
Exploring the Limits of Common Coins
Using Frontier Analysis of Protocols

Hemanta K. Maji1,?, Pichayoot Ouppaphan1,??, Manoj Prabhakaran1,?, and
Mike Rosulek2

1 Department of Computer Science, University of Illinois, Urbana-Champaign.
{hmaji2,pouppap2,mmp}@uiuc.edu.

2 Department of Computer Science, University of Montana. mikero@cs.umt.edu.

Abstract. In 2-party secure computation, access to common, trusted
randomness is a fundamental primitive. It is widely employed in the
setting of computationally bounded players (under various complexity
assumptions) to great advantage. In this work we seek to understand
the power of trusted randomness, primarily in the computationally un-
bounded (or information theoretic) setting. We show that a source of
common randomness does not add any additional power for secure eval-
uation of deterministic functions, even when one of the parties has arbi-
trary influence over the distribution of the common randomness. Further,
common randomness helps only in a trivial sense for realizing random-
ized functions too (namely, it only allows for sampling from publicly fixed
distributions), if UC security is required.

To obtain these impossibility results, we employ a recently developed
protocol analysis technique, which we call the frontier analysis. This in-
volves analyzing carefully defined “frontiers” in a weighted tree induced
by the protocol’s execution (or executions, with various inputs), and es-
tablishing various properties regarding one or more such frontiers. We
demonstrate the versatility of this technique by employing carefully cho-
sen frontiers to derive the different results. To analyze randomized func-
tionalities we introduce a frontier argument that involves a geometric
analysis of the space of probability distributions.

Finally, we relate our results to computational intractability questions.
We give an equivalent formulation of the “cryptomania assumption”
(that there is a semi-honest or standalone secure oblivious transfer proto-
col) in terms of UC-secure reduction among randomized functionalities.
Also, we provide an unconditional result on the uselessness of common
randomness, even in the computationally bounded setting.

Our results make significant progress towards understanding the exact
power of shared randomness in cryptography. To the best of our knowl-
edge, our results are the first to comprehensively characterize the power
of large classes of randomized functionalities.

? Partially supported by NSF grants CNS 07-47027 and CNS 07-16626.
?? Supported by NSF grant CNS 0851957 for undergraduate research.

1 Introduction

In this work, we consider a fundamental question: How cryptographically useful
is a trusted source of public coins?

While there are several instances in cryptography where a common random
string or a trusted source of public coins is very useful (e.g. [3,5]), we show severe
limitations to its usefulness3 in secure two-party computation, without — and
sometimes even with — computational intractability assumptions. In contrast,
it is well known that more general correlated private random variables can be
extremely powerful [2]. Given that for semi-honest security common randomness
is useless (as one of the parties could sample and broadcast it), it is not surpris-
ing that it should turn out to be not as powerful as general correlated random
variables. However, despite its fundamental nature, the exact power of common
randomness has not yet been characterized. Here, we provide tight characteriza-
tions of what can be achieved with a source of common randomness, in various
settings of 2-party computation. We show:

– For two-party secure function evaluation (SFE) of deterministic functions,
being given a source of common randomness is useless, irrespective of any
computational complexity assumptions, when considering security in the
standalone setting.4

– Clearly a source of common randomness can be useful for realizing ran-
domized functionalities. However, in the case of UC security, we show that a
source of common coins can be useful only in a trivial sense (unless restricted
to the computationally bounded setting, and intractability assumptions are
employed). We show that any UC-secure protocol that uses common coins
for evaluating a randomized function can be replaced by a protocol of the
following simple form: one of the parties announces a probability distribu-
tion, based deterministically on its input, and then the two parties sample
an outcome from this distribution using freshly sampled common coins. We
call the resulting functionality a publicly-selectable source.

– We relate computational intractability assumptions to secure reductions
among randomized functionalities, giving evidence that common random-
ness is useful only under strong computational assumptions. In particular
we show that common randomness can be used to UC-securely realize a
symmetric functionality with bi-directional influence (i.e., the output is in-
fluenced by both the parties’ inputs) if and only if there exists a semi-honest
secure protocol for oblivious transfer.

These results are actually proven for a class of sources more general than coin
tossing, namely selectable sources – that let one of the parties (secretly) specify
3 We say that a source of common randomness is useless in realizing some 2-party

functionality F if either F could be realized without using the given source or F
cannot be realized even given the source. Note that we consider only the feasibility
question and not any efficiency issues.

4 In the case of UC security, it follows from the results in [17] that a source of common
randomness is useless except in Cryptomania, where it is a complete functionality.

which among a set of distributions should be used by the source. We highlight
two aspects of these results:

Non-blackbox analysis of protocols. In deriving the impossibility results our anal-
ysis crucially relies on the communication and information structure of protocols.
We build on the “frontier analysis” paradigm in [8,16,17], but significantly ex-
tend its power, among other things, to enable analyzing protocols for arbitrary
randomized functionalities, and protocols using randomized functionalities.

These results (and hence proofs) are necessarily of a non-relativizing nature
— if the protocol has access to another trusted functionality (more sophisticated
than common randomness), the impossibility results no longer hold. Specifics
about the common randomness functionality are (and must be) used in our
proofs. Such low-level analysis of protocols, we believe, is crucial to understand-
ing the power and complexity of multi-party computation primitives.

Understanding randomized functionalities. Secure evaluation of randomized func-
tions has in general been a poorly understood area. In particular, to date it
remains open to characterize which randomized functions can be securely real-
ized even against computationally unbounded passive (honest-but-curious) ad-
versaries — a problem that was solved for deterministic functions twenty years
ago [1,14]. Much of the study of randomized functionalities has been focused on
in-depth understanding of the simplest such functionality — namely generating
shared fair coins (e.g., see [7,11,8,19] and references therein). Our results provide
significant insight into other randomized functionalities as well, and their con-
nections to computational intractability assumptions. In particular, our results
involve two interesting classes of randomized functionalities, namely selectable
sources and publicly-selectable sources.

1.1 Overview

Frontier analysis. The bulk of our results take the form of statements of crypto-
graphic impossibility. That is, we show that a protocol for a given cryptographic
task is impossible (or else implies a certain computational primitive like one-way
functions). Such impossibility results have been a core challenge in cryptography.
In this work, we present a powerful battery of techniques that we use to analyze
2-party protocols, which we broadly call “frontier analysis.”

The basic outline of a frontier analysis is as follows. We first interpret a proto-
col as a tree of possible transcripts, with weights corresponding to the probability
that the protocol assigns to each message, based on the parties’ inputs. Within
this tree, we identify “frontiers”, which are simply a collection of nodes (partial
transcripts) that form a cut and an independent set. Intuitively, these frontiers
correspond to points in the protocol when some condition is satisfied for the first
time, where the condition in question depends on the kind of analysis needed:
for example, the first place the transcript leaks “significant” information about
a party’s input, or the first place that common coins have made a “significant”
influence on the protocol’s output.

Impossibility proofs using frontier analysis proceed by showing that frontiers
of certain kind exist, often showing that multiple frontiers must be encountered
in a specific order, and then showing that an adversary can effect an attack by
exploiting the properties of these frontiers. Appendix A contains a high level
discussion on frontier analysis as a tool for protocol analysis.

Common coins are not useful in SFE protocols. We show that against compu-
tationally unbounded adversaries (more precisely, against adversaries that can
break one-way functions), any 2-party deterministic SFE (in which both par-
ties receive the same output) functionality that can be securely realized given
a trusted coin-tossing functionality can in fact be securely realized without it.
This is most interesting for the standalone setting, because if one-way functions
do exist then a standalone-secure coin-tossing protocols exist, so again access to
a trusted coin-tossing functionality is redundant.5

We start off by showing that there is no secure protocol for evaluating boolean
xor given a coin-tossing functionality. In many ways these functionalities have
similar “complexity” (in particular, neither is complete, and both are trivial
to realize against passive adversaries), so establishing a qualitative separation
between them is interesting in itself. In a protocol for xor, either party may be
the first to reveal information about their input, and the two parties can even
gradually reveal more and more information about their input in an interleaved
fashion. We define a frontier corresponding to the first point at which some
party has revealed “significant” information about its input. Then we define an
attack that can be carried out when the protocol crosses this frontier. Since
a large class of SFE functionalities can be used to securely realize xor, the
impossibility extends to these functionalities as well.

We then use the combinatorial characterizations of Symmetric Secure Func-
tion Evaluation (SSFE) functionalities (obtained using frontier analysis) from
[16] to extend the result to arbitrary SSFE functionalities (instead of just XOR).
Further, using an extension of a result in [12], we extend this to arbitrary SFE
functionalities by associating a symmetric SFE with every general SFE that has
a secure protocol using a source of common randomness.

For randomized SFE, common coins help only in a trivial sense. We show that
common coins are useful in constructing UC-secure protocols for randomized
SFE functionalities only for the class of publicly-selectable sources (Theorem 2).
For this result, we exploit the versatility of the frontier analysis and also employ
a geometric analysis of the space of effective probability distributions.

The frontier analysis is carried out for an SSFE functionality, and then the
result is extended to general SFE functionality separately. For a randomized
5 A recent result in [17] gives a sharp result for the case of UC security: the coin-

tossing functionality is useful in realizing further deterministic SFE functionalities
if and only if there exists a semi-honest oblivious transfer protocol. However neither
the result nor the approach in [17] extends to the standalone setting. Also, our result
is applicable to not just symmetric functionalities and coin-tossing, but extends to
general SFE functionalities and all selectable sources.

SSFE functionality, for each pair of inputs, the output is specified by a distri-
bution (over a finite output alphabet). This distribution can be represented as
a vector in d-dimensional real space where d is the size of the output alpha-
bet. By considering all possible inputs, we obtain a set of points in this space
as legitimate output distributions. But since the parties can choose their input
according to any distribution they wish, the entire convex hull of these points is
the set of legitimate output distributions. Note that the vertices of this polytope
correspond to the output distributions for various specific input choices.

In analyzing a protocol for such a functionality, we define two very different
frontiers: one intuitively captures the last point in the protocol where the parties’
inputs have any noticeable influence over the output distribution. The other
intuitively captures the first point where the common coins have had a non-
trivial influence on the output distribution.

Defining these frontiers is a delicate task, but once they are defined, we
can show that, for the protocol to be UC-secure, the two frontiers must be
encountered in the order listed above. Thus there is always a point within the
protocol where the parties’ inputs have stopped influencing the output, yet the
public coins have not yet started influencing the output in a non-trivial way. At
this point, we can show that the output distribution is uniquely determined, and
that the subsequent coins are simply used to sample from this publicly-chosen
distribution.

Then, on each node in the first frontier the conditional output distribution is
still within the polytope. On the other hand, since the input influence has ceased
at this point, for any fixed input, its output distribution must be determined by
this frontier: i.e., it must be a convex combination of the conditional output
distributions at the nodes on the frontier. That is, the output distribution for
this input is a convex combination of conditional output distributions which
are all themselves within the polytope. Now, (without loss of generality, as it
turns out) we can consider inputs whose output distributions are vertices of the
polytope. Then, for all nodes in the frontier the conditional output distribution
must coincide with the final distribution itself. Thus on reaching this frontier in
the protocol, the output distribution is revealed (as a deterministic function of
the inputs) and the rest of the protocol simply samples from this distribution.

Finally, we extend this result also to general SFE (instead of just symmetric
SFE) functionalities, in the same way as for deterministic functionalities.

Selectable sources. Selectable sources are an interesting class of randomized func-
tionalities with an intermediate level of complexity: they can be more complex
than a (fixed) source of common randomness, yet they are simple enough that
we can show that they are as useless as common randomness when it comes
to securely realizing deterministic functionalities. The extension is observed by
following the analysis for the case of the source of common randomness, and iden-
tifying the properties that it relies on. We do not know at this point whether
these are exactly all the functionalities which are useless for realizing SFE func-
tionalities, but based on our understanding so far, we conjecture that they are.

Connections to Computational Intractability. Finally, we relate our results to
computational intractability questions. The attacks based on frontier analysis
can often be extended to the computationally bounded setting, if one-way func-
tions do not exist (as was pointed out in [17]). We show that this is indeed the
case for our attacks. In fact, our first application of such an extension is to obtain
an unconditional result about the uselessness of selectable sources in realizing
deterministic secure function evaluation with standalone security. For this we use
the fact that if one-way functions do not exist we can attack any given protocol,
whereas if one-way functions do exist then we can realize any selectable source
functionality (with standalone security) and then again they are useless.

We also generalize a result in [17] to the setting of randomized functional-
ities. There it was shown that if any non-trivial deterministic functionality is
UC-securely realizable using access to common randomness, then there exists an
oblivious transfer protocol secure against semi-honest adversaries. We generalize
common randomness to any selectable source, and also generalize non-trivial de-
terministic functionalities to randomized SSFE functionalities with both parties’
inputs having an influence on the output.

Related Results. Frontier analysis is possibly implicit in previous works on prov-
ing impossibility or lower bounds for protocols. For instance, the analysis in [8]
very well fits our notion of what frontier analysis is. The analysis of protocols in
[6,1,14] also have some elements of a frontier analysis, but of a rudimentary form
which was sufficient for analysis of perfect security. In [16] frontier analysis was
explicitly introduced and used to prove several protocol impossibility results and
characterizations. [13] also presented similar results and used somewhat similar
techniques (but relied on analyzing the protocol by rounds, instead of frontiers,
and suffered limitations on the round complexity of the protocols for which the
impossibility could be shown).

2 Preliminaries

We say that a function ν : N → R is negligible if for every polynomial p,
ν(k) < 1/p(k) for sufficiently large k. If D,D′ are discrete probability distri-
butions with support S, we write SD(D,D′) to denote the statistical distance of
the distributions, defined as SD(D,D′) = 1

2

∑
s∈S |D(s)−D′(s)|.

Security. We use standard conventions and terminology for the security of proto-
cols for multi-party computation tasks. A protocol is secure if for every adversary
in the real world (in which parties execute a protocol), there is an adversary, or
simulator, in the ideal world (in which the task is carried out on behalf of the
parties by a trusted third party called a functionality) that achieves the same
effect. A semi-honest or passive adversary is one which is not allowed to deviate
from the protocol. Standalone security is achieved if the simulator is allowed to
rewind the adversary; Universally composable (UC) security [4] is achieved if
the simulation is straight-line (i.e., never rewinds the adversary). In this work,

we exclusively consider static adversaries, who do not adaptively corrupt honest
parties during the execution of a protocol.

The plain model is a real world in which protocols only have access to a
simple communication channel; a hybrid model is a real world in which protocols
can additionally use a particular trusted functionality. While hybrid worlds are
usually considered only for UC security, we also use the terminology in the setting
of standalone security. We note that protocols for non-reactive functionalities
(i.e., those which receive input from all parties, then give output, and then stop
responding) do securely compose even in the standalone security setting.

2.1 Functionalities

We focus on classifying several important subclasses of functionalities.

Secure function evaluation (SFE). A 2-party secure function evaluation (SFE)
functionality is specified by two functions f1 : X × Y → Z and f2 : X × Y → Z,
where X and Y are finite sets. The functionality waits for input x ∈ X from Alice
and y ∈ Y from Bob, then delivers f1(x, y) and f2(x, y) to them, respectively.
There is no fairness guarantee: if a party is corrupt, it can obtain its own output
first and decide whether the output should be delivered to the other party.

If f1 = f2 are identical we call it a symmetric SFE (or SSFE) functionality.
SSFE functionalities are the most fundamental, and have been studied since Yao
first introduced the concept of multi-party computation [21]. We can specify an
SSFE function by simply giving its function table, where the rows correspond
to an input of Alice, and columns correspond to an input of Bob. For instance,
the XOR functionality has function table 0 1

1 0 .

Randomized functionalities. A randomized SFE functionality is specified by
functions f1, f2 : X × Y × R → Z. The functionality takes inputs x ∈ X from
Alice, y ∈ Y from Bob, uniformly samples r ∈ R and outputs f1(x, y, r) and
f2(x, y, r) to Alice and Bob, respectively. An important example is the common
randomness functionality, denoted by Fcoin (with X = Y = {0}, R = {0, 1}, and
f1(x, y, r) = f2(x, y, r) = r). Note that for a given pair of inputs, the outputs to
Alice and Bob could be correlated as the same value r is used in both.

We identify two important subclasses of randomized SSFE functionalities:

Selectable sources: One in which one party’s input does not affect the output.
That is, functions which can be written as f(x, y, r) = h(x, r) for some func-
tion h. Note that for different values of x, the function’s output distribution
may be arbitrary.

Publicly-selectable sources: Those functions which can be written as f(x, y, r) =
(g(x), h(g(x), r)), for some functions g and h. In this case, the function’s
output distribution for different values of x must be either identical (when
g(x) = g(x′)) or have disjoint supports (when g(x) 6= g(x′), which is included
in the function’s output). Intuitively, the function’s output determines the
identity of the random distribution h(g(x), ·) that was used.

In these two classes of functionalities, only one party can influence the output,
so we say they have uni-directional influence. If there exists inputs x, x′, x′′ for
Alice and y, y′, y′′ for Bob so that f(x, y′) 6≡ f(x, y′′), and f(x′, y) 6≡ f(x′′, y),
then both parties can potentially influence the output, and we say that the
functionality has bi-directional influence.

Isomorphism. F and G are isomorphic6 if either functionality can be UC-securely
realized using the other functionality by a protocol that is “local” in the following
sense: to realize F given G (say), each party maps its input (possibly probabilis-
tically) to inputs for the functionality G, calls G once with that input and, based
on their private input, the output obtained from G, and possibly private random
coins, locally computes the final output, without any other communication. It is
easy to see that isomorphism is an equivalence relation.

Usefulness of a source. We say that a source of common randomness G is useless
in realizing a 2-party functionality F if either F could be securely realized in
the plain model (i.e., without using G) or F cannot be securely realized even in
the G-hybrid model. Note that we consider only the feasibility question and not
any efficiency issues.

2.2 Frontier Analysis

Protocols and transcript trees. We view a 2-party protocol as a weighted tree of
possible transcripts. The leaves of the tree correspond to completed transcripts,
on which both parties give output. The tree’s internal nodes alternate between
“Alice” and “Bob” nodes, corresponding to points in the protocol (identified by
partial transcripts) at which Alice and Bob send messages, respectively. Given
a party’s private input and the transcript so far (i.e., a node in the tree), the
protocol assigns probabilities to the outgoing edges (i.e., possible next messages).
In some settings we also consider nodes corresponding to invocations of ideal
functionalities (like Fcoin), when appropriate. For these the protocol tree assigns
probabilities to the outputs of the functionality (the corresponding “messages”
included in the transcripts for these steps) according to the probabilities of
parties’ inputs and the functionality’s internal randomness. An execution of the
protocol corresponds to a traversal from root to leaf in the tree.

Probabilities and frontiers. We write Pr[v|x, y] for the probability that the pro-
tocol visits node v (equivalently, generates a transcript with v as a prefix) when
executed honestly on inputs x and y. Suppose πA(x, vb) is the probability that
when Alice executes the protocol honestly with input x and the transcript so far
is v, her next message is b. Similarly, we define a probability πB for Bob. Then
(assuming Alice speaks first in the protocol):

Pr[v|x, y] = πA(x, v1)πB(y, v1v2) · · · =

[∏
i odd

πA(x, v1 · · · vi)

] [∏
i even

πB(y, v1 · · · vi)

]
6 The definition given here is a generalization for randomized functionalities of the

definition from [16].

If we define α(v, x) and β(v, y) to be the two parenthesized quantities (equiva-
lently, the product of weights from Alice nodes and Bob nodes in the transcript
tree, respectively), then we have Pr[v|x, y] = α(v, x)β(v, y). Thus, in a plain
protocol, the two parties make independent contributions to the probability of
each transcript. In fact, even if the protocol is allowed to use a selectable source,
this property still holds (see Section 4). This property of protocols is crucially
used in all frontier analysis in this work.

When S is a set of independent nodes in the transcript tree (prefix-free partial
transcripts), we define Pr[S|x, y] =

∑
v∈S Pr[v|x, y], as all the probabilities in the

summation are for mutually exclusive events. If Pr[F |x, y] = 1, then we call F a
frontier. Equivalently, a frontier is a maximal independent set in the transcript
tree. In general, a frontier represents a point in the protocol where a certain
event happens, usually defined in terms of the probabilities α and β.

3 Handling General SFE Functionalities

Frontier analysis is most naturally applied to protocols realizing SSFE function-
alities — that is, functionalities which give the same output to both parties.
So we derive our results for such functionalities. However, we can then extend
our characterizations to apply to SFE functionalities with unrestricted outputs
using the following lemma, proven in Appendix F:

Lemma 1. Suppose H is a functionality that has a passive-secure protocol in the
plain model. If H is useful in UC- or standalone-securely realizing a (possibly
randomized) SFE functionality F , then there exists a symmetric SFE function-
ality F∗ such that F∗ is isomorphic to F , and H is useful in (respectively, UC-
or standalone-) securely realizing F∗.

Here, being useful or not is in the sense of the definition given in Section 2.1.
Proving Lemma 1 essentially involves relating SSFE and SFE functionali-

ties. As it turns out, relating symmetric and unrestricted functionalities is most
convenient in the setting of passive security. In that setting, we associate with ev-
ery SFE functionality F a symmetric functionality which is simply the maximal
“common information” provided to the two parties by F . (See proof of Lemma 11
for a combinatorial description of this function.) Following [12] it is not hard to
show that if an SFE functionality G is not isomorphic to its (symmetric-output)
common information functionality then G must be complete in the passive secu-
rity setting.

To apply this result, however, we must be careful in relating passive security
and active security. It is not necessarily the case that an actively secure protocol
implies a passively secure protocol (since in the passive security setting, the
security reduction must map passively corrupt adversaries to passively corrupt
simulators). In Lemma 10 we show that every SFE functionality is isomorphic
to a functionality that is “deviation-revealing” [20]. Such functionalities have
the property that active-secure protocols imply passive-secure protocols. Using
these two results, we are able to transition from active to passive security, and
then argue about generalized vs. symmetric output.

4 Selectable Sources are Useless for Deterministic SFE

In this section we will show that any selectable source is useless for securely re-
alizing any deterministic SFE functionality against computationally unbounded
adversaries. In particular this shows that Fcoin is useless for realizing any deter-
ministic SFE functionality.

Theorem 1. Suppose F is a 2-party deterministic SFE and G is a selectable
source. Then F has a standalone-secure (resp. UC-secure) protocol in the G-
hybrid model against computationally unbounded adversaries if and only if F
has a standalone-secure (resp. UC-secure) protocol in the plain model.

To give an overview of our techniques, we present the result for the special
case of F = Fxor and G = Fcoin. Then we describe the modifications necessary
to consider arbitrary F and arbitrary selectable source G, respectively.

The case of Fxor and Fcoin. This special case illustrates our new frontier-based
attack. It is well-known that there is no standalone-secure (or UC-secure) proto-
col for Fxor in the plain model (cf. the complete characterization of [13,16]). Also
note that standalone security is a special case of UC security. Thus it suffices to
show the following:

Lemma 2. There is no standalone-secure protocol for Fxor using Fcoin, against
computationally unbounded adversaries.

Proof (Sketch). The full proof is given in Appendix B.1. The main novelty in
this proof (compared to the techniques in [16]) is the nature of the frontier we
consider, in a semi-honest protocol. For semi-honest security, Fxor does not have
a canonical order for what information must be revealed by the two parties. This
thwarts the analysis in [16], which depends on defining frontiers corresponding
to what information is revealed in what order. Nevertheless we show that using
a frontier parameterized by a threshold µ on (an appropriately defined notion
of) how much information is revealed about a party’s input, one can devise an
attack on purported protocol for Fxor in the Fcoin-hybrid model.

For simplicity, first assume that we are given a protocol π for Fxor in the
plain model (i.e., let us ignore Fcoin for the moment). Let α and β be defined as
in Section 2. Then for every node v in the transcript tree of π, define

δA(v, x, x′) =
|α(v, x)− α(v, x′)|
α(v, x) + α(v, x′)

and δB(v, y, y′) =
|β(v, y)− β(v, y′)|
β(v, y) + β(v, y′)

.

δA and δB are well-defined after we exclude any nodes that have α(v, x) =
α(v, x′) = 0 or β(v, y) = β(v, y′) = 0. Intuitively, δA(v, x, x′) and δB(v, y, y′)
measure how much the transcript reveals about the distinction between x and
x′, or y and y′, respectively. A δ value of 0 means that the partial transcript v is
independent of the choice between the two inputs; a value of 1 means that the
transcript v is only consistent with one of the two inputs.

Then given a parameter µ, we define a frontier F as follows:

F =
{

v

∣∣∣∣ max{δA(v, 0, 1), δB(v, 0, 1)} ≥ µ

and no proper prefix of v also satisfies this condition

}
Intuitively, F is the first place at which one of the parties has revealed “signifi-
cant” information about its input, where significance is measured by µ.

Now we sketch an attack based on this frontier. (The actual proof and calcu-
lations in Appendix B.1 follow a slightly different argument, but using the same
frontier). Suppose by symmetry that on an honest execution, the protocol assigns
the majority of the weight on F to transcripts v satisfying δB(v, 0, 1) ≥ µ. Then,
intuitively, Alice can launch an attack as follows. She runs the protocol honestly
(say, with input 0) until reaching F . Then at F , the transcript is correlated with
Bob’s input enough so that Alice can guess Bob’s input with bias roughly µ/2.
On the other hand, since δA(v, 0, 1) < µ with good probability at this point of
the protocol, both values for Alice’s input are somewhat likely explanations for
the transcript seen so far. Therefore if Alice changes her input at this point (by
sampling a state consistent with the current transcript and the new input), the
outcome of the protocol will change with all but negligible probability, thanks
to the correctness guarantee of the protocol. Thus, Alice can significantly corre-
late her effective input with Bob’s, so that Bob’s output is biased significantly
towards 1 (when Bob picks his input at random). But this is a behavior that is
not possible in an ideal-world interaction with Fxor, so it constitutes a violation
of the security of π.

The only difference when attacking a protocol in the Fcoin-hybrid model is
that the common coins also influence the probabilities of partial transcripts. One
may consider the probability of a partial transcript v (which includes outputs of
Fcoin) as a product of α(v, x), β(v, y), and a contribution γ(v) from the combined
calls to Fcoin. However, γ(v) does not depend on x or y, so we can absorb its
contribution into (arbitrarily) α(v, x) and the analysis remains valid.7

Uselessness of Fcoin for any SFE F . First we consider the case when F is a sym-
metric SFE functionality. We use the characterization of SSFE functionalities
with standalone-secure protocols from [16] to show that if an SSFE functional-
ity F has no standalone-secure protocol in the plain model, then either there
is a standalone-secure protocol for Fxor in the F-hybrid model, or else there
is a frontier-based attack that violates standalone security of every purported
protocol for F in the plain model.

In the first case, Lemma 2 demonstrates that F can have no standalone-
secure protocol in the Fcoin-hybrid world. In the second case, we observe that

7 Note that α and β are defined only in terms of honest behavior by the parties, so that
every call to Fcoin delivers its output to both parties in our analysis and associated
attack. (Only corrupt parties can prevent output delivery in a functionality with no
output fairness guarantee.) Thus our attacks neither rely on fairness nor crucially
exploit unfairness in the source of common coins; the adversaries we construct will
always choose to deliver the outputs of the setup functionality.

the frontier-based attacks go through unaltered even if the protocols are allowed
access to Fcoin. This is because the frontier attack merely relies on the fact that
in a protocol, given a transcript prefix v, the next message depends only on one
of Alice and Bob’s inputs. However, this is true even if the protocol has access
to Fcoin— the bits from Fcoin being independent of both parties’ inputs.

This allows us to conclude that in either case, there can be no protocol for
F in the Fcoin-hybrid model, giving us the following lemma (see Appendix B.2
for more details).

Lemma 3. If F is a 2-party deterministic SSFE that has no standalone-secure
(resp. UC-secure) protocol against unbounded adversaries in the plain model,
then F has no standalone-secure (resp. UC-secure) protocol in the Fcoin-hybrid
model.

Replacing G with an arbitrary selectable source. Our analysis goes through with
minimal modification when Fcoin is replaced by an arbitrary selectable source.
Recall that in a selectable source functionality G, only one party can influence
the output at a time (depending on which “direction” G is used in). When G is
used such that only Alice influences the output, the influence on the transcript’s
probability can be collected into the term α(v, x). Similarly, when only Bob can
influence the output of G, the influence can be collected into the term β(v, y).
Therefore, we can still write Pr[v|x, y] = α(v, x)β(v, y) for appropriate α and β.
Each invocation of G is an atomic event with respect to the frontiers and to the
adversary’s changes in behavior in our our attacks.

Extending to general SFE functionalities. Finally, we prove Theorem 1, using
Lemma 1. Note that a selectable source has a passive secure protocol (Alice
samples an output and gives it to Bob). Thus if there exists any SFE functionality
F for which some selectable source is useful in (UC- or standalone-) securely
realizing, then by Lemma 1 selectable source is useful in (UC- or standalone-)
securely realizing some SSFE functionality as well, contradicting Lemma 3.

5 Coins are useless for Randomized SFE

In this section, we characterize the set of randomized SFE functionalities that
can be reduced to Fcoin.

Since Fcoin itself is not securely realizable (in the UC or standalone model)
against computationally unbounded adversaries, common randomness clearly
allow more functionalities to be securely realized. In particular common ran-
domness can be used to generate a shared sample from a publicly agreed-upon
distribution. However, we show that this is essentially the only use of common
randomness, when UC security is required . (When standalone security is con-
sidered, we give examples of randomized SSFE for which Fcoin is useful in a more
non-trivial way in the full version [15].) More precisely,

Theorem 2. A randomized SFE functionality F has a UC-secure protocol in
the Fcoin-hybrid model if and only if F is isomorphic to the SSFE functional-
ity F∗ with output function F∗ such that F∗(x, y, r) = (h(x), r), where h is a
deterministic function.

Note that a secure protocol for F∗(x, y, r) above is simple: Alice sends h(x)
to Bob, and then they obtain uniformly random coins r from Fcoin. Thus, any
UC secure protocol for f which uses Fcoin can be replaced by one of the following
form: (1) one party sends a function of its input to the other party; (2) both
parties access Fcoin to obtain coins r; (3) both parties carry out local computation
to produce their outputs.

Given Lemma 1, it is enough to establish our characterization for the special
case of symmetric SFE functionalities (for which we shall denote the common
output by f(x, y, r)).

The first step in proving Theorem 2 for SSFE is to show that only one party’s
input can have influence on the outcome of the other party.

Lemma 4. If F is a 2-party randomized SSFE functionality with a UC-secure
protocol in the Fcoin-hybrid model, then F(x, y) is distributed as F ′(x) (or F ′(y)),
where F ′ is some randomized function of one input.

If F does not have the form F ′(x) or F ′(y), we call it an SSFE functionality
with bidirectional influence. Using Lemma 9, we show that if a bidirectional in-
fluence SSFE F has a UC-secure protocol in the Fcoin hybrid then there exists a
semi-honest protocol for OT. However, this is not possible against computation-
ally unbounded adversaries and hence, F can not have bidirectional influence.

Frontiers of influence. Suppose we are given a protocol π for f in the Fcoin-
hybrid model, with simulation error ε. Without loss of generality, we assume
that the last step of π is to toss a random coin which is included in the output.8

First, define Ox
v to be the output distribution of the protocol when executed

honestly on (Alice) input x, starting from partial transcript v. We use this to
define our first frontier:

G =

v

∣∣∣∣∣∣ ∀x′, x′′ : SD
(
Ox′

v ,Ox′′

v

)
<
√

ε

and no ancestor of v satisfies the same condition


Intuitively, G represents the point at which Alice’s input has first exhausted
any “significant” influence on the final output distribution — her input can no
longer change the output distribution by more than

√
ε. Next, note that the only

way to induce an output distribution in the ideal world is to choose an input
8 To see that this is without loss of generality, define a randomized SSFE f ′ which

on input x, outputs f(x) as well as a random bit. Then define π′ to be the protocol
which runs π and in the last step uses Fcoin to toss a coin which is included in the
output. It is easy to see that if π is a secure protocol for f , then π′ is a secure
protocol for f ′, so proving the insecurity of π′ establishes the insecurity of π.

x according to some distribution D and then send x to f , yielding the output
distribution {f(x)}x←D. Let S be the space of all possible output distributions
that can be induced in this way.9 We use this to define a collection of frontiers,
one for each value of x.

Fx = {v | SD(Ox
v ,S) >

√
ε and no ancestor of v satisfies the same condition}

Intuitively Fx represents the first time that randomness has had a “significantly”
non-trivial influence on the output when Alice’s input is x. Here, the influence of
randomness in the protocol is considered non-trivial if the protocol has reached
a point such that the conditional output distribution induced by the protocol
starting from that point cannot be achieved by Alice in the ideal world.

We now show that in a secure protocol, Alice’s input must completely exhaust
its influence before the randomness from Fcoin can begin to influence the output
distribution.

Lemma 5. In the above setting, let Fx < G denote the event that the protocol
generates a transcript that encounters frontier Fx strictly before encountering
frontier G. Then Pr[Fx < G|x] is negligible for all x.

Proof (Sketch). The full proof is given in Appendix C.1. Consider a malicious
Alice that runs π honestly on input x. Whenever this adversary encounters Fx

strictly before G, it reports the resulting partial transcript to the environment.
Being in the frontier Fx, this transcript intuitively represents an assertion by
the adversary that it can realize an output distribution Ox

v that is impossible to
effect in the ideal world (by continuing hereafter with input x). Being before G,
the transcript also indicates an assertion by the adversary that it can still induce
two “significantly” different output distributions (by continuing hereafter with
one of the inputs from the condition in the definition of G). The environment
can choose to challenge the adversary on any of these choices, and in the real
world the adversary can always succeed. However, for any simulator in the ideal
world, there must be some challenge for which the simulator must fail. Namely,
if the simulator has already sent an input to ideal f at the time it makes its
“assertion”, then it cannot proceed to induce two significantly different output
distributions on command — the output is already fixed. On the other hand,
if the simulator has not sent an input to the ideal f , then it cannot proceed to
realize an output distribution that is impossible in the ideal world.

Thus this adversary violates the security of f with success proportional to
Pr[Fx < G|x], so we conclude that this probability must be negligible.

Using the previous two lemmas, we can now prove the special case of Theo-
rem 2, restricted to SSFE functionalities:

Lemma 6. A 2-party randomized SSFE functionality F has a UC-secure pro-
tocol in the Fcoin-hybrid model against computationally unbounded adversaries if
9 Note that S is the space of convex combinations of {f(x) | x}, where here f(x)

denotes the discrete probability distribution itself, represented by a stochastic vector.

and only if F is isomorphic to the SSFE functionality F∗ with output function
f∗ such that f∗(x, y, r) = (h(x), r), where h is a deterministic function.

Proof. The complete proof is given in Appendix C.2. Lemma 5 shows that there
is a frontier G that separates all of the influence of Alice’s input (before G) from
all of the influence of Fcoin (after G).

Our analysis relies on the geometric interpretation of possible output distri-
butions. As before, let S denote the space of output distributions that can be
realized in the ideal world by randomly choosing an input and sending it to f
to obtain a sample of f(x). S is the convex closure of a finite set of points f(x).
Call an input x fundamental if f(x) is a corner on the convex hull of S. Without
loss of generality, we restrict our attention exclusively to fundamental inputs.10

Let x be a fundamental input. Since x affects the output of the protocol only
negligibly after the transcript reaches G, we have that f(x) is statistically close
to a convex combination of {Ox

v | v ∈ G}. An overwhelming weight of these
distributions Ox

v are negligibly close (in statistical distance) to the space S. By
a geometric argument, since f(x) is a corner in the space S, we have that an
overwhelming weight of Ox

v distributions are negligibly close to f(x).
Thus, consider any two inputs x, x′ such that f(x) 6≡ f(x′). The statistical

distance between these two distributions is a constant ∆. The above argument
implies that x and x′ must induce distributions over G that have statistical
distance negligibly close to 1. In other words, executing the protocol until G
unambiguously determines the distribution f(x); after G, x has no more influence
on the output. Then it is straight-forward to show that the following simple
protocol is also secure for f : Alice sends a description of the distribution f(x)
to Bob (say, the lexicographically smallest x∗ s.t. the distributions of f(x) and
f(x∗) are identical). Both parties use Fcoin to generate random coins r and use
them to compute a sample from the distribution f(x). Then it is clear that f has
the desired form — the output of this protocol is computed from a deterministic
function of x along with independent coins.

On extending to selectable sources. Unlike our results in Section 4, Theorem 2
does not generalize to arbitrary selectable sources (instead of just Fcoin). To
see this, one can easily construct a selectable source f which is not of the form
f(x, y, r) = (h(x), r). Then trivially f has a UC-secure protocol using some
selectable source (namely, itself), but f is not of the form required by Theorem 2.

Indeed, to prove Theorem 2, we made a crucial distinction between Alice’s
choice of input influencing the output distribution and Fcoin influencing the
output distribution. This distinction is lost if Fcoin is replaced by a functionality
in which Alice is allowed to influence the output.

On a common random string (CRS) vs. Fcoin. A common random string (CRS)
is a source of shared randomness in which all random bits are generated once
and for all at the beginning of a protocol interaction, rather than as-needed, as
10 Any non-fundamental input x is redundant in f and we can remove it to obtain an

isomorphic functionality (see proof of Lemma 10).

with Fcoin. Our proof of Theorem 2 states that the influence of the parties’ inputs
ends before the influence of the shared randomness begins. Since the influence
of a CRS must happen at the start of a protocol, a CRS is useless for SSFEs
except those of the form f(x, y, r) = h(x) (no influence from shared randomness)
or f(x, y, r) = h(r) (no influence from parties’ inputs), for a deterministic h.

6 Randomized Functionalities and Computational
Intractability

Our results so far have been presented in the computationally unbounded set-
ting. However, they do extend somewhat to the probabilistic polynomial time
(PPT) setting (where all entities, including the adversary and the environment
are PPT), and yield interesting connections with computational intractability
assumptions. These results are similar in spirit to the connections established in
[17], but unlike there, are applicable to randomized functionalities.

Firstly, in the case of deterministic SFE functionalities, we obtain the follow-
ing unconditional result in the PPT setting (see Appendix E.1).

Theorem 3. For every 2-party deterministic SFE F and selectable source G,
F has a standalone secure protocol in the G-hybrid model in the PPT setting, if
and only if F has a standalone secure protocol in the plain model in the PPT
setting.

Our other results for the PPT setting are conditional. An important obser-
vation in [17] was that, statements of the form “2-party functionality F has a
UC-secure protocol in the G-hybrid world (in the PPT setting)” are either known
to be unconditionally true or false, or tend to be equivalent to the assumption
that one-way functions exist, or the assumption that there is an oblivious trans-
fer (OT) protocol secure against semi-honest adversaries. [17] study a large class
of such statements for deterministic F and G, and show that for every one of
them the corresponding statement falls into one of the four classes listed above.
An important problem left open is to understand whether the same pattern holds
when considering randomized functionalities.

Our results suggest that this may be the case: the only intractability as-
sumptions (other than being known to be unconditionally true or false) that
arise among randomized functionalities still seem to be the existence of OWF
and the existence of a semi-honest OT protocol. In particular we have the fol-
lowing two results :

Theorem 4. Let F be any 2-party SFE functionality, possibly randomized. If
one-way functions do not exist then F has a UC-secure protocol in the Fcoin-
hybrid model in the PPT setting, if and only if F is a publicly-selectable source.

This is proven in Appendix E.1.

Theorem 5. The following three statements are equivalent:
1. There exists a semi-honest OT protocol.

2. ∃ (possibly randomized) 2-party SSFE F with bidirectional influence : F is
UC securely-realizable in Fcoin-hybrid world.

3. ∀ (possibly randomized) 2-party SSFE F with bidirectional influence : F is
UC securely-realizable in Fcoin-hybrid world.

The main task in proving the above is to show that (2) ⇒ (1), which is
carried out in Lemma 9. (1) ⇒ (3) follows from a result proven in [9,18] on the
completeness of Fcoin. (3) ⇒ (2) is trivial.

7 Conclusion and Future Work

Recently, [17] made a case for “cryptographic complexity theory,” trying to un-
derstand the qualitative difference between different multiparty functionalities.
However, the results there were confined to deterministic functionalities; the
universe of randomized functionalities is vastly more complex, and is little un-
derstood. Among other things, this work initiates a systematic study of random-
ized functionalities, by proving the low-complexity nature of certain classes of
randomized functionalities. In this work we do not consider randomized func-
tionalities of higher levels of complexity, nor do we seek to classify all kinds of
randomized functionalities. Nevertheless, we believe that our proof techniques
— both for the computationally unbounded setting and for the PPT setting —
will be useful in such a study. We leave this for future work.

References

1. D. Beaver. Perfect privacy for two-party protocols. In J. Feigenbaum and M. Mer-
ritt, editors, Proceedings of DIMACS Workshop on Distributed Computing and
Cryptography, volume 2, pages 65–77. American Mathematical Society, 1989.

2. D. Beaver. Precomputing oblivious transfer. In D. Coppersmith, editor, CRYPTO,
volume 963 of Lecture Notes in Computer Science, pages 97–109. Springer, 1995.

3. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its ap-
plications (extended abstract). In STOC, pages 103–112. ACM, 1988.

4. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Electronic Colloquium on Computational Complexity (ECCC) TR01-
016, 2001. Previous version “A unified framework for analyzing security of proto-
cols” availabe at the ECCC archive TR01-016. Extended abstract in FOCS 2001.

5. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party computation. In Proc. 34th STOC, pages 494–503. ACM, 2002.

6. B. Chor and E. Kushilevitz. A zero-one law for boolean privacy (extended ab-
stract). In STOC, pages 62–72. ACM, 1989.

7. R. Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In STOC, pages 364–369. ACM, 1986.

8. R. Cleve and R. Impagliazzo. Martingales, collective coin flipping and discrete
control processes. Manuscript, 1993. http://www.cpsc.ucalgary.ca/∼cleve/pubs/
martingales.ps.

9. I. Damg̊ard, J. B. Nielsen, and C. Orlandi. On the necessary and sufficient as-
sumptions for UC computation. Cryptology ePrint Archive, Report 2009/247,
2009. http://eprint.iacr.org/.

http://www.cpsc.ucalgary.ca/~cleve/pubs/martingales.ps
http://www.cpsc.ucalgary.ca/~cleve/pubs/martingales.ps
http://eprint.iacr.org/

10. O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In
ACM, editor, Proc. 19th STOC, pages 218–229. ACM, 1987. See [?, Chap. 7] for
more details.

11. R. Impagliazzo and M. Luby. One-way functions are essential for complexity based
cryptography. In Proc. 30th FOCS, pages 230–235. IEEE, 1989.

12. J. Kilian. More general completeness theorems for secure two-party computation.
In Proc. 32th STOC, pages 316–324. ACM, 2000.

13. R. Künzler, J. Müller-Quade, and D. Raub. Secure computability of functions in
the it setting with dishonest majority and applications to long-term security. In
O. Reingold, editor, TCC, volume 5444 of Lecture Notes in Computer Science,
pages 238–255. Springer, 2009.

14. E. Kushilevitz. Privacy and communication complexity. In FOCS, pages 416–421.
IEEE, 1989.

15. H. K. Maji, P. Ouppaphan, M. Prabhakaran, and M. Rosulek. Exploring the limits
of common coins using frontier analysis of protocols. In TCC, 2011. Full version
at http://eprint.iacr.org/.

16. H. K. Maji, M. Prabhakaran, and M. Rosulek. Complexity of multi-party com-
putation problems: The case of 2-party symmetric secure function evaluation. In
O. Reingold, editor, TCC, volume 5444 of Lecture Notes in Computer Science,
pages 256–273. Springer, 2009.

17. H. K. Maji, M. Prabhakaran, and M. Rosulek. Cryptographic complexity classes
and computational intractability assumptions. In A. C.-C. Yao, editor, ICS, pages
266–289. Tsinghua University Press, 2010.

18. H. K. Maji, M. Prabhakaran, and M. Rosulek. A zero-one law for cryptographic
complexity with respect to computational UC security. In T. Rabin, editor,
CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 595–612.
Springer, 2010.

19. T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In TCC 2009,
volume 5444 of Lecture Notes in Computer Science, pages 1–18. Springer, March
2009.

20. M. Prabhakaran and M. Rosulek. Cryptographic complexity of multi-party compu-
tation problems: Classifications and separations. In D. Wagner, editor, CRYPTO,
volume 5157 of Lecture Notes in Computer Science, pages 262–279. Springer, 2008.

21. A. C. Yao. Protocols for secure computation. In Proc. 23rd FOCS, pages 160–164.
IEEE, 1982.

A Frontier Analysis

Our results are derived using a class of techniques that we refer to as the frontier
analysis of protocols. A protocol can be represented by a (weighted) rooted
binary tree, so that a path from the root represents the bits exchanged in an
execution of the protocol. (The weight on an edge represents the probability
that a party responds with a particular bit at a particular point in the protocol;
these weights at each node are simply a function of the input of at most one
party.) In our analyses we define frontiers on this tree where, typically, some
information regarding the input or the eventual output becomes apparent in the
protocol transcript (when both parties follow the protocol honestly). The specific
frontiers we shall employ will be tailor-made for the problem at hand.

http://eprint.iacr.org/

We briefly discuss why it seems that often such a detailed analysis of pro-
tocols is necessary. Some of the prior results that show impossibility of secure
protocols [6,14,1] used somewhat similar but much simpler arguments. They are
simpler in that (in the terminology of frontier analysis) they consider an indi-
vidual node in the protocol tree at a time. However this limits their applicability
to the setting of perfect security (as opposed to statistical security). Intuitively,
the reason for this restriction is that protocols with super-logarithmic commu-
nication complexity are super-polynomial sized objects, and analyzing such a
protocol locally (an individual node at a time) cannot demonstrate a statisti-
cally significant insecurity.

Another possible approach to protocol analysis11 would be to reason about
the protocol one round at a time. The idea will be to identify a round where some
event occurs (like, in the case of simultaneous exchange of inputs, one party may
have revealed some information about its input). Such an approach has a couple
of drawbacks. Firstly, such impossibility results typically become weaker as the
number of rounds in the protocol increases. leaving open the possibility that
exponentially long protocols can in fact provide security (e.g., the results in [13]).
Another issue is that in different possible evolutions of the protocol, events at
the same round can offset each other’s effect. Yet another serious problem is that
“attacks” that one can demonstrate against a protocol often need to depend on
specific sequences of events in history; however simply considering likelihood of
various (easy to analyze) events at a round does not tell us about the correlation
between events at various rounds. In short, a gross analysis that considers only
the aggregate behavior of a protocol at each round is often limited in its ability
to reason about arbitrary protocols and prove impossibility results.

B Proofs Relating to Theorem 1

B.1 Proof of Lemma 2

Lemma 2 states that there is no standalone-secure protocol for Fxor in the Fcoin-
hybrid model, against computationally unbounded adversaries.

Proof (Proof of Lemma 2). Suppose for contradiction π is a standalone-secure
protocol for Fxor in the Fcoin-hybrid model. Recall that in Fxor, Alice chooses an
input x ∈ {0, 1}, Bob chooses an input y ∈ {0, 1}, and both parties learn x⊕ y.
We will show an attack against π that violates the security guarantee of Fxor—
specifically, we will show an attack whereby the honest party chooses its input
at random, yet its output is significantly biased. This is indeed a violation of
security since in the ideal world the corresponding output must be an unbiased
bit.

Without loss of generality, assume that every other round of the protocol is an
access to Fcoin. We only use the property that the probability of each transcript
11 We use the term protocol analysis to mean the analysis of arbitrary protocols, typi-

cally from the point of view of proving an impossibility. This must not be confused
with analysis of specific protocols.

consists of independent probability contributions from Alice, Bob, and Fcoin. Let
ε = ε(k) denote the security error (maximum deviation between ideal world and
real world) of the protocol, thus ε is negligible in the security parameter k.

Define α and β as in Section 2, and let γ be the probability contribution
from Fcoin. Thus, for every partial transcript v we can express Pr[v|x, y] =
α(v, x)β(v, y)γ(v). Now, for every partial transcript v, define

δA(v) =
|α(v, 0)− α(v, 1)|
α(v, 0) + α(v, 1)

and δB(v) =
|β(v, 0)− β(v, 1)|
β(v, 0) + β(v, 1)

.

δA and δB are well-defined after we exclude any nodes that have α(v, 0) =
α(v, 1) = 0 or β(v, 0) = β(v, 1) = 0. Intuitively, δA(v) and δB(v) measure how
much Alice’s or Bob’s input affects the probability of reaching v, respectively. For
instance, δA(v) = 0 means that the partial transcript v contains no information
about Alice’s input (in fact, it is distributed independent of her input); δA(v) = 1
means that the partial transcript v completely reveals Alice’s input — it is
uniquely determined by v.

Let 0 < µ ≤ 1 be a fixed parameter to be defined later, and define the
following sets:

FA = {v | δA(v) ≥ µ and no proper prefix of v satisfies (δA(v) ≥ µ or δB(v) ≥ µ)}
FB = {v | δB(v) ≥ µ and no proper prefix of v satisfies (δA(v) ≥ µ or δB(v) ≥ µ)}
FC = {v | v is a complete transcript and no proper prefix of v satisfies (δA(v) ≥ µ or δB(v) ≥ µ)}

It is easy to see that FA ∪ FB ∪ FC indeed constitute a complete frontier. In-
tuitively, FA and FB represent the first place where Alice or Bob has revealed
“significant” information about their input, respectively, where the parameter
µ measures the amount of significance. FC represents the remaining transcripts
needed to extend FA ∪ FB to a frontier.

First, we argue that FC is only reached with negligible probability during
honest executions of the protocol. Intuitively, the transcript must eventually
reveal both parties inputs, since the transcript contains at least the output x⊕y
and any two of {x, y, x⊕y} uniquely determine the third quantity. The following
proposition is useful:

Proposition 1. If |p− q|/(p + q) < c, then p
q , q

p ∈ (1−c
1+c , 1+c

1−c).

Thus, for any v ∈ FC , we have α(v, 0)/α(v, 1), β(v, 0)/β(v, 1) ∈ (1−µ
1+µ , 1+µ

1−µ).
Since transcripts in FC are complete transcripts, each one uniquely determines
the output of the parties. Partition FC into F

(0)
C and F

(1)
C , where F

(b)
C are the

transcripts on which Alice outputs b. Note that by the correctness of the protocol,
Pr[F (x⊕y⊕1)

C |x, y] ≤ ε. Then

Pr[FC | x = 0, y = 0] =
∑

v∈F
(1)
C

Pr[v|x = 0, y = 0] +
∑

v∈F
(0)
C

Pr[v|x = 0, y = 0]

≤ ε +
1 + µ

1− µ

∑
v∈F

(0)
C

Pr[v|x = 1, y = 0] ≤ 1 + µ

1− µ
ε + ε =

2ε

1− µ
= negl(k).

Here we assume that µ is a constant independent of k. Similarly, Pr[FC |x, y] ≤
negl(k) for all x, y ∈ {0, 1}.

Now partition FA and FB respectively into the following sets:

FA0 = {v ∈ FA | α(v, 0) > α(v, 1)} FB0 = {v ∈ FB | β(v, 0) > β(v, 1)}
FA1 = {v ∈ FA | α(v, 1) > α(v, 0)} FB1 = {v ∈ FB | β(v, 1) > β(v, 0)}

Then FA,x is the point in the protocol at which the transcript is significantly
biased towards Alice having input x; similarly for FB,y.

By symmetry, suppose Pr[FB0 | x = 0, y = 0] is the maximum of the four
values{

Pr[FA0 | x = 0, y = 0],Pr[FA1 | x = 0, y = 0],Pr[FB0 | x = 0, y = 0],Pr[FB1 | x = 0, y = 0]
}

.

Then, since Pr[FC | x = 0, y = 0] < negl(k), we have Pr[FB0 | x = 0, y = 0] ≥
1
4 − negl(k).

We now construct a strategy for a corrupt Alice that will bias Bob’s output
towards 1 when Bob is executing π on a randomly chosen bit y. Alice’s strategy is
to run the protocol honestly with input x = 0, until the transcript reaches a node
v on frontier F . If v 6∈ FB0, then she continues the execution honestly. Otherwise
(i.e., v ∈ FB0) she switches her input to 1 (by sampling a state consistent with
the current transcript and the input 1) and continues the execution honestly
with her new state.

Let out denote the output of Bob in the protocol, and let p′ denote the
probability in the interaction described above (honest Bob choosing a random
input y, and Alice running the strategy described). It suffices to show that∣∣p′[out = 0]− 1

2

∣∣ is bounded by a positive constant.
We split the analysis into cases. Let FB0 denote the event that the transcript

intersects the frontier F at a point in FB0. Then

p′[out = 0] =
1
2

[
p′[out = 0 ∧ FB0 | y = 0] + p′[out = 0 ∧ FB0 | y = 0]

+ p′[out = 0 ∧ FB0 | y = 1] + p′[out = 0 ∧ FB0 | y = 1]
]

We bound each of these four quantities separately.
First, p′[out = 0 ∧ FB0 | y = 0]. Note that conditioning on event FB0, Alice

changes her input from x = 0 to x = 1. Intuitively, we should expect that the
protocol will give output 0⊕ 1 = 1, not output 0. Formally:

p′[out = 0 ∧ FB0 | y = 0] =
∑

v∈FB0

Pr[out = 0|v, x = 1, y = 0]Pr[v|x = 0, y = 0]

≤
∑

v∈FB0

Pr[out = 0|v, x = 1, y = 0]
1 + µ

1− µ
Pr[v|x = 1, y = 0]

≤ 1 + µ

1− µ
Pr[out = 0|x = 1, y = 0] ≤ 1 + µ

1− µ
ε = negl(k)

Note that Pr in these expressions denotes the probability over an entirely honest
execution of the protocol.

Next, we consider p′[out = 0 ∧ FB0 | y = 0]. Conditioning on event FB0, we
have that malicious Alice will in fact run the protocol honestly on input x = 0
during the entire interaction. So by the properties of FB0, we have:

p′[out = 0 ∧ FB0 | y = 0] ≤ Pr[FB0 | x = 0, y = 0] ≤ 3/4 + negl(k)

Again, Pr only describes probabilities involving completely honest execution of
the protocol.

Next, we consider p′[out = 0∧FB0 | y = 1]. This quantity includes the event
that Bob has input y = 1 and yet the transcript intersected the frontier at FB0.
Intuitively, this event should not happen very often (and less and less, as µ is
larger). By the properties of FB0, we have that β(v, 1)/β(v, 0) ≤ 1−µ

1+µ for every
v ∈ FB0. Thus:

p′[out = 0 ∧ FB0 | y = 1] ≤ Pr[FB0 | x = 0, y = 1] =
∑

v∈FB0

Pr[v|x = 0, y = 1]

≤ 1− µ

1 + µ

∑
v∈FB0

Pr[v|x = 0, y = 0] ≤ 1− µ

1 + µ
.

Finally, we consider p′[out = 0∧FB0 | y = 1]. Conditioning on event FB0, we
have that malicious Alice will in fact run the protocol honestly on input x = 0
during the entire interaction. So by the correctness of the protocol, we have:

p′[out = 0 ∧ FB0 | y = 1] ≤ Pr[out = 0 | x = 0, y = 1] ≤ ε = negl(k).

Combining all of these inequalities, we finally have:

p′[out = 0] ≤ 1
2

[
3
4

+
1− µ

1 + µ
+ negl(k)

]
.

When µ is a fixed constant greater than 3/5, we have that p′[out = 0] is bounded
away from 1/2 by at least a constant, as desired.

B.2 Fcoin Useless for all SSFE Functionalities

To extend Lemma 2 to the case of all SSFE functionalities, we rely on results
from [16] (some of which are also obtained using frontier analysis).

First, we give some needed definitions. We say a function f : X × Y → Z is
decomposable [14,1] if either:

– f is a constant function;
– there exists a partition X = X1 ∪ X2, such that for all y ∈ Y , x ∈ X1,

x′ ∈ X2, we have f(x, y) 6= f(x′, y), and f is decomposable when restricted
to both X1 × Y and X2 × Y ; or

– there exists a partition Y = Y1∪Y2, such that for all x ∈ X, y ∈ Y1, y′ ∈ Y2,
we have f(x, y) 6= f(x, y′), and f is decomposable when restricted to both
X × Y1 and X × Y2

In [16], a special class of decomposable functions was considered. For our pur-
poses, let us call a function f uniquely decomposable if f is decomposable and
there is no protocol for Fxor in the f -hybrid model.

Proof (Proof of Lemma 3). Suppose F is an SSFE that has no standalone-
secure protocol against unbounded adversaries (in the plain model). This class
of SSFE functionalities has a combinatorial characterization from [16]. From this
characterization, there are three cases of F to consider:

(1) If F is decomposable but not uniquely decomposable, then we have that
Fxor has a standalone-secure protocol in the F-hybrid model. Thus the attack of
Lemma 2 shows that F cannot have a protocol in the Fcoin-hybrid model.

(2) If F is uniquely decomposable but yet has no standalone-secure proto-
col, then one of the frontier attacks of [16] applies. In particular, [16] shows
that if the function evaluated is uniquely decomposable and has a certain other
combinatorial property it has a standalone-secure protocol, but if it is uniquely
decomposable but lacks this combinatorial property then any protocol allows
either a passive (i.e., semi-honest) attack, or if not, an explicit active standalone
attack.

(3) If F is not decomposable, then [16] shows that there is in fact a passive
attack on any protocol for F . This attack is also constructed using frontier
analysis of a purported protocol.

The attacks mentioned in (2) and (3) can be carried out as long as the
protocol has the property that for any transcript v, Pr[v|x, y] = α(v, x)β(v, y)
for some functions α, β. Since this is the case for protocols in the Fcoin-hybrid
model, we can show that any purported protocol for F in the Fcoin-hybrid model
can be attacked in a way that violates standalone security.

In the case of UC security, the case (2) above changes, and will have a larger
set of functionalities. But again, in this case if there is no passive attack on
a protocol, there is an explicit attack against UC security (or even concurrent
security with two sessions [16]), which extends to protocols in the Fcoin-hybrid
model as well. Thus in the same way, the theorem holds with respect to UC
security as well as standalone security. (In fact, a stronger result appears in [17],
that even in the computationally bounded setting, Fcoin is useful for securely
realizing deterministic SSFE functionalities in the UC setting only if there exists
a semi-honest secure OT protocol.)

C Proofs Relating to Theorem 2

C.1 Proof of Lemma 5

We first observe that for complete transcripts (leaves) v, we have that Ox′

v ≡ Ox′′

v

for all x′, x′′; thus G is indeed a frontier. Also, because of our normal form (last

step of π is a trusted coin toss that is included in the output), every complete
transcript (leaf) v satisfies SD(Ox

v ,S) = Θ(1) >
√

ε, and so Fx is indeed a
frontier.

We now prove Lemma 5, which says that Pr[Fx < G|x] is negligible for every
x.

Proof (Proof of Lemma 5). Consider a particular adversary A which does the
following when interacting with any environment of the appropriate form:
– Runs the protocol π honestly on input x until reaching frontier Fx. At that

point, it gives the environment the value of the current partial transcript u,
and pauses.

– After receiving x∗ from the environment, A continues running the protocol
honestly with input x∗ (after back-sampling a random tape consistent with
u and input x∗).

Let S denote the simulator for this adversary. If the simulator does not provide
a sample u ∈ Fx that is distributed statistically close to the real world adver-
sary, then some environment of the required form can distinguish the real world
from the ideal world. Thus, assume that the simulator S always generates u
statistically close to the real world interaction A.

Consider the case where the simulator receives x∗ from the environment
before it has sent an input to the functionality f . Then consider the environment
that sends x∗ = x in step 2. In this case, the real world adversary A will induce
the distribution Ox

u, which is an unsimulatable distribution by the definition of
Fx. No matter how the simulator subsequently chooses its input to send to f , it
will induce an output distribution for the honest party whose statistical distance
from Ox

u is at least
√

ε. Some environment of the required form can distinguish
the two interactions, so we conclude that the simulator must send its input to f
before step 2, except with negligible probability

√
ε.

Thus without loss of generality assume that S sends an input to the ideal
functionality f before receiving x∗ from the environment, except with negligible
probability. Then consider an environment that receives u ∈ Fx, and aborts if
u has a prefix in G (i.e., if Fx 6< G). Otherwise, the environment chooses x∗

uniformly from {x′, x′′}, where x′ and x′′ are such that SD
(
Ox′

u ,Ox′′

u

)
≥
√

ε,
by the definition of G. Now condition the entire interaction on the event that
such an environment doesn’t abort (whose probability of happening is negligibly
close to Pr[Fx < G|x] in both the real and ideal interactions). Then in the ideal
world, with probability at least 1/2, the honest party’s output from f will have
statistical difference at least

√
ε from Ox∗

u . But in the real world, the adversary
always correctly induces the output distribution Ox∗

u , so some environment of
this form can distinguish the real and ideal worlds with probability O(Pr[Fx <
G|x] ·

√
ε).

We conclude that Pr[Fx < G|x] must be at most
√

ε, which is negligible.

C.2 Proof of Lemma 6

We follow the sketch in the main body in proving Lemma 6.

Proof (Proof of Lemma 6). For any fundamental input x, consider the probabil-
ity distribution f(x), which is a corner on the convex hull of S. By the security
of the protocol, Ox

r is within statistical distance ε of f(x), where r is the root of
the transcript tree (the empty transcript). We also have that Ox

r is equal to the
convex combination

∑
v∈G Pr[v|x]Ox

v .

Let G+ be the subset of G consisting of nodes v that have no ancestor in Fx.
By Lemma 5, we have that Pr[G+|x] is overwhelming. Thus Ox

r (and therefore
f(x)) is negligibly close to the convex combination

∑
v∈G+ Pr[v|x]Ox

v .

By the definition of G+, each of the distributions Ox
v in the above convex

combination are negligibly close (within statistical distance ε2) to the convex
space S. A straight-forward geometric argument shows that since f(x) is a corner
vertex in the convex space S, and each of theOx

v terms in the convex combination
is negligibly close to the space S, then there is a negligible quantity δ such that
the probability of encountering v ∈ G on input x such that SD(Ox

v , f(x)) ≤ δ
is overwhelming. That is, almost all of the weight that x places on frontier G is
placed on nodes v that induce a distribution that is negligibly close to f(x).

It then follows that for any x, x′ such that f(x) 6≡ f(x′), the two distributions
f(x) and f(x′) are distinct vertices on the convex hull of S. Thus their statistical
distance is a constant, and so x and x′ induce distributions over G that have
statistical distance negligibly close to 1.

Thus consider a simple protocol ρ of the following form: Given x, Alice de-
termines (deterministically) a sampling circuit Mx that samples the distribution
f(x), and sends Mx to Bob. Both parties then obtain random coins r from Fcoin,
and evaluate Mx(r) — a sample from f(x).

We claim that π is as secure as ρ in the UC sense (that is, for every adversary
attacking π, there is an adversary attacking ρ that achieves the same effect in
all environments). The interesting case is when a corrupt Alice is attacking π.
Then the corresponding simulator does the following. It interacts with Alice in π
(playing the role of an honest Bob and honest Fcoin), and pauses the interaction
once the G frontier has been reached. Suppose that v ∈ G is the π-transcript so
far. At this point, from the arguments above, the simulator can identify Alice’s
distribution f(x) with only negligible error. Then the simulator sends Mx in its
ρ interaction. The simulator and honest Bob toss coins in their ρ interaction to
sample z ←Mx(r). By the properties of G, Alice can no longer significantly bias
the outcome of protocol π — the remainder of the protocol’s output depends
almost entirely on the ideal coin tosses. Also, with overwhelming probability,
Ox

v is negligibly close to f(x), so the simulator can sample a set of simulated
coin tosses (for the π interaction) which will result in z as the π protocol’s
output. It is straight-forward to see that the simulated interaction with Alice is
indistinguishable from a real interaction.

Finally, we complete the proof of Theorem 2 by observing that f is indeed
isomorphic to a function of the form g(x, y) = (g′(x), r), since in ρ, both parties’
outputs are a function of Mx (a deterministic function of x) and independent
random coins r.

D Usefulness of Fcoin for Randomized SSFE for
Standalone Security

Standalone-secure protocols and corresponding functionalities can be constructed
as follows: consider any tree with nodes corresponding to Alice, Bob and Fcoin.
Label all the leaves with distinct characters. Define a randomized SSFE in which
Alice’s input set X are the set of (deterministic) strategies she has in this pro-
tocol: a strategy is a function mapping each of her nodes in the tree to one
of its children. Similarly, Bob’s input set Y is the set of his strategies. Given
(x, y) ∈ X × Y , a distribution over the leaves of the protocol is determined,
which defines our randomized SSFE functionality. It is easy to see that a proto-
col in which Alice and Bob traverse the above tree with strategies corresponding
to their inputs, accessing Fcoin at the nodes marked as such, is a standalone
secure realization of this functionality.

One can construct functionalities of the above kind which are not realizable
using a protocol in which Alice and Bob first compute a deterministic function,
and then sample from a source specified by the outcome of that computation

(or vice versa). An example is
(1,0,0,0) (1,0,0,0)

(0, 1
2 , 1

2 ,0) (0,0, 1
2 , 1

2) where the vectors indicate prob-
ability distribution over an output alphabet of size 4.

E Randomized Functionalities and Computational
Intractability

E.1 Extending Frontier Analysis for PPT Adversaries

Our frontier-based analyses crucially rely on the fact that an adversary can
calculate the nodes of a protocol frontier, and perform a simple calculation (in
general, computing the sign associated with a δA or δB value) at that frontier
in order to attack any supposedly secure protocol. However, since protocol trees
may have superpolynomial description size, and the frontiers are defined in terms
of global probabilities, it is not clear how to extend frontier-based attacks to the
PPT setting. However, following [17], we can extend the attacks to a setting
where one-way functions do not exist.

In [11], it is shown that the existence of one-way functions (OWF) is implied
by the much weaker assumption that distributionally one-way functions exist.
Thus if OWFs do not exist, then no function is distributionally one-way: In
other words, for every efficient function f and polynomial p, there is an efficient
algorithm that on input y samples close to uniformly (within 1/p statistical
difference) from the preimage set f−1(y).

Under such an assumption, we can carry out all of the frontier analyses em-
ployed in Section 4. It suffices to show that a PPT adversary, given a partial tran-
script, can efficiently estimate values of the form δ̂A(u, x, x′) = α(u, x)/(α(u, x)+
α(u, x′)) or δ̂B(u, y, y′) = β(u, y)/(β(u, y) + β(u, y′)) within a sufficiently small

1/poly additive error.12 Below, we show how this can be accomplished using a
straight-forward sampling approach.

The error inherent in our sampling of these values induces an additional
1/poly error in the attacks that are demonstrated in the previous section. How-
ever, since all of these attacks resulted in a violation of the security guarantees
with constant probability, they are resilient to these extra 1/poly errors incurred
by sampling.

Estimating the frontier. We outline how to compute δ̂A(u, x0, x1) = α(u, x0)/(α(u, x0)+
α(u, x1)) within arbitrarily small 1/poly error in polynomial time, provided that
no one-way functions exist.

Define the function f(x, rA, y, rB , rC , i) = (τ, x), where τ is the first i bits
of the transcript generated when the protocol is executed honestly with inputs
(x, y), and Alice uses random tape rA, Bob uses random tape rB , and Fcoin

generates random coins rC .
Given x0, x1, we use the guarantee of no distributionally one-way functions

to sample from f−1(u, x0) and f−1(u, x1). If both preimages are empty, then the
protocol never generates u as a partial transcript on inputs x0 or x1. If only one
is empty, then {δ̂A(u, x0, x1), δ̂A(u, x1, x0)} = {0, 1}.

Otherwise, assume that u is indeed a possible partial transcript for both x0

and x1 (i.e., the protocol assigns positive probability to u when Alice has either
input x0 or x1). Our previous sampling of f−1 has yielded an input y∗ such that
u is a possible partial transcript when executing π on inputs (x0, y

∗). Thus u is
also a possible partial transcript on inputs (x1, y

∗). Now define:

g(x, rA, y, rB , rC , i) =

{
(τ, y) if x ∈ {x0, x1}
⊥ otherwise

We now sample n times from g−1(u, y∗). Let nb be the number of times the
sampled preimage included xb as the first component. Then nb/n is an estimate of
δ̂A(u, xb, x1−b). By setting n to be a sufficiently large polynomial in the security
parameter, we can ensure that the estimate is within an additive factor 1/kc of
the actual value for any c, with high probability.

This argument implies that if one way functions do not exist, then the fron-
tiers introduced in Lemma 2 and Lemma 3 can be identified in polynomial time,
though at the expense of an additional 1/poly error which can be driven arbi-
trarily small. So, we can generalize the result in Lemma 3 as:

Lemma 7. Let F be any deterministic SSFE and G be any selectable source. If
one way functions do not exist then F has a standalone secure protocol in the
G-hybrid model if and only if F has a standalone secure protocol in the plain
model.

12 Note that δA(u, x, x′) = |δ̂A(u, x, x′) − δ̂A(u, x′, x)| and δB is similarly defined in
terms of δ̂B . All the frontiers considered in this section are defined in terms of δA

and δB .

For the case of standalone security, we can derive an unconditional result:

Lemma 8. For all deterministic SSFE F , F has a standalone secure protocol
in the G-hybrid world if and only if F has a standalone secure protocol in the
plain world, where G is a selectable source.

Proof. If one-way functions do not exist, then the claim is true by Lemma 7. On
the other hand, if one-way functions exist, then take any protocol for F in the
G-hybrid model. Since G is a selectable source, it has a simple semi-honest secure
protocol ρ. Assuming the existence of one-way functions, we can apply the GMW
compiler [10] on ρ to obtain a standalone secure protocol for G. Composing it
with the G-hybrid protocol for F , we obtain a standalone secure protocol for F
in the plain model.

Finally, it is easy to see that Lemma 1 holds in the PPT setting as well,
yielding Theorem 3 as a corollary of Lemma 8.

Proof of Theorem 4 For Theorem 2, the main subproblem needing to be
solved to effect the frontier-based attack is the following: Let F be a selectable
source and v be any partial transcript. Compute the output distribution Ox

v

corresponding to the transcripts which have v as its prefix.
Suppose only Alice input has influence on the output of F . Let g(x, rA, rB , i)

be the function which outputs the first i bits of the transcript and Alice input
x, where rA and rB are local random tapes of Alice and Bob respectively. If
one way functions do not exist, then we can sample from the set g−1(v, x) in
polynomial time. Given a tuple (x, rA, rB , i) we run the complete protocol and
note down the output it generates. Performing this sampling for a large number
of times, we can obtain an estimate of Ox

v within 1/poly additive error for each
output.

To perform the frontier-based attack of Theorem 2, we also need to com-
pute the statistical distance SD(Ox

v ,S). Using the estimated value of Ox
v , we

can compute it with an additive error of 1/poly in polynomial time, yielding
Theorem 4.

E.2 Hardness of SSFE Functionalities with Bidirectional Influence

In this section we will show the following result:

Lemma 9. Let F be a (possibly randomized) SSFE, with bidirectional influence.
For any selectable source G, F has a UC secure protocol in the G-hybrid then
there exists a semi-honest secure protocol for OT.

This generalizes a result from [17] which considered the case of G being the
Fcoin functionality and F being deterministic (with bidirectional influence). The
proof uses techniques similar to the ones introduced in their paper. We will
sketch the outline of the ideas of the major modifications and the interested
reader is requested to refer to the original paper for explicit details.

Consider the following protocol PA→B : Suppose Alice has two inputs x0, x1

from her input domain of F and Bob has a choice bit b. There are two session
S0 and S1. In session Sb, Bob runs the simulator for corrupt Alice and in session
S1−b Bob runs the protocol honestly. Bob aborts both sessions at a round which
is uniformly chosen at random. The instance of GA and GB are realized by Alice
and Bob, respectively, computing the output honestly and sending it to the other
party. If in session Sb, Bob is unable to extract Alice’s input xb, then it asks
Alice to send both her inputs; and Alice sends (x0, x1) to Bob.

There is a similar protocol where the roles of Alice and Bob are reversed, say
PB→A. It has been shown in [17] that under certain guarantees, the protocols
PA→B and PB→A can be amplified into semi-honest secure protocols for OT. We
will show that if F has a UC secure protocol in the G-hybrid then the conditions
are satisfied for PA→B or PB→A.

Since F is bidirectional, for every Alice input x and x′ there exists a Bob in-
put y such that the distributions f(x, y) and f(x′, y) are different. Similarly, for
every Bob input y and y′ there exists an Alice input x such that the distributions
f(x, y) and f(x, y′) are different. Consider the case when Alice is semi-honest
corrupt. Let tA be the round where Alice can predict Bob’s input with probabil-
ity at least ζ = 1/n + c < 1, where the size of Bob’s input domain is n and c is
a small constant. Suppose in round sB , the simulator for corrupt Alice extracts
her inputs and sends it to F . The simulator extracts the correct input of Alice,
otherwise there exists a Bob input which can distinguish the actual input of
Alice from the input sent by the simulator. Since Bob input is chosen uniformly
at random, the environment can distinguish these two case with constant prob-
ability. We claim that tA ≥ sB + 1. Suppose sB is a round where Alice sends
a bit or they use GA. In this case, at this round, all inputs for Bob are equally
likely and hence tA > sB . Otherwise, if sB is a round where Bob sends a bit or
they use GB , then the simulator could have alternatively extracted one round
earlier. This reduces the problem to the previous case.

In particular, we can conclude that E[tA] ≥ E[sB] + 1. Let uA be the round
where Alice in the real protocol can predict Bob’s input with probability ζ.
Security guarantee implies that the simulated view should not be significantly
different from the real view. Hence we obtain that |E[uA]− E[tA]| ≤ ε/ζ = ε′.
This implies that E[uA] ≥ E[sB] + (1− ε′).

Similarly, we define the quantities sA, tB and uB and conclude that E[uB] ≥
E[sA]+(1−ε′). These two inequalities imply that either E[uA] ≥ E[sA]+(1−ε′)
or E[uB] ≥ E[sB]+(1− ε′). In other words, either the simulator for corrupt Bob
extracts significantly before Alice has a good guess about Bob’s input; or other
way around. Using the algorithm mentioned earlier, this guarantee is sufficient
to obtain a semi-honest secure protocol for OT [17].

F Proof of Lemma 1

We say that two SFE functionalities F and G are isomorphic if there is a local
protocol for UC-securely realizing F in the G-hybrid model, and vice-versa. By

local, we mean that the protocol (say, the protocol for F in the G-hybrid model)
makes only one call to the ideal functionality G and performs no other communi-
cation. Local protocols allow each party to do no more than locally “translate”
both the input from the environment and the output from G. This translation
may be randomized, especially in the case that F and G are randomized.

We say that an input for Alice x is redundant in an SFE F if F is isomorphic
to a variant F−x of F that does not allow input x from Alice. In other words, the
effect of x can be achieved by having Alice locally translate her inputs and out-
puts to/from F , using only inputs other than x. In this definition of redundancy,
the protocol for F−x in the F-hybrid model is always the dummy protocol; the
simulator for corrupt Alice in the F protocol in the F−x-hybrid model is also the
dummy simulation. The simulator for the F−x protocol and Alice’s protocol for
F coincide, and they correspond to Alice’s “translation” technique for obviating
the input x. Bob’s protocol is the dummy protocol without loss of generality.

[20] define a property of functionalities called deviation-revealing, which re-
lates UC security to passive security. UC security considers only actively corrupt
adversaries — as such, it does not require that passively corrupt adversaries (who
receive inputs from the environment on which to follow the protocol) are mapped
to passively corrupt simulators (i.e., a simulator that runs the dummy protocol
with the functionality).

For the purposes of this result, we define deviation-revealing slightly more re-
strictively than [20], requiring a condition for standalone security as well. We say
that a functionality F is deviation-revealing if every UC-secure or standalone-
secure protocol for F in the G-hybrid model is itself a passive-secure protocol
for F in the G-hybrid model. But if F is deviation-revealing, then without loss
of generality the simulator for a passively corrupt adversary can be passively
corrupt. The name “deviation-revealing” comes from the fact that the function-
ality’s behavior would reveal to an environment whether a party is interacting
with F using the dummy protocol or deviating from it.

Lemma 10. For every SFE functionality F there is a deviation-revealing func-
tionality G that is isomorphic to it.

Proof. Given an SFE F , we define G by iteratively removing redundant inputs in
F (for both parties). We do not require that removing redundant inputs results
in a unique G. Clearly G and F are isomorphic, and it suffices to show that G is
deviation-revealing.

Let π be any UC-secure or standalone-secure protocol for G in the H-hybrid
model. We must show that π is itself also passive-secure in the H-hybrid model.
Consider a passive adversary A for π — that is, the adversary receives inputs
from the environment and executes π honestly on those inputs, but also outputs
its entire view to the environment. Let S be the simulator for this adversary,
and it suffices to show that S can be made to interact with G according to the
dummy protocol without loss of generality.

Consider a class of environments that inspect only the inputs and outputs
of the parties, and in particular ignore A’s reported view of the protocol. By

the correctness of π, an interaction with A is indistinguishable from an inter-
action with G in which all parties run the dummy protocol, for this class of
environments.

Suppose such an environment gives input x to S, and condition on the event
that its simulator S sends an input other than x to G. This S is expected to
also return the output from G, since the original passive adversary returned the
output from π. By the security of π, this interaction is indistinguishable from
an interaction with ideal G in which all parties run the dummy protocol, for this
class of environments. Thus S is effecting a local protocol which demonstrates
that the input x is redundant. Since G contains no redundant inputs, we conclude
that this event (environment provides x but S sends an input other than x)
happens with only negligible probability. Without loss of generality, we can add
a wrapper around S that aborts if S sends an input other than the one provided
by the environment. This wrapped simulator is still a sound simulation and is a
passive simulator.

Lemma 11. For every SFE functionality G that has a passive secure protocol
in the plain model, there is a symmetric functionality G′ that is isomorphic to
it.

Proof. We define the symmetric functionality G′ to be the “common informa-
tion” that Alice and Bob get from G. This is best described by representing G
as a bipartite graph G: the set of nodes on the left are (x, a) for each possible
input value x for Alice x and output value a for Alice; similarly, the set of nodes
on the right are (y, b) for all possible inputs y and outputs b for Bob. There is
a weighted edge between (x, a) and (y, b) with weight Pr[a, b|x, y], namely, the
probability that Alice and Bob get outputs a and b when they send x and y as
their respective inputs to G. If this weight is 0, then we consider the edge to be
absent. G′ is defined as an SSFE functionality which takes x and y from the par-
ties, samples the outcome (a, b) according to G, and returns to both parties the
connected component H containing the edge ((x, a), (y, b)) in G. Observe that G′
gives the same output to both parties.

It suffices to show that if G′ and G are not isomorphic, then G cannot have a
passive secure protocol in the plain model. For this we rely on a result by Kilian
[12] to show that in this case G will actually be complete for passive security,
and hence cannot have a passive secure protocol in the plain model (unless we
impose computational restrictions and assume that there is such a protocol for
oblivious transfer).

Due to the restriction of local protocols, we see that G and G′ are isomorphic
if and only if, given the connected component H and their respective inputs,
Alice and Bob can independently sample outcomes that are jointly distributed
as outcomes from G. This is possible only when there is a labeling of every vertex
q(x, a) (or q(y, b)) so that Pr[a, b|x, y] = q(x, a)q(y, b) Pr[H|x, y]. By Pr(H|x, y),
we mean the probability that G′ outputs H on inputs x and y.

Now suppose no such labeling exists. Then we claim that G must be complete
for passive security. We adapt an argument of Kilian, who proved an analogous

statement for a special class of (deterministic) “asymmetric” SFEs G (Theo-
rem 1.3 in [12]).13

We consider two cases which exhaustively characterize the condition de-
scribed above:

Case 1: Suppose there exists (x0, a0), (y0, b0), (y1, b1) such that Pr[a0, b0|x0, y0] >
Pr[a0, b1|x0, y1] > 0 (or vice-versa with the roles of Alice and Bob exchanged).
Then there must be a value a1 such that Pr[a1, b0|x0, y0] < Pr[a1, b1|x0, y1]

Then consider the following passive protocol using G, where Bob has input
m:

1. Bob chooses a random bit t. The parties evaluate G twice, on inputs (x0, yt)
and (x0, y1−t).

2. If Bob did not receive output sequence (b1, b1) or Alice did not receive a
sequence of outputs in the set {(a0, a1), (a1, a0), (a0, a0)} then the parties
repeat step 1.

3. Bob sends M = m⊕ t to Alice. If Alice received (a0, a1), she guesses t̂ = 0;
if Alice received (a1, a0), she guesses t̂ = 1; otherwise, she sets t̂ randomly.
Alice locally outputs M ⊕ t̂.

The analysis of this protocol closely follows that of [12] (Lemma 5.2). Briefly,
Bob’s choice t is uniformly distributed conditioned on Alice receiving (a0, a0). In
this case, she receives no information about Bob’s input m. Otherwise, Alice’s
guess of t̂ is biased towards Bob’s choice of t and she learns partial information
about m. The protocol therefore gives a “noisy” variant of Rabin OT that can
be refined using the techniques described in [12].

Case 2: Suppose Case 1 does not hold and that there exist (x0, a0), (x1, a1), (y0, b0), (y1, b1)
such that Pr[a0, b0|x0, y0] = 0, yet each of Pr[a0, b1|x0, y1],Pr[a1, b0|x1, y0],Pr[a1, b1|x1, y1]
are nonzero. Since Case 1 does not hold, then these latter three probabilities must
in fact be equal. Then consider the following passive protocol using G:

1. Alice chooses random bit s. Bob chooses random bit t. Alice sends xs to G
and Bob sends yt to G.

2. If Alice did not receive output as or Bob did not receive output bt, then the
parties repeat step 1.

3. Alice locally outputs s. Bob locally outputs t.

This protocol allows Alice and Bob to generate correlated pairs (s, t) that are
uniformly distributed in {(0, 1), (1, 0), (1, 1)}. Using the techniques spelled out
in [12], such correlated pairs can be used to implement a passively secure OT.

We can now prove Lemma 1:

Lemma 1 (restated). Suppose H is a functionality that has a passive-secure
protocol in the plain model. If H is useful in UC- or standalone-securely realiz-
ing a (possibly randomized) SFE functionality F , then there exists a symmetric
13 Kilian does not state the result in terms of isomorphism or common information.

But the combinatorial condition is identical to the above.

SFE functionality F∗ such that F∗ is isomorphic to F , and H is useful in (re-
spectively, UC- or standalone-) securely realizing F∗.

Proof. First note that if F is isomorphic to F∗, then H is useful in securely
realizing F if and only if H is useful in securely realizing F∗. (This is because,
if there is a protocol for F in the H-hybrid model there is one for F∗, and if
there is no protocol for F in the plain model, there is none for F∗ either.) So it
is enough to give an SSFE functionality that is isomorphic to F .

If H is useful in UC-/standalone-securely realizing a randomized SFE func-
tionality F , then F has a (respectively, UC- or standalone-) secure protocol in
the H-hybrid model. Let G be the deviation-revealing functionality guaranteed
by Lemma 10. Because G is isomorphic to F , we have that G has a (respectively
UC- or standalone-) secure protocol in the H-hybrid protocol. Then, since G is
deviation-revealing, the same protocol is also passively secure in the H-hybrid
model. By our assumption, H has a passive-secure protocol in the plain model;
so by composing these two protocols we can obtain a passive secure protocol for
G in the plain model. Now, by Lemma 11, there is an SSFE functionality F∗
that is isomorphic to G. Thus F∗ is our desired SSFE that is isomorphic to F .

	Exploring the Limits of Common CoinsUsing Frontier Analysis of Protocols

