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Abstract

What does it mean for an encryption scheme to be leakage-resilient? Prior formulations
require that the scheme remains semantically secure even in the presence of leakage, but only
considered leakage that occurs before the challenge ciphertext is generated. Although seemingly
necessary, this restriction severely limits the usefulness of the resulting notion.

In this work we study after-the-fact leakage, namely leakage that the adversary obtains after
seeing the challenge ciphertext. We seek a “natural” and realizable notion of security, which is
usable in higher-level protocols and applications. To this end, we formulate entropic leakage-
resilient PKE. This notion captures the intuition that as long as the entropy of the encrypted
message is higher than the amount of leakage, the message still has some (pseudo) entropy left.
We show that this notion is realized by the Naor-Segev constructions (using hash proof systems).

We demonstrate that entropic leakage-resilience is useful by showing a simple construction
that uses it to get semantic security in the presence of after-the-fact leakage, in a model of
bounded memory leakage from a split state.

1 Introduction

In the traditional view of cryptography, some parts of the system are designated as secret, and
these parts are kept beyond reach for the attackers and only interact with the non-secret parts
via well defined interfaces under the control of the designers. In contrast, in reality many times
attackers can “design their own interfaces” for accessing the secret state. For example, they may
get parts of the secret state via a myriad of side-channels (e.g., timing, radiation, etc.), read it
off some backup tape or physical memory, or maybe bribe people who have access to parts of the
secret state (or install a virus on their machines). Recent years saw many advances in our ability to
reason formally about such unintended leakage and to construct schemes that resist broad class of
leakage attacks (e.g., [14, 16, 10, 1, 17, 4, 15, 11] and others). This line of work is typically referred
to as leakage-resilient cryptography.

The general theme in formulating leakage resilience of some primitive is that in addition to
the usual interfaces that are available by design, the adversary can also choose arbitrary leakage
functions (from some broad class) and get the result of applying these functions to the secret state of
the scheme. We then require that the scheme still meets the original notion of security, even in the
presence of this more powerful adversary. This approach was successfully applied to model leakage
resilience of many cryptographic schemes, such as pseudorandom generators, signature schemes,
etc.
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The same approach was also applied to leakage-resilience of encryption schemes, e.g., in [1, 17, 4],
but here there seems to be a problem: Basic notions of security for encryption schemes require that
they hide the content of the plaintext even from an adversary that knows many things about that
plaintext. In particular, semantic security of encryption requires that an adversary that knows two
messages m0,m1 and sees a ciphertext c encrypting one of them, will not be able to tell which of the
two messages is encrypted in c. But if we let the adversary learn arbitrary functions of the secret
key, then it could ask for a function that decrypts the “challenge ciphertext” c and outputs 0 if it is
decrypted to m0 and 1 otherwise. In other words, given the challenge ciphertext the adversary can
design a leakage function that will leak to it exactly the one bit that we try to hide using encryption.

Prior work on leakage-resilient PKE [1, 17, 4] bypassed this definitional difficulty by only con-
sidering before-the-fact leakage. Namely, the adversary could only ask for leakage on the secret key
before it sees the challenge ciphertext, and the scheme was deemed leakage resilient if it remained
semantically secure in face of such leakage. This approach indeed bypasses the technical problem,
but pays dearly in terms of the meaning and applicability of the resulting notions. Indeed this
solution means that as soon as even one bit of the secret key is leaked, we cannot say anything
about the secrecy of any message that was encrypted before that bit was leaked.

Consider for example trying to address memory leakage (such as the “cold boot attacks” [12])
by using leakage-resilient encryption. In a memory-leakage attack, an attacker may get a laptop
where the disk is encrypted. Lacking the password to access the decryption functionality, the
attacker may try to read the decryption key directly off the physical memory. In this setting, the
adversary could first see the encrypted disk (hence getting access to the ciphertext), and then try to
design a method of measuring the memory specifically for the purpose of decrypting this ciphertext.
Existing notions of before-the-fact leakage-resilient encryption say nothing about the secrecy of the
plaintext under this attack. This definitional problem was acknowledged in prior work, but no
solutions were offered. For example, Naor and Segev wrote in [17] that “It will be very interesting
to find an appropriate framework that allows a certain form of challenge-dependent leakage.”

1.1 Our contributions

In this work we study after-the-fact leakage, where the adversary obtains leakage information
after seeing the challenge ciphertext. Our main contribution is formulating the notion of entropic
leakage-resilient PKE and showing how to meet it. Intuitively, this notion says that even if the
adversary designs its leakage function according to the challenge ciphertext to leak the things it
wants to know, if it only leaks k bits then it cannot “amplify” them to learn more than k bits
about the plaintext. Technically, our notion can be viewed as an extension of HILL entropy [13] to
the interactive setting. Namely, our notion would say that the message still looks like it has some
min-entropy, even to the interactive adversary that participated in the game of semantic-security
with leakage.

We remark that this notion is not trivial: Indeed it is not hard to construct “contrived” en-
cryption schemes that are semantically secure (even with respect to before-the-fact leakage), but
such that leaking (say)

√
n bits after the fact lets the adversary recover n bits of plaintext. On the

other hand, we show that the same construction that Naor and Segev used in [17] for obtaining
leakage-resilient encryption from hash proof systems, in fact realizes also the stronger notion of
entropic leakage-resilience relative to after-the-fact leakage.

To demonstrate the usefulness of entropic leakage-resilience we show that in some cases it can
be used to get full semantic security, even in the presence of after-the-fact leakage. For this, we of
course have to limit the type of leakage functions that the adversary has access to. Specifically, we
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consider a model where the key is broken into several parts, and the adversary can get access to
leakage from every part separately, but not to a global leakage from the entire secret state. (This
model is often used in conjunction with the only-computation-leaks axiom of Micali and Reyzin
[16].)

To get semantic security in that model, we use two instances of an entropic leakage resilient
encryption scheme. To encrypt a message m, we choose two random long strings x1, x2, encrypt
each xi under a different copy of the entropic scheme, and use a two-source extractor to compute
Ext2(x1, x2) ⊕ m. To decrypt we recover the two strings x1, x2 (which we can do by working
separately with the two secret keys) and then recover m. The intuition is that as long as the
adversary can only get leakage functions from the two keys separately, the entropic leakage resilience
of the underlying scheme implies that x1, x2 still have a lot of entropy, and hence Ext2(x1, x2) still
hides the message. (We remark that we view this construction more as an example to the usefulness
of our new notion than as a stand-alone application.)

Discussion: on defining useful leakage primitives. On some level, our notion of entropic
leakage-resilience departs from the usual theme described above for defining leakage-resilience prim-
itives. Namely, we no longer insist that the scheme retains its original security properties even in
the face of leakage. In the face of the impossibility of achieving the strong notion of semantic
security, we are willing to settle on a weaker achievable notion so long as it is useful in higher-level
applications. It is interesting to formulate such useful weakened notions also for other primitives,
such as commitment, key-agreement, etc.

In this context we note that when thinking about encryption as part of a communication system,
our notion only captures leakage at the receiver side (i.e., from the secret key) and not at the
sender side (i.e., from the encryption randomness). It is interesting to find ways of simultaneously
addressing leakage at both ends.

1.2 Recent Related Work

We mention that two recent works by Goldwasser and Rothblum [11], and Juma and Vahlis [15]
implicitly also considered after-the-fact leakage for encryption schemes. They presented general
methods for compiling any circuit with secret components into one that resists continuous leakage
(in the only-computation-leaks model), using leakage-free hardware. Their transformations use
as a technical tool encryptions schemes that remain semantically secure even at the presence of
after-the-fact leakage of the secret key, provided that the adversary sees only part of the challenge
ciphertext. (Such notion of semantic-security with respect to adversaries that cannot see the entire
challenge ciphertext, if defined as a stand-alone primitive, could be another example of a useful
weaker leakage primitive.)

2 Preliminaries

We denote random variables by uppercase English letters. For a random variable A we (slightly)
abuse notation and denote by A also the probability distribution on the support of this variable.
We write A ∈ D to denote that A is drawn from domain D. We use Ut to denote the uniform
distribution on t-bit binary strings. We write x← A to denote the random variable A assuming the
value x. We will rely on the following fact about independent random variables, which is proved in
the full version of [9].
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Lemma 1 Let A, B be independent random variables and consider a sequence V1, . . . , Vm of ran-
dom variables, where for some function φ, Vi = φ(V1, . . . , Vi−1, Ci), with each Ci being either A or
B. Then A and B are independent conditioned on V1, . . . , Vm.

2.1 Min-Entropy and Average Min-Entropy

The statistical distance between two random variablesA andB over a finite domain Ω is SD
(
A, B

)
=

1
2

∑
ω∈Ω |Pr[A = ω]− Pr[B = ω]|. Two variables are ε-close if their statistical distance is at most ε.

The min-entropy of a random variable A is H∞(A) = − log(maxx Pr[A = x]). The notion of average
min-entropy, formalized in [7], captures the remaining unpredictability of the random variable A
conditioned on the value of another random variable B. Formally,

H̃∞(A|B) = − log
(
Ey←B

[
max
x

Pr [A = x | B = y]
])

= − log
(
Ey←B

[
2−H∞(A|B=y)

])
We will rely on the following useful properties of average min-entropy.

Lemma 2 ([7]) Let A, B, C be random variables. If B has at most 2λ possible values, then
H̃∞(A|(B,C)) ≥ H̃∞(A|C)− λ.

Lemma 3 Let A be a random variable with domain Ω, and U the random variable describing a uni-
formly sampled element from Ω; and let B a random variable. For any ε ∈ [0, 1], if SD

(
(A,B), (U,B)

)
≤

ε, then H̃∞(A|B) ≥ − log
(

1
|Ω| + ε

)
.

This lemma follows directly from the definition of average min-entropy; we omit the proof here.

2.2 Seeded Extractors

Definition 1 ([19]) A function Ext : {0, 1}n×{0, 1}r → {0, 1}m is a (worst-case) (k, ε)-strong ex-
tractor if for every random variable A ∈ {0, 1}n, such that, H∞(A) ≥ k, it holds that, SD

(
(Ext(A,S), S),

(Um, S)
)
≤ ε, where S is uniform on {0, 1}r.

Dodis et al. [7] generalized the definition above to the setting of average min-entropy, and showed
the following generalized variant of the leftover hash lemma, stating that any family of pairwise
independent hash functions is an average-case strong extractor.

Definition 2 A function Ext : {0, 1}n×{0, 1}r → {0, 1}m is an average-case (k, ε)-strong extractor
if for all pairs of random variables A and B, such that, A ∈ {0, 1}n and H̃∞(A|B) ≥ k, it holds
that, SD

(
(Ext(A,S), S,B), (Um, S,B)

)
≤ ε, where S is uniform on {0, 1}r.

Lemma 4 Assume
{
Hx : {0, 1}n → {0, 1}l

}
is a family of universal hash functions. Then for any

random variables A and B, such that A ∈ {0, 1}n and H̃∞(A|B) ≥ m, SD
(
(Hx(A), X,B), (Ul, X,B)

)
≤

ε whenever l ≤ m− 2 log 1
ε .
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2.3 Two-Source Extractors

The extractors defined in the last section require the use of a short but truly random seed, which
sometimes might be hard to obtain. The notion of two-source extractor [21, 22, 5] eliminates the
use of a truly random seed, and instead extracts random bits from two independent sources of
randomness.

Definition 3 A function Ext2 : ({0, 1}t)2 → {0, 1}m is a (worst-case) (s, ε) two-source extrac-
tor, if for all independent random variables A,B ∈ {0, 1}t with min-entropy s, it holds that
SD
(
Ext2(A,B), Um

)
≤ ε.

Definition 4 A function Ext2 : ({0, 1}t)2 → {0, 1}m is an average-case (s, ε)-two source extractor,
if for all random variables A,B ∈ {0, 1}t and C, such that, conditioned on C, A and B are
independent and have average min-entropy s, it holds that SD

(
(Ext2(A,B), C), (Um, C)

)
≤ ε.

It follows from the same proof of Lemma 2.3 in [7] that any worst-case two-source extractor is also
an average-case two-source extractor.

Lemma 5 For any δ > 0, if Ext2 : ({0, 1}t)2 → {0, 1}m is a (worst-case) (s− log 1
δ , ε)-two-source

extractor, then Ext2 is also an average-case (s, ε+ 2δ)-two-source extractor.

2.4 Hash Proof Systems

Hash proof systems were introduced by Cramer and Shoup [6]. We briefly recall the presentation
in [17], which views the hash proof systems as key encapsulation mechanisms.

Smooth Projective Hashing. All the notations below should be thought of as relying on an
implicit security parameter (and maybe some other system parameters, such as the underlying
algebraic groups). Let SK,PK be the domains of secret and public keys, let K be the space
of encapsulated symmetric keys, C be the space of ciphertexts and V ⊂ C be the space of valid
ciphertexts.

Let F = {Fsk : C → K}sk∈SK be a collection of hash functions with domain C and range K, and
let µ : SK → PK be a projection function. Let F be the construction which is described by all
these sets, F = (SK,PK, C,V,K, F, µ).

Definition 5 The construction F is a projective hash family if for all v ∈ V, and for all sk1, sk2 ∈
SK such that µ(sk1) = µ(sk2), it holds that Fsk1(v) = Fsk2(v).

In other words, for all indexes sk ∈ SK, the actions of Fsk on elements in V are uniquely determined
by µ(sk). On the other hand, for elements not in V, we require the hash function Fsk to behave
almost “randomly”. Formally,

Definition 6 The construction F is ε-smooth, if it holds that

SD
(
(pk, c, Fsk(c)), (pk, c, k)

)
≤ ε,

where sk ∈ SK, c ∈ C/V, and k ∈ K are sampled uniformly at random and pk = µ(sk).
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Hash Proof System. A hash proof system is roughly a construction of smooth-projective hash
functions with several efficient associated algorithms. Specifically, we assume an efficient parameter-
generating algorithm Param that given the security parameter outputs the description of F =
(SK,PK, C,V,K, F, µ), such that V is an NP language and there is an efficient algorithm for
sampling c ← V together with a witness w. We also assume that there are efficient algorithms
for sampling sk ← SK and c← C \ V.

We also have two algorithms for computing the hash function Fsk. One is a private evaluation
algorithm Priv(sk, c) that on input a secret key sk ∈ SK and a ciphertext c ∈ C, outputs the
encapsulated key k = Fsk(c). The other is a public evaluation algorithm Pub that computes the
same given the public key, but only on valid ciphertexts and only when it is also given a witness of
validity. Namely, for every sk ∈ SK and pk = µ(sk) and for every c ∈ V with witness w, it holds
that Pub(pk, c, w) = Fsk(c).

Cramer and Shoup noted that a hash proof system immediately implies a KEM mechanism,
where key-generation consists of running the parameter generating routine, then choosing a random
secret key sk ← SK and computing the corresponding public key pk = µ(sk). Encapsulating a
key is done by choosing at random c ← V together with a witness w. Then the ciphertext is c
and the corresponding encapsulated key is computed by the sender using the public evaluation
algorithm, setting k = Pub(pk, c, w). On the receiving side, the same key is recovered using the
private evaluation algorithm, setting k = Priv(sk, c). Security of this scheme follows from the
smoothness of the construction, in conjunction with the hardness subset membership problem, as
defined below.

Subset Membership Problem. A hash proof system as above is said to have a hard subset
membership problem if a randomly generated valid ciphertext is computationally indistinguishable
from a randomly generated invalid ciphertext. Formally, the following two ensembles are indistin-
guishable

VALID = {F = (SK,PK, C,V,K, F, µ)← Param(1n), c← V : (F , c)}n∈N
INVALID = {F = (SK,PK, C,V,K, F, µ)← Param(1n), c← C \ V : (F , c)}n∈N

3 Entropic Security against After-the-Fact Leakage

Roughly speaking, we say that an encryption scheme is entropic leakage resilient if a message M
with high min-entropy still “looks random” to the adversary even after it sees an encryption of it
and some leakage information (even if this leakage was obtained after seeing the ciphertext). This
is formulated by postulating the existence of a simulator that generates a view, which on one hand
is indistinguishable from the real adversary view and on the other hand still leaves M with high
min-entropy.

More formally, we define two games, one “real” and the other “simulated”. Both games depend
on several parameters: k is the a-priory min-entropy of the message, and `pre, `post control the
amount of leakage in various parts of the games (namely the pre- and post- challenge-ciphertext
leakage). All of these parameters are of course functions of the security parameter n. (For simplicity,
in the definition below we assume that the message M is a uniform random k-bit string. This is
all we need for our application in Section 4 to the only-computation-leak model, and extending the
definition to arbitrary high-min-entropy distributions is easy.)
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The “real” game. Given the parameters (k, `pre, `post) and the encryption scheme Ψ = (Gen,Enc,Dec),
the real game is defined as follows:

Key Generation: The challenger chooses at random a message m ← Uk. The challenger also
generates (sk, pk)← Gen(1n), and sends pk to the adversary.

Pre-Challenge Leakage: The adversary makes a pre-challenge leakage query, specifying a func-
tion fpre(·). If the output length of fpre is at most `pre then the challenger replies with
fpre(sk). (Else the challenger ignores the query.)

Challenge: Upon a challenge query, the challenger encrypts the message m and sends the cipher-
text c = Enc(pk,m) to the adversary.

Post-Challenge Leakage: The adversary makes a post-challenge leakage query, specifying an-
other function fpost(·). If the output length of fpost is at most `post then the challenger
replies with fpost(sk). (Else the challenger ignores the query.)

We let Viewrl
A(Ψ) = (randomness, pk, fpre(sk), c, fpost(sk)) be the random variable describing the

view of the adversary A in the game above, and by M rl we denote the message that was chosen
at the onset of this game. (We view them as correlated random variables, namely when we write
(M rl,Viewrl

A(Ψ)) we mean the joint distribution of the message M rl and A’s view in a real game
with M rl).

The “simulated” game. In the simulated game we replace the challenger from above by a
simulator Simu that interacts with A in any way that it sees fit. Simu gets a uniformly chosen
message M sm as input, and it needs to simulate the interaction conditioned on this M sm. The view
of A when interacting with S is denoted Viewsm

A (Simu).
Below we say that Ψ is entropic leakage-resilient (with respect to all the parameters) if on one

hand the distributions Viewrl
A(Ψ), Viewsm

A (Simu) are indistinguishable even given the message M ,
and on the other hand M sm has high min-entropy given Viewsm

A (Simu).

Definition 7 Let k, `pre, `post be parameters as above, and let δ be another “slackness parameter.”
A public-key encryption scheme Ψ = (Gen,Enc,Dec) is entropic leakage resilient with respect
to these parameters if there exists a simulator Simu, such that, for every PPT adversary A the
following two conditions hold:

• The two ensembles
(
M rl,Viewrl

A(Ψ)
)
,
(
M sm,Viewsm

A (Simu)
)

(indexed by the security parame-
ter) are computationally indistinguishable.

• The average min-entropy of M sm given Viewsm
A (Simu) is

H̃∞(M sm | Viewsm
A (Simu)) ≥ k − `post − δ.

Intuitively, in the simulated game the message M sm retains its initial entropy, except for the `post

post-challenge leakage bits and possibly also some “overhead” of δ bits. And since the simulated
game cannot be distinguished from the real game, then M rl has the same number of pseudo-entropy
bits also in the real game.
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What happened to `pre? Note that the min-entropy of M sm is only reduced by the amount
of the post-challenge leakage (and “overhead”) irrespective of the pre-challenge leakage. This is
reminiscent of the prior results that can tolerate pre-challenge leakage while maintaining semantic
security (hence “not losing any entropy” of the message). Indeed, the security notions from [1, 17]
can be obtained as a special case of our definition with `post = δ = 0.

Adaptiveness. It was pointed out in [1] that the pre-challenge leakage can be made adaptive
without effecting the definition. The same holds also for the post-challenge leakage.

3.1 Constructing Entropic Leakage-Resilient Scheme

We show that the generic construction of Naor and Segev for pre-challenge leakage resilient encryp-
tion from hash proof systems [17], is actually entropic secure against bounded after-the-fact leakage.
The encryption algorithm (overly simplified) samples a valid ciphertext c of the hash proofs system,
and uses the key encapsulated in c to hide the message. To show entropic security, the entropic
simulator proceed the same as the encryption algorithm except that it uses invalid ciphertexts.
It follows from the indistinguishability of the valid and invalid ciphertexts that the real and the
simulated games are indistinguishable. Furthermore, due to smoothness the key encapsulated in
an invalid ciphertext has high min-entropy, and hence the message is well “hidden”, and has high
average min-entropy.

In more details, we need an ε-smooth hash proof system F = (SK,PK, C,V,
K, F, µ), where the symmetric encapsulated keys are assumed (w.l.o.g.) to be just t1-bit strings,
K = {0, 1}t1 . We also need a function Ext : {0, 1}t1 × {0, 1}t2 → {0, 1}t3 which is an average-case
(t4, δ) strong extractor. Namely, it has t1-bit inputs, t2-bit seeds and t3-bit outputs, and for a
random seed and input with t4 bits of min entropy, the output is δ-away from a uniform t3-bit
string. Then, the encryption scheme Ψ = (Gen,Enc,Dec) proceeds as follows:

Key Generation: The key generation algorithm, on input a security parameter 1n, generates an
instance of a projective hash family F = (SK,PK, C,V,K, F,
µ) ← Param(1n), samples a secret key sk ← SK, and computes the corresponding public
key pk = µ(sk).

Encryption: The encryption algorithm, on input a message m ∈ {0, 1}t3 , samples a valid cipher-
text together with a corresponding witness (c, w)← V, and computes the encapsulated key k
using the public evaluation algorithm, i.e., k = Pub(pk, c, w). It then samples a random seed
s ∈ {0, 1}t2 , and computes ψ = Ext(k, s)⊕m. Finally, it outputs the ciphertext ĉ = (c, s, ψ).

Decryption: The decryption algorithm on input a ciphertext (c, s, ψ), computes the encapsulated
key k using the private evaluation algorithm, i.e., k = Priv(sk, c), and outputs the message
m = Ext(k, s)⊕ ψ.

It follows using the same proof as in [17] that the encryption scheme Ψ is a correct public-key
encryption scheme. Namely the decryption algorithm always recovers the original message m
correctly. Next, we proceed to prove the entropic leakage resilience of Ψ against after-the-fact
leakage.

Lemma 6 The public-key encryption scheme Ψ from above is entropic leakage-resilient with respect
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to leakage `pre, `post and “overhead” δ′, as long as these parameters satisfy the following constraints:

`pre ≤ log

(
1

1
|K| + ε

)
− t4 and δ′ ≤ t3 − log

1

2−t3 + δ

To interpret these parameters, it is useful to think of a “very smooth” hash proof system
(ε � 1/|K| = 2−t1), and a very good extractor that can work with inputs that have min-entropy
t4 � log |K| = t1 and produces outputs whose distance from uniform t3-bit strings is δ < 2−t3 . For
such building blocks we can tolerate pre-challenge leakage of `pre ≈ t1 − t4 = t1(1− o(1)), and our
overhead is δ′ < 1 bits.
Proof: To prove Lemma 6 we need to describe a simulator, whose answers to the adversary are
indistinguishable from the real game but at the same time leave many bits of min-entropy in the
message m.

In our case, the simulator S proceeds almost identically to the challenger in the real game,
except that to generate the ciphertext ĉ = (c, s, ψ) it samples an invalid ciphertext for the hash-
prof system, c← C/V, then it computes k = Priv(sk, c) using the secret key sk that it knows, and
outputs the ciphertext ĉ = (c, s, ψ), where ψ = Ext(k, s)⊕m.

It follows directly from the indistinguishability of the valid and invalid ciphertexts of the hash
proof system that the simulated view is indistinguishable from the real one even given the message
m. It only remains to show the min-entropy condition.

On a high-level, the proof consists of two steps. The first step shows that conditioned on all
the information that the adversary receives till the end of the Challenge Phase, the message m still
has high average min-entropy, namely at least t3 − δ′.

To see this, note that by ε-smoothness the encapsulated key k has almost t1 bits of min-entropy
even given pk and c, and therefore almost t1 − `pre bits of min-entropy even given pk, c and the

pre-challenge leakage. Specifically k has at least log

(
1

1
|K|+ε

)
− `pre ≥ t4 bits of min-entropy, and

therefore the bits extracted from k using the extractor Ext are statistically close to random (even
given pk, c the pre-challenge leakage and the seed s). Thus the message m is δ-close to a uniform
t3-bit string, even given pk, c, the pre-challenge leakage, the seed s, and the value ψ. (So far this is
exactly the same argument as in the proof of the Naor-Segev construction.) Hence upto this phase,
the message m has at least t3 − δ′ bits of min entropy.

Next, by further relying on the fact that the post-challenge leakage is bounded by `post bits,
the min-entropy of m is reduced by at most this much, so it retains at least t3 − `post − δ′ bits of
average min-entropy.

.

4 Semantic Security in a Split-State Model

We next demonstrate how Definition 7 can be used in a “higher level protocol”. Specifically, we
consider a split-state model, where the secret state of the cryptosystem at hand is partitioned to
a few parts and the adversary can obtain leakage of its choice on every part separately but not a
global leakage function from the entire secret state.

This model is often used in conjunction with the only-computation-leaks axiom (OCL) of Micali
and Reyzin [16]. In our case we talk only about CPA security and there is no decryption oracle,
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hence after-the-fact there isn’t any computation to leak from and talking about only-computation-
leaks does not make sense. (An extension of this construction to get CCA-security may be applicable
to the OCL model, but this is beyond the scope of the current work.)

Definition 8 A 2-split-state encryption scheme is a public-key encryption scheme Π = (Gen,Enc,Dec)
that has the following structure:

• The secret key consists of a pair of strings S = (S1, S2), and similarly the public key consists
of a pair P = (P1, P2).

• The key generation algorithm Gen consists of two subroutines Gen1 and Gen2, where Geni
for i ∈ {1, 2} outputs (Pi, Si).

• The decryption algorithm Dec also consists of two partial decryption subroutines Dec1 and
Dec2 and a combining subroutine Comb. Each Deci takes as input the ciphertext and Si and
outputs partial decryption ti, and the combining subroutines Comb takes the ciphertext and
the pair (t1, t2) and recovers the plaintext.

In the split-state model, we assume that information is leaked independently from the two parts.
Semantic security for such a 2-split-state scheme in the presence of After-the-Fact Leakage in this
model is defined below. Let `pre, `post be parameters as before, and we consider the following game:

Key Generation: The challenger chooses r1, r2 ∈ {0, 1}∗ at random, generates (skb, pkb) ←
Gen(1n, rb) for b = 1, 2, and sends (pk1, pk2) to the adversary.

Pre-Challenge Leakage: The adversary makes an arbitrary number of leakage queries (fpre
1,i , f

pre
2,i )

adaptively. Upon receiving the ith leakage query the challenger sends back (fpre
1,i (sk1), fpre

2,i (sk2)),
provided that the total output length of all the pre-challenge queries so far does not exceed
`pre in each coordinate. (Otherwise the challenger ignores the query.)

Challenge: The adversary sends two messages m0,m1 ∈ {0, 1}n. The challenger chooses a random
bit σ, encrypts the message mσ, and returns the ciphertext c = Enc(pk,mσ).

Post-Challenge Leakage: The adversary can submit an arbitrary number of leakage queries
(fpost

1,i , fpost
2,i ) adaptively. Upon receiving the ith leakage query the challenger sends back

(fpost
1,i (sk1), fpost

2,i (sk2)), provided that the total output length of all the post-challenge queries
so far does not exceed `post in each coordinate. (Otherwise the challenger ignores the query.)

Output: The adversary outputs a bit σ′.

Definition 9 A 2-split-state encryption scheme Ψ = (Gen,Enc,Dec) is resilient to (`pre, `post)
leakage in the split-state model, if for every PPT adversary A that participates in an experiment as
above, there is a negligible function negl such that Pr[σ′ = σ] < 1/2 + negl(n).

4.1 Our Construction

As defined above, our 2-split-state scheme maintains a split secret key (S1, S2) (and a corresponding
split public key (P1, P2)), where Si is generated by Geni and used by Deci. Due to the the restriction
on the leakage in the split-state model, the adversary can never obtain leakage on S1 and S2 jointly,
so even after leakage we can hope that each of the two parts still has sufficient entropy and moreover
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they are independent. Hence we can use two-source extractors to get a close-to-uniform string from
these two parts, and use it to mask the message.

In the scheme below, we do not try to extract from the secret keys themselves, but rather in each
encryption we encrypt two random strings, one under each of the keys, and extract randomness
from these two ephemeral random strings. We argue that if the two copies are implemented
using an entropic leakage-resilient scheme, then we get semantic security in the split-state model.
Intuitively, the reason is that the entropic security ensures that the two ephemeral strings still
have high (pseudo)entropy even given the leakage, and the split-state model ensures that they are
independent, so the two-source extraction should give us what we want.

The formal proof roughly follows this intuitive reasoning, with just one additional complication,
related to adaptivity: In the post-challenge leakage, the adversary can choose the leakage functions
from the two key parts after it already saw the value that was extracted from the two random
strings, causing a circularity in the argument. We solve this issue essentially by “brute force”:
We argue below that if the extracted value has only u bits, then the adaptivity issue can increase
the advantage of the adversary by at most a 2u factor, and set our parameters to get around this
factor.1

The construction. Let n be the security parameter, and let u be the bit-length of the messages
that we want to encrypt. Also let t, v, `pre, `post be some other parameters (to be defined later).
Let Ψ = (GenEnt, EncEnt, DecEnt) be a entropic secure encryption for t-bit messages, resilient to
leakage (`pre, `post), with overhead of one bit.

Also, let Ext2 : {0, 1}t × {0, 1}t → {0, 1}u be an average-case (v, ε)-two-source extractor, with
ε = 2−u−ω(logn). Namely both inputs to Ext2 are of length t, and as long as they are independent
and both have more than v min entropy, the output of Ext2 is at most ε away from a uniform u-bit
string.2 Given these ingredients, our 2-split-state encryption scheme Π = (Gen,Enc,Dec) proceeds
as follows:

Key Generation: The key generation algorithm runs two subroutines Gen1 and Gen2, where
Geni for i ∈ {1, 2} on input 1n generates a public and secret key pair (Si, Pi)← GenEnt(1n)
of the entropic encryption scheme Ψ. The public key is P = (P1, P2) and the secret key is
S = (S1, S2).

Encryption: The encryption algorithm, on input a message m ∈ {0, 1}u, chooses two random
strings x1, x2 ∈ {0, 1}t and encrypts the two strings using the two public keys P1 and P2

respectively; set ci = EncEnt(Pi, xi). Then, it computes ψ = Ext2(x1, x2) ⊕m, and outputs
the ciphertext ĉ = (c1, c2, ψ).

Decryption: The decryption algorithm, on input a ciphertext (c1, c2, ψ), executes the following
three subroutines sequentially.

• The subroutine Dec1 decrypts c1 using S1 and outputs the plaintext x1 = DecEnt(S1, c1).

• The subroutine Dec2 decrypts c2 using S2 and outputs the plaintext x2 = DecEnt(S2, c2).

• The subroutine Comb on input x1, x2 and ψ, outputs the message M = Ext2(x1, x2)⊕ψ.

1We remark that we do not make exponential hardness assumptions to achieve this. See proof of Claim 8 for more
details.

2Note that we set ε so that it remain negligible even if we multiply it by 2u, this is needed for the adaptivity issue
in the proof.
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Lemma 7 The 2-split-state scheme Π from above is semantically secure with respect to leakage
(`′pre, `

′
post) in the split-state model, as long as the parameters satisfy the following constraints:

`′pre ≤ `pre and `′post ≤ min(`post − u, t− v − 1).

Proof: We need to show that PPT adversaries only have negligible advantage in guessing the
choice bit σ in the semantic security game. To that end, fix a semantic-security adversary Ass,
and let Simu be the entropic simulator that exists for the underlying entropic scheme Ψ3. We now
consider the hybrid experiments hyb1 and hyb2, which are defined as follows:

Hybrid hyb1: In this hybrid, the challenger generates the ciphertext c2 and answers leakage queries
against S2 just as in the real game. However, it uses the entropic simulator Simu to generate
the ciphertext c1 and to answer leakage queries against S1.

In more details, the challenger chooses x1, x2 at random, then generates (S2, P2) using the
key-generation of Ψ, but it gets P1 by running Simu(x1). (Recall that the entropic simula-
tor expects a random plaintext string in its input.) Then to answer a pre-challenge query
(fpre

1,i , f
pre
2,i ), the challenger forward fpre

1,i to Simu and gets the answer from it, computes the

answer fpre
2,i (S2) by itself, and send both answer to Ass.

When Ass makes a challenge query (m0,m1), the challenger asks Simu for the first ciphertext
c1, and computes c2 by itself c2 = Enc(P2, x2). (Recall again that Simu was run with input x1,
so the ciphertext that it returns is supposed to simulate an encryption of x1.)

Next, the challenger makes a direct post-challenge leakage query to Simu, querying
with the function h1(S1) = Ext2(Dec(S1, c1), x2) (that has u bits of output). Getting some
answer r′, the challenger just discards that answer, instead computing r = Ext2(x1, x2),
choosing a random bit σ, setting ψ = r ⊕mσ and sending (c1, c2, ψ) to Ass.

After that, post-challenge queries of Ass are handled just like the pre-challenge queries, with
the challenger asking Simu for the first part of the answer (for the query against S1) and
computing the answer to the query against S2 by itself.

Hybrid hyb2: In this hybrid the challenger still chooses x1, x2 at random, but now both parts of
the game are handled by the simulator, running as Simu(x1) to answer the first part of all
the queries (and to get c1) and as Simu(x2) to answer the second part of all the queries (and
to get c2).

The challenger makes direct post-challenge queries to both copies of the simulator, ask-
ing the first for r′ = h1(S1) = Ext2(Dec(S1, c1), x2) and the second for r′′ = h2(S2) =
Ext2(x1, Dec(S2, c2)). The challenger still ignores both answers, computing instead r =
Ext2(x1, x2) and setting the ψ component of the Π-ciphertext as r ⊕mσ.

Before proceeding with the proof, we point out that the direct post-challenge leakage queries
that the challenger makes are expected to return the same value that the challenger computes itself,
r′ = r′′ = r. (Indeed we prove below that they almost always do). The reason that the challenger
still makes them is to ensure that the entropic simulators see the same queries in these hybrids as
in the reductions that we use below. One consequence of these direct queries is that the entropic
simulators need to answer more post-challenge queries than what the semantic-security adversary
asks. Specifically, it needs to answer u more bits, hence the constraint `′post ≤ `post − u.

3Our Definition 7 has only one pre- and one post-challenge query. Below we assume for convenience that the
entropic-security adversary can make adaptive queries, it was noted in [1] that these definition are equivalent.
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We now prove that the event σ′ = σ holds in the hybrids with essentially the same probability
as in the real game, by reducing to the indistinguishability property of the entropic simulator.

The hybrid hyb1. Assume toward contradiction that the event σ′ = σ happens in the real game
with probability which is larger than in the first hybrid hyb1 by a noticeable amount ρ. We describe
an entropic adversary Aent and distinguisher Dent that break this indistinguishability property. (In
fact, for the same entropic adversary Aent we describe two distinguishes Dent

1 , Dent
2 , and prove that

at least one of them has advantage ρ/2 or more.)

• The entropic adversary Aent, on input public key P1, chooses (P2, S2) and x2 in the same way
as the hyb1 challenger, and sends (P1, P2) to the semantic-security adversary Ass. It then
proceeds similarly to the hyb1 challenger, answering the first part of every query using its
oracle and computing the answer to the second part by itself.

The only difference between Aent and the hyb1 challenger is in the way that the ψ com-
ponent of the ciphertext is computed. Once Aent gets c1 from its oracle and computes
c2 = Enc(P2, x2), it makes a post-challenge leakage query to its oracle asking for r′ = h1(S1) =
Ext2(Dec(S1, c1), x2). Since Aent does not have x1, it does not discard the answer but rather
uses it for setting ψ = r′ ⊕mσ.

• The first distinguisher Dent
1 gets the view of Aent, which includes x2 and r′, and also the string

x1 (which was supposed to be encrypted in c1). Dent
1 simply verifies that r′ = Ext2(x1, x2),

outputting 1 if they are equal and 0 otherwise.

• The second distinguisher Dent
2 gets the view of Aent, which includes σ and σ′, and outputs 1

if they are equal and 0 otherwise.

Clearly, if the oracle of Aent is the real encryption scheme Ψ then the transcript that Ass sees is
identical to the real semantic-security game. In particular, the ciphertext c1 is indeed an encryption
of x1, and therefore we have r′ = Ext2(x1, x2) with probability 1.

If the oracle of Aent is the simulator Simu(x1), then we have two possible cases: either the event
r′ 6= Ext2(x1, x2) happens with probability at least ρ/2, or it happens with smaller probability. In
the first case, the distinguisher Dent

1 clearly has an advantage at least ρ/2 in distinguishing between
the real scheme Ψ and the simulator Simu.

In the second case, the transcript that Ass sees is the same as in the hybrid hyb1, except for
an event of probability less than ρ/2. Since the probability of σ = σ′ in the real game is larger
by ρ than this probability in hyb1, then it is larger by more than ρ/2 than this probability in the
interaction with Aent. Hence the distinguisher Dent

2 has advantage more than ρ/2.

The hybrid hyb2. The proof of indistinguishability between hyb1 and hyb2 is essentially the same
as the proof of indistinguishability between the real game and hyb1, and is omitted here.

The advantage in hyb2. Having shown that the probability of σ = σ′ in the second hybrid
hyb2 is negligibly close to the probability in the real game, we now proceed to bound it. For that
purpose, we consider another mental experiment ˜hyb as follows:

Hybrid ˜hyb: hybrid ˜hyb proceeds the same as hyb2, except that, in the Challenge Phase, instead
of sending the adversary Ass the complete ciphertext ĉ = (c1, c2, ψ), the challenger sends only
c1 and c2, and defers sending ψ until after the Post-Challenge Leakage Phase.
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Of course, the mental experiment ˜hyb is very much distinguishable from hyb2. Moreover, com-
pared with the adversary in ˜hyb, the adversary in hyb2 has the advantage of choosing the leakage
functions in the Post-Challenge Leakage Phase based on ψ. Still, we argue that this advantage is
limited, up to an exponential factor in u. Namely, we show in Claim 8 that if Ass has advantage α
in guessing the bit σ in hyb2, then there is another adversary Ã that has advantage at least α/2u

in guessing the bit σ in the mental experiment ˜hyb.

Claim 8 If for some α > 0 there exists an adversary Ass for which Prhyb2
[σ = σ′] ≥ 1

2 + α, then

there exists another adversary Ã for which Pr ˜hyb[σ = σ′] ≥ 1
2 + α

2u .

Proof:We present a generic construction of Ã given Ass. The adversary Ã in ˜hyb runs Ass internally,
and forward messages externally to the Challenger in ˜hyb. Except that in the Challenge Phase, Ã
randomly chooses some string ψ′ ∈ {0, 1}u and sends it to Ass in lieu of ψ. Later, when Ã gets the
“real ψ” from the challenger, it aborts if it guessed wrong, ψ′ 6= ψ, and proceeds just like Ass if the
guess was correct. Since the guess is correct with probability 2−u, it follows that the advantage of
Ã is exactly α/2u.

The advantage in ˜hyb. We are now ready to use the min-entropy property of the simulator S to
prove that the advantage pf Ã in ˜hyb is at most 2ε. Since we set ε = 2−u−ω(logn), then by Claim 8
it follows that the advantage of Ass in hyb2 is at most 2ε · 2u = 21−ω(logn) = negl(n), as needed.

In the mental experiment ˜hyb, let Γ be the (partial) transcript of messages that Ã receives till
the end of the Post-Challenge Leakage Phase (i.e., before it gets ψ). We show that the average
min-entropy of each of the two seeds x1, x2, conditioned on Γ is at least v. Let Γ = (Γ1,Γ2), where
Γ1 denote the partial transcript including the public key P1, the simulated encryption c1 of x1, and
all the leakage on S1, and Γ2 the partial transcript including P2, c2 and all the leakage on S2. By
the entropic security of Ψ in the simulated game, and the fact that `′post ≤ t− v − 1, we have that

H̃∞(x1|Γ1) ≥ t− `′post − 1 ≥ v. Furthermore, since conditioned on Γ1, x1 and Γ2 are independent,

we get H̃∞(x1|Γ) ≥ v. Similarly, it also holds that H̃∞(x2|Γ) ≥ v.
Since both x1, x2 have min-entropy more than v, and furthermore, by Lemma 1, are independent

conditioned on Γ (as in Γ no function computes on both x1 and x2), the output of the average-
case (v, ε) two-source extractor Ext2(x1, x2) is at most ε away from uniform. Therefore the two
distribution Ext2(x1, x2)⊕m0 and Ext2(x1, x2)⊕m1 are at most 2ε apart (since each is at most
ε away from uniform). Therefore the advantage of Ã is at most 2ε.

4.2 Instantiations and Parameters

Naor and Segev presented some instances of their construction [17] based on the DDH assumption
(or DDH and the d-linear assumption), and the same constructions work for our case too. This
gives entropic leakage resilient scheme Ψ with respect to any leakage `pre, `post and overhead 1,
as long as `pre is bounded by (1 − o(1))L′ − 3t, where L′ and t are respectively the lengths of the
secret key and plaintext of the scheme Ψ. Therefore, we only need to focus on instantiating the
two-source extractor Ext2 with exponentially small error ε = 2−u−ω(logn) in the length u of the
output. In the work of Bouragin [3] it was shown how to extract randomness from two independent
sources with min-entropy rate slightly less than half.
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Theorem 9 ([3]) There exists a universal constant γ < 1/2 and a polynomial time computable
function Bou : {0, 1}t × {0, 1}t → {0, 1}u′ that is a (v, ε)-two-source extractor, with v = γt, ε =
2−Ω(u′), and u′ = Ω(t).

It follow from Lemma 5 that Bou is also an average-case extractor as needed. Furthermore, this
construction lets us get two-source extractors with statistical distance as small as we want. Namely,
to get ε = 2−u−ω(logn) we simply use it with u′ sufficiently larger than u. Then we can truncate the
output to length u without increasing the statistical distance, thus getting the parameters that we
need.

Remark 1 The scheme Π uses a two-source extractor. We show that the construction can be easily
modified to use a c-source extractor, for any c > 2: instead of having two secret keys, maintain
c secret keys S1, . . . , Sc; each key Si is used to encrypt and decrypt a random seed Xi sampled
independently, and the message is hidden using the random bits extracted from Xi’s—we call it a
c-split-state encryption scheme. It follows from the same proof as above that, this scheme is secure
in the split-state model.

Furthermore, since we know how to extract randomness from multiple independent random
sources more efficiently, the c-split-state encryption scheme can tolerate more leakage than the 2-
split-state scheme. For instance, it has been shown in [20, 2] that for any arbitrarily small constant
δ > 0, there exists an O(1/δ)-source extractor that extracts from independent sources with min-

entropy k = nδ, with error ε = 2−k
Ω(1)

. Plugging in this extractor yields a c-split-state encryption
scheme resilient to any (`pre, `post) leakage on each secret key Si satisfying `′post + (1− o(1))`′pre ≤
(1− o(1))L− 3u− ω(log n), which means almost all of each secret key can be leaked. We omit the
details here.

5 Conclusion and Future Work

In this paper, we study after-the-fact leakage for public-key encryption schemes. We show that a
meaningful notion of security, namely, entropic security, can be achieved even at the presence of
arbitrary (but bounded) leakage after the ciphertext is generated, and furthermore, the full fledged
semantic security can be retained if considering some restricted form of leakage, namely a split-state
model.

It is, of course, very interesting to explore other notions of security and other models in the
context of after-the-fact leakage. For instance, Naor and Segev [17] showed that PKE that is
semantically secure resilient to before-the-fact leakage can be transformed into a scheme that is
CCA2-secure resilient to before-the-fact leakage, following the Naor-Yung “double encryption”
paradigm [8, 18]. It is interesting to see if a similar transformation can be done even with after-
the-fact leakage.

Furthermore, recently, there has been some developments in leakage resilient cryptography in
the continuous leakage model. One question studied in [15, 11] is how to transform any circuit with
a secret hard-coded, into another one that hides the secret even at the presence of arbitrary leakage
during the computation of the circuit, in the OCL model. It would be interesting to investigate
if their techniques can be applied to our scheme to make it secure even in the continuous leakage
model.

Another interesting question is to handle leakage from the encryption randomness, not just the
secret key. Perhaps the dense-model theorem from [10] can be used to prove ressitance at least to
logarithmically many leakage bits.
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Beyond just encryption, it is interesting to see if there are “natural” and useful relaxations
of other primitives that can be achieved in the presence of After-the-Fact Leakage, for example
commitment, key-agreement, etc.
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