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Abstract. In 2010, Groth constructed the only previously known sublinear-communication NIZK circuit sat-
isfiability argument in the common reference string model. We optimize Groth’s argument by, in particular,
reducing both the CRS length and the prover’s computational complexity from quadratic to quasilinear in the
circuit size. We also use a (presumably) weaker security assumption, and have tighter security reductions. Our
main contribution is to show that the complexity of Groth’s basic arguments is dominated by the quadratic
number of monomials in certain polynomials. We collapse the number of monomials to quasilinear by using a
recent construction of progression-free sets.
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1 Introduction

By using a zero-knowledge [GMR85] proof, a prover can convince a verifier that some statement is true without
leaking any side information. Due to the wide applications of zero-knowledge, it is of utmost importance to
construct efficient zero-knowledge proofs. Non-interactive zero-knowledge (NIZK) proofs can be generated once
can be verified many times by different verifiers and are thus useful in applications like e-voting.

NIZK proofs (or arguments, that is, computationally sound proofs) cannot be constructed in the plain model
(that is, without random oracles or any trusted setup assumptions). Blum, Feldman and Micali showed in [BFM88]
how to construct NIZK proofs in the common reference string (CRS) model. During the last years, a substantial
amount of research has been done towards constructing efficient NIZK proofs (and arguments). Since the com-
munication complexity and the verifier’s computational complexity are arguably more important than the prover’s
computational complexity (again, an NIZK proof/argument is generated once but can be verified many times), a
special effort has been made to minimize these two parameters.

One related research direction is to construct efficient NIZK proofs for NP-complete languages. Given an
efficient NIZK proof for a NP-complete language, one can hope to construct NIZK proofs of similar complexity
for the whole NP either by reduction or implicitly or explicitly using the developed techniques. In some NIZK
proofs for the NP-complete problem circuit satisfiability (Circuit-SAT), see Tbl. 1, the communication complexity
is sublinear in the circuit size. Micali [Mic94] proposed polylogarithmic-communication NIZK arguments for all
NP-languages, but they are based on the PCP theorem (making them computationally unattractive) and on the
random oracle model. Another NIZK argument for Circuit-SAT, proposed by Groth in 2009 [Gro09], is also based
on the random oracle model. (Without random oracles, this argument takes log2 |C|+ 5 rounds, where |C| is the
circuit size. Seo [Seo11] somewhat reduced the number of rounds in this argument.) It is well-known [CGH98]
that some functionalities are secure in the random oracle model and insecure in the plain model. In particular,
Goldwasser and Kalai [GK03] designed a signature scheme, built by using the Fiat-Shamir heuristics (which is
predominant in the construction of NIZK arguments in the random oracle model), that is secure in the random
oracle model but insecure when instantiated with any “real” hash function. As a safeguard, it is important to
design efficient NIZK proofs and arguments that do not rely on the random oracles. Given a fully-homomorphic
cryptosystem [Gen09], one can construct efficient NIZK proofs for all NP-languages in communication that is
linear to the witness size [Gro11]. However, since the witness size can be linear in the circuit size, in the worst
case the corresponding NIZK proofs are not sublinear.

In 2010, Groth [Gro10] proposed the first (worst-case) sublinear-communication NIZK Circuit-SAT argument
in the CRS model. First, he constructed two basic arguments for Hadamard product (the prover knows how to
open commitments A, B and C to three tuples a, b and c of dimension n, such that aibi = ci for i ∈ [n]) and
permutation (the prover knows how to open commitmentsA andB to two tuples a and b of dimension n, such that
a%(i) = bi for i ∈ [n]). Groth’s Circuit-SAT argument can then be seen as a program in a program language that
has two primitive instructions, for Hadamard product and permutation. Some of the public permutations depend



CRS length Argument length Prover comp. Verifier comp.
Random-oracle based arguments

[Gro09] O(|C|
1
2 )G O(|C|

1
2 )G O(|C|)M O(|C|)M

Knowledge-assumption based arguments from [Gro10]

m = 1 Θ(|C|2)G 42G Θ(|C|2)E Θ(|C|)M +Θ(1)P

m = n
1
3 Θ(|C|

2
3 )G Θ(|C|

2
3 )G Θ(|C|

4
3 )E Θ(|C|)M +Θ(|C|

2
3 )P

Knowledge-assumption based arguments from the current paper

m = 1 |C|1+o(1)G 39G Θ(|C|2)A+ |C|1+o(1)E (8|C|+ 8)M + 62P

m = n
1
3 |C|

1
3
+o(1)G Θ(|C|

2
3 )G Θ(|C|

4
3 )A+ |C|1+o(1)E Θ(|C|)M +Θ(|C|

2
3 )P

m = n
1
2 |C|

1
2
+o(1)G Θ(|C|

1
2 )G Θ(|C|

3
2 )A+ |C|1+o(1)E Θ(|C|)M +Θ(|C|

1
2 )P

Table 1. Comparison of NIZK Circuit-SAT arguments with (worst-case) sublinear argument size. Note that the summary length
of the CRS and the argument corresponds to the zap length. |C| is the size of circuit, G corresponds to 1 group element and
A/M /E/P corresponds to 1 addition/multiplication/exponentiation/pairing

on the circuit, while the secret input tuples of the basic arguments depend on the values, assigned to the input
and output wires of all gates according to a satisfying assignment. The basic arguments then show that this wire
assignment is internally consistent and corresponds indeed to an satisfying input assignment. For example, Groth
used one permutation argument to verify that all input wires of all gates have been assigned the same values as the
corresponding output values of their predecessor gates.

In the basic variant of Groth’s pairing-based Circuit-SAT argument, see Tbl. 1, the argument has Θ(1) group
elements, but on the other hand the CRS has Θ(|C|)2 group elements, and the prover’s computational complexity
is dominated by Θ(|C|2) bilinear-group exponentiations. A balanced version of Groth’s argument has the CRS
and argument of Θ(|C|2/3) group elements and prover’s computational complexity dominated by Θ(|C|4/3) ex-
ponentiations. (See [Gro10] for more details on balancing. Basically, one applies basic arguments on length-m
inputs, m < n, n/m times in parallel.)

We propose a new Circuit-SAT argument (see Sect. 3 for a description of the new techniques, and subsequent
sections for the actual argument) that is strongly related to Groth’s argument, but improves upon every step.
We first propose more efficient basic arguments. We then use them to construct a (slightly shorter) new Circuit-
SAT argument. In the basic variant, while the argument is again Θ(1) group elements, it is one commitment
and one Hadamard product argument shorter. Moreover, in Groth’s argument, every commitment consisted of
3 group elements while every basic argument consisted of 2 group elements. In the new argument, most of the
commitments consist of 2 group elements. Thus, we saved 3 group elements, reducing the argument size from
42 to 39 group elements, even taking into account that the new permutation argument has higher communication
complexity (12 instead of 5 group elements) than that of [Gro10].

A balanced version of the new argument achieves the combined CRS and argument of Θ(|C|1/2+o(1)) group
elements. In App. M, we describe a zap [DN00] for Circuit-SAT that has communication complexity of |C|1/2+o(1)
group elements, while Groth’s zap from [Gro10] has the communication complexity ofΘ(|C|2/3) group elements.
We also use much more efficient asymmetric pairings instead of symmetric ones, a (presumably) weaker security
assumption (Power Symmetric Discrete Logarithm instead of Power Computational Diffie-Hellman), and have
more precise security reductions. The basic version of the new Circuit-SAT argument is more communication-
efficient than any prior-art random-oracle based NIZK argument, and it also has a smaller prover’s computational
complexity than [Mic94].

Our main contribution is to note that the complexity of Groth’s basic arguments is correlated to the number
of monomials of a certain polynomial. In [Gro10], this polynomial has Θ(n2) monomials, where n = 2|C| + 1.
We show that one can “collapse” the Θ(n2) monomials to Θ(N) monomials, where N is such that [N ] has a
progression-free subset (that is, a subset that does not contain arithmetic progressions of length 3) of odd integers
of cardinality n. By a recent breakthrough of Elkin [Elk11], N = O(n · 22

√
2(2+log2 n)) = n1+o(1). See Sect. 3

for further elaboration on our techniques.
Thus, one can build an argument of Θ(1) group elements for every language in NP, by reducing the

task at hand to a Circuit-SAT instance. Obviously, one can often design more efficient tailor-made protocols,
see [LZ11,CLZ12] for some follow-up work. In particular, [CLZ12] used our basic arguments to construct a
non-interactive range proof with communication of Θ(1) group elements, while [LZ11] used our techniques to
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design a new basic argument to construct a non-interactive shuffle. (See [CLs10] for a previous use of additive
combinatorics in the construction of zero-knowledge proofs.)

2 Preliminaries

Let [n] = {1, 2, . . . , n}. Let Sn be the set of permutations from [n] to [n]. Let a = (a1, . . . , an). Let a ◦ b
denote the Hadamard (entry-wise) product of a and b, that is, if c = a ◦ b, then ci = aibi for i ∈ [n]. If
y = hx, then logh y := x. Let κ be the security parameter. If 0 < λ1 < · · · < λi < · · · < λn = poly(κ). then
Λ = (λ1, . . . , λn) ⊂ Z is an (n, κ)-nice tuple. We abbreviate probabilistic polynomial-time as PPT. If Λ1 and Λ2

are subsets of some additive group (Z or Zp in this paper), then Λ1 + Λ2 = {λ1 + λ2 : λ1 ∈ Λ1 ∧ λ2 ∈ Λ2}
is their sum set and Λ1 − Λ2 = {λ1 − λ2 : λ1 ∈ Λ1 ∧ λ2 ∈ Λ2} is their difference set [TV06]. If Λ is a set,
then kΛ = {λ1 + · · · + λk : λi ∈ Λ} is an iterated sumset, k · Λ = {kλ : λ ∈ Λ} is a dilation of Λ, and
2̂Λ = {λ1 + λ2 : λ1 ∈ λ ∧ λ2 ∈ Λ ∧ λ1 6= λ2} ⊆ Λ+ Λ is a restricted sumset. (See [TV06].)

Let Gbp(1κ) be a bilinear group generator that outputs a description of a bilinear group gk :=
(p,G1,G2,GT , ê) ← Gbp(1κ), such that p is a κ-bit prime, G1, G2 and GT are multiplicative cyclic groups of
order p, ê : G1 ×G2 → GT is a bilinear map (pairing) such that ∀a, b ∈ Z and gt ∈ Gt, ê(ga1 , gb2) = ê(g1, g2)

ab.
If gt generates Gt for t ∈ {1, 2}, then ê(g1, g2) generates GT . Deciding the membership in G1, G2 and GT ,
group operations, the pairing ê, and sampling the generators are efficient, and the descriptions of the groups
and group elements are O(κ) bit long each. Well-chosen asymmetric pairings (with no efficient isomorphism
between G1 and G2) are much more efficient than symmetric pairings (where G1 = G2). For κ = 128, the cur-
rent recommendation is to use an optimal (asymmetric) Ate pairing [HSV06] over a subclass of Barreto-Naehrig
curves [BN05,PSNB11]. In that case, at security level of κ = 128, an element of G1/G2/GT can be represented in
respectively 512/256/3072 bits.

A (tuple) commitment scheme (Gcom, Com) in a bilinear group consists of two PPT algorithms: a randomized
CRS generation algorithm Gcom, and a randomized commitment algorithm Com. Here, Gtcom(1κ, n), t ∈ {1, 2},
produces a CRS ckt, and Comt(ckt;a; r), with a = (a1, . . . , an), outputs a commitment value A in Gt (or in Gbt
for some b > 1). We open Comt(ckt;a; r) by outputting a and r.

A commitment scheme (Gcom, Com) is computationally binding in group Gt, if for every non-uniform PPT
adversary A and positive integer n = poly(κ), the probability

Pr

[
ckt ← Gtcom(1κ, n), (a1, r1,a2, r2)← A(ckt) :
(a1, r1) 6= (a2, r2) ∧ Comt(ckt;a1; r1) = Comt(ckt;a2; r2)

]

is negligible in κ. A commitment scheme (Gcom, Com) is perfectly hiding in group Gt, if for any positive inte-
ger n = poly(κ) and ckt ∈ Gtcom(1κ, n) and any two messages a1,a2, the distributions Comt(ckt;a1; ·) and
Comt(ckt;a2; ·) are equal.

A trapdoor commitment scheme has three additional efficient algorithms: (a) A trapdoor CRS generation
algorithm inputs t, n and 1κ, and outputs a CRS ck∗ (that has the same distribution as Gtcom(1κ, n)) and a trapdoor
td, (b) a randomized trapdoor commitment that takes ck∗ and a randomizer r as inputs and outputs the value
Comt(ck∗;0; r), and (c) a trapdoor opening algorithm that takes ck∗, td, a and r as an input and outputs an r′

such that Comt(ck∗;0; r) = Comt(ck∗;a; r′).
Let R = {(C,w)} be an efficiently computable binary relation such that |w| = poly(|C|). Here, C is a

statement, and w is a witness. Let L = {C : ∃w, (C,w) ∈ R} be an NP-language. Let n be some fixed input
length n = |C|. For fixed n, we have a relationRn and a language Ln. A non-interactive argument forR consists
of the following PPT algorithms: a common reference string (CRS) generator Gcrs, a prover P , and a verifier V .
For crs ← Gcrs(1κ, n), P(crs;C,w) produces an argument ψ. The verifier V(crs;C,ψ) outputs either 1 (accept)
or 0 (reject).

A non-interactive argument (Gcrs,P,V) is perfectly complete, if ∀n = poly(κ),

Pr[crs← Gcrs(1κ, n), (C,w)← Rn : V(crs;C,P(crs;C,w)) = 1] = 1 .

A non-interactive argument (Gcrs,P,V) is (adaptively) computationally sound, if for all non-uniform PPT
adversaries A and all n = poly(κ), the probability

Pr[crs← Gcrs(1κ, n), (C,ψ)← A(crs) : C 6∈ L ∧ V(crs;C,ψ) = 1]
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is negligible in κ. The soundness is adaptive, that is, the adversary sees the CRS before producing the statement
C. A non-interactive argument (Gcrs,P,V) is perfectly witness-indistinguishable, if for all n = poly(κ), if crs ∈
Gcrs(1κ, n) and ((C,w0), (C,w1)) ∈ R2

n, then the distributions P(crs;C,w0) and P(crs;C,w1) are equal.
A non-interactive argument (Gcrs,P,V) is perfectly zero-knowledge, if there exists a PPT simulator S =

(S1,S2), such that for all stateful non-uniform PPT adversaries A and n = poly(κ) (with td being the simulation
trapdoor),

Pr


crs← Gcrs(1κ, n),
(C,w)← A(crs),
ψ ← P(crs;C,w) :
(C,w) ∈ Rn ∧ A(ψ) = 1

 = Pr


(crs; td)← S1(1κ, n),
(C,w)← A(crs),
ψ ← S2(crs;C, td) :
(C,w) ∈ Rn ∧ A(ψ) = 1

 .

3 Our Techniques

We will first give a more precise overview of Groth’s Hadamard product and permutation arguments [Gro10],
followed by a short description of our own main contribution. For the sake of simplicity, we will make several
simplifications (like the use of symmetric pairings) during this discussion.

Groth uses an additively homomorphic tuple commitment scheme that allows one to commit to a long tuple,
while the commitment itself is short. The best known such commitment scheme is the extended Pedersen com-
mitment scheme in a multiplicative cyclic group of order p and a generator g, where the commitment of a tuple
a = (a1, . . . , an) with randomness ra is equal to Com(a; ra) := gra ·

∏
gaii . Here, one usually chooses n random

secrets xi ← Zp, and then sets gi ← gxi . Following [GJM02], Groth [Gro10] chooses a single random secret
x← Zp and then sets gi ← gx

i

. In this case, the commitment

Com(a; ra) := gra ·
n∏
i=1

gaii = gra+
∑n
i=1 aix

i

can be seen as a lifted polynomial ra+
∑n
i=1 aix

i in x, that the committer (who does not know x) computes from
n given values gi = gx

i

. The first obvious benefit of this commitment scheme is that it has a shorter secret (1
element instead of n elements).

Groth’s Hadamard product argument, where the prover aims to convince the verifier that the opening of C =
Com(c; rc) is equal to the Hadamard product of the openings of A = Com(a; ra) and B = Com(b; rb) (that is,
aibi ≡ ci (mod p) for i ∈ [n]), is constructed as follows. Let A = gra ·

∏n
i=1 g

ai
i be a commitment of a and

B = grb ·
∏n
i=1 g

bi
i be a commitment of b by using the generator tuple (g1, . . . , gn). Let C = grc ·

∏n
i=1 g

ci
i(n+1)

be a commitment of b and D =
∏n
i=1 gi(n+1) be a commitment of 1 = (1, . . . , 1) by using a different generator

tuple (gn+1, . . . , gn(n+1)).
Groth’s Hadamard product argument is based around the verification equation

ê(A,B) = ê(C,D) · ê(ψ, g) (1)

that (analogously to the Groth-Sahai proofs [GS08], though the latter only considers the much simpler case n = 1)
can be seen as a mapping of the required equality a◦b = c◦1 to another algebraic domain, with ψ compensating
for the use of a randomized commitment scheme. One gets that ê(A,B)/ê(C,D) is equal to ê(g, g)F (x), where
F (x) = (ra+

∑n
i=1 aix

i) · (rb+
∑n
i=1 bix

i(n+1))− (rc+
∑n
i=1 cix

i) · (
∑n
i=1 x

i(n+1)) is the sum of two formal
polynomials in x, F (x) = Fcon(x)+Fψ(x), where Fcon(x) =

∑n
i=1(aibi−ci)xi(n+2) is a constraint polynomial,

spanned by the powers of x from Λcon = {i(n+ 2) : i ∈ [n]}, and

Fψ(x) = rarb + rb

n∑
i=1

aix
i +

n∑
i=1

(rabi − rc)xi(n+1) +

n∑
i=1

n∑
j=1
j 6=i

(aibj − ci)xi+j(n+1)

is an argument polynomial, spanned by the powers of x from Λψ = {0}∪[n]∪{i(n+1) : i ∈ [n]}∪{i+j(n+1) :
i, j ∈ [n] ∧ i 6= j}. One coefficient of Fcon(x) corresponds to one constraint aibi = ci that the honest prover has
to satisfy, and is 0 if this constraint is true. Thus, all coefficients of Fcon are equal to 0 iff the prover is honest.

By using homomorphic properties of the commitment scheme, the prover constructs the argument ψ = gFψ(x)

as ψ = grarb · · · · ·
∏n
i=1

∏n
j=1:i 6=j g

aibj−ci
i+j(n+1). This can be done, since the prover — who knows how to open the
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commitments but does not know the secret x — knows all coefficients rarb, . . ., aibj − ci. He also knows the
generators g, . . ., gi+j(n+1) if the Θ(n2) generators g`, for ` ∈ Λψ , are included to the CRS. Thus, the CRS has
Θ(n2) group elements and the computational complexity of the prover is Θ(n2) bilinear-group exponentiations.
On the other hand, the verifier’s computational complexity is Θ(1) pairings, since she only has to check Eq. (1).

For the soundness, one needs that when aibi 6= ci for some i ∈ [n], then a satisfying ψ cannot be computed
from the elements gx

`

that are in the CRS; otherwise, a dishonest prover would be able to compute a satisfying
argument. This means that for i ∈ [n], gx

i(n+2)

should not belong to the CRS. To be certain that this is true, one
needs

(a) that gx
`

is in the CRS for values ` ∈ Λψ but if ` ∈ Λcon, then gx
`

does not belong to the CRS (elements from
2 · Λ \ Λ̂ are allowed),

(b) an appropriate security assumption that states that computing gFψ for Fψ =
∑
`∈Λψ µ`x

` is only possible if

one knows all values gx
`

for ` ∈ Λψ , and

(c) that Λcon ∩ Λψ = ∅. (This is also a prerequisite for (a).)

One can guarantee (a) by the choice of the CRS. But also (c) is clearly true, since Λcon and Λψ do not intersect.

To finish off the whole argument, one has to define an appropriate security assumption for (b). Since con-
structing sublinear NIZK arguments is known to be impossible under standard assumptions (see Sect. 2), one of
the underlying assumptions is a knowledge assumption (PKE assumption, as in [Gro10], see Sect. 5). The whole
argument will become (slightly!) more complex since all commitments and arguments also have to include a
knowledge component.

Groth’s permutation argument is based on a very similar idea and has basically the same complexities. The only
major difference is that if the permutation is a part of the prover’s statement, then the verifier also has to perform
Θ(n) bilinear-group multiplications. Since Groth’s Circuit-SAT argument consists of a very small (< 10) number
of Hadamard product and permutation arguments, then it just inherits the complexities of the basic arguments, as
also seen from Tbl. 1, where, in the basic variation, |C| = n and thus the CRS has Θ(|C|2) group elements, the
argument length is 42 group elements, the prover’s computational complexity is Θ(|C|2) exponentiations, and the
prover’s computational complexity is dominated by Θ(|C|) bilinear-group multiplications.

Groth’s Circuit-SAT argument has several sub-optimal properties that are all inherited from the basic argu-
ments. While it has succinct communication and efficient verification, its CRS of Θ(|C|2) group elements and
prover’s computation of Θ(|C|2) exponentiations (in the basic variant) seriously limit applicability. Recall that
here n = 2|C| + 1. A smaller problem is the use of different generators (g1, . . . , gn) and (gn+1, . . . , gn(n+1))
while committing to different elements.

We note that Fcon has n monomials (1 per every constraint aibi = ci that a honest prover must satisfy).
On the other hand, Fψ has Θ(n2) distinct — since i1 + j1(n + 1) 6= i2 + j2(n + 1) if i1, j1, i2, j2 ∈ [n] and
(i1, j1) 6= (i2, j2) — monomials. The number of those monomials is the only reason why the CRS has Θ(n2)
group elements and the prover has to perform Θ(n2) bilinear-group exponentiations.

We now show how to collapse many of the unnecessary monomials into one, so that the full argument still re-
mains secure, obtaining a polynomial Fψ(x) that has only n1+o(1) monomials. First, we generalize the underlying
commitment scheme. We still choose a single x← Zp and set gi ← gx

i

, but we allow the indexes of n generators
(gλ1 , . . . , gλn), that are used to commit, to actually depend on the concrete argument — with the main purpose to
be able to obtain as small Λψ as possible, while still guaranteeing that Fcon = 0 iff the prover is honest, and that
Λcon ∩ Λψ = ∅. Assume that Λ = (λ1, . . . , λn) is an (n, κ)-nice tuple of integers, so λn = maxi λi. Thus,

Com(a; ra) := gra
n∏
i=1

gaiλi = gra+
∑n
i=1 aix

λi
.

The polynomial ra +
∑n
i=1 aix

λi has degree (up to) λn, but it only has (up to) n + 1 non-zero monomials. We
now start again with the verification equation Eq. (1), but this time we assume that all A, B, C and D have
been committed by using the same set of generators (gλ1

, . . . , gλn). Since F (x) = (ra +
∑n
i=1 aix

λi)(rb +
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∑n
i=1 bix

λi)− (rc +
∑n
i=1 cix

λi)(
∑n
i=1 x

λi), we get that F (x) = Fcon(x) + Fψ(x), where

Fcon(x) =

n∑
i=1

(aibi − ci)x2λi , (2)

Fψ(x) =rarb +

n∑
i=1

(rabi + rbai − rc)xλi +
n∑
i=1

n∑
j=1
j 6=i

(aibj − ci)xλi+λj . (3)

Here, the powers corresponding to nonzero coefficients belong either to the set Λcon = 2 ·Λ := {2λi : i ∈ [n]} or
to the set Λψ = Λ̂ := {0} ∪ Λ ∪ 2̂Λ, where 2̂Λ := {λi + λj : i, j ∈ [n] ∧ i 6= j}.

If the prover is honest (that is, aibi − ci = 0 for all i), then the coefficients aibi − ci corresponding to the
powers in the set 2 · Λ are equal to 0. Therefore, an honest prover can compute the argument ψ = gFψ(x) as
g
∑
`∈Λ̂ µ`x

`

=
∏
`∈Λ̂(g

x`)µ` , where the coefficients µ` are known to the prover. This means that all elements gx
`

,
` ∈ Λ̂, have to belong to the CRS, and thus the CRS contains at least |Λ̂| < 2λn group elements. Recall that
in [Gro10], one had to specify Θ(n2) elements in the CRS.

For the soundness, we again need (a–c), as in the case of Groth’s argument, to be true. One can again guarantee
(a) by the choice of the CRS, and one has to define a reasonable security assumption (PKE assumption) for (b).
Finally, achieving (c) is also relatively easy. Namely, one can guarantee that 0 6∈ 2·Λ and Λ∩2·Λ = ∅ by choosing
Λ to be a set of odd1 integers. It is almost as easy to guarantee that 2 · Λ ∩ 2̂Λ = ∅ as soon as one rewrites this
condition as 2λk 6= λi + λj for i 6= j, and notices that this is equivalent to requiring that no 3 elements of Λ are
in an arithmetic progression. That is, Λ is a progression-free set [TV06]. Thus, it is sufficient to assume that Λ is
a progression-free set of odd integers.

Recall that the CRS length (and the prover’s computational complexity) depend on |Λ̂| and thus it is beneficial
to have as small |Λ̂| < 2λn possible. This can be guaranteed by upper bounding λn, that is, by finding as small
λn as possible such that [λn] contains a progression-free subset of odd integers of cardinality n. To bound λn,
we show in Sect. 4 (following a recent breakthrough of Elkin [Elk11]) that any range [N ] = {1, . . . , N} contains
a progression-free set of odd integers of size n = Θ(N(log2N)1/4/22

√
2 log2N ) = N1−o(1), and thus one can

assume that λn = n1+o(1). (One can obtain λn = O(n · 22
√

2(2+log2 n)) by inverting a weaker version of Elkin’s
result.) In App. B, we give another proof of this result that, while based on Green and Wolf’s exposition [GW10]
of [Elk11], provides more details and is slightly sharper. In particular, Elkin’s progression-free set is efficiently
constructible.

Groth’s permutation argument uses similar ideas for a different choice of A, B, C, and D, and thus also
for a different set Λψ . Unfortunately, if we use it with the new generalized commitment scheme (that is, with
general Λ), we obtain the guarantee a%(i) = bi only if Λ is a part of the Moser-de Bruijn sequence [Mos62,dB64].
But then λn = Θ(n2) and one ends up with a CRS of Θ(n2) group elements. We use the following idea to
get the same guarantees when Λ is an arbitrary progression-free set of odd integers. We show that if Λ is a
progression-free set of odd integers, then Groth’s permutation argument guarantees that a%(i) = TΛ(i, %) · bi,
where TΛ(i, %) ≥ 1 is an easily computable and public integer. We use this result to show that for some separately
committed tuple a∗, a∗%(i) = TΛ(i, %) · bi for i ∈ [n]. We then employ an additional product argument to show that
a∗i = TΛ(%

−1(i), %) · ai for i ∈ [n]. Thus, a%(i) = bi for i ∈ [n].

We obtain basic arguments that only use Θ(λn) = n1+o(1) generators {gx` : ` ∈ Λ̂}. This means that the
CRS has n1+o(1) group elements and not Θ(n2) as in [Gro10]. In both basic arguments, the prover has to com-
pute ψ (which takes Θ(n2) scalar multiplications or additions in Zp and n1+o(1) bilinear-group exponentiations).
As in [Gro10], the prover’s computation can be optimized even further by using efficient multi-exponentiation
algorithms [Str64,Pip80]. The verifier has to only perform Θ(1) bilinear pairings. In the case of the permutation
argument, she also has to compute Θ(n) bilinear-group multiplications, though the multiplications can be done
offline if the permutation is fixed. Thus, the new basic arguments are considerably more efficient than Groth’s.

The soundness of the new product argument is based on two assumptions, a computational assumption (Λ̂-
PSDL, see Sect. 5) and a knowledge assumption (Λ-PKE, see Sect. 5). Groth [Gro10] used [an2]-PKE (for a
constant a) and [an2]-CPDH (which is a presumably stronger assumption than PSDL, see App. A). Since Λ,Λψ
are small subsets of [an2], then our assumptions can be expected to be somewhat weaker in general. Finally, the

1 Oddity is not strictly required. For Λ ∩ 2 · Λ = ∅ to hold, one can take Λ := {(2i+ 1)22j : i, j ≥ 0}, see OEIS sequence
A003159. Dealing with odd integers is however almost as good.
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security reduction in the proof of the product argument takes time Θ(t(λn)) in our case and Θ(t(an2)) in Groth’s
case, where t(m) is the time to factor a degree-m polynomial. See Sect. K for a detailed comparison.

4 Progression-Free Sets

A set of positive integers Λ = {λ1, . . . , λn} is progression-free [TV06], if no three elements of Λ are in an
arithmetic progression, that is, λi + λj = 2λk only if i = j = k, or equivalently, 2̂Λ ∩ 2 · Λ = ∅.

Let r3(N) denote the cardinality of the largest progression-free set that belongs to [N ]. For any N > 1,
the set of integers in [N ] that have no ternary digit equal to 2 is progression-free [ET36]. If N = 3k, then
there are 2N − 1 such integers, and thus r3(N) = Ω(N log3 2) = Ω(N0.63). Clearly, this set can be effi-
ciently constructed. As shown by Behrend in 1946 [Beh46], this idea can be generalized to non-ternary bases,
with r3(N) = Ω(N/(22

√
2 log2N · log1/42 N)). Behrend’s result was improved in a recent breakthrough by

Elkin [Elk11], who showed that r3(N) = Ω(N · log1/42 N/22
√

2 log2N ). We have included a proof of Elkin’s
result in App. B. Our proof is closely based on [GW10] but it has a sharper constant inside Ω. Moreover, our
proof is much more detailed than that given in [GW10]. While both constructions employ the pigeonhole prin-
ciple, Elkin’s methodology can be used to compute his progression-free set in quasi-linear time N · 2O(

√
logN),

see [Elk11]. On the other hand, Bourgain [Bou98] showed that r3(N) = O(N · (logN/ log logN)1/2), and re-
cently Sanders [San11] showed that r3(N) = O(N · (log logN)5/ logN). Thus, according to Behrend and Elkin,
the minimal N such that r3(N) = n is N = n1+o(1), while according to Sanders, N = ω(n).

We need the progression-free subset to also consist of odd integers. For this, one can take Elkin’s set Λ =
{λ1, . . . , λn} ⊂ [N ], and then use the set 2 ·Λ+1 = {2λ1 +1, . . . , 2λn +1}. Clearly, if Λ ∈ [n1+o(1)] then also
2 · Λ+ 1 ∈ [n1+o(1)]. We provide an expository proof of the following result in App. B.

Theorem 1. Let rodd3 (N) be the size of the largest progression-free set in [N ] that only consists of odd integers.
For any n, there exists N = n1+o(1), such that rodd3 (N) = n.

5 Cryptographic Tools

In this section, we generalize the PKE assumption from [Gro10] and then define two new cryptographic assump-
tions, PDL and PSDL, and prove that PSDL is secure in the generic group model. After that, we proceed to describe
a generalization of Groth’s knowledge commitment scheme from [Gro10] and prove that it is computationally
binding under the PDL assumption. Groth proved in [Gro10] that his commitment scheme is computationally
binding under the (potentially stronger) CPDH assumption.

Λ-Power (Symmetric) Discrete Logarithm Assumption. Let Λ be an (n, κ)-nice tuple for some n = poly(κ).
We say that a bilinear group generator Gbp is (n, κ)-PDL secure in group Gt for t ∈ {1, 2}, if for any non-uniform
PPT adversary A, Pr[gk := (p,G1,G2,GT , ê)← Gbp(1κ), gt ← Gt \ {1}, x← Zp : A(gk; (gx`t )`∈{0}∪Λ) = x]
is negligible in κ. Similarly, we say that a bilinear group generator Gbp is Λ-PSDL secure, if for any non-uniform
PPT adversary A,

Pr

[
gk := (p,G1,G2,GT , ê)← Gbp(1κ), g1 ← G1 \ {1},

g2 ← G2 \ {1}, x← Zp : A(gk; (gx
`

1 , g
x`

2 )`∈{0}∪Λ) = x

]
is negligible in κ. A version of P(S)DL assumption in a non pairing-based group was defined in [GJM02]. Cheon
showed in [Che06] that if n is a prime divisor of p − 1 or p + 1, then the [n]-PDL assumption can be broken by
a generic adversary in O((

√
p/n+

√
n) log p) group operations. Clearly, if the Λ-PSDL assumption is hard, then

the Λ-PDL assumption is hard in both G1 and G2. Moreover, if the bilinear group generator is CPDH secure, then
it is also P(S)DL secure. Therefore, by the results of [Gro10], P(S)DL holds in the generic group model. We give
a direct proof of the next result in App. D.

Theorem 2. The Λ-PSDL assumption holds in the generic group model for any (n, κ)-nice tuple Λ given that
n = poly(κ). Any successful generic adversary for Λ-PSDL requires time Ω(

√
p/λn) where λn is the largest

element of Λ.
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Λ-Power Knowledge of Exponent Assumption (Λ-PKE). Abe and Fehr showed in [AF07] that no statistically
zero-knowledge non-interactive argument for an NP-complete language can have a “direct black-box” security
reduction to a standard cryptographic assumption unless NP ⊆ P/poly. (See also [GW11].) In fact, the soundness
of NIZK arguments (for example, of an argument that a perfectly hiding commitment scheme commits to 0) is
often unfalsifiable by itself. Similarly to Groth [Gro10], we will base our NIZK argument for circuit satisfiability
on Λ-PKE, an explicit knowledge assumption. This assumption was proposed by Groth [Gro10] (though only for
Λ = [n]) as a generalization of the KEA assumption of Damgård [Dam91] and of the KEA3 assumption of Bellare
and Palacio [BP04].

Let t ∈ {1, 2}. For two algorithms A and XA, we write (y; z) ← (A||XA)(x) if A on input x outputs y,
and XA on the same input (including the random tape of A) outputs z. Let Λ be an (n, κ)-nice tuple for some
n = poly(κ). The bilinear group generator Gbp isΛ-PKE secure in group Gt if for any non-uniform PPT adversary
A there exists a non-uniform PPT extractor XA, such that

Pr


gk := (p,G1,G2,GT , ê)← Gbp(1κ), gt ← Gt \ {1}, (α̂, x)← Z2

p,

crs← (gk; (gx
`

t , g
α̂x`

t )`∈{0}∪Λ), (c, ĉ; r, (a`)`∈Λ)← (A||XA)(crs) :

ĉ = cα̂ ∧ c 6= grt ·
∏
`∈Λ

ga`x
`

t


is negligible in κ. That is, ifA (given access to crs that for a random α̂ contains both gx

`

t and gα̂x
`

t iff ` ∈ {0}∪Λ)
can produce c and ĉ such that ĉ = cα̂, then XA (given access to crs and to the random coins of A) can produce a
tuple (r, (a`)`∈Λ) such that c = grt ·

∏
`∈Λ g

a`x
`

t . Groth [Gro10] proved that the [n]-PKE assumption holds in the
generic group model; his proof can be straightforwardly modified to the general case.

New Commitment Scheme. We use the following variant of the knowledge commitment scheme from [Gro10]
with a generalized choice of generators, defined as follows:

CRS generation: Let Λ be an (n, κ)-nice tuple with n = poly(κ). Define λ0 = 0. Given a bilinear group
generator Gbp, set gk := (p,G1,G2,GT , ê)← Gbp(1κ). Let g1 ← G1 \ {1}, g2 ← G2 \ {1}, and α̂, x← Zp.
Let t ∈ {1, 2}. The CRS is ckt ← (gk; (gt,λi , ĝt,λi)i∈{0,...,n}), where gt` = gx

`

t and ĝt` = gα̂x
`

t .
Commitment: To commit to a = (a1, . . . , an) ∈ Znp , the committing party chooses a random r ← Zp, and

defines

Comt(ckt;a; r) := (grt ·
n∏
i=1

gait,λi , ĝ
r
t ·

n∏
i=1

ĝait,λi) .

Importantly, we allow Λ to depend on the concrete application. Let t = 1. Fix a commitment key ck1 that in
particular specifies g2, ĝ2 ∈ G2. A commitment (A, Â) ∈ G2

1 is valid if ê(A, ĝ2) = ê(Â, g2). The case t = 2 is
dual.

Theorem 3. Let t ∈ {1, 2}. The knowledge commitment scheme is perfectly hiding in Gt, and computationally
binding in Gt under the Λ-PDL assumption in Gt. If the Λ-PKE assumption holds in Gt, then for any non-uniform
PPTA that outputs some valid knowledge commitments, there exists a non-uniform PPT extractor XA that, given
the input of A together with A’s random coins, extracts the contents of these commitments.

The proof of this theorem is given in App. E. In the case of all security reductions in this paper, the tightness of
the security reduction depends on the value λn. Clearly, the knowledge commitment scheme is also trapdoor, with
the trapdoor being td = x: after trapdoor-committing A ← Comt(ck;0; r) = grt for r ← Zp, the committer can
open it to (a; r −

∑n
i=1 aix

λi) for any a.

6 New Hadamard Product Argument

Assume that (Gcom, Com) is the knowledge commitment scheme. In an Hadamard product argument (in group
G1, the case of G2 is dual), the prover aims to convince the verifier that given commitments A, B and C, he
can open them as A = Com1(ck;a; ra), B = Com1(ck; b; rb), and C = Com1(ck; c; rc), s.t. cj = ajbj for
j ∈ [n]. Groth constructed an Hadamard product argument [Gro10] with communication of 5 group elements,

8



System parameters: Let n = poly(κ). Let Λ = {λi : i ∈ [n]} be a progression-free set of odd integers, such that λi+1 >
λi > 0. Denote λ0 := 0. Let Λ̂ be as in Eq. (4).

CRS generation Gcrs(1κ): Let gk := (p,G1,G2,GT , ê) ← Gbp(1κ). Let α̂, x ← Zp. Let g1 ← G1 \ {1} and g2 ←
G2 \ {1}. Denote gt` ← gx

`

t and ĝt` ← gα̂x
`

t for t ∈ {1, 2} and ` ∈ {0} ∪ Λ̂. Let D ←
∏n
i=1 g2,λi . The CRS is

crs← (gk; (g1`, ĝ1`)`∈{0}∪Λ, (g2`, ĝ2`)`∈Λ̂, D). Let ĉk1 ← (gk; (g1`, ĝ1`)`∈{0}∪Λ).
Common inputs: (A, Â,B, B̂, B2, C, Ĉ), where (A, Â) ← Com1(ĉk1;a; ra), (B, B̂) ← Com1(ĉk1; b; rb), B2 ← g

rb
2 ·∏n

i=1 g
bi
2,λi

, (C, Ĉ)← Com1(ĉk1; c; rc), s.t. aibi = ci for i ∈ [n].
Argument generation P×(crs; (A, Â,B, B̂, B2, C, Ĉ), (a, ra, b, rb, c, rc)): Let I1(`) := {(i, j) : i, j ∈ [n] ∧ j 6= i ∧

λi + λj = `}. For ` ∈ 2̂Λ, the prover sets µ` ←
∑

(i,j)∈I1(`)(aibj − ci). He sets ψ ← g
rarb
2 ·

∏n
i=1 g

rabi+rbai−rc
2,λi

·∏
`∈2̂Λ gµ`2` , and ψ̂ ← ĝ

rarb
2 ·

∏n
i=1 ĝ

rabi+rbai−rc
2,λi

·
∏
`∈2̂Λ ĝµ`2` . He sends ψ× ← (ψ, ψ̂) ∈ G2

2 to the verifier as the
argument.

Verification V×(crs; (A, Â,B, B̂, B2, C, Ĉ), ψ×): accept iff ê(A,B2)/ê(C,D) = ê(g1, ψ) and ê(g1, ψ̂) = ê(ĝ1, ψ).

Protocol 1: New Hadamard product argument [[(A, Â)]] ◦ [[(B, B̂,B2)]] = [[(C, Ĉ)]]

verifier’s computation Θ(n), prover’s computation of Θ(n2) exponentiations and the CRS of Θ(n2) group ele-
ments. We present a more efficient argument in Prot. 1. Intuitively, the discrete logarithm on basis h = ê(g1, g2) of
ê(A,B2)/ê(C,D) = ê(g1, ψ) is a degree-n formal polynomial in X , which is spanned by {X`}`∈2·Λ∪Λ̂, where

Λ̂ := {0} ∪ Λ ∪ 2̂Λ . (4)

We need that 2 · Λ and Λ̂ do not intersect. The next lemma is straightforward to prove.

Lemma 1. 1) If Λ is a progression-free set of odd integers, then 2 · Λ ∩ Λ̂ = ∅. 2) If 2 · Λ ∩ Λ̂ = ∅, then Λ is a
progression-free set.

Moreover, since Λ̂ ∈ {0, . . . , 2λn}, then by Thm. 1,

Lemma 2. For any value n there exists a choice of Λ such that |Λ̂| = n1+o(1).

We are now ready to state the security of the new Hadamard product argument for the knowledge commitment
scheme. The (knowledge) commitments are (A, Â), (B, B̂) and (C, Ĉ). For efficiency reasons, we include another
element B2 to the Hadamard product language. We denote the argument in Prot. 1 by [[(A, Â)]] ◦ [[(B, B̂,B2)]] =
[[(C, Ĉ)]]. Since (C, Ĉ) is always a commitment of (a1b1, . . . , anbn) for some value of rc, we cannot claim that
Prot. 1 is computationally sound (even under a knowledge assumption). Instead, analogously to [Gro10], we
prove a somewhat weaker version of soundness that is however sufficient to achieve soundness of the Circuit-SAT
argument. Note that the last statement of the theorem basically says that no efficient adversary can output an input
to the Hadamard product argument together with an accepting argument and openings to all commitments and all
other pairs of type (y, ŷ) that are present in the argument, such that aibi 6= ci for some i ∈ [n]. Intuitively, the
theorem statement includes f ′` only for ` ∈ Λ̂ (resp., a` for ` ∈ Λ together with r) since ĝ2` (resp., ĝ1`) belongs
to the CRS only for ` ∈ Λ̂ (resp., ` ∈ {0} ∪ Λ). This “weak” soundness is similar to the co-soundness as defined
in [GL07]. However, in the case of co-soundness, the adversary would not be required to open the argument (by
presenting values f ′` as in the theorem statement). One could define the corresponding formal security notion, but
in our opinion, it would not increase readability.

Theorem 4. Prot. 1 is perfectly complete and perfectly witness-indistinguishable. If Gbp is Λ̂-PSDL secure, then
a non-uniform PPT adversary has negligible chance of outputting inp× ← (A, Â,B, B̂, B2, C, Ĉ) and an ac-
cepting argument ψ× ← (ψ, ψ̂) together with a witness w× ← (a, ra, b, rb, c, rc, (f

′
`)`∈Λ̂), s.t. (A, Â) =

Com1(ĉk1;a; ra), (B, B̂) = Com1(ĉk1; b; rb), B2 = grb2 ·
∏n
i=1 g

bi
2,λi

, (C, Ĉ) = Com1(ĉk1; c; rc), (ψ, ψ̂) =

(g
∑
`∈Λ̂ f

′
`x
`

2 , ĝ
∑
`∈Λ̂ f

′
`x
`

2 ), and for some i ∈ [n], aibi 6= ci.

The commitment scheme is defined as in Sect. 5 with respect to the set Λ. The following proof will make the
intuition of Sect. 3 more formal. Note that the tightness of the reduction depends on the time it takes to factor a
degree (2λn + 1)-polynomial.

Proof. Let h ← ê(g1, g2) and F (x) ← logh(ê(A,B2)/ê(C,D)) like in Sect. 3. WITNESS-
INDISTINGUISHABILITY: since the argument ψ× = (ψ, ψ̂) that satisfies the verification equations is unique, all
witnesses result in the same argument, and therefore the Hadamard product argument is witness-indistinguishable.
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PERFECT COMPLETENESS. Assume that the prover is honest. The second verification is straightforward. For
the first one, due to discussion in Sect. 3, F (x) = Fcon(x) + Fψ(x), where Fcon(x) and Fψ(x) are as defined
by Eq. (2) and Eq. (3). Consider x to be a formal variable, then F (X) is a formal polynomial of X . This formal
polynomial is spanned by {X`}`∈2·Λ∪Λ̂. If the prover is honest, then ci = ai · bi for i ∈ [n], and thus F (X) =

Fψ(X) is spanned by {X`}`∈Λ̂. Denoting ψ ← grarb2 ·
∏n
i=1 g

rabi+rbai−rc
2,λi

·
∏n
i=1

∏n
j=1:j 6=i g

aibj−ci
2,λi+λj

= grarb2 ·∏n
i=1 g

rabi+rbai−rc
2,λi

·
∏
`∈2̂Λ gµ`2` , we see that clearly e(g1, ψ) = h. Thus, the first verification succeeds.

WEAKER VERSION OF SOUNDNESS. Assume that A is an adversary that can break the last statement of the
theorem. We construct an adversary A′ against the Λ̂-PSDL assumption. Let gk ← Gbp(1κ), x ← Zp, g1 ←
G1 \ {1}, and g2 ← G2 \ {1}. The adversary A′ receives crs ← (gk; (gx

`

1 , g
x`

2 )`∈Λ̂) as her input, and her task is
to output x. She sets α̂ ← Zp, crs′ ← (gk; (gx

`

1 , g
α̂x`

1 )`∈{0}∪Λ, (g
x`

2 , g
α̂x`

2 )`∈Λ̂,
∏n
i=1 g

xλi
2 ), and then sends crs′

to A. Clearly, crs′ has the same distribution as Gcrs(1κ). Both A and A′ set ckt ← (gk; (gx
`

t , g
α̂x`

t )`∈{0}∪Λ) for
t ∈ {1, 2}. Assume that A returns (inp×, w×, ψ×) such that the conditions in the theorem statement hold, and
V(crs′; inp×, ψ×) accepts. Here, inp× = (A, Â,B, B̂, B2, C, Ĉ) and w× = (a, ra, b, rb, c, rc, (f

′
`)`∈Λ̂).

If A is successful, (A, Â) = Com1(ĉk1;a; ra), (B, B̂) = Com1(ĉk1; b; rb), B2 = grb2 ·
∏n
i=1 g

bi
2,λi

, (C, Ĉ) =

Com1(ĉk1; c; rc), and for some i ∈ [n], ci 6= aibi. Since 2·Λ∩Λ̂ = ∅,A′ has thus expressed F (X) as a polynomial
f(X) where at least for some ` ∈ 2 · Λ, X` has a non-zero coefficient aibi − ci.

On the other hand, A also outputs (f ′`)`∈Λ̂, s.t. F (x) = logg2 ψ = f ′(x), where all non-zero coefficients of
f ′(X) :=

∑
`∈Λ̂ f

′
`X

` correspond to X` for some ` ∈ Λ̂. Since Λ is a progression-free set of odd integers and all
elements of 2 · Λ are distinct, then by Lem. 1, ` 6∈ 2 · Λ. Thus, all coefficients of f ′(X) corresponding to any X`,
` ∈ 2 · Λ, are equal to 0. Thus f(X) =

∑
`∈Λ̂∪(2·Λ) f`X

` and f ′(X) =
∑
`∈Λ̂ f

′
`X

` are different polynomials
with f(x) = f ′(x) = F (x). Thus, A′ has succeeded in creating a non-zero polynomial d(X) = f(X) − f ′(X),
such that d(x) =

∑
`∈Λ̂∪(2·Λ) d`x

` = 0.
Next, A′ uses an efficient polynomial factorization algorithm [vHN10] in Zp[X] to efficiently compute all

< 2λn + 1 roots of d(X). For some root y, gx
`

1 = gy
`

1 . The adversary A′ sets x ← y, thus violating the Λ̂-PSDL
assumption. ut

The Hadamard product argument is not perfectly zero-knowledge. The problem is that the simulator knows
td = (α̂, x), but given td and the common input she will not be able to generate ψ×. E.g., she has to compute
ψ = grarb2 ·

∏n
i=1 g

rabi+rbai−rc
2,λi

·
∏n
i=1

∏n
j=1 g

aibj−ci
2,λi+λj

based on the input, α̂ and x, but without knowing the
witness. This seems to be impossible. Technically, the problem is that due to the knowledge of the trapdoor, the
simulator can, knowing one opening (a, r), produce an opening (a′, r′) to any other a′. However, here she does
not know any openings. Similarly, the permutation argument of Sect. 7 is not zero-knowledge. On the other hand,
in the final circuit satisfiability argument of Sect. 8, the simulator creates all commitments by herself and can thus
properly simulate the argument. By the same reason, the subarguments of [Gro10] are not zero-knowledge but the
final argument (for circuit satisfiability) is.

Theorem 5. LetΛ be as described in Thm. 1. The communication (argument size) of Prot. 1 is 2 elements from G2.
The prover’s computational complexity is Θ(n2) scalar multiplications in Zp and n1+o(1) exponentiations in G2.
The verifier’s computational complexity is dominated by 5 bilinear pairings and 1 bilinear-group multiplication.
The CRS consists of n1+o(1) group elements, with the verifier’s part of the CRS consisting of only the bilinear
group description plus 5 group elements.

The proof of this theorem is given in App. F.
In the Circuit-SAT argument, all ai, bi and ci are Boolean, and thus all n1+o(1) values µ` can be computed in

n(n− 1) = Θ(n2) scalar additions (the server also needs to use other operations like comparisons j 6= i, but they
can be eliminated by using loop unrolling, and λi and λj can be computed by using table lookups), as follows:

1. For ` ∈ 2̂Λ do: µ` ← 0
2. For i = 1 to n do:

– If ai = 0 then for j = 1 to n do: if j 6= i then µλi+λj ← µλi+λj − ci
– Else for j = 1 to n do: if j 6= i then µλi+λj ← µλi+λj + bj − ci
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7 New Permutation Argument

In a permutation argument, the prover aims to convince the verifier that for given permutation % ∈ Sn and two
commitments A and B, he knows how to open them as A = Com1(ck;a; ra) and B = Com1(ck; b; rb), such that
bj = a%(j) for j ∈ [n]. We assume that % is a part of the statement. In [Gro10], Groth constructed a permutation
argument, where the prover’s computation is Θ(n2) exponentiations and the CRS has Θ(n2) group elements. We
now propose a new argument with the CRS of n1+o(1) group elements. We also improve the prover’s concrete
computation, and the argument is based on a (probably) weaker assumption.

The new permutation argument %([[(A, Ã)]]) = [[(B, B̃)]], see Prot. 2, uses (almost) the same high-level ideas
as the Hadamard product argument from Sect. 6. However, the situation is more complicated. Consider the verifi-

cation equation ê(g1, ψ%) = ê(A, g
∑n
i=1 x

λi

2 )/ê(B, g
∑n
i=1 x

2λ%i
−λi

2 ) from [Gro10]. (See App. H for why this defi-

nition ofD = g
∑n
i=1 x

λi

2 and E% = g
∑n
i=1 x

2λ%i
−λi

2 may make sense.) Letting h = ê(g1, g2), F%(x) := logg2 ψ
% =∑

i(a%(i)−bi)x2λ%(i)+ra
∑
i x

λi−rb
∑
i x

2λ%(i)−λi+
∑
i a%(i) ·

∑
j 6=i x

λ%(i)+λ%(j)−
∑
i bi ·

∑n
j 6=i x

λi+2λ%(j)−λj .
Following Sect. 6, we require that Λ̃ = Λ∪{2λk−λi}∪2̂Λ∪{λi+2λk−λj : i 6= j} and 2 ·Λ do not intersect.
Since % is a part of the statement, we replaced %(i) and %(j) with a new element k.

Assume that Λ is a progression-free set of odd integers. Since Λ consists of odd integers, (Λ ∪ {2λk − λi}) ∩
2 · Λ = ∅. Since Λ is a progression-free set, 2̂Λ ∩ 2 · Λ = ∅. However, we also need that 2λk∗ 6= 2λk + λi − λj
for i 6= j. That is, one can uniquely represent any non-negative integer a as a = 2λk∗ + λj . (It is only required
that any non-negative integer a has at most one representation as a = 2λk∗ + λj . As we show in App. J, this
does not help our case.) The unique sequence Λ = (λi)i∈Z+ (the Moser-de Bruijn sequence [Mos62,dB64]) that
satisfies this property is the sequence of all non-negative integers that have only 0 or 1 as their radix-4 digits. Since
λn = Θ(n2), this sequence is not good enough.

Fortunately, we can overcome this problem as follows. For i ∈ [n] and a permutation %, let TΛ(i, %) := |{j ∈
[n] : 2λ%(i) + λj = 2λ%(j) + λi}|. Note that 1 ≤ TΛ(i, %) ≤ n, and that for fixed Λ and %, the whole tuple
TΛ(%) := (TΛ(1, %), . . . , TΛ(n, %)) can be computed in Θ(n) simple arithmetic operations. We can then rewrite
F%(x) as

F%(x) =

n∑
i=1

(a%(i) − TΛ(i, %) · bi)x2λ%(i) + ra

n∑
i=1

xλi − rb
n∑
i=1

x2λ%(i)−λi+

n∑
i=1

a%(i)

n∑
j=1
j 6=i

xλ%(i)+λ%(j) −
n∑
i=1

bi

n∑
j=1
j 6=i

2λ%(i)+λj 6=λi+2λ%(j)

xλi+2λ%(j)−λj , (5)

with Λ̃ being redefined as

Λ̃ = Λ ∪ {2λk − λi} ∪ 2̂Λ ∪ ({λi + 2λk − λj : i 6= j} \ 2 · Λ) . (6)

Since Λ̃ ∩ 2 · Λ = ∅, ê(A,D)/ê(B,E%) = ê(g1, ψ
%) (with D = g

∑n
i=1 x

λi

2 and E = E% = g
∑n
i=1 x

2λ%(i)−λi

2 , as it
follows from Eq. (8) and (9)) convinces the verifier that a%(i) = TΛ(i, %) · bi for i ∈ [n]. To finish the permutation
argument, we let (A∗, Â∗) to be a commitment to (a∗1, . . . , a

∗
n) := (TΛ(%

−1(1), %) · a1, . . . , TΛ(%−1(n), %) · an),
use an Hadamard product argument to show that a∗i = TΛ(%

−1(i), %) · ai (and thus a∗%(i) = TΛ(i, %) · a%(i)) for
i ∈ [n], and an argument as described above in this section to show that a∗%(i) = TΛ(i, %) ·bi for i ∈ [n]. Therefore,
a%(i) = bi for i ∈ [n].

Clearly Λ̂ ∪ Λ̃ = {0} ∪ Λ̃. Since Λ̃ ⊂ {−λn + 1, . . . , 3λn}, then by Thm. 1

Lemma 3. For any n there exists a choice of Λ such that |Λ̃| = n1+o(1).

We are now ready to state the security of the new permutation argument. The (weaker version of) soundness
of this argument is based on exactly the same ideas as that of the Hadamard product argument.

Theorem 6. Prot. 2 is perfectly complete and perfectly witness-indistinguishable. If Gbp is Λ̃-PSDL secure, then
a non-uniform PPT adversary has negligible chance of outputting inpperm ← (A, Ã,B, B̂, B̃, %) and an ac-
cepting ψperm ← (A∗, Â∗, ψ×, ψ̂×, ψ%, ψ̃%) together with a witness wperm ← (a, ra, b, rb,a

∗, ra∗ , (f
′
(×,`))`∈Λ̂,

(f ′(%,`))`∈Λ̃), s.t. (A, Ã) = Com1(c̃k1;a; ra), (B, B̂) = Com1(ĉk1; b; rb), (B, B̃) = Com1(c̃k1; b; rb), (A∗, Â∗) =
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System parameters: Same as in Prot. 1, but let Λ̃ be as in Eq. (6).
CRS generation Gcrs(1κ): Let gk := (p,G1,G2,GT , ê) ← Gbp(1κ). Let α̂, α̃, x ← Zp. Let g1 ← G1 \ {1} and g2 ←

G2 \ {1}. Let ĝt ← ĝα̂t and g̃t ← g̃α̃t for t ∈ {1, 2}. Denote gt` ← gx
`

t , ĝt` ← ĝx
`

t , and g̃t` ← g̃x
`

t for t ∈ {1, 2} and
` ∈ {0} ∪ Λ̃. Let (D, D̃)← (

∏n
i=1 g2,λi ,

∏n
i=1 g̃2,λi). The CRS is

crs← (gk; (g1`, ĝ1`, g̃1`)`∈{0}∪Λ, (g2`)`∈{0}∪Λ̃, (ĝ2`)`∈Λ̂, (g̃2`)`∈Λ̃, D, D̃) .

Let ĉk1 ← (gk; (g1`, ĝ1`)`∈{0}∪Λ), c̃k1 ← (gk; (g1`, g̃1`)`∈{0}∪Λ).
Common inputs: (A, Ã,B, B̂, B̃, %), where % ∈ Sn, (A, Ã) ← Com1(c̃k1;a; ra), (B, B̂) ← Com1(ĉk1; b; rb), and

(B, B̃)← Com1(c̃k1; b; rb), s.t. bj = a%(j) for j ∈ [n].
Argument generation Pperm(crs; (A, Ã,B, B̂, B̃, %), (a, ra, b, rb)):

1. Let (T ∗, T̂ ∗, T ∗2 )← (
∏n
i=1 g

TΛ(%−1(i),%)
1,λi

,
∏n
i=1 ĝ

TΛ(%−1(i),%)
1,λi

,
∏n
i=1 g

TΛ(%−1(i),%)
2,λi

).

2. Let ra∗ ← Zp, (A∗, Â∗)← Com1(ĉk1;TΛ(%
−1(1), %) · a1, . . . , TΛ(%−1(n), %) · an; ra∗). Create an argument ψ×

for [[(A, Â)]] ◦ [[(T ∗, T̂ ∗, T ∗2 )]] = [[(A∗, Â∗)]].
3. Let Λ̃′% := 2̂Λ ∪ ({2λ%(j) + λi − λj : i, j ∈ [n] ∧ i 6= j} \ 2 · Λ) ⊂ {−λn + 1, . . . , 3λn}.
4. For ` ∈ Λ̃′%, I1(`) as in Prot. 1, and I2(`) := {(i, j) : i, j ∈ [n]∧j 6= i∧2λ%(i)+λj 6= λi+2λ%(j)∧2λ%(j)+λi−λj =
`}, set

µ%,` ←
∑

(i,j)∈I1(`)

a∗i −
∑

(i,j)∈I2(`)

bi .

5. Let (E%, Ẽ%)← (
∏n
i=1 g2,2λ%(i)−λi ,

∏n
i=1 g̃2,2λ%(i)−λi).

6. Let ψ% ← Dr∗a · E−rb% ·
∏
`∈Λ̃′%

g
µ%,`
2` , ψ̃% ← D̃r∗a · Ẽ−rb% ·

∏
`∈Λ̃′%

g̃
µ%,`
2` ,

Send ψperm ← (A∗, Â∗, ψ×, ψ%, ψ̃%) ∈ G2
1 ×G4

2 to the verifier as the argument.
Verification Vperm(crs; (A, Ã,B, B̂, B̃, %), ψperm): Let E% and (T ∗, T̂ ∗, T ∗2 ) be computed as in Pperm. If ψ× verifies,

ê(A∗, D)/ê(B,E%) = ê(g1, ψ
%), ê(A∗, ĝ2) = ê(Â∗, g2), and ê(g1, ψ̃%) = ê(g̃1, ψ

%), then Vperm accepts. Otherwise,
Vperm rejects.

Protocol 2: New permutation argument %([[(A, Ã)]]) = [[(B, B̃)]]

Com1(ĉk1;a
∗; ra∗), (ψ×, ψ̂×) = (g

∑
`∈Λ̂ f

′
(×,`)

2 , ĝ
∑
`∈Λ̂ f

′
(×,`)

2 ), (ψ%, ψ̂%) = (g
∑
`∈Λ̃ f

′
(%,`)

2 , g̃
∑
`∈Λ̃ f

′
(%,`)

2 ), a∗i =
TΛ(%

−1(i), %) · ai (for i ∈ [n]), and for some i ∈ [n], a%(i) 6= bi.

Proof. Denote h ← ê(g1, g2) and F%(x) := logh(ê(A
∗, D)/ê(B,E%)). WITNESS-INDISTINGUISHABILITY:

since argument ψperm that satisfies the verification equations is unique, all witnesses result in the same argument,
and therefore the permutation argument is witness-indistinguishable.

PERFECT COMPLETENESS. Completeness of ψ× follows from the completeness of the Hadamard product
argument. The third and the fourth verifications are straightforward. For the verification ê(A∗, D)/ê(B,E%) =
ê(g1, ψ

%), consider F%(x) in Eq. (5). Consider X as a formal variable, then the right-hand side (and thus also
F%(X)) is a formal polynomial of X , spanned by {X`}`∈2·Λ∪Λ̃. If the prover is honest, then bi = a%(i) for
i ∈ [n], and thus F%(X) is spanned by {X`}`∈Λ̃. Defining ψ% ← (

∏n
i=1 g2,λi)

ra∗ · (
∏n
i=1 g2,2λ%(i)−λi)

−rb ·∏n
i=1(

∏n
j=1:j 6=i g2,λi+λj )

a∗i ·
∏n
i=1(

∏
j∈I∗2 (i,`)

g2,λi+2λ%(j)−λj )
−bi = Dra∗ ·E−rb% ·

∏
`∈Λ̃′%

g
µ%,`
2` , where I∗2 (i, `) :=

{j ∈ [n] : j 6= i ∧ 2λ%(i) + λj 6= λi + 2λ%(j)}, we see that the second verification holds.
WEAKER VERSION OF SOUNDNESS. Assume that A is an adversary that can break the last statement

of the theorem. We construct an adversary A′ against the Λ̃-PSDL assumption. Let gk ← Gbp(1κ), x ←
Zp, g1 ← G1 \ {1}, and g2 ← G2 \ {1}. The adversary A′ receives crs ← (gk; (gx

`

1 , g
x`

2 )`∈{0}∪Λ̃)

as her input, and her task is to output x. She sets α̂ ← Zp, α̃ ← Zp, and crs′ ← (gk;

(gx
`

1 , g
α̂x`

1 , gα̃x
`

1 )`∈{0}∪Λ, (g
x`

2 )`∈{0}∪Λ̃, (g
α̂x`

2 )`∈Λ̂, (g
α̃x`

2 )`∈Λ̃,
∏n
i=1 g

xλi
2 ,

∏n
i=1 g̃

xλi
2 ), and forwards crs′ to A.

Clearly, crs′ has the same distribution as Gcrs(1κ). Both parties also set ĉk1 ← (gk; (gx
`

1 , g
α̂x`

1 )`∈{0}∪Λ) and
c̃k1 ← (gk; (gx

`

1 , g
α̃x`

1 )`∈{0}∪Λ).
Assume that A returns (inpperm, wperm, ψperm) such that the conditions in the theorem state-

ment hold, and V(crs′; inpperm, ψperm) accepts. Here, inpperm = (A, Ã,B, B̂, B̃, %) and wperm =
(a, ra, b, rb,a

∗, ra∗ , (f
′
(×,`))`∈Λ̂, (f

′
(%,`))`∈Λ̃).

If A is successful, (A, Ã) = Com1(c̃k1;a; ra), (B, B̂) = Com1(ĉk1; b; rb), (B, B̃) = Com1(c̃k1; b; rb), ψ×

verifies, and for some i ∈ [n], a%(i) 6= TΛ(i, %) · bi. Since ψ× verifies and the Hadamard product argument is
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(weakly) sound, we have that (A∗, Â∗) commits to (TΛ(%
−1(1), %) · a1, . . . , TΛ(%−1(n), %) · an). (Otherwise, we

have broken the PSDL assumption.) Since 2 · Λ ∩ Λ̃ = ∅, A′ has expressed F%(X) as a polynomial f(X) where
at least for some ` ∈ 2 · Λ, X` has a non-zero coefficient.

On the other hand,A also outputs (f ′(%,`))`∈Λ̃, s.t. F%(x) = logg2 ψ = f ′%(x), where all non-zero coefficients of

f ′%(X) :=
∑
`∈Λ̃ f

′
(%,`)X

` correspond to X` for some ` ∈ Λ̃. Since Λ is a progression-free set of odd integers and
all elements of 2 ·Λ are distinct, then by the discussion in the beginning of Sect. 7, ` 6∈ 2 ·Λ. Thus, all coefficients
of f ′%(X) corresponding to any X`, ` ∈ 2 · Λ, are equal to 0. Thus, f(X) · Xλn =

∑
`∈Λ̃∪(2·Λ) f`X

`+λn and
f ′%(X) =

∑
`∈Λ̃ f

′
(%,`)X

`+λn are different polynomials with f(x) = f ′%(x) = F%(x). Thus, A′ has succeeded in
creating a nonzero polynomial d%(X) = f(X) ·Xλn − f ′%(X), such that d%(x) =

∑
`∈Λ̃ d`x

` = 0.
Next, A′ can use an efficient polynomial factorization algorithm [vHN10] in Zp[X] to efficiently compute all

≤ 4λn + 1 roots of d%(X). For some root y, gx
`

1 = gy
`

1 . The adversary A′ sets x← y, thus violating the Λ̃-PSDL
assumption. ut

Note that in an upper level argument, the verifier must check that ê(A, g̃2) = ê(Ã, g2), ê(B, ĝ2) = ê(B̂, g2), and
ê(B, g̃2) = ê(B̃, g2).

Theorem 7. Let Λ be as described in Thm. 1. The CRS consists of n1+o(1) group elements. The argument size of
Prot. 2 is 2 elements from G1 and 4 elements from G2. The prover’s computational complexity is dominated by
Θ(n2) scalar additions in Zp and by n1+o(1) exponentiations in G2. The verifier’s computational complexity is
dominated by 12 bilinear pairings and 4n− 2 bilinear-group multiplications.

The proof of this theorem can be found in App. I.

8 New NIZK Argument for Circuit Satisfiability

In a NIZK argument for circuit satisfiability (Circuit-SAT, well-known to be an NP-complete language), the prover
and the verifier share a circuit C. The prover aims to prove in non-interactive zero-knowledge that she knows an
assignment of input values that makes the circuit output 1. As in [Gro10], the Circuit-SAT argument will use the
Hadamard product argument, the permutation argument and a trivial argument for element-wise sum of two tuples
— in our case, all operating in parallel on (2|C| + 1)-dimensional tuples, where |C| is the circuit size. Those
three arguments can be seen as basic operations in an NIZK “programming language” for all languages in NP.
We show that a small constant number of such basic operations is sufficient for Circuit-SAT. The full argument
then contains additional cryptographic sugar: a precise definition of the used CRS, computational/communication
optimizations, etc.

To make it easier to read the following (and to construct future protocols based on this “programming lan-
guage”), we give first a high-level description of the resulting argument. The first task is to express the underlying
argument as a parallel composition of some addition, permutation and Hadamard product arguments. These ar-
guments may include intermediate variables (that will be committed to by the prover) and constants (that can be
online committed to by both of the parties separately). When choosing the arguments, one has to keep in mind that
we work in an asymmetric setting. This may mean that for some of the inputs to the circuit satisfiability argument,
one has to commit to them both in G1 and G2 (and the verifier has to check that this is done correctly).

The CRS is basically the CRS of the permutation argument. The total argument consists of commitments to
intermediate variables and of all arguments in the program of this “programming language”. Finally, the verifier
has to check that all commitments are internally consistent, and then verify all used arguments.

Let us now turn to the concrete case of circuit satisfiability. For the sake of simplicity, assume that the circuit
C is only composed of NAND gates. Let C have n gates. Assume that the output gate of the circuit is n, and Un
is the output of the circuit. For every gate j ∈ [n] of C, let the input wires of its jth gate be Lj and Rj , and let
Uj be one of its output wires. We also define an extra value Rn+1 = 1. We let Xj be other “output” wires that
correspond to some Lk or Rk that were not already covered by Uk (that is, inputs to the circuit, or duplicates of
output wires). That is, (U1, . . . , Un, X1, . . . , Xn+1) is chosen so that for some permutation ζ, (U ,X, Xn+1) is a
ζ-permutation of (L,R, Rn+1), where Y = (Y1, . . . , Yn) for Y ∈ {L,R,U,X}. (See Fig. 1 in appendix for an
example circuit with values Ri, Li, Ui and Xi.)

More precisely, the prover and the verifier share the following three permutations, the first two of
which completely describe the circuit C. First, τ ∈ S2n+1 is a permutation, such that for any values
Li1 , . . . , Lis , Rj1 , . . . , Rjt that correspond to the same wire, τ contains a cycle i1 → i2 → · · · → is → j1+n→
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System parameters: DefineΛ and Λ̂ as in Prot. 1 and Λ̃ as in Prot. 2, but in all cases with n replaced by 2|C|+1. Permutation
swap.

CRS generation Gcrs(1κ): Let all other variables (including the secret ones) be defined as in the CRS generation of
Prot. 2, but let crsperm be the CRS of Prot. 2. In addition, let (D̂,D2) ← (

∏n
i=1 ĝ1,λi ,

∏n
i=1 g2,λi). The CRS is

crs← (crsperm, D̂,D2). Let ck1 ← (gk; (g1`, ĝ1`, g̃1`)`∈{0}∪Λ).
Common inputs: A satisfiable circuit C, and permutations τ and ζ generated based on C, such that

(L,R, Rn+1,U ,X, Xn+1) is a “satisfying assignment”.
Argument generation P(crs;C, (L,R, Rn+1,U ,X)): Denote Y := (Y1, . . . , Yn) for Y ∈ {L,R,U,X}. The prover

does the following.
1. Set r1, . . . , r4 ← Zp, and then compute (lr, l̂r, l̃r) ← Com1(ck1;L,R, Rn+1; r1), lr2 ← gr12 ·

∏n
i=1 g

Li
2,λi
·∏n+1

i=1 g
Ri
2,λi+n

, (rl, r̃l) ← Com1(c̃k1;R,L, Rn+1; r1), (rz, r̂z) ← Com1(ĉk1;R, 0, . . . , 0, 0; r2), (uz, ûz) ←
Com1(ĉk1;U , 0, . . . , 0, 0; r3), (ux, ûx, ũx)← Com1(ck1;U ,X, Xn+1; r4).

2. Create an argument ψ1 for [[(lr, l̂r)]] ◦ [[(lr, l̂r, lr2)]] = [[(lr, l̂r)]], ψ2 for swap([[(rl, r̃l)]]) = [[(lr, l̂r, l̃r)]],
ψ3 for [[(rl, r̃l)]] ◦ [[(D, D̂,D2)]] = [[(rz, r̂z)]], ψ4 for [[(ux, ûx)]] ◦ [[(D, D̂,D2)/(g1,λn , ĝ1,λn , g1,λn)]] =

[[(uz, ûz)/(g1,λn , ĝ1,λn , g1,λn)]], ψ5 for [[(rz, r̂z)]] ◦ [[(lr, l̂r, lr2)]] = [[(D, D̂) · (uz−1, ûz−1)]], ψ6 for τ([[(lr, l̃r)]]) =
[[(lr, l̂r, l̃r)]], and ψ7 for ζ−1([[(ux, ũx)]]) = [[(lr, l̂r, l̃r)]].

3. Send ψ ← (lr, l̂r, l̃r, lr2, rl, r̃l, rz, r̂z, uz, ûz, ux, ûx, ũx, ψ1, . . . , ψ7) to the verifier.
Verification V(crs;C,ψ): The verifier does the following:

– For A ∈ {lr, rz, uz, ux} check that ê(Â, g2) = ê(A, ĝ2).
– Check that ê(g1, lr2) = ê(lr, g2).
– For A ∈ {lr, rl, ux} check that ê(Ã, g2) = ê(A, g̃2).
– Verify all 7 arguments ψ1, . . . , ψ7 with corresponding inputs.

Protocol 3: New NIZK argument for Circuit-SAT

out
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Fig. 1. Example circuit
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· · · → jt + n → i1. For unique wires i, τ(i) = i. Second, ζ ∈ S2n+1 is a permutation that for every input
wire (either Li or Ri−n), outputs an index j ← ζ(i), such that the output wire Uj or Xj−n is equal to that in-
put wire. Third, swap ∈ S2n+1 is a permutation, with swap(i) = i + n and swap(i + n) = i for i ∈ [n], and
swap(2n+ 1) = 2n+ 1. Note that swap = swap−1.

The argument is given by Prot. 3. In every subargument used in Prot. 3, the prover and the verifier use a
substring of crs as the CRS. The corresponding substrings are easy to compute, and in what follows, we do
not mention this issue. Instead of computing two different commitments Comt(ĉkt;a; r) = (grt ·

∏
gait,λi , ĝ

r
t ·∏

ĝait,λi) and Comt(c̃kt;a; r) = (grt ·
∏
gait,λi , g̃

r
t ·
∏
g̃ait,λi), we sometimes compute a composed commitment

Comt(ckt;a; r) = (grt ·
∏
gait,λi , ĝ

r
t

∏
ĝait,λi , g̃

r
t ·
∏
g̃ait,λi). We assume that the same value α̂ is used when creating

product arguments and permutation arguments.

Theorem 8. Let Gbp be Λ̃-PSDL secure, and Λ-PKE secure in both G1 and G2. Then Prot. 3 is a perfectly
complete, computationally adaptively sound and perfectly zero-knowledge non-interactive Circuit-SAT argument.

Proof. PERFECT COMPLETENESS: follows from the perfect completeness of the Hadamard product and permu-
tation arguments.

ADAPTIVE COMPUTATIONAL SOUNDNESS: Let A be a non-uniform PPT adversary that creates a circuit C
and an accepting NIZK argument ψ. By the Λ-PKE assumption, there exists a non-uniform PPT extractor XA
that, running on the same input and seeing A’s random tape, extracts all openings. From the (weaker version
of) soundness of the product and permutation arguments and by the Λ̃-PSDL assumption, it follows that the
corresponding relations are satisfied between the opened values. Moreover, by the Λ̃-PSDL assumption, the opened
values belong to corresponding sets Λ̂ and Λ̃. Let (L,R, Rn+1) be the opening of (lr, l̂r), whereL = (L1, . . . , Ln)
andR = (R1, . . . , Rn), and let (U1, . . . , Un, X1, . . . , Xn, Xn+1) be the opening of (ux, ûx). We now analyze the
effect of every subargument in Prot. 3. See Fig. 1 for a visual reference.

The successful verification of ê(g1, lr2) = ê(lr, g2) shows that lr2 is correctly formed. The first argument
ψ1 shows that Li, Ri ∈ {0, 1}. The second argument ψ2 shows that (rl, r̃l) commits to (R,L, Rn+1). The third
argument ψ3 shows that (rz, r̂z) commits to (R, 0, . . . , 0, 0) and is thus consistent with the opening of (lr, l̂r). The
fourth argument ψ4 shows that (uz, ûz) commits to (U1, . . . , Un−1, U

′
n, 0, . . . , 0, 0) for some U ′n. It also shows

that Un · 0 = U ′n − 1, and thus U ′n = 1. (The value of Un is not important to get soundness, since it is not used in
any other argument.)

The fifth argument shows ψ5 that the NAND gates are followed. That is, ¬(Li ∧ Ri) = Ui for i ∈ [n− 1]. It
also shows that the circuit outputs 1. Really, since (uz, ûz) commits to (U1, . . . , Un−1, U

′
n = 1, 0, . . . , 0, 0), then

(D, D̂) · (uz−1, ûz−1) commits to (1 − U1, . . . , 1 − Un−1, 1 − 1 = 0, 0, . . . , 0, 0). Thus, the Hadamard product
argument verifies only if Li ·Ri = 1− Ui for i ∈ [n− 1], and Ln ·Rn = 0, that is, ¬(Ln ∧Rn) = 1.

The sixth argument ψ6 shows that if i1, . . . , is, j1 + n, . . . , jt + n correspond to the same wire, then Li1 =
· · · = Lis = Rj1 = · · · = Rjt , that is, the values are internally consistent with the wires. As an example, in
Fig. 1, the permutation τ contains cycles R1 → L2 → R1, R2 → L3 → R2, and R4 → L5 → R4. The seventh
argument ψ7 shows that the “input wires” and “output” wires are consistent. In Fig. 1, ζ(L1) = X1, ζ(R1) = X2,
etc.

PERFECT ZERO-KNOWLEDGE: we construct the next simulator S = (S1,S2). The simulator S1(1κ, n) creates
a correctly formed CRS together with a simulation trapdoor td = (α̂, α̃, x) ∈ Z3

p. The adversary then outputs a
statement C (a circuit) together with a witness (a satisfying assignment) w. The simulator S2(crs;C, td) creates
(lr, l̂r, l̃r, lr2), (rl, r̃l), (rz, r̂z), (uz, ûz) and (ux, ûx) as commitments to (0, . . . , 0). Due to the knowledge of trapdoor
td, the simulator can simulate all product and permutation arguments. More precisely, he uses Li = Ri = Ui =
U ′n = 1 to simulate all product and permutation arguments, except in the case of ψ5 where he uses Ui = U ′n = 0
instead. (Obviously, (rz, r̂z) and (uz, ûz) commit to consistent tuples.)

To show that this argument ψ′′ simulates the real argument ψ, note that ψ is perfectly indistinguishable from
the simulated NIZK argument ψ′ where one makes trapdoor commitments but opens them to real witnesses Li, Ri
when making product and permutation arguments. On the other hand, also ψ′ and ψ′′ are perfectly indistinguish-
able, and thus so are ψ and ψ′′. ut

Theorem 9. Let Λ be chosen as in Thm. 1. The CRS consists of |C|1+o(1) group elements. The communication
(argument length) of the argument in Prot. 3 is 18 elements from G1 and 21 elements from G2. The prover’s compu-
tational complexity is dominated by Θ(|C|2) simple arithmetical operations in Zp and |C|1+o(1) exponentiations
in G. The verifier’s computational complexity is dominated by 72 bilinear pairings and 8|C| + 8 bilinear-group
multiplications.
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The proof of this theorem can be found in App. L.
Moreover, the CRS depends on Λ̂ ∪ Λ̃. Since 0 may or may not belong to Λ̃ (this depends on the choice of Λ)

and Λ ∪ 2̂Λ ⊆ Λ̃, Λ̂ ∪ Λ̃ = {0} ∪ Λ̃. Recalling that elements of G1 can be represented by 512 bits and elements
of G2 can be represented by 256 bits, the communication (argument length) is 18 · 512 + 21 · 256 = 14 592 bits.
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A CPDH Assumption

Computational Power Diffie-Hellman Assumption. Following [Gro10], we say that a bilinear group generator
Gbp is q(κ)-CPDH secure in group Gt for t ∈ {1, 2}, if for any non-uniform PPT adversaryA and for any j ∈ [q],

Pr

[
gk := (p,G1,G2,GT , ê)← Gbp(1κ), gt ← Gt \ {1}, (x, α)← Z2

p :

A(gk; (gx
`

t )`∈{0,...,q}, (g
αx`

t )`∈{0,...,q}\{j}) = gαx
j

t

]

is negligible in κ. As shown in [Gro10], q-CPDH holds in generic group model for any polynomial q. Note that
in [Gro10], G1 = G2, while here, the two groups are different, and the q-CPDH assumption is only required to
be true in one of them. This does not change the security proof in the generic group model. A related assumption
in a non pairing-based group (called power computationally Diffie-Hellman assumption, and only for i = q) was
defined in [GJM02], followed by many related assumptions (like Strong Diffie Hellman, Bilinear Diffie-Hellman
Inversion) in subsequent years in pairing-based groups.
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B Proof of Elkin’s Result

Theorem 10. For any fixed positive integer n, there exists N = n1+o(1), such that rodd3 (N) = n.

Proof. For any S ⊂ Rd, let vol(S) be the volume of S. Let Td = Rd/Zd be the d-dimensional torus, we identify
Td with [0, 1)d in an obvious way. For each r ≤ 1

2 ·
√
d, let

Sd(r, δ) := {X ∈ [0, 1/2]d : r − δ ≤ ||X||2 ≤ r} .

We need the next technical lemma, proof of which is given in App. C.

Lemma 4. For some choice of r ∼
√

d
12 , vol(Sd(r, δ)) ≥ 4

√
5

3 δ · 2−d · (1−O(d−1/2).

Denote S := Sd(r, δ) for this choice of r and δ. Since there is no overlap, we identify [0, 1)d with Td, and S with
the corresponding subset of Rd.

Now, let x and y be such that x− y, x, x+ y lie in S. But then 2 ||x||22 +2 ||y||22 = ||x+ y||22 + ||x− y||
2
2, and

thus

||y||2 =

√
(||x+ y||22 + ||x− y||

2
2 − 2 ||x||22)/2 ≤

√
r2 − (r − δ)2 =

√
2δr − δ2

≤
√
2δr .

The volume of d-dimensional ball Bd(R) := {x ∈ Rd : ||x||2 ≤ R} is

vol(Bd(R)) =
πd/2

Γ (d/2 + 1)
·Rd ≈ (2eπ)d/2√

πd · dd/2
·Rd ,

where Γ (x) is the standard Γ function, and we have used Stirling’s approximation. Thus,

vol(Bd(
√
2δr)) ≈ (2eπ)d/2√

πd · dd/2
· (2δr)d/2 =

1√
πd
· (4eπδr/d)d/2 .

The volume of the region B ⊂ Td × Td where all such values (x, y) belong cannot be larger than vol(S) ·
vol(Bd(

√
2δr)). Since

r ≤
√

d

12
+

1

2
√
5
+O(d−1/2) =

√
d

12
+O(1) ,

then

vol(Bd(
√
2δr)) ≈ 1√

πd
·
(
4eπδr

d

)d/2
≤ 1√

πd
·

4eπδ(
√

d
12 +O(1))

d

d/2

=
1√
πd
·
(
2eπδ(1 +O(d−1/2))√

3d

)d/2
=

1√
πd
·
(
2eπδ√
3d

)d/2
(1 +O(d−1/2)) .

We have established that Td has a relatively large progression-free area. We now show how to use this result to
establish a similar result for [N ]. Let Ψθ,α : [N ]→ Td be defined as Ψθ,α(s) = θs+ α mod 1. If s is an integer,
then Ψθ,α(s) clearly is uniformly distributed on Td as θ, α vary uniformly and independently on Td. Moreover, one
can show [GW10] that when s and s′ are distinct positive integers, then (Ψθ,α(s), Ψθ,α(s

′)) is uniformly distributed
on Td × Td as θ and α vary uniformly and independently over Td. Define Aθ,α := {s ∈ [N ] : Ψθ,α(s) ∈ S}.
Then due to the uniform distribution of Ψθ,α(s), Eθ,α|Aθ,α| = N · vol(S).

Next, let T (Aθ,α) be the number of nontrivial 3-term arithmetic progressions in Aθ,α and assume that N is
even. Each nontrivial 3-term progression is of the form (x− y, x, x+ y) with y 6= 0. Since N is even, the possible
values of y range from 1 to N/2− 1. For every y, the possible values of x range from y+1 to N − y. Thus, there
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are
∑N/2−1
y=1 (N − 2y) = N(N − 2)/4 possible such 3-term progressions. The probability that an arbitrary such

progression (x, y) belongs to Aθ,α is vol(B), and thus Eθ,α[|T (Aθ,α)|] = 1
4 ·N(N − 2) vol(B).

Now, for a moment, assume that

1

4
(N − 2) vol(B) ≤ 1

3
vol(S) . (7)

Then

E[
2

3
|Aθ,α| − T (Aθ,α)] =E[

2

3
|Aθ,α|]− E[T (Aθ,α)]

=
2

3
·N vol(S)− 1

4
·N(N − 2) vol(B) ≥ 1

3
·N vol(S) .

Clearly, thus there is a choice A = Aθ,α for which both T (A) ≤ 2|A|/3 and |A| ≥ 1
2 ·N vol(S). Deleting up to

2/3 of the elements of A, we get a set of size at least 1
6 ·N vol(S) that is progression-free.

For Eq. (7) to hold, we must have

1

3
≥ 1

4
(N − 2) vol(Bd(

√
2δr)) ,

or

1√
πd
·
(
2eπδ√
3d

)d/2
(1 +O(d−1/2)) ≤ 4

3(N − 2)
=

4

3N
· (1−O(N−1)) ,

or

1√
πd
·
(
2eπδ√
3d

)d/2
≤ 4

3N
· (1−O(N−1))(1−O(d−1/2))

=
4

3N
· (1−O(d−1/2)) .

(Here, we assumed d�
√
N .) The latter is true whenever

δ ≤
√
3d

2eπ
·
(

16πd

9(1 +O(d−1/2))2N2

)1/d

=

√
3d

2eπ
·
(
16πd

9N2

)1/d

· (1−O(d−1/2)) ,

and we can take δ to be equal to the right-hand side of this inequality. But then

1

6
N vol(S) =

N

6
· 4
√
5δ

3
(1−O(d−1/2)) · 1

2d

=
N

6
· 4
√
5(1−O(d−1/2))

3 · 2d
·
√
3d(1−O(d−1/2))

2eπ
·
(
16πd

9N2

)1/d

=

√
5

3
√
3 · eπ

· N
1−2/d

√
d

2d
·
(
16πd

9

)1/d

· (1−O(d−1/2))

≥
√
5

3
√
3 · eπ

· N
1−2/d

√
d

2d
· (1−O(d−1/2)) .

This is approximately maximized if d =
√
2 log2N , then

1

6
N vol(S) ≥

4
√
2
√
5

3
√
3eπ
· N

22
√
2
√

log2N
· (log2N)1/4 · (1−O(log−1/4N)) .

Thus, r3(N) = Θ(N log
1/4
2 N/22

√
2 log2N ), or r3(N) = N1−O(1). This proves the theorem. ut

One can obtain a better expression of N from r3(N), though it will not be precise. Namely, assume n = r3(N).
Since n = Ω(N/22 log2N ), we have N = O(n · 24+2

√
2+2 log2 n) = O(n · 22

√
2(2+log2 n)). We will leave it as an

open question to derive a tighter lowerbound on N .
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C Proof of Lem. 4

Proof. For i ∈ [d], let Xi ∈ R be a uniformly random variable in [0, 1/2]. Let ||X||2 =
√∑d

i=1Xi be the
Euclidean norm of X = (X1, . . . , Xd). Then

E[X2
i ] =2 ·

∫ 1/2

0

x2dx =
1

12
,

E[X4
i ] =2 ·

∫ 1/2

0

x4dx =
1

80
,

var[X2
i ] =E[X4

i ]− E[X2
i ]

2 =
1

180
,

E[||X||22] =
d∑
i=1

E[X2
i ] =

d

12
,

var[||X||22] =
d∑
i=1

var[X2
i ] =

d

180
.

By Chebyshev’s inequality,

Pr[| ||X||22 − E[||X||22]| ≥ t ·
√

var[||X||22]] ≤ 1/t2

for any t > 0. That is, Pr[| ||X||22 −
d
12 | ≥ t

√
d

180 ] ≤ 1/t2. Thus, with probability at least 1− 1/t2,

d

12
+ t

√
d

180
≥ ||X||22 ≥

d

12
− t
√

d

180
,

and thus also √
d

12
+ t

√
d

180
≥ ||X||2 ≥

√
d

12
− t
√

d

180
.

If d→∞, then √
d

12
± t
√

d

180
→
√

d

12
± t

2
√
15

+O(d−1/2) .

Thus, for large d, with probability 1− 1/t2,√
d

12
+

t

2
√
15

+O(d−1/2) ≥ ||X||2 ≥
√

d

12
− t

2
√
15

+O(d−1/2) ,

or equivalently, ∣∣∣∣∣||X||2 −
√

d

12

∣∣∣∣∣ ≤ t

2
√
15

+O(d−1/2) .

Fix a small δ, t/
√
15 ≥ δ > 0. Then, by the pigeonhole principle, there exists an r, such that with probability

at least (
1− 1

t2

)
· δ

t
2
√
15
(1 +O(d−1/2))

=

(
1− 1

t2

)
· 2
√
15δ

t
· (1−O(d−1/2)) ,

||X||2 ∈ [r−δ, r]. This is maximized when t =
√
3, then the corresponding probability is 4

√
5δ/3·(1−O(d−1/2).

But then

vol(Sd(r, δ)) ≥
4
√
5

3
· δ · 2−d · (1−O(d−1/2))

as required. ut
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D Proof of Thm. 2

Proof. In the generic group model, an adversary only performs generic group operations (multiplications in G1,
G2 and GT , bilinear pairings, and equality tests). A generic adversary produces an element of Zp, which depends
only on gk and (gx

`

1 , g
x`

2 )`∈{0}∪Λ. The only information that the adversary gets is when an equality (collision)
between two previously computed elements of either G1, G2 or GT occurs. We prove that finding even a single
collision is difficult even if the adversary can compute an arbitrary group element in unit time.

Assume that the adversary can find a collision y = y′ in group G1. Then it must be the case that y =∏
`∈{0}∪Λ g

a`x
`

1 and y′ =
∏
`∈{0}∪Λ g

a′`x
`

1 for some known values of a` and a′`. But then also∑
`∈{0}∪Λ

(a` − a′`)x` ≡ 0 (mod p) .

Since the adversary does not know the actual representations of the group elements, it will perform the same group
operations independently of x. Thus a` and a′` are independent of x. By the Schwartz-Zippel lemma [Sch80]
modulo p, the probability that

∑
`∈{0}∪Λ(a` − a′`)x` ≡ 0 (mod p) is equal to λn/p for randomly chosen a` and

a′`. If the adversary works in polynomial time τ = poly(κ), it can generate at most τ such group elements. The
total probability that there exists a collision between any two generated group elements is thus upper bounded by(
τ
2

)
· λn/p, and thus a successful adversary requires time Ω(

√
p/λn) to produce one collision.

A similar bound holds for collisions in G2. In the case of GT , the pairing enables the adversary to compute up
to τ different values

y = ê(g1, g2)
∑
`∈{0}∪Λ

∑
j∈{0}∪Λ a`jx

`+j

,

and thus we get an upper bound
(
τ
2

)
· 2λn/p, and thus a successful adversary requires time Ω(

√
p/λn) to produce

one collision. ut

E Proof of Thm. 3

Proof. PERFECT HIDING: follows from the fact that the output of Comt is a random element of Gt. COMPUTA-
TIONAL BINDING: Assume that A is an adversary that can break the binding property with some non-negligible
probability. We construct the next adversary A′ against the Λ-PDL assumption in group Gt that works with the
same probability. Let gk ← Gbp(1κ), gt ← Gt \ {1}, and x ← Zp. The adversary A′ gets (gk; (gx

`

t )`∈{0}∪Λ) as
her input. She creates a random α̂′ ← Zp, and sets ckt ← (gk; (gx

`

t , g
α̂′x`

t )`∈{0}∪Λ). She forwards ckt to A. By
definition, A(ckt) produces a tuple (a, ra, b, rb) with (a, ra) 6= (b, rb), such that

grat ·
∏
i∈[n]

gaix
λi

t = grbt ·
∏
i∈[n]

gbix
λi

t .

But then

g
ra−rb+

∑n
i=1(ai−bi)x

λi

t = 1 ,

and thus

ra − rb +
n∑
i=1

(ai − bi)xλi ≡ 0 (mod p) .

The adversary has generated a non-trivial polynomial f(X) such that f(x) = 0. One can now use an efficient
polynomial factorization algorithm [vHN10] in Zp[X] to find all λn + 1 possible roots of f . For one of those

roots, say y, it must be the case that gx
λ1

t = gy
λ1

t . Set x ← y. Thus, A′ has broken the Λ-PDL assumption in
group Gt.

EXTRACTABILITY: By the Λ-PKE assumption in group Gt, for every committer A there exists an extractor
XA that can open the commitment in group Gt, given access toA’s inputs and random tape. Since the commitment
scheme is computationally binding, then the extracted opening has to be the same that A used. ut
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F Proof of Thm. 5

Proof. By Lem. 2, the size of the CRS is Θ(|Λ̂|) = n1+o(1). From the CRS, the verifier clearly only needs to
access g1, ĝ1, g2, ĝ2 and D. Since 2̂Λ ⊆ Λ̂, the statement about the prover’s computational complexity follows.
The prover’s computational complexity comes from the fact that one can compute all values µ` simultaneously by
looping over n2 possible values of i and j. The verifier’s computational complexity follows from the description
of the argument. ut

G Fast Boolean Product Argument

1. For ` ∈ 2̂Λ do: µ` ← 0
2. For i = 1 to n do:

– If ai = 0 then for j = 1 to n do: if j 6= i then µλi+λj ← µλi+λj − ci
– Else for j = 1 to n do: if j 6= i then µλi+λj ← µλi+λj + bj − ci

H Derivation of Permutation Argument

Consider a verification equation of type ê(A,D)/ê(B,E%) = ê(g1, ψ
%) where D = g

∑n
i=1 x

ϕi

2 and E% =

g
∑n
i=1 x

ξi

2 for some ϕi and ξi to be specified later. Letting h = ê(g1, g2) and η% = ê(A,D)/ê(B,E%), we get

logh η% =(ra +

n∑
i=1

aix
λi)(

n∑
i=1

xϕi)− (rb +

n∑
i=1

bix
λi)(

n∑
i=1

xξi)

=ra

n∑
i=1

xϕi − rb
n∑
i=1

xξi +

n∑
i=1

n∑
j=1

a%(i)x
λ%(i)+ϕ%(j) −

n∑
i=1

n∑
j=1

bix
λi+ξj

=ra

n∑
i=1

xϕi − rb
n∑
i=1

xξi +

n∑
i=1

a%(i)x
λ%(i)+ϕ%(i) −

n∑
i=1

bix
λi+ξi+

n∑
i=1

n∑
j=1:j 6=i

a%(i)x
λ%(i)+ϕ%(j) −

n∑
i=1

n∑
j=1:j 6=i

bix
λi+ξj .

Since we are interested in the case a%(i) = bi, it is natural to define

ξi := λ%(i) + ϕ%(i) − λi . (8)

Then,

logh η% =

n∑
i=1

(a%(i) − bi)xλ%(i)+ϕ%(i) + ra

n∑
i=1

xϕi − rb
n∑
i=1

xλ%(i)+ϕ%(i)−λi+

n∑
i=1

n∑
j=1:j 6=i

a%(i)x
λ%(i)+ϕ%(j) −

n∑
i=1

n∑
j=1:j 6=i

bix
λi+λ%(j)+ϕ%(j)−λj .

If one wants to use the same methodology as in Sect. 6, one has to define ϕi so that Λ̃ := {ϕi} ∪ {λ%(i) +
ϕ%(i)−λi}∪{λ%(i)+ϕ%(j) : i 6= j}∪{λi+λ%(j)+ϕ%(j)−λj : i 6= j} and {λ%(i)+ϕ%(i)} will not intersect. To
this end, it is natural to define ϕi = kλi + k∗λ%−1(i) for some k and k∗. Most of those linear combinations (not
even talking about nonlinear combinations!) do not make the task simpler, and thus k and k∗ should be chosen so
that at least some of the terms in Λ̃ would simplify. For example2, one can choose

ϕi = λi , (9)

2 We tried many other choices of ϕi, but none of them gave a simpler solution. Details are omitted due to the lack of space.
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and we get

logh η% =

n∑
i=1

(a%(i) − bi)x2λ%(i) + ra

n∑
i=1

xλi − rb
n∑
i=1

x2λ%(i)−λi+

n∑
i=1

a%(i) ·
n∑
j=1
j 6=i

xλ%(i)+λ%(j) −
n∑
i=1

bi ·
n∑
j=1
j 6=i

xλi+2λ%(j)−λj .

In this case, Λ̃ = Λ ∪ {2λ%(i) − λi} ∪ 2̂Λ ∪ {λi + 2λ%(j) − λj : i 6= j} and the second set is 2 · Λ = {2λ%(i)}.
Since % is not known when creating the CRS, we have to replace %(i) and %(j) with a new element k, so

Λ̃ = Λ ∪ {2λk − λi} ∪ 2̂Λ ∪ {λi + 2λk − λj : i 6= j} .

(Note that choosing an arbitrary k may be an overkill, depending on the permutation %.)

I Proof of Thm. 7

Proof. It is clear that with this choice of Λ, by Lem. 3, the size of the CRS is Θ(|Λ̃|) = n1+o(1). Since Λ̃′% ⊆ Λ̃,
the statement about the prover’s computational complexity follows from the fact that one can compute all values
µ%,` simultaneously by looping over n2 possible values of i and j, as follows:

1. For ` ∈ 2̂Λ do: µ%,` ← 0
2. For i = 1 to n do:

– For j = 1 to n do: if j 6= i then µ%,λi+λj ← µ%,λi+λj + a∗i
3. For j = 1 to n do:

– Set t← 2λ%(j) − λj
– For i = 1 to n do: if j 6= i and 2λ%(i) + λj 6= λi + 2λ%(j) then µ%,t+λi ← µ%,t+λi − bi

Here, one has to do Θ(n2) scalar additions and Θ(n) evaluations of % (say, by using table-lookup). The verifier’s
computational complexity follows from the description of the argument. ut

J On Impossibility of Improving over the Moser-de Bruijn Sequence

As we mentioned in Sect. 7, it is required that any non-negative integer a has at most one representation of type
a = 2λi + λj . By using the techniques of [Mos62], it is easy to see that the Moser-de Bruijn sequence is the
densest sequence also in this case.

As in [Mos62], define f(x) =
∑∞
i=0 x

λi , where (λi)
∞
i=0 is some (strictly increasing) sequence and |x| < 1.

Then any non-negative integer has at most one unique representation 2λi + λj if

f(x)f(x2) =

∞∑
i=0

bix
i

for some bi ∈ {0, 1}. For example, if it is required that there is precisely one representation, then bi = 1 and
f(x)f(x2) = 1/(1− x). In this case,

f(x)f(x2)

f(x2)f(x4)
=

1− x2

1− x
= 1 + x

and thus f(x) = (1 + x)f(x4). Continuing recursively, we get

f(x) = (1 + x)(1 + x4)(1 + x16)(1 + x64) . . . .

In the right-hand side, the coefficient of xn is equal to the number of representations of n as the sum of distinct
powers of 4. A number has at most one representation as a sum of distinct powers of 4 and thus {λi} must consist
precisely of those numbers that have such a representation. In this case, clearly λn = Θ(n2).

Now, to construct a set {λi} such that λn is smaller than Θ(n2), we need that f(x)/f(x4) > 1 + x whenever
|x| < 1. This is impossible under the assumption that bi ∈ {0, 1}, since

∑
bix

i is maximized if bi = 1.
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K Comparison: Basic Arguments

Efficiency. In [Gro10], Groth used basically the same commitment scheme but with Λ = {i : i ∈ [n]}. In fact,
he committed to b by using a different set Λ′ = {i(n + 1) : i ∈ [n]}. According to our terminology, in both
of Groth’s basic arguments |Λ̂| = Θ(n2) (this is since |{gi+j(n+1) : i ∈ [n] ∧ j ∈ [n]}| = Θ(n2)), and thus
the CRS length has Θ(n2) group elements (since it contains {gx` : ` ∈ Λ̂}) but also in addition, it takes Θ(n2)
bilinear-group exponentiations to compute ψ. We emphasize that the difference between Θ(n2) scalar additions
(as in the new arguments) and Θ(n2) bilinear-group exponentiations (as in Groth’s argument) is very important in
practice; and in both cases,Θ hides approximately the same constant. Moreover, the choice of Λ and Λ′ in [Gro10]
is somewhat ad hoc. One of the contributions of the current paper is the intuitive reasoning for the choice of Λ,
and a near-optimal (up to a factor of 2!) construction of Λ. On the other hand, [Gro10] did not consider any other
possible sets Λ at all.

The fact that we use the same n generators to commit to all A, B, and C means that we can more readily reuse
these commitments in different arguments, even if B is a commitment in a different group. For example, to prove
that A ∈ G1 and B ∈ G2 commit to the same tuple (by using the same randomizer), Groth [Gro10] had to use a
separate Hadamard product argument. In our case, it is just sufficient to verify that ê(A, g2) = ê(g1, B). Finally,
in the case of the Hadamard product argument, we made the verifier’s computational complexity to be Θ(1)
pairings by adding 1 group element to the CRS. (In the permutation argument, one can also make the verifier’s
computational complexity to be Θ(1) pairings by adding a few elements to the CRS. However, this optimization
is valid only when the permutation is previously known like the permutation swap in the case of the Circuit-SAT
argument in Sect. 8.)

Differently from [Gro10], we use asymmetric pairings. While at least currently, asymmetric pairings are much
more efficient than symmetric pairings, it also means that we have to take additional care by modifying several
aspects of the security assumptions, of the arguments and of the proofs.

By giving a somewhat clearer proof, we were able to avoid Groth’s CPDH assumption, and rely on the (poten-
tially weaker) PSDL assumption instead. Moreover, since the adversary in both security proofs has to factorize a
degree λn polynomial, our security proofs have a tighter reduction than those in [Gro10].

L Proof of Thm. 9

Proof. This argument contains 6 commitments, 4 product arguments and 3 permutation arguments. Thus, the
Circuit-SAT argument consists of a number of group elements, 12+3·2 = 18 belong to G1 and 1+4·2+3·4 = 21
belong to G2.

The verifier has to perform 2 · (4 + 1+ 3) = 16 bilinear pairings to check the correctness of all commitments,
and 4 · 5+ 3 · 12 = 56 bilinear pairings to check all 7 arguments. It takes 3 · 12 = 36 bilinear pairings to compute
all permutation arguments, and thus 20 + 36 = 56 bilinear pairings to check all 7 arguments. She also has to
perform 1 bilinear-group multiplication to verify each of the 4 product arguments, and 4 · (|C|+1)−2 = 4|C|+2
(online) bilinear-group multiplications to verify each of the two permutation arguments ψ6 and ψ7. (Since swap
does not depend on the circuit, one can optimize the bilinear-group multiplications out in the case of ψ2.)

Statements about the prover’s computational complexity and the CRS size follow directly from the complexi-
ties of the basic arguments. For the prover’s computational complexity note that all committed elements in product
arguments are Boolean, and that we can assume that all three used permutations are simple to compute (e.g., ζ
and τ can be computed by a table-lookup). Moreover, since all three permutation arguments share their second
argument, one can optimize the permutation arguments by only performing certain computations once. ut

The verifier also has to compute the values TΛ, but since it does not require any bilinear-group multiplications, it
will not change her computational complexity much.

M Perfect Zaps

The presented NIZK argument is in the CRS model, and thus requires some trusted third party to construct the
CRS. If this is not possible, then one can instead construct a sublinear-size zap [DN00] (a 2-move publicly-
verifiable witness-indistinguishable argument, where the verifier’s first message can be reused polynomially many
times), just by letting the verifier’s first message to be equal to the CRS, and then letting the prover to verify
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the well-formedness of the CRS and then send his argument. It is straightforward to see that all CRS-s con-
structed in the current paper are publicly verifiable. This zap will be perfectly witness-indistinguishable. Due to
Groth’s balancing technique [Gro10], the new zap for circuit satisfiability has the communication complexity of
|C|1/2+o(1) group elements, while Groth’s zap from [Gro10] has the communication complexity of Θ(|C|2/3)
group elements. Note that Di Crescenzo and Lipmaa [DL08] constructed a 2-message perfectly complete and
computationally sound polylogarithmic argument for NP under a knowledge assumption (and without random
oracles), but their argument is not witness-indistinguishable.
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