplicity8 and the eight others with multiplicity2. The real part of this intersection
locus is visible on Figure 4.

Lemma 3 Consider a smooth plane projective cubicC over a field with prime to six characteristic
and assume that its modular invariant is not zero. LetĈ be the dual ofC. Let Ô be one of the
nine cusps of̂C. There exists a rational quarticQ in the dual plane, such that the intersectionQ.Ĉ
has multiplicity8 at Ô and 2 at each of the eight remaining cusps. In particularQ.Ĉ is an even
combination of cusps of̂C.

We stress that the definition of the quarticQ involves one flex on the one hand, and the eight
remaining flexes on the other hand. So we can define this quartic for any cubic having a rational flex,
that is for any elliptic curve (and this makes a difference with the four conicsconstructed earlier, that
distinguish a triple of colinear flexes, and therefore cannot always be defined over the base field.)

So we can take forC an elliptic curve with Weierstrass equation

F (X,Y, Z) = Y 2Z −X3 − aXZ2 − bZ3. (6)

9



Figure 4: The real part of the intersection ofĈ andQ.

We assumea 6= 0, so the modular invariant is non-zero either. The image of the originO = (0 : 1 : 0)
by the Gauss map iŝO = (0 : 0 : 1), and the quartiĉQ given by Lemma 3 has equation

U4 − 3V 4 + 6UV 2W = 0,

and parameterization

U(t) = 6t2, (7)

V (t) = 6t3,

W (t) = 3at4 − 1.

6 Intersecting a cubic with lines

In this section we assume that the mapa 7→ a3 from k to k is surjective. This is the case ifk is the
field of real numbers for example. This is also the case ifk is a finite field withq elements whenq is
congruent to2 modulo3. For every elementa in k we choose once and for all a cubic root3

√
a of a.

This way we define a map3√ : k → k. We will use the general recipe in Section 4 and the rational
curves exhibited in Section 5 to produce several pseudo-parameterizations of a plane cubicC.

6.1 Intersecting the dual curve with a conic

We may first takeL to be one of the twelve conics in Lemma 2. So we assume thatC is the Hessian
cubic given by Equation (2) for somea such thata3 6= 1. Four conics, among the twelve conics given
in Lemma 2, are rational overk(a). The intersectionL.Ĉ has degree12 and contains six among the
nine cusps ofĈ, each with multiplicity2. So this intersection is exactly twice the sum of these six
cusps. If we take forL the conic with equationUW − aV 2 = 0 then a convenient parameterization
is given byU(t) = 1, V (t) = −t andW (t) = at2. The corresponding lineDt has equation

X − tY + at2Z = 0.

We substituteX by tY − at2Z in the Hessian Equation (2) and find the degree3 form in Y andZ

(t3 + 1)Y 3 − 3at(t3 + 1)Y 2Z + 3a2t2(t3 + 1)Y Z2 + (1− a3t6)Z3

10



describing the intersectionC.Dt. We divide by(t3 + 1)Z3 and we obtain a cubic polynomial in
y = Y/Z whose twisted discriminant is

∆(t) =

(

9(1 + a3t3)

1 + t3

)2

.

We use the formulae and notation in Section 2. We have

s1 = 3at,

s2 = 3a2t2,

s3 =
a3t6 − 1

t3 + 1
,

δ =
9(1 + a3t3)

1 + t3
,

R = −27
a3t3 + 1

t3 + 1
,

R′ = 0.

So we find the solution

y = at− 3

√

a3t3 + 1

t3 + 1
,

and we deduce

x = X/Z = ty − at2 = −t 3

√

a3t3 + 1

t3 + 1
,

This is the pseudo-parameterization found by Farashahi [8].

6.2 Intersecting the dual curve with a quartic

Assume now that we takeL to be the rational quarticQ in Lemma 3. All the multiplicities in the
intersectionQ.Ĉ are even. So we expect the twisted discriminant to be a square. This time we mayas
well take forC the Weierstrass cubic in Equation (6). The parameterization ofQ given in Equation (7)
provides a one parameter family of lines(Dt)t with equation

6t2X + 6t3Y + (3at4 − 1)Z = 0.

We divide byZ, we setx = X/Z, y = Y/Z and we substitutey by 1/(6t3) − at/2 − x/t in the
Weierstrass Equation (6). We find a cubic equationx3 − s1x2 + s2x− s3 in x = X/Z, where

s1 = 1/t2,

s2 = 1/(3t4),

s3 = (1/t6 − 6a/t2 − 36b+ 9a2t2)/36.

Using the formulae and notation in Section 2 we find

δ = (−1/t6 − 108b− 18a/t2 + 27a2t2)/12,

R = 0,

R′ = (−1/t6 − 108b− 18a/t2 + 27a2t2)/4.
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So we find the solution

x = X/Z =
1

3t2
+

3

√

a2t2

4
− 1

108t6
− b− a

6t2

and

y = Y/Z =
1

6t3
− at/2− x/t.

This is the pseudo-parameterization found by Icart [12], up to the change of variablet← −1/t.

6.3 Intersecting the dual curve with a line

Assume finally that we take forL a line passing through two rational cusps ofĈ. So we assume that
C is the Hessian cubic given by Equation (2) for somea3 6= 1. AssumeL is the unique line passing
through the two cuspsB0 = (a : 1 : 1) andB2 = (1 : a : 1) of Ĉ. The intersectionL.Ĉ has degree
6. Since(a : 1 : 1) and(1 : a : 1) each have intersection multiplicity≥ 2, there remains at most two
intersection points. An illustration of this situation in the real projective plane is given on Figure 5.

Figure 5: The intersection of̂C andL

Not all the multiplicities in the intersectionL.Ĉ are even, but only two multiplicities are odd. So
we expect∆(t) to be a square times a degree2 polynomial int. Points onL ⊂ P̂ represent a linear
pencil of lines inP generated by the tangents toC at (0 : −1 : 1) and(1 : 0 : −1). The first tangent
has equationaX + Y + Z = 0. The second tangent has equationX + aY + Z = 0. So lett be a
formal parameter and consider the lineDt with equation(at+ 1)X + (t+ a)Y + (t+ 1)Z = 0. The
tangent at(0 : −1 : 1) corresponds to the valuet =∞. The tangent at(1 : 0 : −1) corresponds to the
valuet = 0. The lineDt meets the fixed point(1 : 1 : −a − 1) and the moving point(1,−t, t − 1).
So a parametric description ofDt is given by

i 7→ (i+ 1 : i− t : t− 1− (a+ 1)i).

We substituteX by i + 1, Y by i − t andZ by t − 1 − (a + 1)i in Equation (2) and divide by the
leading coefficient. We find the degree three polynomial

h(i) = i3 +
3t(a+ 2)i

a2 + a+ 1
+

3t(1− t)
a2 + a+ 1

(8)

defining the intersectionDt.C. The twisted discriminant ofh is

∆(t) = 81t2
9(a2 + a+ 1)t2 + 2(2a+ 1)(a2 + a+ 7)t+ 9(a2 + a+ 1)

(a2 + a+ 1)3
. (9)
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This is not quite a square ink(a)(t). However, it only has two roots with odd multiplicity. So
if we substitutet by a well chosen rational fraction, we can turn∆ into a square. So we look for a
parameterization of the plane projective conic with equation

(a2 + a+ 1)S2 = 9(a2 + a+ 1)T 2 + 2(2a+ 1)(a2 + a+ 7)TK + 9(a2 + a+ 1)K2. (10)

This conic has two evidentk-rational points, namely(3 : 1 : 0) and(3 : 0 : 1). The line through
these two points has equation

−S + 3T + 3K = 0.

The tangent at(3 : 0 : 1) has equation

3(a2 + a+ 1)S − (2a+ 1)(a2 + a+ 7)T − 9(a2 + a+ 1)K = 0.

The generic line in the linear pencil generated by these two lines has equation

(3(a2 + a+ 1)− j)S + (3j − (2a+ 1)(a2 + a+ 7)j)T + (3j − 9(a2 + a+ 1)j)K = 0 (11)

wherej is a formal parameter.
Intersecting the conic in Equation (10) with the line in Equation (11) we find the parameterization











S(j) = 3j2 − 2(a+ 2)3j + 3(a+ 2)3(a2 + a+ 1),
T (j) = j(j − 3(a2 + a+ 1)),
K(j) = (a2 + a+ 1)((a+ 2)3 − 3j).

We now substitutet by T (j)/K(j) in Equation (8) and find a cubic polynomial with coefficients
in the fieldk(a)(j). If we substitutet by T (j)/K(j) in Equation (9) we find that∆ = δ2(j) where

δ(j) =
9j(3j2 − 2(a+ 2)3j + 3(a2 + a+ 1)(a+ 2)3)(3(a2 + a+ 1)− j)

((a+ 2)3 − 3j)2(a2 + a+ 1)3
.

We use the formulae and notation in Section 2. The polynomialh in Equation (8) has coefficients
1,−s1, s2 and−s3 with

s1 = 0

s2 = −3j(a+ 2)(3(a2 + a+ 1)− j)
(a2 + a+ 1)2((a+ 2)3 − 3j)

s3 =
3j(3(a2 + a+ 1)− j)((a2 + a+ 1)(a+ 2)3 − j2)

(a2 + a+ 1)3((a+ 2)3 − 3j)2
.

We deduce the following pseudo-parameterization of the cubicC

R(j) =
27j2(3(a2 + a+ 1)− j)

((a+ 2)3 − 3j)(a2 + a+ 1)3

ρ(j) = 3

√

R(j)

ρ′(j) =
9j(a+ 2)(3(a2 + a+ 1)− j)

(a2 + a+ 1)2((a+ 2)3 − 3j)ρ(j)

i(j) =
ρ(j) + ρ′(j)

3

t(j) =
j(3(a2 + a+ 1)− j)

(a2 + a+ 1)((a+ 2)3 − 3j)

P (j) = (i(j) + 1 : i(j)− t(j) : t(j)− 1− (a+ 1)i(j)).
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whereP (j) is the point onC associated with the parameterj.
We illustrate this situation on Figure 6 in the casea = 2. The red segment corresponds to the

parameterj taking values in the interval[−4,−0.3]. We also note that the computation in Section 3.1
of [13] hides a similar geometric situation.

Figure 6: A pseudo-parameterization

7 Classifying pseudo-parameterization

We have seen many different pseudo-parameterizations of a plane cubic, each associated with a ra-
tional curve inP̂ having even intersection with the dual curvêC in Equation (3). We may wonder
if there exist more such rational curves, leading to more pseudo-parameterizations. We may also try
to put some structure on the set of such curves. This is our purpose of this section. We assume that
the reader has some familiarity with algebraic surfaces as presented in [22,1], and particularly with
elliptic and K3 surfaces [18, 7, 3]. We shall not enter into the details. Any rational curveL having
even intersection witĥC lifts to a rational curve on the degree two coveringΣ of P̂ branched alonĝC.
To defineΣ we consider the function fieldk(a)(U/W, V/W ) of P̂ overk(a). We define a quadratic
extension of this field by adding a square rootγ of G(U, V,W )/W 6 whereG(U, V,W ) is the equa-
tion of Ĉ. The normal closure of̂P insidek(a)(U/W, V/W, γ) is Σ. It has nine singularities. One
above each of the nine cusps ofĈ. In order to obtain a smooth model forΣ, we first blow upP̂ at
each of the cusps of̂C. We callΠ the resulting surface. The inverse image ofĈ by Π → P̂ consists
of one smooth genus one curve and9 rational curves tangent to it. We callS the normal closure ofΠ
in k(a)(U/W, V/W, γ). This is a smooth surface, the minimal model ofΣ.

We callσ1 the automorphism of̂P that maps[U : V : W ] onto [V,W,U ]. We callσ2 the auto-
morphism ofP̂ that maps[U : V : W ] onto [U, ζ3V, ζ

2
3W ]. We callσ3 the automorphism of̂P that

maps[U : V : W ] onto [V,U,W ]. We extend these three automorphisms tok(a)(U/W, V/W, γ) by
sendingγ to itself. The resulting automorphisms are calledσ1, σ2 andσ3 also. They induce automor-
phisms ofΠ, Σ andS denotedσ1, σ2 andσ3 again. We callσ4 the unique non-trivial automorphism
of k(a)(U/W, V/W, γ) overk(a)(U/W, V/W ). It induces automorphisms ofΣ andS denotedσ4.
The action ofσ1, σ2, σ3 on theBi is given by the following three permutations of the indices

σ1 = (0, 1, 2)(3, 4, 5)(6, 7, 8),

σ2 = (0, 5, 8)(1, 3, 6)(2, 4, 7),

σ3 = (0, 2)(1)(3, 6)(4, 8)(5, 7).

The group generated byσ1 andσ2 has order nine. It acts simply transitively on the nine cusps, and
also on the nine corresponding rational curves on the blow upΠ. We choose one of the two rational
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curves onS aboveB0 and call itE0. For 1 ≤ i ≤ 9 we callEi the image ofE0 by the unique
automorphism in< σ1, σ2 > that mapsB0 ontoBi. We callFi the image ofEi byσ4. We thus obtain
eighteen rational curves onS. LetH be the inverse image byS → P̂ of any line inP̂. The lattice
generated by theEi, Fi andH in the Néron-Severi group has rank19, and discriminant2.39. The
intersection indices are

Ei.Fi = 1,

E2
i = −2,

F 2
i = −2,

Ei.Ej = 0 for i 6= j,
Ei.Fj = 0 for i 6= j,
Ei.H = 0,

Fi.H = 0,

H2 = 2.

LetD be a generic line in̂P throughB0. The intersection ofD.Ĉ is 2B0 plus an effective degree
four divisor. So the inverse image ofD in S is the union ofE0, F0 and a genus one curve with at least
two rational points : the intersection points withE0 andF0. Thus the inverse image byS → P̂ of the
pencil of lines throughB0 defines an elliptic fibrationf : S → P

1 of S, with two sectionsE0 and
F0, soS is an elliptic K3 surface. The following lemma [15, 2.3] is usefull when looking for rational
curves on a K3 surface.

Lemma 4 LetD be a class with self-intersection−2 in the Néron-Severi group of a K3 surface. Then
eitherD or −D contains an effective divisor. If this divisor is irreducible then it is a smooth rational
curve.

We may also look for singular rational curves in classes with positive self-intersection. One can
even count rational curves in such classes [2, 16, 21]. Since there are many of them, they are unlikely
to be defined over the base field. Indeed, all the rational curves in Section 5 lift to smooth rational
curves onS having self-intersection−2. For example the conic in̂P passing throughB0,B1,B2,B3,
B4, B5 lifts to a rational curveI012345 on S. We haveH.I012345 = 2, E0.I012345 = E1.I012345 =
E2.I012345 = 1 andF3.I012345 = F4.I012345 = F5.I012345 = 1 andI012345 has zero intersection with
the remainingEi andFi. We deduce the following identity in the Néron-Severi group

3I0,1,2,3,4,5 = 3H − 2(E0 + E1 + E2)− (F1 + F2 + F3)− (E3 + E4 + E5)− 2(F3 + F4 + F5),

andI0,1,2,3,4,5 has self-intersection−2. We find similarly, and with evident notation,

3I0,1,3,4,7,8 = 3H − 2(E0 + E3 + E7)− (F0 + F3 + F7)− (E1 + E4 + E8)− 2(F1 + F4 + F8),

and

3I0,1,3,5,6,8 = 3H − 2(E0 + E5 + E8)− (F0 + F5 + F8)− (E1 + E3 + E6)− 2(F1 + F3 + F6).

The action of< σ1, σ2, σ3, σ4 > produces24 similar smooth rational curves onS with self intersec-
tion−2. This is the contribution of conics in Lemma 2.
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Now consider the quartic given by Lemma 3. It lifts to a rational curveJ0 onS, such thatJ0.H =
4, J0.E0 = 2, J0.F0 = 1, J0.Ei = 1, J0.Fi = 0 for 1 ≤ i ≤ 8. We have the following identity in the
Néron-Severi group

3J0 = 6H − 5E0 − 4F0 −
∑

1≤i≤8

(2Ei + Fi).

The action of< σ1, σ2, σ4 > produces18 such rational curves with self intersection−2. The
lattice generated byH, the nineEi, the nineFi, and the24 + 18 classes coming from conics and
quartics, has dimension19 and discriminant54. This is the full Néron-Severi group ofS whenk
has characteristic zero anda is a transcendental. Using the knowledge of this Néron-Severi group
we can prove that there are infinitely many rational curves onS, leading to infinitely many pseudo-
parameterizations of the cubicC. We consider an elliptic-fibration ofS, for example the fibration
f : S → P

1 introduced above. We choose the sectionE0 as origin. The generic fiber off is an
elliptic curve over the function fieldk(t) of P

1. Fibers off map onto lines throughB0 in P̂. The
height singular fibers off map onto the linesB0Bi for 1 ≤ i ≤ 8. Each of them has Kodaira type
I3, the three irreducible components beingEi, Fi, and a third rational curveGi crossingE0 andF0.
Let T ⊂ NS(S) be the group generated by the zero sectionE0 and the fiber componentsEi, Fi, Gi
for 1 ≤ i ≤ 8. The Mordell-Weil group of the generic fiber is isomorphic [18, Theorem6.3] to the
quotientNS(S)/T . SinceEi+Fi+Gi = H−E0−F0 does not depend oni for 1 ≤ i ≤ 8, the rank of
T is 18 and the rank ofNS(S) is one. So we have infinitely many sections off . The images of these
sections all are rational curves with self intersection−2. We draw one of these rational curves (rather
its image inP̂) on Figure 7. In caseC is the Weierstrass cubic in Equation (6), a parameterization of
this rational curve is

U(t) = 4at6 + 4t2/27, (12)

V (t) = t(4at6 + 4t2/27),

W (t) = a2t8 + 2at4/27 + 4bt6 + 1/81.

Figure 7: One more rational curve having even intersection withĈ.
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