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Abstract

In this paper we find division polynomials for Huff curves, Jacobi quar-
tics, and Jacobi intersections. These curves are alternate models for ellip-
tic curves to the more common Weierstrass curve. Division polynomials
for Weierstrass curves are well known, and the division polynomials we
find are analogues for these alternate models. Using the division polyno-
mials, we show recursive formulas for the n-th multiple of a point on each
curve. As an application, we prove a type of mean-value theorem for Huff
curves, Jacobi quartics and Jacobi intersections.

1 Introduction

Elliptic curves have been an object of study in mathematics for well over a
century. Recently elliptic curves have proven useful in applications such as
factoring [18], cryptography [17],[20], and in the proof of Fermat’s last theorem
[5], [25]. The traditional way of writing the equation of an elliptic curve is to
use its Weierstrass form:

y2 + a1xy + a3y
2 = x3 + a2x

2 + a4x+ a6.

In the past several years, other models of elliptic curves have been studied.
Such models include Edwards curves [2], [7], Jacobi intersections and Jacobi
quartics [3], [4],[13], Hessian curves [12], and Huff curves [9], [16], among others.
These models sometimes allow for more efficient computation on elliptic curves
or provide other features of interest to cryptographers, such as resistance to
side-channel attacks.

In this paper we find division polynomials for Huff curves, Jacobi quartics,
and Jacobi intersections. Division polynomials for Weierstrass curves are well
known, and play a key role in the theory of elliptic curves. They can be used
to find a formula for the n-th multiple of (x, y) in terms of x and y, as well as
determing when a point is an n-torsion point on a Weierstrass curve. Division
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polynomials are also a crucial ingredient in Schoof’s algorithm to count points
on an elliptic curve over a finite field [22]. In addition, they have been used to
efficiently compute multiples of points, see for example [6], [10].

Hitt, McGuire, and Moloney recently have found formulas for division poly-
nomials of twisted Edwards curves [14], [19]. The division polynomials we find
are the analogues for Huff curves, Jacobi quartics, and Jacobi intersections. We
illustrate a a recursive formula for the n-th multiple of a point using these di-
vision polynomials. We are also able to prove some properties of these division
polynomials. As an application, we show how they can be used to find the mean
value of a certain collection of points.

This paper is organized as follows. In section 2 we review Huff curves, Jacobi
quartics, and Jacobi intersections. In section 3 we examine division polynomials
for each of these models. As an application, in section 4 we look at a mean value
theorem for the three curves. We conclude in section 5 with some remarks and
open questions.

2 Alternate models of elliptic curves

2.1 Huff curves

Joye, Tibouchi, and Vergnaud re-introduced the Huff model ([15]) for elliptic
curves in [16]. They showed that common elliptic curve computations, including
point multiplications and pairings, can be efficiently performed on Huff curves.
In addition, they allow for complete addition formulas, which Weierstrass curves
do not. Complete addition formulas are formulas which are valid for all inputs.
Throughout the remainder of this paper, let K be a field whose characteristic
is not 2. The equation given in [16] for a Huff curve is ax(y2 − 1) = by(x2 − 1).
Wu and Feng in [9] generalized this form to curves given by the equation

Ha,b : x(ay2 − 1) = y(bx2 − 1),

which includes the previous model as a special case. The curve Ha,b is an
elliptic curve provided ab(a − b) 6= 0. Given a point P = (x, y) on the curve
Ha,b, its inverse is the point −P = (−x,−y). The additive identity is the point
(0, 0). There are three points at infinity, given by (1, 0, 0), (0, 1, 0), and (a, b, 0) in
projective coordinates. These points at infinity are the three non-trivial points
of order 2. Addition for points which are not these points of order 2 is given by

(x1, y1) + (x2, y2) =

(
(x1 + x2)(1 + ay1y2)

(1 + bx1x2)(1− ay1y2)
,

(y1 + y2)(1 + bx1x2)

(1− bx1x2)(1 + ay1y2)

)
.

For adding a non-trivial point (x, y) to a point of order 2 we have, (x, y) +
(1, 0, 0) = (1/bx,−y), (x, y) + (0, 1, 0) = (−x, 1/ay), and (x, y) + (a, b, 0) =
(−1/bx,−1/ay).

There is also a simple birational transformation from a curve in Huff form
to the Weierstrass curve

s2 = r3 + (a+ b)r2 + abr.
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The transformation is given by

(r, s) =

(
bx− ay
y − x

,
b− a
y − x

)
,

for points with x 6= y. The only point on Ha,b with x = y is (0, 0) which is
mapped to ∞. The inverse transformation is given by

(x, y) =

(
r + a

s
,
r + b

s

)
,

for points (r, s) with s 6= 0. The points with s = 0 are the points of order 2
which get sent to the points at infinity on Ha,b.

2.2 Jacobi quartics

There is another model of elliptic curves known as Jacobi quartics. For a back-
ground on these curves, see [3], [4], [13]. We recall only the basic facts. Any
elliptic curve with a point of order 2 can be put into Jacobi quartic form, with
equation

Jd,e : y2 = ex4 − 2dx2 + 1,

where we require e(d2 − e) 6= 0. The identity element is (0, 1), and the point
(0,−1) has order 2. The inverse of the point (x, y) is (−x, y). The addition
formula on Jd,e is given by

(x1, y1) + (x2, y2)

=

(
x1y2 + y1x2
1− e(x1x2)2

,
(1 + e(x1x2)2)(y1y2 − 2dx1x2) + 2ex1x2(x1

2 + x2
2)

(1− e(x1x2)2)2

)
.

This addition formula can be efficiently implemented, which is one of the pri-
mary advantages of writing an elliptic curve in this form [11]. Another is that
this addition formula protects against side-channel attacks [3], [13]. There is a
birational transformation from a Jacobi quartic curve to a curve in Weierstrass
form with point of order 2. For points with x 6= 0, the map

(r, s) =

(
2

3(y + 1)− dx2

3x2
, 4

(y + 1)− dx2

x3

)
,

sends the curve Jd,e to the Weierstrass curve

s2 = r3 − 4
3e+ d2

3
r − 16

27
d(d2 − 9e).

The point (0, 1) corresponds to ∞, and the point of order 2 (0,−1) goes to the
point (4d/3, 0). The inverse from the Weierstrass curve s2 = r3 + ar + b, with
point of order 2 (p, 0) is given by

(x, y) =

(
2(r − p)

s
,

(2r + p)(r − p)2 − s2

s2

)
,
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with the image being the Jacobi quartic Jd,e with d = 3p/4, and e = −(3p2 +
4a)/16. The points ∞, (p, 0) are exceptional, and get sent to (0, 1) and (0,−1)
respectively.

2.3 Jacobi intersections

Representing elliptic curves as the intersection of two quadratic surfaces was
first introduced in [4]. This model is known as Jacobi intersections. In [4],
Chudnovsky and Chudnovsky showed that common elliptic curve computations
can be efficiently performed on Jacobi intersections. Since then, more efficient
ways to implement these computations have been found. See for instance [3],
[11], and [13]. The equation for a curve given as a Jacobi intersection is

Jb :
u2 + v2 = 1

bu2 + w2 = 1.

The curve Jb is an elliptic curve provided b(1 − b) 6= 0. Given a point P =
(u, v, w) on the curve Jb, its inverse is the point −P = (−u, v, w). The additive
identity is the point (0, 1, 1). On any Jacobi intersection curve, there are always
three points of order 2, given by (0, 1,−1), (0,−1, 1), and (0,−1,−1). The
addition law is given by

(u1, v1, w1) + (u2, v2, w2) =(
u1v2w2 + u2v1w1

v22 + u22w
2
1

,
v1v2 − u1u2w1w2

v22 + u22w
2
1

,
w1w2 − bu1u2v1v2

v22 + u22w
2
1

)
.

There is also a simple birational transformation from a Jacobi intersection
curve to the Weierstrass curve

y2 = x(x+ 1)(x+ 1− b).

The transformation is given by

(u, v, w) =

(
−2y

x2 + 2x+ 1− b
,

x2 + b− 1

x2 + 2x+ 1− b
,
x2 + 2(1− b)x+ 1− b

x2 + 2x+ 1− b

)
,

with ∞ going to (0, 1, 1). The inverse transformation is given by

(x, y) =

(
(1− b)(w − 1)

bv − w + 1− b
,

b(1− b)u
bv − w + 1− b

)
,

for points (u, v, w) 6= (0, 1, 1). The point (0, 1, 1) is mapped to ∞.

3 Division polynomials

3.1 Division polynomials for Weierstrass curves

We begin by recalling the standard division polynomials for Weierstrass curves.
We write [n](x, y) to denote the n-th multiple of a point (x, y).
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Theorem 1 Let E be given by y2 = x3+ax+b, over a field whose characteristic
is not 2. Then for any point (x, y)

[n](x, y) =

(
φn(x, y)

ψ2
n(x, y)

,
ωn(x, y)

ψ3
n(x, y)

)
.

The functions φn, ωn, and ψn in Z[x, y] are defined recursively by

ψ0 = 0

ψ1 = 1

ψ2 = 2y

ψ3 = 3x4 + 6ax2 + 12bx− a2

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3)

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1 for n ≥ 2

ψ2n =
ψn

2y

(
ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1

)
for n ≥ 3,

and
φn = xψ2

n − ψn+1ψn−1

ωn =
1

4y

(
ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1

)
.

Proof These formulas are well-known. For example, see [23] or [24] for details.
2

The polynomial ψn is called the n-th division polynomial of E. It is easy to
see that a point P = (x, y) satisfies [n]P =∞ if and only if ψn(x) = 0. Divison
polynomials are an important tool for computing multiples of points. They
also play a key role in Schoof’s algorithm for counting the number of points
on an elliptic curve over a finite field [22]. In addition, they have been used to
efficiently compute multiples of points, see for example [6], [10].

3.2 Division polynomials for Huff curves

We now look at division polynomials for Huff curves. Again we write the co-
ordinates of [n](x, y) as (xn, yn). In particular, let (x2, y2) be the coordinates
of [2](x, y). As the defining equation for the Huff curve Ha,b is symmetric with
regards to x and y when a and b are interchanged, we only look at the x-
coordinates. By symmetry, all our results are valid for the y-coordinates if we
replace y for x, and a for b.

Theorem 2 Let F1(x) = 1, F2(x) = 1, G1(x) = 1, and G2(x) = 1. Define
polynomials h1(x) = 4b2x4 − 8bx2 + 16ax2 + 4, and h2(x) = b2x4 − 1. Then we
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have

x2n = x2
F2n(x)

G2n(x)

x2n+1 = x
F2n+1(x)

G2n+1(x)
,

where the Fi and Gi are polynomials defined recursively for n > 1 by

F2n+1 = G2n−1

(
h1F

2
2n − h22G2

2n

)
,

G2n+1 = F2n−1

(
h22G

2
2n − b2x4h1F 2

2n

)
,

F2n+2 = h22G2n

(
F 2
2n+1 −G2

2n+1

)
,

G2n+2 = h1F2n

(
G2

2n+1 − b2x4F 2
2n+1

)
.

Proof The following proof comes from a similar approach in [19] to calculate
division polynomials for Edwards curves. They in turn were motivated by the
polynomials Abel studied in proving his theorem on the n-division points of the
lemniscate [1]. Let (r+, s+) = (r1, s1)+(r2, s2) and (r−, s−) = (r1, s1)−(r2, s2).
Then using the addition law for Huff curves, we have

r+r− =
r21 − r22

1− b2r21r22
.

Setting r1 = xn and r2 = x, we see that

xn+1 =
1

xn−1

x2n − x2

1− b2x2x2n
.

Now note that

[2](x, y) = (x2, y2) =

(
2x(1 + ay2)

(1 + bx2)(1− ay2)
,

2y(1 + bx2)

(1− bx2)(1 + ay2)

)
.

Replacing y2 by
(
y(bx2 − 1) + x

)
/(ax) and simplifying the expression, we find

that

x22 = x2
4b2x4 − 8bx2 + 16ax2 + 4

(b2x4 − 1)2
= x2

h1(x)

h2(x)2
. (3.1)

We will now use induction to prove the recursion formulas given above. For
x1 and x2 the theorem is trivially true. We assume the result holds for all n,
and show it is true for n + 1. There are two cases depending on whether n is
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even or odd. For odd n = 2k + 1 we calculate

xn+1 = x2k+2 =
1

x2k

x22k+1 − x2

1− b2x2x22k+1

,

=
G2k

x2F2k

x2
F 2

2k+1

G2
2k+1
− x2

1− b2x4 F 2
2k+1

G2
2k+1

,

= x2
x2G2k

x22F2k

F 2
2k+1 −G2

2k+1

G2
2k+1 − b2x4F 2

2k+1

,

= x2
h22G2k

h1F2k

F 2
2k+1 −G2

2k+1

G2
2k+1 − b2x4F 2

2k+1

,

= x2
Fn+1

Gn+1
.

Similarly, when n = 2k is even,

xn+1 = x2k+1 =
1

x2k−1

x22k − x2

1− b2x2x22k
,

=
G2k−1

xF2k−1

x22
F 2

2k

G2
2k
− x2

1− b2x2x22
F 2

2k

G2
2k

,

= x
G2k−1

F2k−1

h1F
2
2k − h22G2

2k

h22G
2
2k − b2x4h1F 2

2k

,

= x
Fn+1

Gn+1
.

This proves the theorem. 2

The recursive formulas given above lead to the polynomials Fn and Gn hav-
ing high degree in x. Furthermore, the rational function Fn

Gn
can be simplified by

removing common factors. The following theorem is important as it eliminates
these common factors, thus reducing the degrees of the division polynomials.
For example, the degree in x of F9 is 2304, while the degree of the reduced
polynomial f9 is 80. In fact, the degrees of the Fn and Gn grow exponentially
while it will be shown that the degrees of the fn and gn only grow quadratically.

Theorem 3 Define f1 = 1, f2 = 1, g1 = 1, and g2 = 1. For n > 1, let

f2n+1 =


h1f

2
2n − h22g22n
h22f2n−1

, if 2n+ 1 ≡ 1 mod 4

h1f
2
2n − h22g22n
f2n−1

, if 2n+ 1 ≡ 3 mod 4
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g2n+1 =


h22g

2
2n − b2x4h1f22n
h22g2n−1

, if 2n+ 1 ≡ 1 mod 4

h22g
2
2n − b2x4h1f22n
g2n−1

, if 2n+ 1 ≡ 3 mod 4

and

f2n+2 =
h2(f22n+1 − g22n+1)

h1f2n
,

g2n+2 =
(g22n+1 − b2x4f22n+1)

h2g2n
.

The functions fn(x) and gn(x) are polynomials in x satisfying x2n = x2
f2n(x)
g2n(x)

,

and x2n+1 = x f2n+1(x)
g2n+1(x)

.

Proof Note the similarities in the definitions of Fn and fn and also between
Gn and gn. Since the fn and gn are just the Fn and Gn with their common
factors cancelled then Fn/Gn = fn/gn, and we immediately have that x2n =

x2
f2n(x)
g2n(x)

, and x2n+1 = x f2n+1(x)
g2n+1(x)

. All we need to show is that the fn, and gn are

polynomials in x. We do this on a case by case basis.
We begin by showing f2n−1|(h1f22n − h22g22n). Let γ ∈ K, γ 6= 0 be a root of

f2n−1. Then for some δ ∈ K, we have (γ, δ) is a point of order 2n− 1 on Ha,b.
It follows that [2n](γ, δ) = (γ, δ), so x2n(γ) = γ. Squaring this equation, we
find that by Theorem 2 and (3.1)

γ2 = x22n(γ),

= x22(γ)
f22n(γ)

g22n(γ)
,

= γ2
h1(γ)f22n(γ)

h22(γ)g22n(γ)

so h1(γ)f22n(γ)−h22(γ)g22n(γ) = 0. As γ was an arbitrary root, then we’ve shown
that f2n−1 divides h1f

2
2n − h22g22n.

We similarly see that f2n−2 divides f22n−1− g22n−1. Let γ be a root of f2n−2.
Then it follows that x2n−1(γ) = γ and squaring this yields

γ2 = γ2
f22n−1(γ)

g22n−1(γ)
.

So γ is a root of f22n−1 − g22n−1, which proves f2n−2 divides f22n−1 − g22n−1.
Next we check that g2n−1 is a factor of h22g

2
2n − b2x4h1f22n. If γ is a root

of g2n−1, then for some δ, the point P = (γ, δ) is on Ha,b, and [2n − 1]P is a
point at infinity of order 2. As [2n]P = [2n − 1]P + P , by the addition law
for adding points at infinity we know that x2n(γ) must equal −γ or ±1/bγ.
We claim that it is not −γ. If x2n(γ) = −γ then the point [2n − 1]P =
(0, 1, 0), and [2n − 2]P = −P + (0, 1, 0). We have that [4n − 1]P = −P , so
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[2n + 1]P = [4n − 1]P − [2n − 2]P = −P + P − (0, 1, 0) = (0, 1, 0). But
[2n + 1]P = (0, 1, 0) = [2n − 1]P implies that P is a point of order 2, which is
contrary to P being an affine point. So x22n(γ) = 1/b2γ2 or

1

b2γ2
= γ2

h1(γ)f22n(γ)

h22(γ)g22n(γ)
.

We see γ is a root of h22g
2
2n − b2x4h1f

2
2n. As γ was an arbitrary root then

g2n−1 divides h22g
2
2n − b2x4h1f22n. By an analogous argument (which we omit

for brevity) it can be shown that g2n−2 givides g22n−1 − b2x4f22n−1.
We now verify that h1 and h2 divide the numerators of f2n and g2n respec-

tively. For this we use induction. The base case is n = 2, and we calculate

f23 − g23 = −8h1h2
(
b4x8 + 8 ab2x6 − 4 b3x6 + 6 b2x4 + 8 ax2 − 4 bx2 + 1

)
and

g23 − b2x4f23 = h2(b4x8 + 4 b3x6 + 16 abx4 − 10 b2x4 + 4 bx2 + 1)

(−b4x8 + 4 b3x6 + 16 abx4 − 6 b2x4 + 4 bx2 − 1).

Assume now that h1 divides f22n−1 − g22n−1 and h2 divides g22n−1 − b2x4f22n−1.
The numerator of f22n+1 − g22n+1 is

= g22n−1(h1f
2
2n − h22g22n)2 − f22n−1(h22g

2
2n − b2x4h1f22n)2

= h1j(x)− h42g42n(f22n−1 − g22n−1),
(3.2)

where j = g22n−3(h1f
4
2n−2 − 2h22f

2
2n−2g

2
2n−2) − f22n−3(−2b2x4h22f

2
2n−2g

2
2n−2 +

b4x8h1f
4
2n−2). By the induction hypothesis, we see the expression for f22n+1 −

g22n+1 in (3.2) is divisble by h1. Similarly, the numerator of g22n+1 − b2x4f22n+1

is
= f22n−1(h22g

2
2n − b2x4h1f22n)2 − b2x4g22n−1(h1f

2
2n − h22g22n)2

= h2k(x)− b2x4h21f42n(g22n−1 − b2x4f22n−1)
,

for a certain polynomial k(x) (which we do not display). By the induction
hypothesis, this is divisible by h2.

Lastly, we need to show that h22|f24n, but h22 6 | f24n−2. It is clearly true for
n = 1 by a straightforward check: f2 = 1 and f4 = −2h22(b4x8 − 4b3x6 +
8b2x6a+ 6b2x4 − 4bx2 + 8ax2 + 1). Now we use induction to prove it. We have

f24n =
h22(f24n−1 − g24n−1)2

h21f
2
4n−2

.

We see h22 divides f24n as there is no cancellation in the denominator by the
induction hypothesis. For our other case,

f24n+2 =
h22(f24n+1 − g24n+1)2

h21f
2
4n

.
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But by the induction hypothesis, we have that f24n has a factor of h22 which
cancels the h22 in the numerator. This is as desired.

2

We list the first few non-trivial division polynomials:

f3 = −b4x8 + 6b2x4 + (16a− 8b)x2 + 3, (3.3)

g3 = −3b4x8 − b2(16a− 8b)x6 − 6b2x4 + 1,

f4 = −2(b2x4 − 1)2(b4x8 + b2(8a− 4b)x6 + 6b2x4 + (8a− 4b)x2 + 1,

g4 = (b4x8+4b3x6+b(16a−b)x4+4bx2+1)(−b4x8+4b2x6+b(16a−6b)x4+4bx2−1).

We call the fn and gn the Huff division polynomials. An advantage of our
division polynomials is that n-th one can be computed from the previous two
rounds, i.e., fn only depends on fn−1, gn−1, fn−2, and gn−2. The division poly-
nomials for Weierstrass curves given in Theorem 1 require the previous n/2
rounds of computation. Just as with the Weierstrass division polynomials, we
have an easy criterion for finding n-torsion points.

Corollary 1 For n > 2, the point (x, y) 6= (0, 0) on a Huff curve is an n-torsion
point if and only if fn(x) = 0.

Proof This follows immediately from the previous theorem and the observation
that the only point on a Huff curve with x-coordinate 0 is the identity point
(0, 0). 2

We are able to describe some properties of the fi and gi in the following
propositions.

Proposition 1 For n ≥ 1 the functions fn and gn are even functions of x.
When n is odd,

fn(x) = (−1)(n−1)/2b(n
2−1)/2xn

2−1 + ...

gn(x) = (−1)(n−1)/2nb(n
2−1)/2xn

2−1 + ...,
(3.4)

and for even n,,

fn(x) = (−1)(n+2)/2n

2
benx2en + ...

gn(x) = (−1)(n+2)/2benx2en + ...
(3.5)

where en = n2/2 if n ≡ 0 mod 4 and en = n2/2− 2 if n ≡ 2 mod 4.

Proof As f1, f2, g1, g2, h1, and h2 are all even functions of x, then it follows
from the recursive formulas that the fn and gn are even functions of x.

To prove (3.4) and (3.5) we use induction. Trivially f1, f2, g1, and g2 satisfy
the claim and by (3.3) we see the proposition holds for f3, f4, g3, and g4.
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Now

f2n =
h2
(
f22n−1 − g22n−1

)
h1f2n−2

=
(b2x4 + ..)

(
(b4n

2−4nx8n
2−8n + ...)− ((2n− 1)2b4k

2−4kx8k
2−8k + ...)

)
(4b2x4 + ...)((−1)n(n− 1)be2n−2x2e2n−2 + ...)

= (−1)n
(b2x4 + ...)(−4n(n− 1)b4n

2−4nx8n
2−8n + ...)

(4b2x4 + ...)((n− 1)be2n−2x2e2n−2 + ...)

= (−1)n+1nb4n
2−4n−e2n−2x8n

2−8n−2e2n−2 + ...

We want this to equal (−1)(2n+2)/2nbe2nx2e2n , so it remains to be seen that
e2n = 4n2 − 4n − e2n−2. By the definition of e2n, we have e2n−2 + e2n equals
either 2(n − 1)2 + 2n2 − 2 or 2(n − 1)2 − 2 + 2n2 depending on 2n mod 4. In
either case, they both are 4n2 − 4n. Thus the claim has been proved for f2n.
The proof for g2n is analogous, and we omit the details.

To verify the claim for the odd case, we again analyze the leading coefficients.
We first assume that 2n+ 1 ≡ 3 mod 4. Thus

f2n+1 =
(b2x4 + ...)(n2b2e2nx4e2n + ...)− (b4x8 + ...)(b2e2nx4e2n + ...)

(−1)n−1b2n2−2nx4n2−4n + ...

= (−1)nb4+2e2n−2n2+2nx8+4e2n−4n2+4n + ...

The claim is true if 4 + 2e2n − 2n2 + 2n =
(
(2n+ 1)2 − 1

)
/2 = 2n2 + 2n. As

2n + 1 ≡ 3 mod 4, then 2n ≡ 2 mod 4, so e2n = 2n2 − 2. Substituting this in,
we see everything is as desired. If instead we have 2n + 1 ≡ 1 mod 4, then we
need to divide f2n+1 by h22 = (b4x8 + ...). So for this case

f2n+1 = (−1)nb2e2n−2n2+2nx4e2n−4n2+4n + ... (3.6)

As e2n = 2n2 in this case then (3.6) is equal to (−1)nb2n
2+2nx4n

2+4n as claimed.
This finishes the proof of the leading term for fn, n odd. As before, the case
g2n+1 is similar to the calculation for f2n+1, so we leave it to the reader. 2

The following proposition gives some functional equations for the Huff divi-
sion polynomials.

Proposition 2 For n odd

gn(x) = (−1)(n−1)/2b(n
2−1)/2xn

2−1fn

(
1

bx

)
, (3.7)

and for n even

fn(x)2 = b2enx4enfn

(
1

bx

)2

,

11



gn(x)2 = b2enx4engn

(
1

bx

)2

.

Proof Looking at the first few fn and gn listed in (3.3), we see the result holds
for n = 1, 2, 3, and 4. We again use induction. The first case is when n = 2k.
Then

f22k

(
1

bx

)
=
h22( 1

bx )
(
f22k−1( 1

bx )− g22k−1( 1
bx )
)2

h21( 1
bx )f22k−2( 1

bx )
.

We know that h1
(

1
bx

)
= h1(x)/b2x4 and h2

(
1
bx

)
= −h2(x)/b2x4. By the induc-

tion hypothesis

f22k−1

(
1

bx

)
=

1

b4k2−4kx8k2−8k
g22k−1 (x) ,

and

g22k−1

(
1

bx

)
=

1

b4k2−4kx8k2−8k
f22k−1 (x) ,

so

f2k

(
1

bx

)
=

h22(x)
(
g22k−1(x)− f22k−1(x)

)2
h21(x)b8k2−8k−2e2k−2x16k2−16k−4e2k−2f22k−2(x)

=
f22k(x)

b2e2kx4e2k
.

For the last step we again used the fact that e2k−2 + e2k = 4k2− 4k. The proof
for g22k

(
1
bx

)
follows in the same way and we omit the details.

For n = 2k + 1, n ≡ 3 mod 4, we have

f2k+1

(
1

bx

)
=
h1
(

1
bx

)
f22k
(

1
bx

)
− h22

(
1
bx

)
g2k
(

1
bx

)
f2k−1

(
1
bx

) ,

= (−1)k
h22(x)g22k(x)− b2x4h1(x)f22k(x)

b4+2e2k−2k2+2kx8+4e2k−4k2+4kg2k−1(x)

= (−1)k
g2k+1(x)

b2k2+2kx4k2+4k
,

as e2k = 2k2 − 2 in this case. For the case when n ≡ 1 mod 4 then we need to
put an h22 in the denominator. Recall also that now e2k = 2k2 as 2k ≡ 0 mod
4. Thus

f2k+1

(
1

bx

)
=
h1
(

1
bx

)
f22k
(

1
bx

)
− h22

(
1
bx

)
g2k
(

1
bx

)
h22
(

1
bx

)
f2k−1

(
1
bx

) ,

= (−1)k
h22(x)g22k(x)− b2x4h1(x)f22k(x)

b2e2k−2k2+2kx4e2k−4k2+4kh22(x)g2k−1(x)

= (−1)k
g2k+1(x)

b2k2+2kx4k2+4k
.

This establishes that (3.7) is true for odd n.
2
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3.3 Division polynomials for Jacobi quartics

We do a similar calculation for Jacobi quartics. The division polynomials we find
allow us to perform arithmetic on the Jacobi quartic with only the x-coordinate
along with one multiplication by the y-coordinate. We only list the results and
omit the proofs as the techniques are very similar to what was done for Huff
curves in the last subsection.

Theorem 4 Let F1 = 1, G1 = 1, F2 = −2, and G2 = ex4 − 1. Let P1 =
1, Q1 = 1, P2 = e2x8 − 4dex6 + 6ex4 − 4dx2 + 1, and Q2 = (ex4 − 1)2. For
convenience, let h(x) = ex4−2dx2+1, so the curve equation is y2 = h(x). Write
[n](x, y) = (xn, yn). Then there are polynomials Fn(x), Gn(x), Pn(x), Qn(x)
such that

(x2n, y2n) =

(
xy
F2n(x)

G2n(x)
,
P2n(x)

Q2n(x)

)
,

(x2n+1, y2n+1) =

(
x
F2n+1(x)

G2n+1(x)
, y
P2n+1(x)

Q2n+1(x)

)
.

For n > 1 the Fn, Gn, Pn, and Qn can be calculated recursively:

F2n+1 = 2hF2nG2n−1G2n − F2n−1(G2
2n − ex4hF 2

2n),

G2n+1 = G2n−1(G2
2n − ex4hF 2

2n),

F2n+2 = 2F2n+1G2nG2n+1 − F2n(G2
2n+1 − ex4F 2

2n+1),

G2n+2 = G2n(G2
2n+1 − ex4F 2

2n+1),

and

P2n+1 = 2G2
2nP2nQ2n−1(G2

2n + ex4hF 2
2n)− P2n−1Q2n(G2

2n − ex4hF 2
2n)2,

Q2n+1 = Q2n−1Q2n(G2
2n − ex4hF 2

2n)2,

P2n+2 = 2hG2
2n+1P2n+1Q2n(G2

2n+1 + ex4F 2
2n+1)− P2nQ2n+1(G2

2n+1 − ex4F 2
2n+1)2,

Q2n+2 = Q2nQ2n+1(G2
2n+1 − ex4F 2

2n+1)2.

As before, there are some common factors that can be cancelled in Fn/Gn

and Pn/Qn. The degrees of the Fn, Gn, Pn, and Qn grow exponentially, and by
removing these common factors our new division polynomials will have degrees
that only grow quadratically. The next proposition shows what these are.

Theorem 5 Let f1 = 1, g1 = 1, f2 = −2, and g2 = ex4 − 1, as well as p1 =
1, p2 = e2x8 − 4dex6 + 6ex4 − 4dx2 + 1. For n > 2, define

f2n =
f22n−1 − g22n−1

hf2n−2
,

f2n+1 =
hf22n − g22n
f2n−1

,

13



g2n =
g22n−1 − ex4f22n−1

g2n−2
,

g2n+1 =
g22n − ex4hf22n

g2n−1
,

and

p2n =
2hp2n−1(g22n−1 + ex4f22n−1)− p2n−2g

2
2n

g22n−2

,

p2n+1 =
2p2n(g22n + ex4hf22n)− p2n−1g

2
2n+1

g22n−1

.

Then the fn, gn, pn and qn are even polynomials in x satisfying

(x2n, y2n) =

(
xy
f2n(x)

g2n(x)
,
p2n(x)

g2n(x)2

)
,

(x2n+1, y2n+1) =

(
x
f2n+1(x)

g2n+1(x)
, y
p2n+1(x)

g2n+1(x)2

)
.

We list the division polynomials for n = 3:

f3 = −e2x8 + 6ex4 − 8dx2 + 3,

g3 = −3e2x9 + 8dex6 − 6ex4 + 1,

p3 = e4x16−8de3x14+28e3x12−56de2x10+(64d2e+6e2)x8−56dex6+28ex4−8dx2+1.

We call the fn the Jacobi quartic division polynomials, as they satisfy the
following corollary.

Corollary 2 For n > 2, the point (x, y), with xy 6= 0, satisfies [n](x, y) =
(0,±1) if and only if we have fn(x) = 0.

We see some of the properties of the Jacobi division polynomials.

Proposition 3 For odd n we have

fn = (−1)(n−1)/2e(n
2−1)/4xn

2−1 + ...,

gn = (−1)(n−1)/2ne(n
2−1)/4xn

2−1 + ...,

while for even n

fn = (−1)n/2ne(n
2−4)/4xn

2−4 + ...,

gn = (−1)n/2+1en
2/4xn

2

+ ....

Proposition 4 For odd n,

gn(x) = (−1)(n−1)/2e(n
2−1)/4xn

2−1fn

(
1√
ex

)
,
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while for even n,

fn(x) = (−1)(n+2)/2e(n
2−4)/4xn

2−4fn

(
1√
ex

)
,

gn(x) = (−1)n/2en
2/4xn

2

gn

(
1√
ex

)
.

We also have

pn(x) = e(n
2−1)/2x2(n

2−1)pn

(
1√
ex

)
,

for odd n, and for even n

pn(x) = en
2/2x2n

2

pn

(
1√
ex

)
.

3.4 Division polynomials for Jacobi intersections

We now look at division polynomials for Jacobi intersections. Write the coordi-
nates of [n](u, v, w) as (un, vn, wn). The division polynomials we find allow us to
perform arithmetic on the Jacobi intersection curve using mostly the coordinate
u, as seen in the following theorem. Again, we omit the proofs in this subsection
as they are analagous to the ones in section 3.2.

Theorem 6 Let F1(u) = 1, F2(u) = 2, G1(u) = 1, G2(u) = bu4 − 2u2 +
1, H1(u) = 1, H2(u) = bu4 − 2bu2 + 1, D1(u) = 1, and D2(u) = −bu4 + 1.
Then we have

(u2n+1, v2n+1, w2n+1) =

(
u
F2n+1(u)

D2n+1(u)
, v
G2n+1(u)

D2n+1(u)
, w

H2n+1(u)

D2n+1(u)

)
(u2n+2, v2n+2, w2n+2) =

(
uvw

F2n+2(u)

D2n+2(u)
,
G2n+2(u)

D2n+2(u)
,
H2n+2(u)

D2n+2(u)

)
,

where the Fn, Gn, Hn, and Dn are defined recursively for n > 1 by

F2n+1 = 2(1− u2)(1− bu2)F2nD2n−1D2n − F2n−1((1− u2)D2
2n + u2H2

2n),

G2n+1 = 2G2nD2n−1D2n −G2n−1((1− u2)D2
2n + u2H2

2n),

H2n+1 = 2H2nD2n−1D2n −H2n−1((1− u2)D2
2n + u2H2

2n),

D2n+1 = D2n−1((1− u2)D2
2n + u2H2

2n),

and

F2n+2 = 2F2n+1D2nD2n+1 − F2n((1− u2)D2
2n+1 + u2(1− bu2)H2

2n+1),

G2n+2 = 2(1− u2)G2n+1D2nD2n+1 −G2n((1− u2)D2
2n+1 + u2(1− bu2)H2

2n+1),

H2n+2 = 2(1− bu2)H2n+1D2nD2n+1−H2n((1−u2)D2
2n+1 +u2(1− bu2)H2

2n+1),

D2n+2 = D2n((1− u2)D2
2n+1 + u2(1− bu2)H2

2n+1).
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Again, the recursive formulas given above lead to the polynomials Fn, Gn, Hn,
and Dn having high degree. Furthermore, the rational functions Fn

Dn
, Gn

Dn
, and

Hn

Dn
can be simplified by removing common factors. Theorem 7 eliminates these

common factors, thus reducing the degrees of the division polynomials.

Theorem 7 Let f1(u) = 1, f2(u) = 2, g1(u) = 1, g2(u) = bu4− 2u2 + 1, h1(u) =
1, h2(u) = bu4 − 2bu2 + 1, d1(u) = 1, and d2(u) = −bu4 + 1. For n ≥ 1, define
fn, gn, hn, and dn recursively by:

f2n+1 =
(1− u2)(1− bu2)f22n − d22n

f2n−1
,

g2n+1 =
(1− bu2)g22n − (1− b)u2d22n

(1− u2)g2n−1
,

h2n+1 =
(1− u2)h22n − (b− 1)u2d22n

(1− bu2)h2n−1
,

d2n+1 =
((1− u2)d22n + u2h22n)

d2n−1
,

and

f2n+2 =
f22n+1 − d22n+1

(1− u2)(1− bu2)f2n
,

g2n+2 =
(1− u2)(1− bu2)g22n+1 − (1− b)u2d22n+1

g2n
,

h2n+2 =
(1− u2)(1− bu2)h22n+1 − (b− 1)u2d22n+1

h2n
,

d2n+2 =
((1− u2)d22n+1 + u2(1− bu2)h22n+1)

d2n
.

The functions fn(u), gn(u), hn(u), and dn(u) are even polynomials and

(u2n+1, v2n+2, w2n+1) =

(
u
f2n+1

d2n+1
, v
g2n+1

d2n+1
, w

h2n+1

d2n+1

)
,

(u2n+2, v2n+2, w2n+2) =

(
uvw

f2n+2

d2n+2
,
g2n+2

d2n+2
,
h2n+2

d2n+2

)
.

If desired, all the functions in Theorem 7 can be expressed in terms of hn
and dn by using the curve equation of Jb. We list the division polynomials for
n = 3:

f3 = −b2u8 + 6bu4 − 4(b+ 1)u2 + 3, (3.8)

g3 = b2u8 − 4b2u6 + 6bu4 − 4u2 + 1,

h3 = b2u8 − 4bu6 + 6bu4 − 4bu2 + 1,

d3 = −3b2u8 + 4b(b+ 1)u6 − 6bu4 + 1,

We call the fn, gn, hn, and dn the Jacobi intersection division polynomials.
Just as with the Weierstrass, Huff, and Jacobi quartic division polynomials, we
have a simple criterion to help find n-torsion points.
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Corollary 3 For n > 2, the point (u, v, w) 6= (0,±1,±1) on a Jacobi intersec-
tion curve satisfies [n](u, v, w) = (0,±1,±1) if and only if fn(u) = 0.

Notice that if the curve is defined over a finite field Fq, and the number of points
on Jb(Fq) is odd, then the corollary states that a point (u, v, w) is n-torsion if
and only if fn(u) = 0. We now describe some properties of the fn, gn, hn and
dn in the following propositions.

Proposition 5 For n ≥ 1, the functions fn, gn, hn and dn have leading coeffi-
cients as described here. For n odd,

fn = (−1)(n−1)/2b(n
2−1)/4u(n

2−1) + ...,

gn = b(n
2−1)/4u(n

2−1) + ...,

hn = b(n
2−1)/4u(n

2−1) + ...,

dn = (−1)(n−1)/2nb(n
2−1)/4u(n

2−1) + ...,

and for n even,

fn = (−1)n/2+1nb(n
2−4)/4un

2−4 + ...,

gn = bn
2/4un

2

+ ...,

hn = bn
2/4un

2

+ ...,

dn = (−1)n/2bn
2/4un

2

+ ....

Proposition 6 For n odd,

fn(u) = (−1)(n−1)/2b(n
2−1)/4un

2−1dn

(
1√
bu

)
,

dn(u) = (−1)(n−1)/2b(n
2−1)/4un

2−1fn

(
1√
bu

)
,

gn(u) = b(n
2−1)/4un

2−1hn

(
1√
bu

)
,

hn(u) = b(n
2−1)/4un

2−1gn

(
1√
bu

)
,

and for n even,

fn(u) = (−1)n/2+1bn
2/4−1un

2−4fn

(
1√
bu

)
,

gn(u) = bn
2/4un

2

gn

(
1√
bu

)
,

hn(u) = bn
2/4un

2

hn

(
1√
bu

)
,
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dn(u) = (−1)n/2bn
2/4un

2

dn

(
1√
bu

)
.

If we regard gn and hn as functions of u and b, then for n even

gn(b, u) = bn
2/4un

2

hn

(
1

b
,

1

u

)
,

hn(b, u) = bn
2/4un

2

gn

(
1

b
,

1

u

)
.

4 Mean value theorems

4.1 Weierstrass and Edwards mean value theorems

Let K be an algebraically closed field of characteristic not equal to 2 or 3. Let
E : y2 = x3+Ax+B be an elliptic curve defined over K, and Q = (xQ, yQ) 6=∞
a point on E. Let Pi = (xi, yi) be the n2 points such that [n]Pi = Q, where
n ∈ Z, (char (K),n)=1. The Pi are known as the n-division points of Q. In [8],
Feng and Wu showed that

1

n2

n2∑
i=1

xi = xQ,
1

n2

n2∑
i=1

yi = nyQ.

This shows the mean value of the x-coordinates of the n-division points of Q is
equal to xQ, and nyQ for the y-coordinates.

In [21] a similar formula was established for elliptic curves in twisted Edwards
form. Let Q 6= (0,±1) be a point on a twisted Edwards curve. Let Pi be the
n-division points of Q. If n is odd, then

1

n2

n2∑
i=1

xi =
1

n
xQ,

1

n2

n2∑
i=1

yi =
(−1)(n−1)/2

n
yQ.

If n is even, then 1
n2

∑n2

i=1 xi = 0, and 1
n2

∑n2

i=1 yi = 0.

4.2 Huff mean value theorem

We are able to prove the following mean value formula for Huff curves

Theorem 8 Let Q 6= (0, 0) be a point on a Huff curve. Let Pi = (xi, yi) be the
n2 points such that [n]Pi = Q.

If n is odd, then

1

n2

n2∑
i=1

xi =
1

n
xQ,

1

n2

n2∑
i=1

yi =
1

n
yQ.

If n is even, then both 1
n2

∑n2

i=1 xi and 1
n2

∑n2

i=1 yi equal 0.
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Before giving the proof, we establish some results that will be needed in the
proof. The first shows the theorem is true for n = 2.

Lemma 1 Let P1, P2, P3, and P4 be the 4 distinct points on Ha,b such that
[2]Pi = Q, where Q 6= (0, 0). Then

4∑
i=1

xi = 0 =

4∑
i=1

yi.

Proof Let P1 = (x, y) be a point such that [2](x, y) = Q. If Q 6= (0, 0) then it
follows that neither x nor y equals 0. Using the addition law, it can be checked
that the points P2 = (−x, 1/ay), P3 = (1/bx,−y), and P4 = (−1/bx,−1/ay)
also satisfy [2]Pi = Q. For example,

P2 =

(
−2x(1 + 1/ay2)

(1 + bx2)(1− 1/ay2)
,

2/ay(1 + bx2)

(1− bx2)(1 + 1/ay2)

)
,

=

(
2x(1 + ay2)

(1 + bx2)(1− ay2
,

2y(1 + bx2)

(1− bx2)(1 + ay2)

)
= Q.

The points Pi, i = 2, 3, 4 arise by adding the three points at infinity to P1. If
we sum the x and y-coordinates of P1, P2, P3, and P4, the result is clear. 2

We look at how we can combine mean value results for n-division points and
m-division points to obtain one for the mn-division points.

Proposition 7 Fix m and n. Suppose we have that
∑m2

i=1 xPi
= cmxQ and∑m2

i=1 yPi
= dmyQ for some constants cm, dm which depend only on m, whenever

the Pi, i = 1, 2, ...,m2 are points such that [m]Pi = Q, for some Q. Similarly,

suppose we have that
∑n2

i=1 xRi
= enxS and

∑n2

i=1 yRi
= fnyS for some constants

en, fn which depend only on n, where the Ri, i = 1, 2, ..., n2 are points such that
[n]Ri = S, for some S.

Then given (mn)2 points T1, T2, ..., T(mn)2 on Ha,b such that [mn]Ti = U

for some U 6= (0, 0), we have that
∑(mn)2

i=1 xTi = cmenxU and
∑(mn)2

i=1 yTi =
dmfnyU .

Proof Consider the set of points {[m]T1, [m]T2, ..., [m]T(mn)2}. Each element
[m]Ti satisfies [n]([m]Ti) = U . So this set must be equal to the same set of
n2 points V that satisfy [n]V = U . Call this set {V1, V2, ..., Vn2}. For each Vj ,
there must be m2 elements of the Ti which satisfy [m]Ti = Vj . This partitions
our original set of the (mn)2 points Ti into n2 subsets of m2 points. Then by
assumption, we have

(mn)2∑
i=1

xTi =

n2∑
i=1

cmxVi = cmenxU ,
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and
(mn)2∑
i=1

yTi
=

n2∑
i=1

dmyVi
= dmfnyU .

2

For example, fix an elliptic curve and suppose we know the mean value of the

x-coordinates of the 3-division points, or
∑9

i=1 xi = 3xQ. Similary if know the

same for the 5-division points,
∑25

i=1 xi = 5xQ, then by Proposition 7 we know

the mean value for the 15-division points. It will be
∑225

i=1 xi = 15xQ.
We now give the proof of the mean value theorem for Huff’s curves.

Proof By the obvious symmetry, we need only prove the result for the x-
coordinates. We begin with the case when n is odd. By Theorem 3, we know
that

x
fn(x)

gn(x)
− xQ = 0

has the xi as roots. By Proposition 1 this can be rewritten as

b(n
2−1)/2xn

2

− nxQb(n
2−1)/2xn

2−1 + ... = 0.

As the xi are the n2 roots, then this must be the same as

b(n
2−1)/2

n2∏
i=1

(x− xi) = 0.

If we compare the coefficients of xn
2−1, we see that

∑n2

i=1 xi = nxQ, which
proves the mean value theorem for the x-coordinates where n is odd.

We conclude (by induction) that whenever n = 2k we have
∑n2

i=1 xPi = 0 =∑n2

i=1 yPi
by combining Lemma 1 and Proposition 7. So using proposition 7

again combined with our proof for odd n, we can conclude that whenever n is
even the mean value theorem for x-coordinates holds as well. 2

We remark that Theorem 8 was proved for points Q 6= (0, 0). For Q = (0, 0),
recall that (xi, yi) 6= (0, 0) is an n-torsion point if and only if fn(xi) = 0. Note
that for odd n, fn is an even function of x and so

fn(x) =

n2−1∏
i=1

(x− xi) = xn
2−1 + 0xn

2−2 + ...,

and hence
∑n2−1

i=1 xi = 0. When we consider (0, 0) as the last n-torsion point,

then we have
∑n2

i=1 xi = 0. By symmetry, the same is true for the mean value
of the y-coordinates when Q = (0, 0).
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4.3 Jacobi quartic mean value theorem

We have a similar mean value theorem for the x-coordinates of Jacobi quartics.

Theorem 9 Let Q be a point on Jd,e. Let Pi = (xi, yi) be the n2 points such
that [n]Pi = Q. Then if n is odd

1

n2

n2∑
i=1

xi =
1

n
xQ,

and 1
n2

∑n2

i=1 xi = 0, if n is even.

Proof When n = 2, the addition formula shows that if [2](x, y) = Q, then
[2](−x,−y) = Q as well. So the four points Pi with [2]Pi = Q can be written as
(x1, y1), (x2, y2), (−x1,−y1), and (−x2,−y2). The rest of the proof is identical
to the proof of the Huff mean value theorem. 2

We are unable to prove, but conjecture the following mean-value theorem
for the y-coordinates of the n-division points on a Jacobian quartic:

1

n2

n2∑
i=1

yi = yQ, (4.1)

for n odd, and 1
n2

∑n2

i=1 yi = 0, for n even. Note that in our proof above, we
showed it is true for n = 2. Thus, by Propositon 7, it suffices to show (4.1) for
odd n.

4.4 Jacobi intersection mean value theorem

Finally, we have

Theorem 10 Let Q be a point on the Jacobi intersection curve Jb. Let Pi =
(ui, vi, wi) be the n2 points such that [n]Pi = Q. Then

1

n2

n2∑
i=1

ui =
uQ
n
,

for n odd, and 1
n2

∑n2

i=1 ui = 0, for n even.

Proof Let P1, P2, P3, and P4 be the 4 distinct points on Jb such that [2]Pi = Q,
where Q is a point on Jb. If we add the three non-trivial points of order 2 to
P1, we find that the other Pi are (−u,−v, w), (u,−v,−w), and (−u, v,−w). If
we sum the coordinates, the result is immediate for n = 2. The remainder of
the proof is identical to the proof of the Huff mean value theorem. 2
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We also conjecture the following mean-value theorem for the v and w-
coordinates of the n-division points on a Jacobi intersection curve:

1

n2

n2∑
i=1

vi = −vQ
n
,

1

n2

n2∑
i=1

wi = −wQ

n
,

for n odd, and 1
n2

∑n2

i=1 vi = 0, 1
n2

∑n2

i=1 wi = 0, for n even. By Propositon 7,
the even result follows immediately once this is shown to be true for odd n.

5 Conclusion

In this paper we looked at division polynomials for Huff curves, Jacobi quartics,
and Jacobi intersections. Using them we were able to find a formula for the
n-th multiple of a point. We also proved some of the properties of these division
polynomials, and some mean-value theorems for some alternate models of elliptic
curves. Some directions for future study would be to find division polynomials
for other models of elliptic curves, such as Hessian curves. It would also be
interesting to see if the formulas derived in this paper could be used to perform
efficient scalar multiplication, as has been done in some cases with Weierstrass
curves. This is the most important computation in elliptic curve cryptography
and the subject of much research. We leave this for a future project.

Based on numerical evidence, we conjecture the following formula for the
mean values of the coordinates for Hessian curves. If (xi, yi) are the n2 points
on a Hessian curve with [n](xi, yi) = Q = (xQ, yQ), then

1

n2

n2∑
i=1

xi =

{
1
nxQ n ≡ 1 mod 3

0 n ≡ 0 mod 3,

and

1

n2

n2∑
i=1

yi =

{
1
nyQ n ≡ 1 mod 3

0 n ≡ 0 mod 3.

It is an open problem to prove these formulas. We have not been able to adapt
the technique used in this paper to prove the mean value results for Hessian
curves. Also note, we are unable to conjecture the mean value for these points
when n ≡ 2 mod 3. Based on numerical examples, we do know it is not a
constant times the corresponding coordinate of Q.
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