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Abstract

We study the problem of information-theoretically secure message transmission (SMT) in
asynchronous directed networks. In line with the literature, the distrust and failures of the
network is captured via a computationally unbounded Byzantine adversary that may corrupt
some subset of nodes. We give a characterization of networks over which SMT from sender S
to receiver R is possible in both the well-known settings, namely perfect SMT (PSMT) and
unconditional SMT (USMT). We distinguish between two variants of USMT: one in which
R can output an incorrect message (with small probability) and another in which R never
outputs a wrong message, but may choose to abort (with small probability). We also provide
efficient protocols for an important class of networks.

1 Introduction

When dealing with problems in secure distributed computing, it is widely assumed that every
pair of participating nodes share a private channel between them. However, in practice, most of
the nodes in a communication network are not directly connected to each other. In such a sce-
nario, in the absence of a physical private channel between two communicating parties, we would
like to simulate a virtual one. The study of perfectly secure message transmission(PSMT) and
unconditionally secure message transmission(USMT) helps us achieve the fundamental primitive
of secure message transmission between two nodes in a network. First introduced in [5], a lot of
work has gone into designing efficient protocols and characterizing networks over which PSMT
(or USMT) is achievable between two nodes, in a variety of settings [7, 8, 4, 9, 17, 10].

The problem of secure communication assumes relevance in networks where a subset of
nodes may collaborate to disrupt communication or learn information about the message being
routed through them. This distrust in the network is modelled via a fictitious entity known
as adversary. In this work we consider an adversary which has unbounded computing power.
Hence, our protocols for PSMT and USMT provide (perfect) secrecy in an information-theoretic
sense. While the protocols for PSMT also provide perfect reliability w.r.t message delivery,
USMT protocols are allowed to make errors with small probability. We make a distinction
between two variants of USMT: one in which R can output an incorrect message (with small
probability) and another in which R never outputs a wrong message but may choose to abort
(with small probability). We refer to the latter variant as detecting USMT in this paper.

We model the underlying communication network as a directed graph. For several real-
life networks where a node can communicate with another node but not the other way round,
undirected graphs are not a suitable model. For instance, in a sensor network where different
nodes have different transmission power, communication links tend to be uni-directional: a node
u can hear v but v cannot hear u [18]. Lately, popular problems in distributed computing such
as the black hole search problem [3] and rendezvous of mobile agents [1] have been attempted
in directed graphs.

A wide body of work has focussed on synchronous networks where an upper bound is known
a priori on the delay in delivery of messages. While synchronous network is an appealing model
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to work on, it is hard to achieve synchrony in practice. In a real-life network, messages can
be arbitrarily delayed over a channel or may not arrive at all. Hence, protocols which promise
guaranteed delivery of messages must cope with such inconsistent behaviour. This motivates
the study of secure communication over asynchronous networks where no assumption is made
regarding the relative speed of processes running at individual nodes or the delay in delivery of
messages.

In [15], Sayeed et. al. initiate the study of PSMT over asynchronous directed networks and
give several positive results. In [2], Choudhary et. al. extend their work to USMT. However,
in both these cases, the underlying network is abstracted as a set of disjoint wires between the
sender S and the receiver R (or vice versa). This leads to gross under-utilization of resources
available in a directed network - it is easy to give examples of directed networks where a protocol
for secure communication exists but not according to the extant literature; one such example
is given in the following section. Furthermore, both the papers assume the adversary to be
t-threshold, i.e., every potentially corrupt subset of nodes has size atmost t. As shown in [9], a
t-threshold adversary does not capture all scenarios of distrust and may lead to over-estimation
of connectivity requirements of a network.

In this work, we strictly generalize the results of [15, 2] and give the true characterization of
general asynchronous directed networks over which PSMT and USMT tolerating non-threshold
adversary is possible. Note that it is not easy to give efficient protocols for the general case.
However, we provide efficient protocols for an important class of graphs – specifically, if a graph
is connected enough so that PSMT tolerating t-threshold adversary is possible between every
two nodes, we give an efficient protocol to achieve PSMT between any two given nodes.

Desmedt et. al. [4] as well as Choudhary et. al. [2] have shown that if a protocol achieving
unconditional reliability (URMT) exists in their respective network models, one can design a
protocol that also achieves perfect security (USMT). We show that this holds true in our more
general network model as well, where the underlying network is not abstracted as a collection of
disjoint wires. On a more interesting note, we show that a protocol for detecting USMT exists in
an asynchronous directed network if and only if a protocol for PSMT exists. As far as we know,
this result is the first of its kind in literature connecting two seemingly different problems.

1.1 A Motivating Example

Consider the simple asynchronous network N shown in figure 1. Here S and R are the sender
and receiver respectively. They are assumed to be non-faulty. One among the rest of the nodes
may be Byzantinely corrupt, i.e., the adversary structure is given by A = {{x}, {b1}, {b2}, {b3}}.
Going by the extant literature, if we abstract the network as a collection of disjoint wires, there
are only 3 of them between S and R and hence PSMT is impossible [2]. Surprisingly, we show
that a simple protocol Π exists for PSMT in this network. Let m be the secret S wants to send.
We give an informal description of Π here. In Π, nodes do the following:

• Node S: Apply a (2, 4) secret sharing scheme [16] to m and get 4 shares m0,m1,m2,m3.
Send m0 to node x and mi to node bi (1 ≤ i ≤ 3).

• Node x: Wait for the share m0 to arrive from S and random number ρ from R. Send
l = m0 + ρ to each bi.

• Node bi: Wait for the share mi to arrive from S and send it to R. If some message arrives
from node x, forward it to R.
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Figure 1:

• Node R: Choose a random number ρ and send it to node x. Wait till three consistent
shares m′α,m

′
β,m

′
γ ({α, β, γ} ⊂ {0, 1, 2, 3}) are obtained. Reconstruct the secret with these

shares.

For 1 ≤ i ≤ 3 the share m′i is obtained from bi. The share m′0 is obtained when two
concurrent values of l′ are received from different bi’s (m′0 = l′ − ρ).

As proved in section 4, this protocol provides perfect secrecy and reliability.

1.2 Our Contribution

We make the following contributions: (a) We give the first characterization of general asyn-
chronous directed networks over which PSMT tolerating non-threshold Byzantine adversary is
possible from S to R. (b) Under the same network and adversary model, we give characterizations
of USMT and detecting USMT. (c) We give an efficient protocol for PSMT tolerating threshold
adversary between any two nodes (all-pair PSMT) in a network in which PSMT between every
pair of nodes is possible.

2 Model and Definitions

We model the underlying asynchronous network as a directed graphN = (V, E), where V denotes
the set of nodes (or players) in the network and E ⊆ V × V represents the channels available
for communication between nodes. In the following, we use the terms ‘graph’ and ‘network’
interchangeably. An important assumption we make in this paper is that all nodes know the
topology of the network, i.e., all nodes know the digraph N . Two special non-faulty nodes
S,R ∈ V denote the sender and receiver respectively. To distinguish between the message S
intends to send to R through a (PSMT/USMT) protocol and the messages exchanged between
nodes during the execution of the protocol, we refer to the former as secret. In this work, often a
protocol is composed of several sub-protocols. In such a case, the secrets of sub-protocols would
be referred to as sub-secrets.

Fault in the network is modelled via an unbounded centralized fictitious entity called the
adversary that can control a subset of nodes in the network, specified via an adversary structure
(defined later), and make them behave in a Byzantine fashion [11]. We assume that the channels
available between nodes, i.e. the set E , cannot be corrupted by the adversary (similar to the
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secure channels setting). The adversary is adaptive and is allowed to dynamically corrupt nodes
during protocol execution (and his choice may depend on the data seen so far). It knows the
complete protocol specification as well as the topology of the network.

Additionally, since the network is asynchronous, computation proceeds in a sequence of steps
controlled by the adversary. In a single step, the adversary activates a node by delivering some
message to it, called an event, the node then performs local computation, changes its state and
sends messages on its outgoing channels. A schedule is a finite or infinite sequence of events.
See [6] for a detailed description of the asynchronous model.

A non-threshold adversary structure A is a set of subsets of the node set, i.e., A ⊆ P(V \
{S,R}), one of which may be corrupt during an execution. When an upper bound t is known
on the number of faulty nodes in a network, the adversary structure contains all t-sized subsets
of the node set and is referred to as t-threshold adversary. The adversary structures we consider
have the property of monotonicity, i.e., whenever B1 ∈ A, then ∀ B2 such that B2 ⊂ B1,
B2 ∈ A. We note that A can be uniquely represented by listing the elements in its maximal
basis A defined as follows.

Definition 1 (Maximal basis of A). For any monotone adversary structure A, its maximal basis
A is defined as A = {B | B ∈ A and @ X ∈ A s.t. B ⊂ X}. Abusing the standard notation, we
assume that A itself is a maximal basis.

Let the message space be a large finite field 〈F,+, ·〉. All computations are done in this
field. We now give formal definitions of PSMT and USMT. In an execution of a communication
protocol, let Γ(m, r) denote the view of the adversary when S chooses to send the secret m and
coin tosses of the adversary are r.

Definition 2 (A-PSMT). In a graph N = (V, E) a protocol for transmitting any secret m ∈ F
from S to R tolerating an adversary structure A is an A-PSMT protocol if for every Byzantine
corruption B ∈ A and every schedule D the following two conditions are satisfied:

1. Resiliency: R always terminates with the secret m, S has chosen to send.

2. Secrecy: ∀r, ∀m0,m1 and every possible view c of the adversary it holds that Pr[Γ(m0, r) =
c] = Pr[Γ(m1, r) = c] where the probabilities are taken over the coin tosses of honest
parties.

Definition 3 ((A, δ)-USMT, (A, δ)-USMT⊥). Let δ < 1
2 . In a graph N = (V, E) a protocol for

transmitting any secret m ∈ F from S to R tolerating an adversary structure A is an (A, δ)-
USMT protocol if for every Byzantine corruption B ∈ A and every schedule D the following
two conditions are satisfied:

1. Resiliency: ∀m Pr[R outputs m|S has sent m] ≥ (1 − δ) where the probability is taken
over the coin tosses of all players.

2. Secrecy: ∀r, ∀m0,m1 and every possible view c of the adversary it holds that Pr[Γ(m0, r) =
c] = Pr[Γ(m1, r) = c] where the probabilities are taken over the coin tosses of honest
parties.

We call an (A, δ)-USMT protocol a detecting (A, δ)-USMT protocol and denote it by (A, δ)-
USMT⊥ if the following stronger resiliency condition is satisfied:

• Resiliency: ∀m Pr[R outputs m|S has sent m] ≥ (1 − δ) where the probability is taken
over the coin tosses of all players. Otherwise R outputs ⊥/∈ F or does not terminate.
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Definition 4 (Strong path). A sequence of vertices v1, v2, v3, ..., vk is said to be a strong path
from v1 to vk in the network N = (V, E) if for each 1 ≤ i < k, (vi, vi+1) ∈ E. Furthermore, we
assume that there vacuously exists a strong path from a node to itself.

Definition 5 (Weak path). A sequence of vertices v1, v2, v3, ..., vk is said to be a weak path from
v1 to vk in the network N = (V, E) if for each 1 ≤ i < k, (vi, vi+1) ∈ E or (vi+1, vi) ∈ E.

Definition 6 (Blocked node, Head node). A node u along a weak path p is called a blocked node
if its out-degree along p is 0. A node y along a weak path p is called a head node if it is an
intermediate node with out-degree 2 or a terminal node with out-degree 1.

The head nodes and blocked nodes along a weak path play a special role. A head node
generates messages and forwards them to the two (or one) blocked nodes adjacent to it through
the intermediate nodes. A blocked node receives messages from its two (or one) adjacent head
nodes, performs operations on the messages received and forwards it to another node along a
separate path. Hence, we look at a weak path p from S to R, which is not a strong path, as
an alternating sequence of blocked nodes ui’s and head nodes yi’s, i.e, u1, y1, u2, y2, . . . , uk, yk
(k > 0) occur along path p in that order. (Here u1 may be S and yk may be R).

Definition 7 (Authentication function). Let K = (K1,K2,K3) ∈R F × F × F and m ∈ F.
Authentication function χ is defined as χ(m;K) = (χ1(m;K), χ2(m;K)) where χ1(m;K) =
m+K1 and χ2(m;K) = χ1(m;K) ·K2 +K3

Here K1,K2,K3 are usually referred to as keys. Using χ1 we blind the message and using χ2

we authenticate the blinded message. Suppose a random triplet K unknown to the adversary is
established between two nodes u and v in a network N . The authentication function has the
following important properties: (a) Even if u sends χ(m;K) along a faulty path to v, adversary
will not know anything about m. (b) Node v will be able to detect any change in χ(m;K)’s
value except with an error probability of atmost 1

|F| . (Proofs for the same appear in [14]).

Secret Sharing: We use the simple (k, n) threshold scheme (n ≥ k) from [16] to create
n shares of a secret where knowledge of any set of atmost k − 1 shares reveals no information
about the secret. The secret can be efficiently reconstructed using the Berlekamp-Welch (BW)
algorithm [12] from any set of shares S of size m (where k ≤ m ≤ n) if it contains at most
bm−k2 c incorrect shares. Such a set S of shares is said to be consistent.

In the following, we only consider adversary structures of size greater than 1. If the adversary
structure is of unit size, say A = {{B1}}, the adversary can always fail-stop every node in B1.
Hence, a strong path from S to R avoiding all nodes in B1 is necessary to enable S to send
messages to R and therefore it is necessary for any reliable protocol. It is easy to see that this
is also sufficient.

3 Characterizing asynchronous networks for A-PSMT

Since working with an adversary structure of arbitrary size can be cumbersome and non-intuitive,
we first show that working with an adversary structure of size three is sufficient for the case
of PSMT. For the sake of completeness, we first settle the straightforward case of adversary
structure of size two.

Theorem 1. In a directed asynchronous network N = (V, E), {B1, B2}-PSMT protocol exists if
and only if there exists a strong path from S to R in the network avoiding all nodes in B1 ∪B2.
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Proof. Sufficiency : S would send the secret m to R along the strong path which avoids every
potentially faulty node. R will receive this secret both securely and reliably.

Necessity : For synchronous directed networks, with A = {B1, B2}, it can be proved that a
strong path avoiding nodes in B1 ∪B2 is necessary for PSMT along the lines of the proof given
for synchronous undirected networks in Lemma 4.1.2 in [9]. If such a strong path is unavailable
in an asynchronous directed network, the adversary has a schedule which will make PSMT
impossible.

From now on, in this section, we only consider adversary structures of size at least 3.

Theorem 2. In a directed asynchronous network N = (V, E), A-PSMT protocol exists if and
only if for every adversary structure A ⊆ A such that |A| = 3, A-PSMT protocol exists.

Proof. Necessity is trivial. We give sufficiency proof here. We show how to construct a protocol
for an adversary structure A of size n > 3 from protocols for adversary structures of smaller
size. Using this technique, starting from protocols for adversary structures of size 3, we would
be able to construct a protocol for an adversary structure of arbitrary size inductively.

Consider A1, A2, A3 and A4, four d3A4 e-sized subsets of A such that each element of A
occurs in at least three of the four sets. For 1 ≤ i ≤ 4, let ΠAi be the PSMT protocol tolerating
Ai. Let f ∈ F be the secret S intends to send. The PSMT protocol ΠA tolerating A proceeds
as follows:

• S does a (2, 4) secret sharing of f to obtain four shares f1, f2, f3, f4.

• The four protocols ΠA1 ,ΠA2 ,ΠA3 and ΠA4 are run in parallel; for 1 ≤ i ≤ 4, ΠAi is run
on fi as the sub-secret.

• R first waits for any three of the above four protocols to terminate. If the sub-secrets
received through these protocols lead to the reconstruction of a unique secret, R outputs
it. Otherwise, R further waits for another protocol to terminate. It now applies the BW
algorithm on the sub-secrets obtained through the four protocols and outputs the outcome
of the algorithm.

The correctness of this protocol is proved in the following lemma.

Lemma 3. The protocol ΠA is an A-PSMT protocol.

Proof. No matter which B ∈ A adversary chooses to corrupt, at least three out of the four
sets A1, A2, A3 and A4 contain B. Hence, at least three out of the protocols ΠA1 ,ΠA2 ,ΠA3

and ΠA4 will be resilient and secure. W.l.o.g assume that ΠA1 ,ΠA2 ,ΠA3 are those 3 protocols.
Hence, for 1 ≤ i ≤ 3, protocol ΠAi terminates securely with R receiving the sub-secret fi.

Resiliency : If the protocols ΠA1 , ΠA2 and ΠA3 terminate before ΠA4 does, it is easy to see
that R will output f . However, adversary may schedule events in the network such that ΠA4

terminates before all of ΠA1 ,ΠA2 ,ΠA3 do. When ΠA4 terminates, if R receives f4 then we know
that f will be reconstructed. However, since ΠA4 may not be tolerating the corrupt set B, R
may receive f ′4 (6= f4). But then R will wait for another protocol to terminate. Now, with only
one incorrect share out of four, it is easy to see that BW algorithm will output f .

Secrecy : Since adversary knows only f4 which is a share of f obtained using (2, 4) secret
sharing of f , it does not reveal any information about f .
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Having reduced the problem of characterizing PSMT tolerating adversary structure A to all
its 3-sized subsets, we now proceed to give a characterization of directed asynchronous networks
tolerating a given 3-sized adversary structure. We prove sufficiency in this section itself but
address necessity in a separate subsection.

Theorem 4. In a directed asynchronous network N , {B1, B2, B3}-PSMT protocol from S to R
is possible if and only if for each α ∈ {1, 2, 3}, there exists a weak path qα avoiding nodes in
B1 ∪B2 ∪B3 such that every node u along the path qα has a strong path to R avoiding all nodes
in

⋃
β∈{1,2,3}−{α}Bβ. (Paths q1, q2, q3 need not be distinct.)

Sufficiency. Let f be any field element S intends to send. In the special case when qα is a
strong path from S to R, for an α ∈ {1, 2, 3}, S can trivially send f along qα. Since qα does not
contain any corrupt node, R receives f securely and reliably.

For the rest of the cases, we construct a protocol Π{B1,B2,B3} for {B1, B2, B3}-PSMT whose
correctness is proved in the following Lemma. The protocol Π{B1,B2,B3} is composed of three
sub-protocols Π1,Π2,Π3 which are run in parallel in the network, each one on f as the sub-secret.
R first waits for any two of these three sub-protocols to terminate. If the same sub-secret is
recovered from both these protocols, R outputs it. Otherwise, R waits for the third protocol to
terminate and outputs the majority of the outcome of the three protocols.

We give a construction for Π1, and the constructions of Π2 and Π3 follow by symmetry. The
protocol Π1 uses the honest weak path q1. Since q1 is not a strong path, it can be expressed as
u1, y1, u2, y2, . . . , un1 , yn1 (n1 ∈ N) where ui’s represent blocked nodes and yi’s represent head
nodes. Π1 proceeds as follows:

1. S sends f to u1 along q1. For 1 ≤ j ≤ n1, node yj chooses a random key Kj and sends it
to uj and uj+1 along q1 (un1+1 denotes R).

2. Node u1 sends L1 = f + K1 to R along a strong path avoiding B2 ∪ B3 when it receives
f from S and K1 from y1. For 1 < j ≤ n1, uj sends Lj = Kj−1 +Kj to R along a strong
path avoiding B2 ∪B3 when it receives Kj−1 from yj−1 and Kj from yj .

3. R waits until it receives K ′n1
from yn1 and for 1 ≤ j ≤ n1, L′j from uj . It then does the

following:

for z in n1 to 2

K ′z−1 = L′z −K ′z.
Output f ′1 = L′1 −K ′1.

This completes the description of Π1, and hence of Π{B1,B2,B3}.

Lemma 5. The protocol Π{B1,B2,B3} is a {B1, B2, B3}-PSMT protocol.

Proof. W.l.o.g let us assume that the set B1 is corrupt.
Resiliency : Since protocols Π2 and Π3 do not involve nodes in B1, these protocols are bound

to terminate (with the correct sub-secret) no matter how the adversary schedules messages in
the asynchronous system. Hence, when R waits for at least two protocols to terminate, it will
not wait indefinitely. If Π2 and Π3 indeed terminate before Π1 does, R’s output is correct.

However, there may exist a schedule in the network such that Π1 terminates before both Π2

and Π3 terminate. Say Π1 and Π2 terminate before Π3 does. If the same sub-secret is recovered
from Π1 and Π2, R’s output is correct as Π1 terminates with the correct sub-secret. Otherwise,
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R waits for Π3 to terminate. Again, R does not have to wait indefinitely. When Π3 eventually
terminates, we know that the majority will be the correct secret.

Secrecy : Since protocols Π2 and Π3 do not involve nodes in B1, none of the messages
exchanged during these protocols is available to the adversary. Even in the case of protocol
Π1, adversary sees only f + K1,K1 + K2, . . . ,Kn1−1 + Kn1 where K1,K2, . . . ,Kn1 are random
numbers. This does not reveal any information about the secret f .

Notice that for Π{B1,B2,B3} both communication complexity of the protocol and computation
complexity at every node is polynomial in the size of the network. If we denote the size of
adversary structure A by N , from Theorem 2 we can see that O(N5) sub-protocols (of the same
complexity as of Π{B1,B2,B3}) need to be run to achieve A-PSMT. Starting with the output
of these O(N5) protocols 1 , R can compute the output of A-PSMT in O(N5) computational
steps. Hence our A-PSMT protocol is efficient in the size of network and the size of adversary
structure.

3.1 Necessity

Consider a directed asynchronous network N = (V, E), with S,R ∈ V as the sender and receiver
respectively and three subsets B1, B2, B3 ⊆ V \ {S,R} comprising the adversary structure B =
{B1, B2, B3}. We show that if N does not satisfy the conditions of Theorem 4, PSMT tolerating
B is impossible in N . Without loss of generality, let us assume that the three sets comprising
the adversary structure are disjoint. Let the path q1 be not present between S and R in N .
(The case where path q2 or q3 is not present can be handled analogously.) Hence, every weak
path between S and R avoiding B1 ∪ B2 ∪ B3 has at least one node w such that every strong
path from w to R passes through nodes in B2 ∪B3.

Figure 2:

We first consider the simple digraph N ∗ = (V ∗, E∗) shown in figure 2 consisting of six nodes
s∗, r∗, b1, b2, b3 and x where s∗ is the sender and r∗ is the receiver. Note that the graph N ∗
does not satisfy the conditions given in Theorem 4 – the edges (x, s∗), (x, r∗) and (x, b1) are
not present in the graph. We show that {{b1}, {b2}, {b3}}-PSMT from s∗ to r∗ is impossible in
N ∗. We then prove that the digraph N can be partitioned into disjoint sets whose connectivity
properties are similar to the connectivity between nodes of the digraph N ∗. Now, if PSMT is
possible in N , it would also be possible in N ∗, which is a contradiction. This implies that the
conditions mentioned in Theorem 4 are necessary.

1Note that R need not wait for all sub-protocols to terminate.
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Theorem 6. In the network N ∗ shown in figure 2, {{b1}, {b2}, {b3}}-PSMT from s∗ to r∗ is
impossible.

Proof. W.r.t. to an execution Ei, we define the following: (a) The vector ~Ci = (cis∗ , c
i
r∗ , c

i
b1
, cib2 , c

i
b3
, cix)

which denotes the coin tosses input to players, where cip denotes the coin tosses of player p. (b)
The time instant TEi at which r∗ halts (TEi may not be finite). (c) The view of a player p
viewp(E) which comprises of the internal coin tosses cip of player p and the messages it receives
during the execution Ei.

Till time TE1 (defined later), adversary schedules events in the asynchronous network N ∗ in
the following way: Any execution proceeds in a sequence of time periods. In any time period i,
all players except b3 are activated one by one; when a player p is active, all messages generated
for player p in the previous time period i− 1 are delivered in order.

Assume that a protocol Π∗ exists for {{b1}, {b2}, {b3}}-PSMT from s∗ to r∗ in the network
N ∗. Consider the following four executions of Π∗.

• Execution E1: s∗ chooses secret m1 and the coin tosses of players are ~C1. In this execution
node b3 fail-stops. Let r∗ halt at time instant TE1 outputting m1.

• Execution E2: s∗ chooses secret m1 and the coin tosses of players are ~C2 = ~C1. In this
execution node b1 is passively corrupt. As the view of r∗ in this execution is same as in
E1 (b3 is never active before TE1), it halts at time instant TE2 = TE1 outputting m1. Let
the view at b1 be v.

There must exist coin tosses ~C3 such that c3b1 = c2b1 and when s∗ chooses to send a secret
m2(6= m1) view at node b1 is v. Else, view v would reveal information about m1.

• Execution E3: s∗ chooses secret m2 and the coin tosses of players are ~C3. In this execution
node b1 is passively corrupt. View at node b1 is v.

• Execution E4: s∗ chooses secretm2 and the coin tosses of players are ~C4 such that c4s∗ = c3s∗ ,
c4r∗ = c2r∗ and c4b1 = c3b1 = c2b1 . In this execution node b2 is actively corrupt. Node b2 ignores
all messages that it receives, sends to s∗ what it sent to s∗ in E3, sends to r∗ what it sent
to r∗ in E2, sends to b1 what it sent in E3 (or E2) and does not send any message to any
other player.

As proved in the following lemma, viewr∗(E4) = viewr∗(E2) implying r∗ cannot distinguish
between executions E2 and E4. Since its output in E2 is m1, it outputs m1 in E4 too, where s∗

chose to send m2. However, Π∗ is a PSMT protocol. We have a contradiction.

Lemma 7. Till time TE1, the following equalities hold: views∗(E4) = views∗(E3), viewb1(E4) =
viewb1(E3) = viewb1(E2) and viewr∗(E4) = viewr∗(E2).

Proof. Notice that the coin tosses of b1 in all executions described above is c4b1 . Also, b1 cannot
distinguish between first three executions, it receives and sends same messages in all these
executions. We already know that b3 is never active before TE1 . We give a proof of the lemma
by induction on the number of time-periods:

Time period 1 : The equalities obviously hold for this time-period.
Time period i : Assume that the equalities hold till time-period i − 1. As viewb1(E4) =

viewb1(E3) = viewb1(E2) till time-period i−1, messages sent by b1 in time-period i−1 are same
in E4, E3 and E2. Similar statements can be made for s∗ and r∗. In time-period i, s∗ receives
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messages from b1 which are same as sent in E4. Also, as described above, b2 sends to s∗ what
it sent to s∗ in E3. Till time TE1 , as s∗ does not receive input from any other node and its coin
tosses are same in E4 and E3, views∗(E4) = views∗(E3). Similarly, in time-period i, r∗ receives
messages from b1 which are same as sent in E2. Also, b2 sends to r∗ what it sent to r∗ in E2.
Till time TE1 , as r∗ does not receive input from any other node and its coin tosses are same in
E4 and E2, viewr∗(E4) = viewr∗(E2). Similarly the remaining equality also holds.

Theorem 8. The set of nodes V in the network N can be partitioned into 6 disjoint sets
S∗, R∗, B′1 ⊆ B1, B2, B3 and X ′ such that S ∈ S∗, R ∈ R∗ and ∀ 1 ≤ i < j ≤ 6 an
edge exists between a node of F [i] and a node of F [j] only if (f(i), f(j)) ∈ E∗ where F =
(S∗, R∗, B′1, B2, B3, X

′) and f = (s∗, r∗, b1, b2, b3, x) are two vectors.

Proof. In the network N , every weak path between S and R avoiding B1∪B2∪B3 has at least
one node w such that every strong path from w to R passes through nodes in B2 ∪B3.

We partition the non-faulty nodes H = V \ {B1 ∪B2 ∪B3} into 3 disjoint sets. Let R∗ ⊂ H
denote the set of all nodes that have a weak path to R (avoiding B1 ∪B2 ∪B3) such that every
node w in the weak path has a strong path to R avoiding nodes in B2 ∪ B3. Divide the rest
of non-faulty nodes in two disjoint sets S∗ and X. Define S∗ = {w ∈ H \ R∗ | w has a strong
path to R avoiding nodes in B2 ∪ B3}. Define X = H \ {S∗ ∪ R∗}. Clearly, R ∈ R∗ and S
∈ S∗ (otherwise even reliable message transmission would not be possible in N ). Moreover, if
any node w ∈ X has a strong path to R, it passes through some node in B2 ∪B3. Otherwise w
would belong to S∗ itself.

Also, divide the set B1 into two disjoint sets. Define BX
1 = {v ∈ B1|∃ u ∈ X such that there

is a strong path from u to v}. Let B′1 = B1 \ BX
1 . Let us consider the two sets X and BX

1

together as a set X ′, i.e., X ′ = X ∪BX
1 .

The only edges missing from N ∗ are (x, s∗), (x, r∗), (x, b1) and (s∗, r∗), (r∗, s∗). It easily
follows from the definitions above that @ (u, v) ∈ E such that u ∈ X ′ and v ∈ S∗∪R∗∪B′1. Also,
there cannot exist any directed edge between a node in S∗ and a node in R∗. Hence proved.

Theorem 9. In the directed asynchronous network N = (V, E), if ({B1, B2, B3})-PSMT is
possible from S to R then ({{b1}, {b2}, {b3}})-PSMT is possible from s∗ to r∗ in the network
N ∗.

Proof. It is straightforward to prove the above theorem using standard player simulation tech-
nique.

However from Theorem 6 we know that ({{b1}, {b2}, {b3}})-PSMT is impossible from s∗ to r∗

in the network N ∗. We arrive at a contradiction. Hence, the conditions mentioned in Theorem
4 are necessary.

4 All pairs PSMT

Let N = (V, E) be a network in which PSMT tolerating t-threshold adversary is possible from
any node x ∈ V to any node y ∈ V . It follows from Theorems 2 4 that there are 3t + 1 node
disjoint weak paths between x and y of which at least 2t+ 1 are strong paths from x to y. For
such a network, we give an efficient protocol Πuv for PSMT tolerating t-threshold adversary
from node u ∈ V to another node v ∈ V .

Let f be any field element u intends to send to v securely and reliably. The node u makes
3t + 1 shares of f , namely f1, f2, . . . , f3t+1, using (t + 1, 3t + 1) secret sharing scheme. Now,
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sub-protocols Γ1,Γ2, . . . ,Γ3t+1 (described later) are run in parallel in the network. R waits till
at least 2t of these sub-protocols terminate. It sets a variable e to 0, then runs the following
loop:

while (true)
- Wait for another sub-protocol to terminate.
- Let W denote the set of outcomes of the sub-protocols that have terminated so far. Run
the BW algorithm on inputs t, e, W [12]. If it returns a polynomial, output its constant
term, come out of the loop and halt.
- e := e+ 1

For 1 ≤ i ≤ 3t+ 1, the sub-protocol Γi tries to securely communicate fi assuming that weak
path wi does not contain any faulty node. If wi is a strong path from u to v, the protocol Γi is
simply: send fi to v along wi. Otherwise, wi is a weak path expressed as u1, y1, u2, y2, . . . , uni , yni
(ni ∈ N) where ui’s represent blocked nodes and yi’s represent head nodes and Γi proceeds in
the following steps -

1. u sends fi to u1 along wi. For 1 ≤ j ≤ ni, node yj chooses a random key Kj and sends it
to uj and uj+1 along wi. (uni+1 denotes v).

2. Node u1 sends L1 = fi +K ′1 along 2t+ 1 node disjoint strong paths to v when it receives
fi from u and K ′1 from y1. For 1 < j ≤ ni, uj sends Lj = K ′j−1 + K ′j along 2t + 1 node
disjoint strong paths to v when it receives K ′j−1 from yj−1 and K ′j from yj . (This ensures
that for each j, 1 ≤ j ≤ ni, v receives Lj reliably).

3. v waits until it receives K ′′ni from yni and for each j, 1 < j ≤ ni, at least t+ 1 concurrent
readings of L′j from uj . It then runs the following loop:
for z in ni to 2

K ′′z−1 = L′z −K ′′z .

Output f ′i = L′1 −K ′′1 .

This completes the description of Γi, and hence of Πuv.

Lemma 10. The protocol Πuv is an efficient PSMT protocol tolerating t-threshold adversary.

Proof. Consider a sub-protocol Γi where the weak path wi does not contain any corrupted
node. However, the messages sent by blocked nodes in wi may be accessible to the adversary. In
the worst case it may know all of fi +K1,K1 +K2, . . . ,Kni−1 +Kni . Still this does not reveal
any information about fi. Moreover, every blocked node sends messages to R along 2t+1 vertex
disjoint paths. Hence if R waits long enough he would receive all these messages reliably and
with the extra knowledge of Kni recover fi correctly.

Now, we know that at least 2t + 1 weak paths are honest. So at least 2t + 1 Γi’s would
eventually terminate with f ′i = fi. Hence, in every iteration of the while loop the set W
supplied to BW algorithm has atmost t errors. So the algorithm produces an output in some
iteration and we know that if it does produce an output, it is correct [12]. Therefore Πuv is a
reliable protocol. Moreover, at least 2t + 1 shares of f are unknown to the adversary, making
Πuv secure.

It is easy to see that the overall communication complexity of the protocol Πuv and the
computation complexity at each node is a polynomial in t and the size of network.
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5 Characterizing asynchronous networks for (A, δ)-USMT

In this section we give a characterization of asynchronous directed networks over which (A, δ)-
USMT is possible. In this variant of USMT, R is allowed to output an incorrect message with
small probability. In the next section we discuss detecting USMT where if R outputs a message
it must be the correct one. One important difference between the two variants is that while in
the former it is sufficient to deal with adversary structure of size two as shown in the following
theorem, in the latter we have to be content with three-sized adversary structure. Specifically,
the following reduction technique cannot be applied to the case where R is not allowed to output
a wrong message.

Theorem 11. In a directed asynchronous network N , (A, δ)-USMT protocol exists if and only
if for every adversary structure A ⊆ A such that |A| = 2, (A, δ)-USMT protocol exists.

Proof. Necessity is trivial. We give sufficiency proof here. We show how to construct a protocol
for an adversary structure A of size n > 2 from protocols for adversary structures of smaller
size. Using this technique, starting from protocols for adversary structures of size 2, we would
be able to construct a protocol for an adversary structure of arbitrary size inductively.

Consider A1, A2 and A3, three d2A3 e-sized subsets of A such that each element of A occurs
in at least two of the three sets. For 1 ≤ i ≤ 3, let ΠAi be the USMT protocol tolerating Ai.
Let f be the secret S intends to send. The USMT protocol ΠA tolerating A proceeds as follows:

1. For each β ∈ {1, 2, 3}, S chooses a three-tuple Kβ = (Kβ,1, Kβ,2,Kβ,3) ∈R F× F× F and
evaluates χ1(f,Kβ) = f +Kβ,1 and χ2(f,Kβ) = (f +Kβ,1) ·Kβ,2+ Kβ,3.

2. Seven instances of the protocol ΠA1 are run in parallel in the network on the sub-secrets
K1,1, K1,2, K1,3, χ1(f ;K2), χ2(f ;K2), χ1(f ;K3) and χ2(f ;K3). Similarly, seven instances
each of protocols ΠA2 and ΠA3 are run in parallel alongside the instances of protocol ΠA1 .
In essence, for each β ∈ {1, 2, 3}, the tuple of keys Kβ is sent through three instances
of protocol ΠAβ and the secret f authenticated with Kβ is sent through both the other
protocols.

3. R waits until for two distinct indices x, y ∈ {1, 2, 3} it receives K ′x,1, K ′x,2, K ′x,3, χ1(f,Ky)′,
χ2(f,Ky)′ through the protocol ΠAx and K ′y,1, K ′y,2, K ′y,3, χ1(f,Kx)′, χ2(f,Kx)′ through
the protocol ΠAy such that the following conditions are satisfied:

• χ2(f,Kx)′ = χ1(f,Kx)′ ·K ′x,2 +K ′x,3

• χ2(f,Ky)′ = χ1(f,Ky)′ ·K ′y,2 +K ′y,3

• χ1(f,Kx)′ −K ′x,1 = χ1(f,Ky)′ −K ′y,1

In simple words, R waits until two authenticated messages pass verification against corre-
sponding keys and the same secret is recovered. R outputs f ′ = χ1(f,Kx)′ −K ′x,1.

The following Lemma proves the correctness of ΠA. Observe that the resiliency of ΠA is
lower than the resiliency of the protocols using which it has been composed. Nevertheless, the
failure probability can be brought down to δ by repeating the protocol ΠA sufficiently many
times in parallel.

Lemma 12. The protocol ΠA is an (A, δ′)-USMT protocol where δ′ = 1− (1− δ)10 · ( |F|−1
|F| )2.
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Proof. No matter what B ∈ A adversary chooses to corrupt, at least two of the three sets
A1, A2 and A3 contain B. Hence, the instances of at least two out of the three protocols ΠA1 ,
ΠA2 and ΠA3 will be resilient and secure. W.l.o.g assume that ΠA1 and ΠA2 are those two
protocols. Therefore, the instances of protocols ΠA1 and ΠA2 do not reveal any information
about the sub-secrets transmitted through them and with high probability, they terminate with
the correct output at R. We first prove that the protocol ΠA is perfectly secure.

Secrecy : Note that only the instances of protocol ΠA3 can reveal information about the sub-
secrets transmitted through them. Hence, in the best case, adversary knows K3,1, K3,2, K3,3,
χ1(f ;K1), χ2(f ;K1), χ1(f ;K2) and χ2(f ;K2). However, as it does not know K1 and K2, it does
not know anything about the secret f .

Resiliency : Let ψ1 = (K1,1, K1,2, K1,3, χ1(f,K2), χ2(f,K2)) and ψ2 = (K2,1, K2,2, K2,3,
χ1(f,K1), χ2(f,K1)) denote part of the sequence of sub-secrets sent through the instances of
ΠA1 and ΠA2 respectively. We have ignored the sub-secrets obtained through the authentication
of secret f using keys sent through ΠA3 . Let ψ represent the combined sequence which has 10
elements. Also, let ζ represent a part of the sequence of sub-secrets sent through instances of
ΠA3 , ζ = (χ1(f,K1), χ2(f,K1), χ1(f,K2), χ2(f,K2)). We do not consider the keys sent through
ΠA3 .

Suppose all sub-secrets in ψ are received reliably. To minimize the chances of reliable trans-
mission of secret f adversary would tamper with sub-secrets in ζ and schedule events in the
network such that all sub-secrets in ζ are received before all sub-secrets in ψ are received. Now,
consider the following event E: all sub-secrets in ψ are received reliably and any tampering in
the sequence of sub-secrets ζ is detected. In such an event R recovers f ′ = f . The probability
that the protocol ΠA produces correct output is at least the probability of the event E. Since
adversary does not know K1 and K2, we know that Pr(E) > (1 − δ)10( |F|−1

|F| )2. Therefore, the
probability of failure δ′ is atmost 1− P (E).

Having reduced the problem of characterizing USMT tolerating adversary structure A to all
its 2-sized subsets, we now proceed to give a characterization of directed asynchronous networks
tolerating a given 2-sized adversary structure.

Theorem 13. In a directed asynchronous network N , ({B1, B2}, δ)-USMT protocol from S to
R is possible if and only if for each α ∈ {1, 2}, there exists a weak path qα avoiding nodes in
B1 ∪ B2 such that every node u along the path qα has a strong path to R avoiding all nodes in
Bα

2 (Paths q1, q2 need not be distinct.)

Proof. According to Theorem 17 in [13], same characterization holds for unconditionally reliable
message transmission(URMT) tolerating a 2-sized adversary structure. Hence, the characteri-
zation is obviously necessary for USMT. Also, the protocol given for URMT in the Sufficiency
proof of Theorem 17 in [13] does not reveal any information about the secret being transmitted.
Hence the same protocol can be used for USMT.

An interesting implication follows: if we are ready to compromise a little on reliability,
security is for free in directed asynchronous networks.

6 Characterizing asynchronous networks for (A, δ)-USMT⊥

In this section we characterize (A, δ)-USMT⊥, where R must not output an incorrect message.
With atmost δ probability R may output ⊥/∈ F or does not terminate. As we have been doing in

2We denote 1 = 2 and vice-versa.
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previous sections, we show that instead of dealing with adversary structures of arbitrary size, it is
enough to deal with adversary structures of a constant size. In the case of detecting USMT that
constant turns out to be 3. For the sake of completeness, we first provide the characterization
for adversary structures of size 2.

Theorem 14. In a directed asynchronous network N = (V, E), ({B1, B2}, δ)-USMT⊥ protocol
exists if and only if there exists a strong path from S to R in the network avoiding all nodes in
B1 ∪B2.

Proof. Sufficiency is straightforward. For the necessity proof, please refer Section 5.1 in [13].

From now on, in this section, we only consider adversary structures of size at least 3.

Theorem 15. In a directed asynchronous network N , (A, δ)-USMT⊥ protocol exists if and only
if for every adversary structure A ⊆ A such that |A| = 3, (A, δ)-USMT⊥ protocol exists.

Proof. Necessity is trivial. We give sufficiency proof here. As has been argued in the proof of
Theorem 2, it is enough to show how to construct a protocol for an adversary structure A of
size n > 3 from protocols for adversary structures of smaller size.

In a manner similar to the proof of Theorem 2, consider A1, A2, A3 and A4, four d3A4 e-sized
subsets of A such that each element of A occurs in at least three of the four sets. For 1 ≤ i ≤ 4,
let ΠAi be the USMT protocol tolerating Ai. Let f ∈ F be the secret S intends to send. The
USMT protocol ΠA tolerating A proceeds as follows:

• S does a (2, 4) secret sharing of f to obtain four shares f1, f2, f3, f4.

• The four protocols ΠA1 ,ΠA2 ,ΠA3 and ΠA4 are run in parallel; for 1 ≤ i ≤ 4, ΠAi is run
on fi as the sub-secret.

• R waits until it receives three consistent shares or at least two ⊥’s. In the former case it
reconstructs f ′, in the latter it outputs ⊥.

The protocol ΠA constructed above has failure probability of atmost 3δ − 3δ2 + δ3 as proved in
the following lemma. This probability can be reduced to δ by repeating the protocol in parallel
sufficiently many times.

Lemma 16. The protocol ΠA is an (A, 3δ − 3δ2 + δ3)-USMT⊥ protocol.

Proof. In the spirit of the proof of Lemma 3, we can assume w.l.o.g. that protocols ΠA1 , ΠA2

and ΠA3 do not reveal any information about f1, f2 and f3 respectively. Moreover, with high
probability, for 1 ≤ i ≤ 3, R receives fi.

Resiliency : To minimize the chances of reliable transmission of f , adversary would schedules
events in the network such that ΠA4 terminates with some f ′3(6= f3) of adversary’s choice before
other protocols terminate. However, if R receives correct sub-secrets through the other three
protocols, it would be able to reconstruct the secret f . This happens with probability at least
(1− δ)3.

Secrecy : Since adversary knows only f4 which is a share of f obtained using (2, 4) secret
share of f , it does not reveal any information about f .

We have reduced the problem of characterizing USMT⊥ tolerating adversary structure A
to tolerating all its 3-sized subsets. For asynchronous directed networks tolerating a 3-sized
structure, we now claim that the characterization for USMT⊥ is same as the characterization
for PSMT proved in Theorem 4 implying that if a secure protocol satisfying stronger resiliency
conditions exists in a network, we may as well design a protocol that achieves perfect resiliency.
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Theorem 17. In a directed asynchronous network N , ({B1, B2, B3}, δ)-USMT⊥ protocol from
S to R is possible if and only if for each α ∈ {1, 2, 3}, there exists a weak path qα avoiding nodes
in B1 ∪ B2 ∪ B3 such that every node u along the path qα has a strong path to R avoiding all
nodes in

⋃
β∈{1,2,3}−{α}Bβ (Paths q1, q2, q3 need not be distinct.)

Proof. Sufficiency : The protocol Π{B1,B2,B3} described in the sufficiency proof of Theorem 4 is
a PSMT protocol, hence it is obviously a USMT⊥ protocol.

Necessity : The proof here goes along similar lines as the necessity proof for PSMT in 3.1. It
is sufficient to show that USMT⊥ is impossible from s∗ to r∗ in the network N ∗ given in figure
2. For a general network N not satisfying the conditions mentioned above, rest of the proof will
follow from Theorem 8,9. Let Π⊥ be a {{b1}, {b2}, {b3}}-USMT⊥ protocol from s∗ to r∗ in the
network N ∗. There must exist coin tosses ~C ′1 such that when s∗ chooses m1 and b3 fail-stops, r∗

halts with correct output. This gives us an execution E′1 corresponding to execution E1 in the
proof of Theorem 6. We can now construct corresponding executions E′2, E′3 and E′4 and show
that lemma 7 holds true on these executions. Hence Π⊥ cannot exist.

7 Conclusion and Open Problems

In this work, we have characterized asynchronous directed networks over which secure com-
munication is possible. We have shown how wire-based modelling fails to provide protocols in
directed networks even though there exists one. Hence, ours is the first true characterization of
asynchronous directed networks. We remark that such characterizations have not been given for
several popular message transmission problems in synchronous directed networks like PSMT.

We briefly discuss some open problems that are related to our work here: (a) Our work can be
extended to the case of directed hypergraphs which are a more suitable model of communication
in several practical scenarios. (b) Tolerating threshold adversary, we have given an efficient
protocol for PSMT between two nodes in a graph provided that PSMT is possible between
all pairs of nodes. Do we have an efficient protocol for PSMT when this is not the case. Or,
do exponential lower bounds exist on communication complexity of any protocol. (c) Given a
graph, can it be efficiently verified whether PSMT (or USMT) is possible between two nodes
tolerating threshold adversary? We conjecture that this problem is not in complexity class P.
(d) Completely asynchronous network is a worst-case assumption, as completely synchronous is
best-case. It is interesting to study the problem of secure communication in partially synchronous
networks.
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