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Abstract

Helios 2.0 is an open-source web-based end-to-end verifiable electronic
voting system, suitable for use in low-coercion environments. In this arti-
cle, we analyse ballot secrecy in Helios and discover a vulnerability which
allows an adversary to compromise the privacy of voters. The vulnera-
bility exploits the absence of ballot independence in Helios and works by
replaying a voter’s ballot or a variant of it, the replayed ballot magnifies
the voter’s contribution to the election outcome and this magnification can
be used to violated privacy. We demonstrate the practicality of the attack
by violating a voter’s privacy in a mock election using the software imple-
mentation of Helios. Moreover, the feasibility of an attack is considered in
the context of French legislative elections and, based upon our findings, we
believe it constitutes a real threat to ballot secrecy. We present a fix and
show that our solution satisfies a formal definition of ballot secrecy using
the applied pi calculus. Furthermore, we present similar vulnerabilities in
other electronic voting protocols – namely, the schemes by Lee et al., Sako
& Kilian, and Schoenmakers – which do not assure ballot independence.
Finally, we argue that independence and privacy properties are unrelated,
and non-malleability is stronger than independence.
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1 Introduction

Paper-based elections derive security properties from physical characteristics of
the real-world. For example, marking a ballot in the isolation of a polling booth
and depositing the completed ballot into a locked ballot box provides privacy;
the polling booth also ensures that voters cannot be influenced by other votes
and the locked ballot box prevents the announcement of early results, thereby
ensuring fairness; and the transparency of the whole election process from bal-
lot casting to tallying and the impossibility of altering the markings on a paper
ballot sealed inside a locked ballot box gives an assurance of correctness and fa-
cilitates verifiability. Replicating these attributes in a digital setting has proven
to be difficult and, hence, the provision of secure electronic voting systems is an
active research topic.

Informally, privacy for electronic voting systems is characterised by the fol-
lowing requirements [KR05, DKR06, BHM08]:

• Ballot secrecy. A voter’s vote is not revealed to anyone.

• Receipt freeness. A voter cannot gain information which can be used to
prove, to a coercer, how she voted.

• Coercion resistance. A voter cannot collaborate, with a coercer, to gain
information which can be used to prove how she voted.

Verifiability includes three properties [JCJ05, Dag07, KRS10]:

• Individual verifiability. A voter can check that her own ballot is published
on the election’s bulletin board.

• Universal verifiability. Anyone can check that all the votes in the election
outcome correspond to ballots published on the election’s bulletin board.

• Eligibility verifiability. Anyone can check that each ballot published on
the bulletin board was cast by a registered voter and at most one ballot
is tallied per voter.

Finally, fairness – summarised by the notion that all voters are equal – has
not be thoroughly studied, but nonetheless we believe the following aspects are
desirable:

• Ballot independence. Observing another voter’s interaction with the elec-
tion system does not allow a voter to cast a meaningfully related vote.

• No early results. A voter cannot change her vote once partial results are
available.

• Pulling out. Once partial results are available a voter cannot abort.

The privacy property helps ensure that voters can express their free-will with-
out fear of retribution, in particular, receipt freeness and coercion resistance
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attempt to prevent intimidation of voters. In addition, receipt freeness helps
prevent vote buying. The individual, universal and eligibility verifiability prop-
erties (also called end-to-end verifiability [JCJ02, CRS05, Adi06, Dag07, Adi08])
allow voters and election observers to verify – independently of the hardware
and software running the election – that votes have been recorded, tallied and
declared correctly. The fairness property prohibits the voting system from in-
fluencing a voter’s behaviour, that is, observation of the voting system does
not leak information that may affect a voter’s vote, for example, ballot inde-
pendence prevents Bob from casting the same vote as Alice (possibly without
learning Alice’s vote)1. In this article, we analyse ballot secrecy in Helios
2.0 [AMPQ09].

Formal definitions of ballot secrecy have been introduced in the context of
the applied pi calculus by Delaune, Kremer & Ryan [KR05, DKR06, DKR09,
DKR10] and Backes, Hriţcu & Maffei [BHM08]. These privacy definitions con-
sider two voters A, B and two candidates t, t′. Ballot secrecy is captured by
the assertion that an adversary (controlling arbitrary many dishonest voters)
cannot distinguish between a situation in which voter A votes for candidate t
and voter B votes for candidate t′, from another situation in which A votes t′

and B votes t. This can be expressed by the following equivalence.

A(t) | B(t′) ≈l A(t′) | B(t)

These formal definitions of ballot secrecy have been used by their respective
authors to analyse the electronic voting protocols due to: Fujioka, Okamoto &
Ohta [FOO92], Okamoto [Oka98], Lee et al. [LBD+04], and Juels, Catalano &
Jakobsson [JCJ02, JCJ05, JCJ10]. It therefore seems natural to check whether
Helios satisfies these formal definitions.

Helios 2.0. Helios is an open-source web-based electronic voting system which
uses homomorphic encryption. The scheme is claimed to satisfy ballot se-
crecy [AMPQ09], but the nature of remote voting makes the possibility of sat-
isfying stronger privacy properties difficult and Helios does not satisfy receipt
freeness nor coercion resistance (satisfying these stronger privacy properties typ-
ically increases the voting system’s complexity and, hence, a scheme satisfying
ballot secrecy, rather than coercion resistance, may be preferred due its relative
simplicity). In addition to ballot secrecy, the system provides individual and
universal verifiability (cf. [KRS10, SRKK10] and [Smy11, Chapter 3] for an
analysis of verifiability in Helios). Helios is particularly significant due to its
real-world deployment: the International Association of Cryptologic Research
(IACR) used Helios to elect its board members [BVQ10], following a successful
trial in a non-binding poll [HBH10]; the Catholic University of Louvain adopted
the system to elect the university president [AMPQ09]; and Princeton Univer-
sity used Helios to elect the student vice president [Pri10].

1Bulens, Giry & Pereira [BGP11, §3.2] question whether ballot independence is a desirable
property of electronic voting systems and highlight the investigation of voting schemes which
allow the submission of meaningfully related votes whilst preserving privacy as an interesting
research direction.
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1.1 Contribution

Our analysis of Helios reveals an attack which violates ballot secrecy. The at-
tack exploits the system’s lack of ballot independence, and works by replaying
a voter’s ballot or a variant of it (without knowing the vote contained within
that ballot). Replaying a voter’s ballot immediately violates ballot secrecy in an
election with three voters. For example, consider an attack in an election with
three voters – namely, Alice, Bob, and Mallory – as follows: if Mallory replays
Alice’s ballot, then Mallory can reveal Alice’s vote by observing the election
outcome and checking which candidate obtained at least two votes. The prac-
ticality of our attack has been demonstrated by violating a voter’s privacy in
a mock election using the software implementation of Helios. Furthermore, the
vulnerability can be exploited in more realistic settings and, as an illustrative
example, we discuss the feasibility of the attack in French legislative elections.
This case study suggests there is a plausible threat to voters’ privacy in elec-
tions using Helios. We also propose variants of the attack which abuse the
malleability of ballots to ensure ballots cast by the adversary are distinct; this
makes detecting the attack non-trivial (that is, checking for exact duplicates is
insufficient to ensure ballot secrecy). Nonetheless, we fix the Helios protocol
by identifying and discarding adversarial ballots. We believe this solution is
particular well-suited because it maintains Benaloh’s principle of ballot casting
assurance [Ben06, Ben07] and requires a minimal extension to the Helios code-
base. The revised scheme is shown to satisfy a formal definition of ballot secrecy
using the applied pi calculus. In addition, we demonstrate that the absence of
ballot independence can be exploited in other electronic voting protocols to vi-
olate privacy; in particular, a similar attack is shown against the protocol by
Lee et al. [LBD+04] whereby an adversary replays a voter’s ballot or a vari-
ant of it, and verbatim replay attacks are demonstrated against two schemes
presented at CRYPTO (namely, the protocols due to Sako & Kilian [SK94]
and Schoenmakers [Sch99]). Finally, we present some evidence to demonstrate
that independence and privacy are unrelated properties, and non-malleability is
stronger than independence.

Structure of this article. Section 2 presents the Helios electronic voting
scheme. (We remark that this is the first cryptographic description of the He-
lios protocol in the literature and, hence, is an additional contribution of this
article.) Section 3 describes our attack and some variants, in addition to a study
of the attack’s feasibility in the context of French legislative elections. We pro-
pose several solutions for recovering privacy in Section 4 and prove that our
adopted solution formally satisfies ballot secrecy in Section 5. Section 6 demon-
strates that the absence of ballot independence can be similarly exploited in
other electronic voting protocols to violate privacy and Section 7 considers re-
lationships between ballot independence and other security properties. Finally,
Section 8 considers related work and our conclusion appears in Section 9.
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2 Background: Helios 2.0

We provide a full description of Helios 2.0. This scheme exploits the additive
homomorphic [CDS94, CGS97, Sch09] and distributed decryption [Ped91, CP93]
properties of ElGamal [ElG85]. In addition, signature proofs of knowledge are
used to ensure secrecy and integrity of the ElGamal scheme, and to ensure
voters encrypt valid votes. We will recall these cryptographic primitives before
presenting the Helios protocol.

2.1 Additive homomorphic ElGamal

Given cryptographic parameters (p, q, g) and a number n ∈ N of trustees, where
p and q are large primes such that q | p − 1 and g is a generator of the multi-
plicative group Z∗p of order q, the following operations are defined by ElGamal.

Distributed key generation. Each trustee i ∈ n selects a private key share
xi ∈R Z∗q and computes a public key share hi = gxi mod p. The public key is
h = h1 · . . . · hn mod p.

Encryption. Given a message m and a public key h, select a random nonce
r ∈R Z∗q and derive the ciphertext (a, b) = (gr mod p, gm · hr mod p).

Re-encryption. Given a ciphertext (a, b) and public key h, select a random
nonce r′ ∈R Z∗q and derive the re-encrypted ciphertext (a′, b′) = (a·gr′ mod p, b·
hr

′
mod p).

Homomorphic addition. Given two ciphertexts (a, b) and (a′, b′), the ho-
momorphic addition of plaintexts is computed by multiplication (a ·a′ mod p, b ·
b′ mod p).

Distributed decryption. Given a ciphertext (a, b), each trustee i ∈ n com-
putes the partial decryption ki = axi . The plaintext m = loggM is recovered
from M = b/(k1 · . . . · kn) mod p.

The computation of a discrete logarithm loggM is hard in general. However,
if M is chosen from a restricted domain, then the complexity is reduced, for
example, if M is an integer such that 0 ≤M ≤ n, then the complexity is O(n)
by linear search or O(

√
n) using the baby-step giant-step algorithm [Sha71] (see

also [LL90, §3.1]).
For secrecy, each trustee i ∈ n must demonstrate knowledge of a discrete

logarithm logg hi, that is, they prove that hi has been correctly constructed;
this prevents, for example, a trustee constructing their public key share hi =
h. For integrity of decryption, each trustee i ∈ n must demonstrate equality
between discrete logarithms logg hi and loga ki; this prevents, for example, a
trustee constructing the public key share hi = gm+xi and providing the partial
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decryption ki = axi . These proofs can be achieved using signatures of knowledge
(see Appendix A for details). In addition, the voter must demonstrate that a
valid vote has been encrypted and we describe a suitable signature of knowledge
scheme in the following section.

2.2 Disjunctive proof of equality between discrete logs

Given the aforementioned cryptographic parameters (p, q, g), a signature of
knowledge demonstrating that a ciphertext (a, b) contains either 0 or 1 (without
revealing which), can be constructed by proving that either logg a = logh b or
logg a = logh b/g

m, that is, by application of a signature of knowledge demon-
strating a disjunctive proof of equality between discrete logarithms [CDS94,
Sch09]. Observe for a valid ciphertext (a, b) that a ≡ gr mod p and b ≡ hr ·
gm mod p for some nonce r ∈ Z∗q , hence the former disjunct logg g

r = logh h
r ·gm

is satisfied when m = 0, and the latter disjunct logg g
r = logh(hr · gm)/gm is

satisfied when m = 1. This technique is generalised by Adida et al. [AMPQ09]
to allow a signature of knowledge demonstrating that a ciphertext (a, b) contains
message m, where m ∈ {min, . . . ,max} for some system parameters min ∈ N and
max ∈ N∗ such that min ≤ max. Formally, a signature of knowledge demonstrat-
ing a disjunctive proof of equality between discrete logarithms can be derived,
and verified, as follows [AMPQ09, CDS94, Sch09], where H is a SHA-256 hash
function.

Sign. Given ciphertext (a, b) such that a ≡ gr mod p and b ≡ hr · gm mod p
for some nonce r ∈ Z∗q , where plaintext m ∈ {min, . . . ,max}. For all i ∈
{min, . . . ,m−1,m+1, . . . ,max}, compute challenge ci ∈R Z∗q , response si ∈R Z∗q
and witnesses ai = gsi/aci mod p and bi = hsi/(b/gi)ci mod p. Select a random
nonce w ∈R Z∗q . Compute witnesses am = gw mod p and bm = hw mod p, chal-
lenge cm = H(amin, bmin, . . . , amax, bmax) −

∑
i∈{min,...,m−1,m+1,...,max} ci (mod q)

and response sm = w + r · cm mod q.

Verify. Given (a, b) and (amin, bmin, cmin, smin, . . . , amax, bmax, cmax, smax), for each
min ≤ i ≤ max check gsi ≡ ai · aci (mod p) and hsi ≡ bi · (b/gi)ci (mod p). Fi-
nally, check H(amin, bmin, . . . , amax, bmax) ≡

∑
min≤i≤max ci (mod q).

A valid proof asserts that (a, b) is a ciphertext containing the message m such
that m ∈ {min, . . . ,max}.

2.3 Protocol description

An election is created by naming an election officer, selecting a set of trustees,
and generating a distributed public key pair. The election officer publishes, on
the bulletin board, the public part of the trustees’ key (and proof of correct
construction), the candidate list t̃ = (t1, . . . , t`) ∪ {ε} (where ε represents a

vote of abstention), and the list of eligible voters ĩd = (id1, . . . , idn); the officer
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also publishes the election fingerprint, that is, the hash of these parameters.
Informally, the steps that participants take during a run of Helios are as follows.

1. The voter launches a browser script that downloads the election parame-
ters and recomputes the election fingerprint. The voter should verify that
the fingerprint corresponds to the value published on the bulletin board.
(This ensures that the script is using the trustees’ public key, in particular,
it helps prevent encrypting a vote with an adversary’s public key. Such
attacks have been discussed in the context of Direct Anonymous Attesta-
tion by Rudolph [Rud07]; although, the vulnerability was discounted, in
the trusted computing setting, by Leung, Chen & Mitchell [LCM08].)

2. The voter inputs her vote v ∈ t̃ to the browser script, which creates a ballot
consisting of her vote encrypted by the trustees’ public key, and a proof
that the ballot represents a permitted vote (this is needed because the
ballots are never decrypted individually, in particular, it prevents multiple
votes being encoded as a single ballot). The ballot is displayed to the voter.

3. The voter can audit the ballot to check if it really represents a vote for her
chosen candidate; if she decides to do this, then the script provides her with
the random data used in the ballot creation. She can then independently
reconstruct her ballot and verify that it is indeed well-formed. The script
provides some practical resistance against vote selling by refusing to cast
audited ballots. See Benaloh [Ben06, Ben07] for further details on ballot
auditing.

4. When the voter has decided to cast her ballot, the script submits it to
the election officer. The election officer authenticates the voter and checks
that she is eligible to vote. The election officer also verifies the proof and
publishes the ballot, appended with the voter’s identity id, on the bulletin
board. (In practice, the election officer also publishes the hash of the
ballot, we omit this detail for brevity.)

5. Individual voters can check that their ballots appear on the bulletin board
and, by verifying the proof, observers are assured that ballots represent
permitted votes.

6. After some predefined deadline, the election officer homomorphically com-
bines the ballots and publishes the encrypted tally on the bulletin board.
Anyone can check that tallying is performed correctly.

7. Each of the trustees publishes a partial decryption of the encrypted tally,
together with a signature of knowledge proving the partial decryption’s
correct construction. Anyone can verify these proofs.

8. The election officer decrypts the tally and publishes the result. Anyone
can check this decryption.
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Figure 1 Ballot construction by the browser script

Input: Cryptographic parameters (p, q, g), public key h, candidate list t̃ = (t1,
. . . , t`) ∪ {ε} and vote v.

Output: Encrypted vote (a1, b1), . . . , (a`, b`), signatures of knowledge
(ā1, b̄1, c̄1, s̄1, ā

′
1, b̄
′
1, c̄
′
1, s̄
′
1), . . . , (ā`, b̄`, c̄`, s̄`, ā

′
`, b̄
′
`, c̄
′
`, s̄
′
`) and signature of

knowledge (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′), where the signatures are constructed us-
ing the algorithm presented in Section 2.2.

1. If v 6∈ t̃ then the script terminates.

2. Encode the vote v as a bitstring. For all 1 ≤ i ≤ `, let

mi =

{
1 if v = ti
0 otherwise

3. The bitstring representing the vote is encrypted. For all 1 ≤ i ≤ `, let

(ai, bi) = (gri mod p, gmi · hri mod p)

where ri ∈R Z∗q .

4. For all 1 ≤ i ≤ `, let (āi, b̄i, c̄i, s̄i, ā
′
i, b̄
′
i, c̄
′
i, s̄
′
i) be a signature of knowledge

demonstrating that the ciphertext (ai, bi) contains either 0 or 1, that is,
each candidate can receive at most one vote.

5. Let (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′) be a signature of knowledge demonstrating that
the ciphertext (a1 · . . . · a`, b1 · . . . · b`) contains either 0 or 1, that is, at
most one candidate receives one vote.

Formally, Step 2 is defined in Figure 1. (For simplicity the ballot construction
algorithm in Figure 1 considers a vote v ∈ t̃, this can be generalised [AMPQ09]
to consider a vote ṽ ⊆ t̃.) Checking voter eligibility (Step 4) is beyond the scope
of Helios and Adida et al. [AMPQ09] propose the use of existing infrastructure.
The remaining steps follow immediately from the application of cryptographic
primitives (see Section 2.1 for details).

2.4 Software implementation

Helios 3.0 is an extension of Helios 2.0 which adds numerous practical features,
including: integration of authentication with various web-services (for example,
Facebook, GMail and Twitter), bulk voter registration using pre-existing elec-
toral rolls, and simplification of administration with multiple trustees. Helios 3.0
has been implemented and is publicly available: http://heliosvoting.org/.
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3 Attacking ballot secrecy

Ballot secrecy means “a voter’s vote is not revealed to anyone” and this section
shows that Helios does not satisfy this definition by presenting an attack which
allows an adversary to reveal a voter’s vote (Section 5 will show that formal
definitions of ballot secrecy [KR05, DKR09, BHM08] are also violated). Intu-
itively, an adversary may identify a voter’s ballot on the bulletin board (using
the voter’s identity id) and recast this ballot by corrupting dishonest voters.
The multiple occurrences of the voter’s ballot will magnify the voter’s contribu-
tion to the election outcome, thereby leaking information that can be exploited
to violate the voter’s privacy. The remainder of this section proceeds as follows:
a description of the attack for three voters appears in Section 3.1 and variants
are considered in Section 3.2, the attack is generalised to arbitrary many voters
in Section 3.3 and the threat to real elections is also considered.

3.1 Attack description

Let us consider an election with candidates t1, . . . , t` and three eligible voters
who have identities id1, id2 and id3. Suppose that voters id1 and id2 are honest,
and id3 is a dishonest voter controlled by the adversary. Further assume that the
honest voters have cast their ballots. The bulletin board entries are as follows:

id1, ciph1, spk1, spk
′
1

id2, ciph2, spk2, spk
′
2

where for i ∈ {1, 2} we have

ciphi = (ai,1, bi,1), . . . , (ai,`, bi,`)
spki = (āi,1, b̄i,1, c̄i,1, s̄i,1, ā

′
i,1, b̄

′
i,1, c̄

′
i,1, s̄

′
i,1),

. . . , (āi,`, b̄i,`, c̄i,`, s̄i,`, ā
′
i,`, b̄

′
i,`, c̄

′
i,`, s̄

′
i,`)

spk′i = (āi, b̄i, c̄i, s̄i, ā
′
i, b̄
′
i, c̄
′
i, s̄
′
i)

The value ciphi is the ith voter’s encrypted vote, spki demonstrates that ci-
phertexts (ai,1, bi,1), . . . , (ai,`, bi,`) contain either 0 or 1 (that is, the voter has
assigned at most one vote to each candidate), and spk′i demonstrates that
(ai,1 · . . . · ai,`, bi,1 · . . . · bi,`) contains either 0 or 1 (that is, the voter has
voted for at most one candidate).

Replaying a ballot. The adversary observes the bulletin board and selects
ciphk, spkk, spk

′
k such that idk is the voter whose privacy will be compromised,

where k ∈ {1, 2}. The adversary casts the ballot ciphk, spkk, spk
′
k and it imme-

diately follows that the bulletin board is composed as follows:

id1, ciph1, spk1, spk
′
1

id2, ciph2, spk2, spk
′
2

id3, ciphk, spkk, spk
′
k
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It is trivial to observe that each bulletin board entry represents a permitted vote,
that is, spk1, spk

′
1, spk2, spk

′
2, spkk, spk

′
k all contain valid signatures of knowl-

edge. It follows that Helios does not satisfy ballot independence: observing
another voter’s interaction with the election system allows a voter to cast the
same vote. The absence of ballot independence will now be exploited to violate
privacy.

Violating privacy. The homomorphic addition of ballots reveals the en-
crypted tally (a1,1 · a2,1 · ak,1, b1,1 · b2,1 · bk,1), . . . , (a1,` · a2,` · ak,`, b1,` · b2,` · bk,`)
and, given the partial decryptions, these ciphertexts can be decrypted to reveal
the number of votes for each candidate. Since there will be at least two votes
for the candidate voter idk voted for, the voter’s vote can be revealed and hence
privacy is not preserved. Moreover, the vote of the remaining honest voter will
also be revealed.

A video demonstrating the attack against the Helios 3.0 implementation has
been produced [SC10].

In the aforementioned attack description, the ballots cast by two voters are
identical. This behaviour is not detected by Helios and, prior to our work, hu-
man detection – for example, by auditing – would have been improbable. Of
course, further to our results, the aforementioned attack can be detected by
searching for duplicated ballots. For a covert attack, the adversary may replay
ballots in different elections, when the trustees’ public key is reused and the can-
didate lists for each election are of equal length. However, this is not generally
possible in Helios since fresh keys should be used for each election. The follow-
ing section introduces further variants of our attack that exploit malleability
to derive distinct ballots, thereby demonstrating that searching for duplicate
ballots is insufficient to ensure ballot secrecy.

3.2 Variants exploiting ballot malleability

Let us consider variants of our attack under the assumptions presented in the
previous section: we have an election with candidates t1, . . . , t` and three eligible
voters such that the two honest voters have cast their votes using identities id1

and id2, and the remaining dishonest voter is controlled by the adversary, where
the dishonest voter has the identity id3. Given that we will consider ballot
malleability, we refine our notation and consider the bulletin board entries of
honest voters as follows:

id1, ciph1,1, . . . , ciph1,`, spk1,1, . . . , spk1,`, spk
′
1

id2, ciph2,1, . . . , ciph2,`, spk2,1, . . . , spk2,`, spk
′
2

where for all i ∈ {1, 2} and j ∈ {1, . . . , `} we have

ciphi,j = (ai,j , bi,j)
spki,j = (āi,j , b̄i,j , c̄i,j , s̄i,j , ā

′
i,j , b̄

′
i,j , c̄

′
i,j , s̄

′
i,j)

spk′i = (āi, b̄i, c̄i, s̄i, ā
′
i, b̄
′
i, c̄
′
i, s̄
′
i)
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The value ciphi,j is the ith voter’s encrypted vote for the candidate tj (that
is, ciphi,j is a ciphertext containing the plaintext 1 if the voter voted tj , and 0
otherwise), spki,j demonstrates that the ciphertext ciphi,j contains either 0 or
1, and spk′i is defined as before, namely, it demonstrates that (ai,1 · . . . ·ai,`, bi,1 ·
. . . · bi,`) contains either 0 or 1. In the remainder of this section we shall assume
that the voter under attack casts the Ballot B0, namely,

idk, ciphk,1, . . . , ciphk,`, spkk,1, . . . , spkk,`, spk
′
k (B0)

where k ∈ {1, 2}.

3.2.1 Integer representation attack

Given the Ballot B0, the adversary selects integers r1, r
′
1, . . . , r`, r

′
`, r, r

′ ∈ N and
constructs the following related ballot, namely,

ciphk,1, . . . , ciphk,`,Ěspkk,1, . . . ,
Ěspkk,`,

Ěspk
′
k (B1)

where Ěspk
′
k = (āk, b̄k, c̄k, s̄k + r · q, ā′k, b̄′k, c̄′k, s̄′k + r′ · q) and for all j ∈ {1, . . . , `}

we have Ěspkk,j = (āk,j , b̄k,j , c̄k,j , s̄k,j+rj ·q, ā′k,j , b̄′k,j , c̄′k,j , s̄′k,j+r′j ·q). Ballot B1
adds multiples of q to the response components of Ballot B0, this changes the
ballot but not the vote, because the ciphertexts that encrypt the vote remain
unchanged. It follows that Ballot B1 can be cast by the adversary as a vote
for the same candidate as the voter with identity idk selected and privacy can
be violated as described in Section 3.1. This might be considered an oversight,
rather than a theoretical issue, because the ballots are identical if considered as
group elements.

3.2.2 Permutation attacks

Given the Ballot B0, the adversary selects a permutation π on {1, . . . , `}, where
π is not the identity, and proceeds as follows.

Constructing a related ballot. The adversary constructs the Ballot B2:

ciphk,π(1), . . . , ciphk,π(`), spkk,π(1), . . . , spkk,π(`), spk
′
k (B2)

Ballot B2 permutes the ciphertexts included in Ballot B0, thereby deriving a
ballot for a different candidate (with the exception of an abstention vote). The
adversary can cast Ballot B2 and it is trivial to witness that this ballot will be
accepted by the bulletin board, since spkk,π(1), . . . , spkk,π(`), spk

′
k are all valid

signatures of knowledge. It follows that we have shown another technique to
violate ballot independence in Helios: observing another voter’s interaction with
the election system allows a voter to cast a different vote, with the exception
of abstention votes which will be the same. (The ability to cast different votes
may be of independent interest, for example, a voter can cast a distinct vote
from their boss.) The absence of ballot independence can be exploited to violate
privacy.
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Violating privacy. The decrypted tally reveals the number of votes for each
candidate and this data can be used to discover how each voter voted. First, if
the tally contains votes for three distinct candidates, then there exists integers
i, j ∈ {1, . . . , `} such that π(i) = j and the voter with identity idk voted for
candidate ti. Secondly, if the tally contains two votes for a candidate and
one vote for another candidate, then the voter with identity idk voted for the
candidate with two votes. Finally, in the case where the outcome is unanimous,
every vote is revealed2

3.2.3 Malformed ciphertext attack

Given the Ballot B0, the adversary can select an integer v ∈ {1, . . . , `} and
proceed as follows.

Constructing a related ballot. The adversary constructs the Ballot B3,
namely,

(1, 1), . . . , (1, 1)︸ ︷︷ ︸
v − 1 times

, (ak,v, bk,v), (1, 1), . . . , (1, 1)︸ ︷︷ ︸
`− v times

,

Ěspk1, . . . ,
Ěspkv−1, spkk,v,

Ěspkv+1, . . . ,
Ěspk`, spkk,v (B3)

such that for all j ∈ {1, . . . , v−1, v+1, . . . , `} we have Ěspkj = (âj , b̂j , ĉj , ŝj , â
′
j , b̂
′
j ,

ĉ′j , ŝ
′
j) where ĉ′j , ŝ

′
j , ŝj ∈R Z∗q and

âj = gŝj mod p

â′j = gŝ
′
j mod p

b̂j = hŝj mod p

b̂′j = hŝ
′
j · gĉ

′
j mod p

ĉj = H(âj , b̂j , â
′
j , b̂
′
j)− ĉ′j mod q

By definition of Ballot B0, it is trivial to witness that spkk,v is a valid proof for
(ak,v, bk,v) and, therefore, spkk,v is a valid proof for the homomorphic combina-
tion of ciphertexts encapsulated in Ballot B3. Moreover, the following lemma
demonstrates that for all j ∈ {1, . . . , v − 1, v + 1, . . . , `} we have Ěspkj is valid
proof for (1, 1). We stress that Lemma 1 does not violate the soundness property
of our signature of knowledge scheme for disjunctive proofs of equality between
discrete logs (Section 2.2) because logg a = logh b or logg a = logh b/g

m holds
for (a, b) = (g0, h0).

Lemma 1. The signature (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′) is valid for (1, 1), where c̄′, s̄′, s̄
∈R Z∗q , ā = gs̄ (mod p), ā′ = gs̄

′
(mod p), b̄ = hs̄ (mod p), b̄′ = hs̄

′ · gc̄′

(mod p), and c̄ = H(ā, b̄, ā′, b̄′)− c̄′ (mod q).

2Unanimous election results highlight an inadequacy in our informal definition of privacy:
as stated (Section 1), our definition is unsatisfiable. This issue is overcome in our formal
privacy definition (Section 5.3).
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Proof. Suppose the signature (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′) is defined above and let (a, b)
= (1, 1). We must show that (a, b) and (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′) satisfy the condi-
tions of the verification algorithm described in Section 2.2. Since ac̄ = 1 and
(b/g0)c̄ = 1, we trivially derive gs̄ ≡ ā ·ac̄ (mod p) and hs̄ ≡ b̄ ·(b/g0)c̄ (mod p).
Moreover, since ac̄

′
= 1 and (b/g1)c̄

′
= g−c̄

′
, it follows that gs̄

′ ≡ ā′ ·ac̄′ (mod p)
and hs̄

′ ≡ b̄′ · (b/g1)c̄
′

(mod p). Finally, recall c̄ = H(ā, b̄, ā′, b̄′) − c̄′ (mod q)
and therefore H(ā, b̄, ā′, b̄′) ≡ c̄+ c̄′ (mod q), concluding our proof.

It follows immediately that the adversary’s Ballot B3 will be accepted by the
bulletin board, hence, we have shown another technique to violate ballot in-
dependence in Helios: observing another voter’s interaction with the election
system allows a voter to cast a meaningfully related vote, in particular, if a
voter votes for candidate tv or ε, then the same vote can be cast, otherwise, a
different vote (namely, ε) can be cast. The absence of ballot independence can
be exploited to violate privacy.

Violating privacy. The homomorphic addition of ballots reveals the en-
crypted tally (A1, B1), . . . , (A`, B`) defined as follows:

(a1,1 · a2,1, b1,1 · b2,1), . . . , (a1,v−1 · a2,v−1, b1,v−1 · b2,v−1),

(a1,v · a2,v · ak,v, b1,v · b2,v · bk,v),
(a1,v+1 · a2,v+1, b1,v+1 · b2,v+1), . . . , (a1,` · a2,`, b1,` · b2,`)

Given the partial decryptions, the tally can be decrypted to reveal the number
of votes for each candidate. If the tally contains two votes for some candidate,
one vote for some other candidate, and no votes for abstention, then the honest
voter with identity idk must have cast a vote for the candidate with two votes
and hence privacy is not preserved. A straightforward derivative of this attack
allows privacy to be violated when candidate tv receives one vote, since the
adversary learns that the voter with identity idk did not vote for this candidate
and therefore must have voted for the candidate with the remaining vote.

3.2.4 Homomorphic attack

Following from the methodology introduced by the malformed ciphertext attack
(Section 3.2.3), we propose an attack that allows an adversary to construct a
ballot related to an abstention vote cast by an honest voter. The attack proceeds
as follows.

Constructing a related ballot. The adversary constructs the Ballot B4,
namely,

(ak,1 · . . . · ak,`, bk,1 · . . . · bk,`), (1, 1), . . . , (1, 1)︸ ︷︷ ︸
`− 1 times

, spk′k,
Ěspk2, . . . ,

Ěspk`, spk
′
k (B4)

where for all 2 ≤ i ≤ ` the signature Ěspki is constructed in accordance with
the definition given in Lemma 1. It follows immediately for all 2 ≤ i ≤ ` that
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Ěspki is a valid proof for (1, 1). Moreover, by definition of Ballot B0, it is trivial
to witness that spk′k is a valid proof for (ak,1 · . . . · ak,`, bk,1 · . . . · bk,`) and,
therefore, spk′k is a valid proof for the homomorphic combination of ciphertexts
encapsulated in the Ballot B4. It follows that the adversary’s Ballot B4 will be
accepted by the bulletin board, hence, we have shown another technique to cast
a meaningfully related vote, in particular, if a voter cast an abstention vote,
then the same vote can be cast, otherwise, a different vote (namely, a vote for
candidate t1) can be cast. The absence of ballot independence can again be
exploited to violate privacy.

Violating privacy. The homomorphic addition of ballots reveals the en-
crypted tally (a1,1 · a2,1 · ak,1 · . . . · ak,`, b1,1 · b2,1 · bk,1 · . . . · bk,`), (a1,2 · a2,2, b1,2 ·
b2,2) . . . , (a1,` · a2,`, b1,` · b2,`). If the decrypted tally contains two votes for ab-
stention and one vote for some candidate, then the voter with identity idk cast
a vote for abstention and hence privacy is not preserved.

3.2.5 Further malleability attacks

A further variant that exploits malleability has been introduced by Bernhard
[Ber12] and, concurrently, Desmedt & Chaidos [DC12a, DC12b]. We recall
the details here for completion. Given the Ballot B0, the adversary selects
r1, . . . , r` ∈ N and constructs the Ballot B5, namely,

Ěciphk,1, . . . ,
Ěciphk,`,

Ěspkk,1, . . . ,
Ěspkk,`,

Ěspk
′
k (B5)

such that for all j ∈ {1, . . . , `} we have

Ěciphk,j = (ak,j · grj , bk,j · hrj )
Ěspkk,j = (āk,j , b̄k,j , c̄k,j , s̄k,j + rj · ck,j , ā′k,j , b̄′k,j , c̄′k,j , s̄′k,j + rj · c̄k,j)
Ěspk
′
k = (āk, b̄k, c̄k, s̄k + r · c̄k, ā′k, b̄′k, c̄′k, s̄′k + r · c̄′k)

where r = r1 + . . . + r`. As shown by Bernhard [Ber12], the signatures of

knowledge Ěspkk,1, . . . ,
Ěspkk,`,

Ěspk
′
k are valid (Lemma 2).

Lemma 2. If (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′) is a signature for (a, b), then (ā, b̄, c̄, s̄ + r ·
c̄, ā′, b̄′, c̄′, s̄′ + r · c̄′) is a signature for (a · gr, b · hr), where r ∈ N.

It follows that the adversary’s ballot (B5) will be accepted by the bulletin board
and privacy can be violated as described in Section 3.1.

3.2.6 Attacks against the software implementation of Helios

The variants described in Sections 3.2.1 – 3.2.5 have been successfully launched
against the Helios 3.0 implementation. Moreover, given Ballot B0 as input, a
PHP script has been written to construct each of the related Ballots B1 – B5.
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3.3 Generalised attack and French election case study

Our attack (Section 3.1) demonstrates that the ballot of an arbitrary voter can
be replayed by any other voter and we have shown how privacy can be violated
in elections with three voters. However, in general, the attack does not apply to
elections with more than three voters, nonetheless, some information is leaked,
and colluding voters can replay sufficiently many ballots to violate a voter’s
privacy. We will now discuss the feasibility of compromising ballot secrecy in
a real-world election, focusing on the cost of an attack in French legislative
elections, where each district elects a representative for the French National
Assembly. (We limit discussion to the replay attack described in Section 3.1 for
simplicity and stress that the variants of our attack presented in Section 3.2 can
be similarly used in elections with more than three voters.) Districts have several
polling stations and each polling station individually announces its tally [Fr];
these tallies are published in local newspapers. The publication of tallies is
typical of French elections at all levels, for example, from the election of mayor,
to the presidential election.

In this (standard) voting configuration, an adversary can violate the ballot
secrecy of a given voter by corrupting voters registered at the same polling
station (for example, a coalition of neighbours or a family). The corrupted
voters replay the ballot of the voter under attack, as previously explained. The
motivation for restricting the selection of corrupted voters to the same polling
station is twofold. Firstly, fewer corrupt voters are required to significantly
influence the tally of an individual polling station (in comparison to influencing
the election outcome). Secondly, it is unlikely to change the district’s elected
representative, because a candidate will receive only a few additional votes in the
district, it follows that coercing voters to sacrifice their vote, for the purposes
of the attack, should be easier. In the remainder of this section, we discuss
how many corrupt voters are required to violate ballot secrecy – by making a
significant change in the tally of a polling station – in an arbitrary district of
Aulnay-sous-Bois and a rural district in Toul.

3.3.1 Ballot secrecy in Aulnay-sous-Bois

Using historic data and/or polls, it is possible to construct the expected dis-
tribution of votes. For simplicity, let us assume the distribution of votes per
polling station is the average of the 2010 tally (Table 1), and that if the adver-
sary can increase the number of votes for a particular candidate by more than
σ (by replaying a voter’s ballot), then this is sufficient to determine that the
voter voted for that candidate. In addition, suppose that the adversary corrupts
abstaining voters and therefore we do not consider the redistribution of votes.
We remark that corrupting abstaining voters may be a fruitful strategy, since
abstaining voters do not sacrifice their vote by participating in an attack.

Table 2 presents the expected distribution of votes, and includes the number
of voters that an adversary must corrupt to determine if a voter voted for
a particular candidate, for various values of σ. We shall further assume that
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Party Tally
PS 4120
UMP 3463
FN 1933
Europe Eco. 1921
Front de gauche 880
NPA 697
MODEM 456
Debout la République 431
Alliance école 193
LO 156

Émergence 113
Liste chrétienne 113

Table 1: 2010 legislative election results in Aulnay-sous-Bois [Fr10]

participation in the region is consistent with 2010, that is, 291 of the 832 eligible
voters are expected to participate. It follows that 50 voters corresponds to
approximately 6% of the Aulnay-sous-Bois electorate, and 10 voters corresponds
to approximately 1%. Our results therefore demonstrate that the privacy of a
voter can be compromised by corrupting a small number of voters. In particular,
for medium-size parties (in terms of votes received) – including, for example,
FN and Europe Ecologie – it is sufficient to corrupt 19 voters to see the number
of votes increase by 50%. Furthermore, given the low turn-out (541 voters are
expected to abstain), it seems feasible to corrupt abstaining voters, and therefore
an attack can be launched without any voter sacrificing their vote.

Limitations. For such an attack based upon a statistical model, we acknowl-
edge that this model is rather näıve. For example, the attacker can never be
certain that the distribution of votes follows from a previous election or a poll, in
particular, differences may arise from changes in voter behaviour. Nevertheless,
we believe our model is sufficiently indicative to illustrate the real threat of an
attack against privacy. A definitive mathematical analysis could be considered
in the future.

Cases of complete privacy breach. The probabilistic nature of these at-
tacks may introduce sufficient uncertainty to prevent privacy violations, and we
will consider voting configurations where an adversary can definitively learn a
voter’s vote. Observe that if an attacker can corrupt half of the voters at a
polling station, then the vote of an arbitrary voter can be revealed. Moreover,
the cost of this attack can be reduced. In particular, if n dishonest voter’s replay
voter V’s ballot, then it is possible to deduce that V did not vote for any candi-
date that received strictly less than n + 1 votes. This leaks information about
voter V’s chosen candidate and in cases where exactly one candidate received
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more than n votes, the voter’s vote can be deduced.

3.3.2 Ballot secrecy in small polling stations

The difficulties of large scale corruption may prohibit our attack in the majority
of polling stations, however, our attack is feasible in small polling stations found
in rural districts. For example, let us consider the 2007 legislative elections in
the district of Toul [Est07]. This district has 75350 eligible voters registered at
193 polling stations. Accordingly, the average polling station has 390 registered
voters, but the variance is large. Indeed, 33 polling stations have between 50
and 99 voters, 9 polling stations have less then 50 voters, and the smallest two
polling stations have 8, respectively 16, voters. Moreover, the attack is simplified
by non-participating voters. In these small polling stations it is thus sufficient
to corrupt a small number of voters to reveal a voter’s vote, furthermore, the
final outcome of the election would not change as it is based on 75350 eligible
voters.

4 Solution: Ballot independence

Our attacks exploit the possibility of replaying a voter’s ballot, or a variant of
the voter’s ballot, without detection, and can be attributed to the lack of ballot
independence in Helios. This section sketches some possible solutions to ensure
ballot independence.

4.1 Ballot weeding

The ballots cast by the adversary in our attacks can all be identified. Accord-
ingly, we propose a solution which identifies and rejects such ballots. First, we
assume that the signature of knowledge scheme (Section 2.2) is revised to ensure
non-malleability, in particular, this will ensure that the response components of
signatures cannot be changed. Secondly, we assume that the decryption algo-
rithm will only decrypt ciphertexts (a, b), where a, b ∈ Z∗p. Finally, the election
officer should reject any ballot that contains a ciphertext that already exists on
the bulletin board (this check can be performed in Step 4 of the protocol execu-
tion, see Section 2.3). Witness that our first constraint eliminates the attacks
described in Sections 3.2.1 & 3.2.5, the second eliminates the attacks described
in Sections 3.2.3 & 3.2.4, and the final constraint eliminates those in Sections
3.1 & 3.2.2 (the attack described in Section 3.2.3 can also be eliminated by the
final constraint). This solution is simple and can easily be implemented in a
future version of Helios.

4.2 Binding ballots to voters

Ballot weeding requires additional cryptographic assumptions and a special
mechanism to reject ballots meaningfully related to those already present on
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the bulletin board. In this section, we propose techniques to prevent the con-
struction of meaningfully related ballots that will be accepted by the bulletin
board, namely, we bind the link between a voter and her ballot; it follows that
any meaningfully related ballot constructed by the adversary will be rejected
by the bulletin board because the ballot is not bound to the adversary.

Unique identifiers. Based upon inspiration from Gennaro [Gen95, §4.2],
Cramer, Gennaro & Schoenmakers [CGS97], and Damg̊ard, Jurik & Nielsen
[DJ01, DJN10], we use unique identifiers to ensure that signatures of knowl-
edge are associated with distinct voters. This is achieved by including the
voter’s identity in the challenges used by signatures of knowledge. More pre-
cisely, given a voter’s identity id, the sign algorithm (Section 2.2) is modified
as follows: on input (a, b), such that a ≡ gr mod p and b ≡ hr · gm mod p,
let challenge cm = H(amin, bmin, . . . , amax, bmax, id)−

∑
i∈{min,...,m−1,m+1,...,max} ci

(mod q), where values amin, bmin, . . . , amax, bmax and c1, . . . , cm−1, cm+1, . . . , cm
are defined as before. For correctness, the verification algorithm must also be
modified, in particular, for candidate signatures constructed by the voter with
identity id, the verifier should check H(amin, bmin, . . . , amax, bmax, id) ≡∑

min≤i≤max ci (mod q).

Eligibility verifiability. The electronic voting protocol proposed by Juels,
Catalano & Jakobsson [JCJ05] – which has been implemented by Clarkson,
Chong & Myers [CCM08, CCM07] as Civitas – requires ballots to be bound to
private voter credentials. This provides eligibility verifiability [KRS10]: anyone
can check that each ballot published on the bulletin board was cast by a regis-
tered voter and at most one ballot is tallied per voter. It is likely that eligibility
verifiability enforces ballot independence, but the provision of eligibility verifi-
ability appears to be expensive, in particular, Juels, Catalano & Jakobsson and
Clarkson, Chong & Myers assume the existence of an infrastructure for voter
credentials.

4.3 Critique of our solutions

Our ballot weeding solution is particularly attractive because it adheres to Be-
naloh’s notion of ballot casting assurance [Ben06, Ben07] which asserts that the
ballot encryption device (the browser script in this instance) does not know the
voter’s identity. The ballot casting assurance principle is important because
knowledge of the voter’s identity could be used to infer the likelihood of audit-
ing and this information can be used to influence the behaviour of the ballot
encryption device, in particular, if a ballot is unlikely to be audited, then the
device may act maliciously, for example, by encrypting a different vote. By
comparison, the unique identifiers solution would necessarily require that the
voter’s identity be revealed to the ballot encryption device. Moreover, extending
Helios to provide eligibility verifiability would require a considerable extension
to the Helios code-base. Accordingly, we adopt the ballot weeding solution and,
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in the next section, we show that this is sufficient to ensure ballot secrecy, in
the formal setting.

5 Formal proof of ballot secrecy

In this section, we formally prove that our solution is sufficient for ballot secrecy
using the applied pi calculus [AF01, RS11].

5.1 Applied pi calculus

Let us recall the applied pi calculus. We assume an infinite set of names
a, b, c, . . . , k, . . . ,m, n, . . . , s, . . ., an infinite set of variables x, y, z, . . ., and a
signature Σ consisting of a finite set of function symbols, each with an asso-
ciated arity. We use metavariables u,w to range over both names and variables.
Terms L,M,N, T, U, V are built by applying function symbols to names, vari-
ables, and other terms. We write {M/x} for the substitution that replaces the
variable x with the term M . Arbitrarily large substitutions can be written as
{M1/x1, . . . ,Ml/xl} and the letters σ and τ range over substitutions. We write
Nσ for the result of applying σ to the free variables of term N . A term is ground
when it does not contain variables.

The signature Σ is equipped with an equational theory E, that is, a set of
equations of the form M = N , where the terms M,N are defined over the
signature Σ. We define equality modulo the equational theory, written =E , as
the smallest equivalence relation on terms that contains E and is closed under
application of function symbols, substitution of terms for variables and bijective
renaming of names. We write M =E N when the equation M = N is in the
theory E, and keep the signature implicit. When E is clear from its usage, we
may abbreviate M =E N as M = N . The negation of M =E N is denoted
M 6=E N (and similarly abbreviated M 6= N).

Processes and extended processes are defined in the usual way (Figure 2). We
write ν ũ for the (possibly empty) series of pairwise-distinct binders ν u1. · · · .ν ul.
The active substitution {M/x} can replace the variable x for the term M in ev-
ery process it comes into contact with and this behaviour can be controlled
by restriction, in particular, the process ν x.({M/x} | P ) corresponds exactly
to let x = M in P . Arbitrarily large active substitutions can be obtained by
parallel composition and we occasionally abbreviate {M1/x1} | . . . | {Ml/xl} as

{M1/x1, . . . ,Ml/xl} or {M̃/x̃}. We also use σ and τ to range over active substi-
tutions, and write Nσ for the result of applying σ to the free variables of N .
Extended processes must have at most one active substitution for each variable
and there is exactly one when the variable is under restriction. The only minor
change compared to [AF01] is that conditional branches now depend on formu-
lae φ, ψ ::= M = N | M 6= N | φ ∧ ψ. If M and N are ground, we define
[[M = N ]] to be true if M =E N and false otherwise. The semantics of [[ ]] is
then extended to formulae in the standard way.
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Figure 2 Syntax for processes

P,Q,R ::= (plain) processes
0 null process
P | Q parallel composition
!P replication
ν n.P name restriction
if φ then P else Q conditional
u(x).P message input
u〈M〉.P message output

A,B,C ::= extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x.A variable restriction
{M/x} active substitution

The scope of names and variables are delimited by binders u(x) and ν u. The
set of bound names is written bn(A) and the set of bound variables is written
bv(A); similarly we define the set of free names fn(A) and free variables fv(A).
Occasionally, we write fn(M) (and fv(M) respectively) for the set of names (and
respectively variables) which appear in term M . An extended process is closed
when every variable x is either bound or defined by an active substitution.

We define a context C[ ] to be an extended process with a hole. We ob-
tain C[A] as the result of filling C[ ]’s hole with the extended process A. An
evaluation context is a context whose hole is not in the scope of a replication,
a conditional, an input, or an output. A context C[ ] closes A when C[A] is
closed.

A frame, denoted ϕ or ψ, is an extended process built from the null process
0 and active substitutions {M/x}, which are composed by parallel composition
and restriction. The domain dom(ϕ) of a frame ϕ is the set of variables that ϕ
exports, that is, the set of variables x for which ϕ contains an active substitution
{M/x} such that x is not under restriction. Every extended process A can be
mapped to a frame ϕ(A) by replacing every plain process in A with 0.

5.1.1 Operational semantics

The operational semantics are defined by three relations: structural equiva-
lence (≡), internal reduction (−→), and labelled reduction (

α−→). These relations
satisfy the rules in Figure 3 and are defined such that: structural equivalence
is the smallest equivalence relation on extended processes that is closed by α-
conversion of both bound names and bound variables, and closed under ap-
plication of evaluation contexts; internal reduction is the smallest relation on
extended processes closed under structural equivalence and application of eval-
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Figure 3 Semantics for processes

Par-0 A ≡ A | 0
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P | !P

New-0 ν n.0 ≡ 0
New-C ν u.ν w.A ≡ ν w.ν u.A
New-Par A | ν u.B ≡ ν u.(A | B)

where u 6∈ fv(A) ∪ fn(A)

Alias ν x.{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x}

where M =E N

Comm c〈x〉.P | c(x).Q −→ P | Q

Then if φ then P else Q −→ P if [[φ]] = true

Else if φ then P else Q −→ Q otherwise

In c(x).P
c(M)−−−→ P{M/x}

Out-Atom c〈u〉.P c〈u〉−−−→ P

Open-Atom
A

c〈u〉−−−→ A′ u 6= c

ν u.A
ν u.c〈u〉−−−−−→ A′

Scope
A

α−→ A′ u does not occur in α

ν u.A
α−→ ν u.A′

Par
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

Struct
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

uation contexts; and for labelled reductions α is a label of the form c(M), c〈u〉,
or ν u.c〈u〉 such that u is either a channel name or a variable of base type.
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5.1.2 Equivalence

The definition of observational equivalence [AF01] quantifies over all contexts
which makes proofs difficult, therefore we adopt labelled bisimilarity in this
article. Labelled bisimilarity relies on an equivalence relation between frames,
called static equivalence.

Definition 1 (Static equivalence). Two closed frames ϕ and ψ are statically
equivalent, denoted ϕ ≈s ψ, if dom(ϕ) = dom(ψ) and there exists a set of names
ñ and substitutions σ, τ such that ϕ ≡ ν ñ.σ and ψ ≡ ν ñ.τ and for all terms
M,N such that ñ∩(fn(M)∪fn(N)) = ∅, we have Mσ =E Nσ holds if and only if
Mτ =E Nτ holds. Two closed extended processes A,B are statically equivalent,
written A ≈s B, if their frames are statically equivalent; that is, ϕ(A) ≈s ϕ(B).

The relation ≈s is called static equivalence because it only examines the current
state of the processes, and not the processes’ dynamic behaviour. The following
definition of labelled bisimilarity captures the dynamic part.

Definition 2 (Labelled bisimilarity). Labelled bisimilarity (≈l) is the largest
symmetric relation R on closed extended processes such that A R B implies:

1. A ≈s B;

2. if A −→ A′, then B −→∗ B′ and A′ R B′ for some B′;

3. if A
α−→ A′ such that fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then

B −→∗ α−→−→∗ B′ and A′ R B′ for some B′.

Definitions of observational equivalence and labelled bisimilarity have been shown
to coincide [Liu11].

5.2 Modelling Helios in applied pi

We start by constructing a suitable signature Σ to capture the cryptographic
primitives used by Helios and define an equational theory E to capture the
relationship between these primitives.

5.2.1 Signature

We adopt the following signature.

Σ = {ok, zero, one,⊥, fst, snd, pair, ∗,+, ◦, partial, checkspk, penc, spk, dec}

Functions ok, zero, one, ⊥ are constants; fst, snd are unary functions; dec, pair,
partial, ∗, +, ◦ are binary functions; checkspk, penc are ternary functions; and
spk is a function of arity four. We adopt infix notation for ∗, +, and ◦.

The term penc(T,N,M) denotes the encryption of plaintext M , using ran-
dom nonceN and key T . The term U∗U ′ denotes the homomorphic combination
of ciphertexts U and U ′, the corresponding operation on plaintexts is written
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M + M ′ and N ◦ N ′ on nonces. The partial decryption of ciphertext U using
key L is denoted partial(L,U). The term spk(T,N,M,U) represents a signa-
ture of knowledge that proves U is a ciphertext under the public key T on the
plaintext M using nonce N and such that M is either the constant zero or one.
We introduce tuples using pairings and, for convenience, we occasionally ab-
breviated pair(M1, pair(. . . , pair(Mn,⊥))) as (M1, . . . ,Mn), and fst(sndi−1(M))
is denoted πi(M), where i ∈ N. We use the equational theory E that asserts
functions +, ∗, ◦ are commutative and associative, and includes the equations:

fst(pair(x, y)) = x (E1)

snd(pair(x, y)) = y (E2)

zero + one = one (E3)

zero + zero = zero (E4)

dec(xsk, penc(pk(xsk), xrand, xplain)) = xplain (E5)

dec(partial(xsk, ciph), ciph) = xplain (E6)

where ciph = penc(pk(xsk), xrand, xplain)

penc(xpk, yrand, yplain) ∗ penc(xpk, zrand, zplain) (E7)

= penc(xpk, yrand ◦ zrand, yplain + zplain)

checkspk(xpk, ball, spk(xpk, xrand, zero, ball))=ok (E8)

where ball = penc(xpk, xrand, zero)

checkspk(xpk, ball, spk(xpk, xrand, one, ball))=ok (E9)

where ball = penc(xpk, xrand, one)

Equation E6 allows plaintext M to be recovered from ciphertext penc(pk(L), N,
M) given partial decryption partial(L, penc(pk(L), N,M)), when the partial de-
cryption is constructed using the private key L. Equation E7 represents the
homomorphic combination of ciphertexts. The Equations E8 and E9 allow
the verification of signatures of knowledge spk(T,N,M, penc(T,N,M)), when
M ∈ {zero, one}. The remaining equations are standard.

Example 1. Given randomness N,N ′, plaintexts (M,M ′) ∈ {(zero, zero), (zero,
one), (one, zero)}, and public key T , one can construct a signature of knowledge
L = spk(T,N ◦N ′,M+M ′, penc(T,N,M)∗penc(T,N ′,M ′)). Then checkspk ap-
plied to the public key T , the homomorphically combined ciphertexts penc(T,N,
M) ∗ penc(T,N ′,M ′), and the signature L is equal to ok using Equations E3,
E7, E8, and E9

5.2.2 Helios process specification

In the applied pi calculus, it is sufficient to model the parts of the voting system
which need to be trusted for ballot secrecy; all the remaining parts of the system
are controlled by the adversarial environment. Accordingly, we assume the
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existence of at least two honest voters A, B; since this avoids the scenario where
ballot secrecy of an individual voter is compromised by collusion amongst all
the remaining voters. In addition, the following trust assumptions are required.

• At least one trustee is honest

• The election officer runs the bulletin board honestly:

– Voters A, B have authentic channels with the bulletin board

– Signatures of knowledge are checked*

– Ballots which contain a ciphertext that already exists on the bulletin
board are rejected*

– The tally is correctly computed*

– The trustees have an authentic channel with the bulletin board

• The browser script is trusted and has the correct public key of the election

(Assumptions marked with * could be performed by an honest trustee, rather
than the bulletin board.) Although neither voters nor observers can verify that
there exists an honest trustee, an assurance of trust is provided by distribu-
tion. The necessity to trust the election officer to run the bulletin board is
less desirable and work-in-progress [PAM10] aims to weaken this assumption;
moreover, to further distribute trust assumptions, the trustees could also check
signatures and tallying. Finally, trust in the browser script can be obtained by
using software written by a reputable source or writing your own code.

The trusted components are modelled by the administration process Aφ`,n
and voting process V` defined in Figure 4. For generality, the voting process V`
is parametrised by the number of candidates `. Similarly, the administration
process Aφ`,n is parametrised by the number of candidates `, the number of voters
n, and a formula φ; the formula φ defines the checks performed by the bulletin
board before accepting a ballot. We will consider several variants of Helios
(including the original Helios 2.0 protocol and our fixed scheme) by considering
suitable formula that we call Helios process specifications.

Definition 3 (Helios process specification). A formula φ`,n̄ is a Helios process
specification, if fv(φ`,n̄) ⊆ {y1, . . . , yn̄, yballot, zpk}.

The voting process V` contains free variables xvote1 , . . . , xvote` to represent the
voter’s vote (which is expected to be encoded using constants zero and one) and
the free variable xauth represents the channel shared by the voter and the bul-
letin board. The definition of the process V` corresponds to the description of
the browser script (Figure 1). The administration process Aφ`,n is parametrised
by the number of candidates `, the number of voters n, and a Helios process
specification φ. The restricted name skT models the tallier’s secret key and the
public part pk(skT ) is included in the process’s frame. The restricted names a1

and a2 model authentic channels between the two honest voters and the bulletin
board, and the channel name d captures the authentic channel with the honest
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Figure 4 Helios process specification

Let ` be some number of candidates, n ≥ 2 be some number of voters, and φ
be a Helios process specification. The administration process Aφ`,n and voting
process V` are defined below.

V` = ν r1 .
let ciph1 = penc(zpk, r1, x

vote
1 ) in

let spk1 = spk(zpk, r1, x
vote
1 , ciph1)) in

...
ν r` .
let ciph` = penc(zpk, r`, x

vote
` ) in

let spk` = spk(zpk, r`, x
vote
` , ciph`)) in

let r̂ = r1 ◦ · · · ◦ r` in

let ĉiph = ciph1 ∗ · · · ∗ ciph` in

let v̂ote = xvote1 + · · ·+ xvote` in

let ŝpk = spk(zpk, r̂, v̂ote, ĉiph) in

xauth〈(ciph1, . . . , ciph`, spk1, . . . , spk`, ŝpk)〉

Aφ`,n = ν skT , a1, a2, d . ( | BBφ`,n | T` | {pk(skT )/zpk})

BBφ`,n = a1(y1) . c〈y1〉 . a2(y2) . c〈y2〉 .
a3(y3) . if φ`,2{y3/yballot} then
· · · an(yn) . if φ`,n−1{yn/yballot} then
let tally1 = π1(y1) ∗ · · · ∗ π1(yn) in
· · · let tally` = π`(y1) ∗ · · · ∗ π`(yn) in

d〈(tally1, . . . , tally`)〉 .
d(ypartial) .
c〈ypartial〉 .
c〈(dec(π1(ypartial), tally1), . . . , dec(π`(ypartial), tally`))〉

T` = d(ytally) .

d〈(partial(skT , π1(ytally)), . . . , partial(skT , π`(ytally)))〉

trustee. To ensure the adversary has access to messages sent on private chan-
nels, communication is relayed on the public channel c. The sub-process BBφ`,n
represents the bulletin board and T` represents the tallier. The bulletin board
accepts ballots from each voter and checks they are valid using the Helios process
specification φ (this predicate will be discussed in more detail below). Once all
ballots have been submitted, the bulletin board homomorphically combines the
ciphertexts and sends the encrypted tallies to the tallier for decryption. (The
necessity for all voters to participate is included for simplicity, in particular,
our bulletin board does not weed ballots containing invalid proofs.) The tallier
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receives the homomorphic combinations of ballots ytally and derives a partial
decryption for each candidate; these partial decryptions are sent to the bulletin
board and the election result is published.

The voting process V` is parametrised by a substitution σ, where variables
xvote1 , . . . , xvote` ∈ dom(σ); these variables must be parametrised to encode a vote
for at most one candidate, that is, there exists at most one integer i ∈ {1, . . . , `}
such that Σ ` xvotei σ = one. Formally, we define valid parametrisations using
the notion of candidate substitutions.

Definition 4 (Candidate substitution). Given some number of candidates `
and a substitution σ, we say σ is a candidate substitution if

Σ ` (xvote1 + · · ·+ xvote` )σ = zero ∨ Σ ` (xvote1 + · · ·+ xvote` )σ = one

It follows immediately that bitstrings m1, . . . ,m` generated during Step 2 of
Figure 1 can be modelled as candidate substitutions.

The application of our model is demonstrated in the following example.

Example 2. Let ` be some number of candidates, n ≥ 2 be some number
of voters, and φ be a Helios process specification. An election with voters A
and B who select candidate substitutions σ and τ , and such that the other
n − 2 voters are controlled by the adversary, can be modelled by the process
Aφ`,n[V`{a1/xauth}σ | V`{a2/xauth}τ ].

Ballot validity. In Helios 2.0, the election officer considers a ballot to be valid
if the signature proofs of knowledge hold. Accordingly, we can model the Helios

administration by the process Aφ
orig

`,n where the Helios process specification φorig,
parametrised by the number of candidates `, is defined as follows.

φorig` , checkspk(zpk, π1(yballot) ∗ · · · ∗ π`(yballot), π2·`+1(yballot)) = ok ∧
checkspk(zpk, π1(yballot), π`+1(yballot)) = ok ∧ . . . ∧

checkspk(zpk, π`(yballot), π2·`(yballot)) = ok

We have shown that these checks are insufficient to ensure ballot secrecy (Sec-
tion 3). Our ballot weeding solution, proposed in Section 4.1, additionally re-
quires that the ciphertexts inside the ballot do not appear on the bulletin board.
This revised scheme can be modelled using the Helios process specification φsol,
parametrised by the number of candidates ` and number of ballots already on
the bulletin board n̄, defined as follows.

φsol`,n̄ , φorig` ∧ π2·`+2(yballot) = ⊥ ∧
∧

i,j∈{1,...,`},
k∈{1,...,n̄}

πi(yk) 6= πj(yballot)

We can also model a näıve solution that would consist in weeding only identical
ballots by considering the Helios process specification φident, parametrised by
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the number of candidates ` and number of ballots already on the bulletin board
n̄, defined below.

φident`,n̄ , φorig` ∧ π6(yballot) = ⊥ ∧
∧

k∈{1,...,n̄}

yballot 6= yk

We have already shown that removing exact duplicates is insufficient because
it would fail to detect variants of our attack whereby the contents of a ballot
are permuted. In the next section, we formally show that Helios 2.0 (modelled
using φorig) and the näıve solution (modelled using φident) do not satisfy ballot
secrecy, and that our proposed solution (modelled using φsol) does satisfy ballot
secrecy.

5.3 Formal analysis: Ballot secrecy

Based upon [KR05, DKR06, DKR09], and as previous discussed (see related
work in Section 1), we formalise ballot secrecy for two voters A and B with
the assertion that an adversary cannot distinguish between a situation in which
voter A votes for candidate t and voter B votes for candidate t′, from another
situation in which A votes t′ and B votes t. Formally, this is captured by
Definition 5.

Definition 5 (Ballot secrecy). Given a Helios process specification φ, we say
ballot secrecy is satisfied if for all integers ` ∈ N∗ and n ≥ 2, and for all
candidates substitutions σ and τ , we have

Aφ`,n[V`{a1/xauth}σ | V`{a2/xauth}τ ] ≈l Aφ`,n[V`{a1/xauth}τ | V`{a2/xauth}σ]

The ballot secrecy definition proposed by Delaune, Kremer & Ryan considered
a vote to be an arbitrary name, whereas a vote in our setting must be a series of
the constant symbols zero and one, such that their combination by application
of the function + is also a constant zero and one; it follows that Definition 5 is
a straightforward variant of the original.

The Helios 2.0 protocol does not satisfy our privacy definition (Lemma 3)
and näıve weeding solutions are also insufficient (Lemma 4).

Lemma 3. The Helios process specification φorig does not satisfy ballot secrecy.

Intuitively, the proof of Lemma 3 is due to the environment’s ability to replay
A’s ballot, therefore introducing an observable difference: the result will include
two instances of A’s vote. Formally, this follows immediately from the proof
Lemma 4.

Lemma 4. The Helios process specification φident does not satisfy ballot secrecy.

Proof. Consider ` = 2, n = 3, σ = {zero/xvote1
, one/xvote2

} and τ = {one/xvote1
,

zero/xvote2
}. We consider a sequence of transitions where the two voters output

their ballots and then the adversary chooses its ballots to be a permutation of the
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first voter’s ballot. Namely, if the first voter’s ballot is (ciph, ciph′, spk, spk′, ŝpk)

then the adversary outputs (ciph′, ciph, spk′, spk, ŝpk). Formally, this corre-
sponds to the following transitions

Aφ`,n[V`{a1/xauth}σ | V`{a2/xauth}τ ]

−→ ν x.c〈x〉−−−−−→−→ ν y.c〈y〉−−−−−→
c((π2(x),π1(x),π4(x),π3(x),π5(x)))
−−−−−−−−−−−−−−−−−−−−−−→−→∗ ν z.c〈z〉−−−−−→ ν ñ.τ1

for some names ñ and substitution τ1, such that:

dec(π1(z), π1(x) ∗ π1(y) ∗ π2(x))τ1 =E one + one

This labelled transition has to matched by

Aφ`,n[V`{a1/xauth}τ | V`{a2/xauth}σ]

−→ ν x.c〈x〉−−−−−→−→ ν y.c〈y〉−−−−−→
c((π2(x),π1(x),π4(x),π3(x),π5(x)))
−−−−−−−−−−−−−−−−−−−−−−→−→∗ ν z.c〈z〉−−−−−→ ν ñ.τ2

for some names ñ and substitution τ2, such that:

dec(π1(z), π1(x) ∗ π1(y) ∗ π2(x))τ2 =E one

It follows immediately that ν ñ.τ1 6≈s ν ñ.τ2 and, hence, φident does not satisfy
ballot secrecy.

In contrast, removing duplicates up to permutation ensures ballot secrecy.

Theorem 1. The Helios process specification φsol satisfies ballot secrecy.

ProVerif is an automatic tool that can check equivalence in the applied pi
calculus [BAF08]. Although ProVerif has been successfully used to prove ballot
secrecy (for example, in the Fujioka, Okamoto & Ohta protocol [DRS08]), it
cannot prove Theorem 1, at the time of writing, for two main reasons. Firstly,
ProVerif cannot prove equivalences under the homomorphic equation (Equa-
tion E7). Secondly, our theorem states ballot secrecy for any number n of
participants and ProVerif cannot handle parametrised processes (see Paiola &
Blanchet [PB12, PB11, Pai10] for some initial progress in this direction). We

proceed by constructing a relation that relates Aφ`,n[V`{a1/xauth}σ | V`{a2/xauth}τ ]

and Aφ`,n[V`{a1/xauth}τ | V`{a2/xauth}σ], and all their successors, such that it sat-
isfies the three properties of Definition 2. In particular, the two final frames
(containing the result of the election) should be statically equivalent.

Definition 6 (Valid ballot). A term T is said to be a valid ballot in an election
with ` candidates if [[φsol`,0{T/yballot}]] = true.

By definition, the bulletin board accepts only valid ballots. A key step to proving
static equivalence is to show that any valid ballot submitted to the bulletin board
by the environment is “equivalent” to a term of the form (penc(zpk, N1,M1), . . . ,
penc(zpk, N`,M`), S1, . . . , S`+1), where {M1/xvote1

, . . . ,M`/xvote`
} is a candidate

substitution. This allows us to deduce that the election outcome produced by
Aφ`,n[V`{a1/xauth}σ | V`{a2/xauth}τ ] is exactly the same as in Aφ`,n[V`{a1/xauth}τ |
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V`{a2/xauth}σ]. We can then conclude the proof of Theorem 1 by showing that
the partial decryptions and the encrypted ballots of honest voters do not leak
any extra information to the adversary. The full proof appears in Appendix B.

5.4 Limitations

The limitations of our model, which we introduced to simplify the presentation
and proof, are detailed below; we believe a full security proof should follow us-
ing similar reasoning. We make use of a (standard) definition of ballot secrecy
which is limited to elections with two honest voters [KR05, DKR06, DKR09]. In
addition, the definition of ballot secrecy does not consider parallel composition
of protocol executions and we therefore recommend using distinct keys for each
election (although we believe it should be sufficient to include an election iden-
tifier – for example, the election fingerprint – in the challenge hashes included
within signatures of knowledge, similar to the methodology in Section 4.2). The

administrative process Aφ`,n enforces an ordering on voters (namely, the voter
using private channel a1 must vote first, followed by the voter using private
channel a2, and then any remaining voters – controlled by the adversarial envi-
ronment – can vote); this limitation could be overcome by parametrising Aφ`,n
with the channel names to restrict and by a minor unification of the bulletin pro-
cess BBφ`,n, however, this generalisation is of limited interest and would come at
the cost of over-complicating the proof. In addition, the administrative process
Aφ`,n does not permit revoting. The signature and equational theory do not cap-
ture low-level technical details of public keys, in particular, we consider a single
honest tallier and we do not model distributed keys nor signatures of knowledge
to verify correct construction of both keys and partial decryptions (nonethe-
less, we include Equation E6 which models decryption of a ciphertext using a
correctly constructed partial decryption). Finally, we offer the usual caveat to
formal analysis and acknowledge that our result does not imply the absence of
real-world attacks (see, for example, [RS98, AR00, AR02, War03, War05]). It
may, therefore, be possible to modify the ballot in a way that would not be
captured by our analysis. We partly overcome these limitations in our further
work [BCP+11] by presenting a variant of Helios that is provably secure in a
cryptographic setting.

6 Attacks against other schemes

This section demonstrates that the absence of ballot independence can be ex-
ploited in other electronic voting protocols to violate privacy. In particular,
we demonstrate replay attacks against schemes by Sako & Kilian [SK94] and
Schoenmakers [Sch99], and we show that the malleable cryptographic scheme
adopted by Lee et al. [LBD+04] can be exploited to launch attacks.
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6.1 Exploiting replays in the protocol by Sako & Kilian

The Sako & Kilian [SK94] electronic voting scheme capitalises upon advances
in cryptography to improve the Banaloh & Yung protocol [BY86]. The scheme
is interesting because it was one of the first electronic voting protocols to adopt
the Fiat-Shamir heuristic to derive non-interactive proofs (this evolution was
key for the development of end-to-end verifiable electronic voting systems): a
three-round zero-knowledge proof consisting of a commitment, challenge and
response can be reduced to a non-interactive proof by replacing the challenge
with a hash on the commitment. However, we show that the application of the
Fiat-Shamir heuristic compromises ballot secrecy. In particular, the interactive
nature of zero-knowledge proofs guarantees freshness, whereas, non-interactive
proofs, derived using the Fiat-Shamir heuristic, do not assure freshness. This
can be exploited by a replay attack to violate ballot secrecy.

6.1.1 Protocol description

The scheme is based upon a pair of partially compatible homomorphic encryption
functions, that is, a pair of functions f1, f2 over Zq, where q is prime, such that
for all i, j ∈ {1, 2} the following properties are satisfied:

• fi(x+ y) = fi(x) · fi(y), where x, y ∈ Zq

• Distributions (fi(x), fj(y)) and (fi(x), fj(x)) are computationally indis-
tinguishable, where x and y are chosen uniformly in Zq.

The voting protocol is defined for m ∈ N voters as follows.

Setup. Talliers T and T ′ publish public keys k and k′ for a public key en-
cryption scheme E (which need not be homomorphic).

Voting. Given vote vi ∈ {−1, 1}, the voter generates nonces xi, x
′
i ∈ Zq such

that vi = xi + x′i and constructs her ballot as follows:

Yi = f1(xi)
Y ′i = f2(x′i)
Zi = E(k, xi)
Z ′i = E(k′, x′i)

In addition, the voter is required to prove xi + x′i ∈ {1,−1} in zero-knowledge.
However, to avoid an interactive proof, the Fiat-Shamir heuristic is applied to
derive a signature of knowledge σi. (For brevity we omit the construction of σi,
see [SK94, Figure 1] for details.)

Tallying. Given ballots Y1, Y
′
1 , Z1, Z

′
1, σ1, . . . , Yn, Y

′
n, Zn, Z

′
n, σn, tallier T de-

crypts each Zi to recover x̂i and checks Yi = f1(x̂i), similarly, tallier T ′ decrypts
Z ′i to recover x̂′i and checks Y ′i = f1(x̂′i); the talliers also check the signature
of knowledge σi. The talliers publish V =

∑m
i=1 x̂i and V ′ =

∑m
i=1 x̂

′
i, and the
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result is T = V + V ′, which can be verified by checking f1(V ) =
∏m
i=1 Yi and

f2(V ′) =
∏m
i=1 Y

′
i .

6.1.2 Attacking ballot secrecy

We show that the voting protocol by Sako & Kilian does not satisfy ballot se-
crecy, by presenting a replay attack which allows an adversary to reveal a voter’s
vote. Intuitively, an adversary may observe the ballot posted by a particular
voter and recast this ballot by corrupting dishonest voters. The multiple occur-
rences of the voter’s ballot will leak information in the tally and the adversary
can exploit this knowledge to violate the voter’s privacy. An informal descrip-
tion of the attack will now be presented in the case of three eligible voters.

Let us consider an election with three eligible voters who have identities id1,
id2 and id3. Suppose that voters id1, id2 are honest and id3 is a dishonest voter
controlled by the adversary. Further assume that the adversary has observed
the ballot

Yk, Y
′
k, Zk, Z

′
k, σk

being cast by the voter whose privacy will be compromised.

Replaying a ballot. As shown by Gennaro [Gen95], an adversary can replay
the ballot Yk, Y

′
k, Zk, Z

′
k, σk, thereby violating ballot independence. (The viola-

tion of ballot independence is due to the adversary’s ability to cast the same
vote as the honest voter.) Since the ballot was constructed by an honest voter,
it is trivial to see that it will be considered valid by the talliers. We will now
show how the lack of ballot independence can be exploited to violate privacy.

Violating privacy. The bulletin board will be constructed as follows

Y1, Y
′
1 , Z1, Z

′
1, σ1, Y2, Y

′
2 , Z2, Z

′
2, σ2, Yk, Y

′
k, Zk, Z

′
k, σk, V, V

′

where k ∈ {1, 2}, V = x1 + x2 + xk and V ′ = x′1 + x′2 + x′k. It follows from
the protocol description that vi = xi + x′i, where i ∈ {1, 2, k}, and the result
T = V +V ′ = v1+v2+vk. Since there will be at least two votes for the candidate
voter idk voted for, the voter’s vote can be revealed: if T ≥ 2, then vk = 1;
otherwise vk = −1. It follows that the voter’s privacy has been compromised;
moreover, the vote of the remaining honest voter is T − 2 · vk.

6.1.3 Independence and the Fiat-Shamir heuristic

The interactive nature of zero-knowledge proofs guarantees freshness, because
every proof contains a unique challenge, and this ensures independence. By
comparison, non-interactive proofs, derived using the Fiat-Shamir heuristic, do
not assure freshness, in particular, non-interactive proofs can be replayed. As
a consequence, application of the Fiat-Shamir heuristic may compromise the
security of cryptographic protocols and we have shown how application of the
heuristic erodes privacy in the electronic voting scheme by Sako & Kilian. This
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demonstrates that the use of the Fiat-Shamir heuristic requires some care and
highlights the necessity for thorough security analysis.

6.1.4 Generalising replay attacks

The replay attack against Helios, and the voting protocol by Sako & Kilian, can
be generalised to other schemes where an adversary can observe a ballot cast
by a particular voter and replay this ballot verbatim. In particular, the voting
protocol by Schoenmakers [Sch99] fits this description.

Exploiting replays in the protocol by Schoenmakers. The electronic
voting protocol by Schoenmakers [Sch99] is based upon [CFSY96, CGS97]. The
scheme explicitly aims to provide efficient small-scale elections (for example,
boardroom elections) and, given that our attack is particularly well suited to
small-scale elections, we find it interesting to study the possibility of violating
ballot secrecy in this setting. Ballot independence is not provided [Sch99, §5]
and we exploit privacy using a replay attack. The attack description is straight-
forward and follows immediately from our discussion; accordingly, we omit the
details and refer the interested reader to our technical report [SC11, §3].

6.1.5 Possible solutions: Weeding duplicate ballots

Our attacks against the voting protocols by Sako & Kilian and Schoenmakers
exploit the possibility of replaying a voter’s ballot without detection. We believe
it should be sufficient for the election officer to reject any duplicate ballots to
ensure ballot secrecy, alternatively, the unique identifiers solution (Section 4.2)
may also be suitable. Proving the security of these solutions remains an open
problem.

6.2 Exploiting malleability in the protocol by Lee et al.

The Lee et al. [LBD+04] electronic voting scheme adopts an offline tamper-
resistant hardware device to ensure receipt freeness; more precisely, the hard-
ware device takes an ElGamal encrypted vote as input and outputs a re-encrypted
ciphertext, this prevents a voter proving how she voted by reconstruction as she
does not know the nonce introduced for re-encryption. In addition, the hardware
device provides a Designated Verifier Proof of re-encryption, thereby allowing
the voter to verify that the device behaved correctly. The device is assumed
to be offline and, hence, communication between the voter and the device is
assumed to be untappable.

6.2.1 Background: Multiplicative homomorphic ElGamal

The scheme uses multiplicative homomorphic ElGamal, rather than the addi-
tive variant presented in Section 2.1. The operations for key generation, ho-
momorphic combination and re-encryption are standard; albeit, the result of
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homomorphic combination is the multiplication of plaintexts, rather than the
addition of plaintexts. We recall the operations for encryption and decryption
below.

Encryption. Given a message m and a public key h, select a random nonce
r ∈R Z∗q and derive the ciphertext (a, b) = (gr mod p, m · hr mod p).

Distributed decryption. Given a ciphertext (a, b), each trustee i ∈ n com-
putes the partial decryption ki = axi . The plaintext m = b/(k1 · . . . · kn) mod p.

The application of these primitives to derive the scheme by Lee et al. will be
discussed in the next section.

6.2.2 Protocol description

An election is created by naming an election officer, selecting a set of mixers,
and choosing a set of trustees. The trustees generate a distributed public key
pair and the election officer publishes the public key on the bulletin board. (For
robustness, threshold ElGamal may be used; we omit these details for brevity.)
The election officer also publishes the candidate list, the public keys of eligible
voters, and the public keys of the tamper-resistant hardware devices. Informally,
the steps that the participants take during an election are as follows.

1. The voter constructs an ElGamal ciphertext (a, b) containing her vote v
and sends the ciphertext to her tamper-resistant hardware device.

2. The hardware device re-encrypts the voter’s ciphertext to produce (a′, b′)
and computes a Designated Verifier Proof of re-encryption τ . The device
also derives a signature σ on the re-encryption. The hardware device
returns (a′, b′), σ, τ to the voter.

3. If the signature and proof are valid, then the voter generates a signature
σ′ on the message σ using her private key. The voter submits her ballot
(a′, b′), σ, σ′ to the bulletin board.

4. Individual voters can check that their ballots appear on the bulletin board
and can be assured that the ciphertext (a′, b′) contains their vote v by
verifying the Designated Verifier Proof τ .

5. Voters and observers can check that ballots were cast by registered voters
by verifying signatures σ′, and are assured that each voter cast at most
one ballot by checking that no voter signed two values. In addition, voters
and observers should verify signatures σ for receipt freeness.

6. After some predefined deadline, valid ballots (that is, ballots associated
with valid signatures σ and σ′) are submitted to the mixers. Anyone can
check that mixing is performed correctly.
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7. Each of the trustees publishes a partial decryption for every ciphertext
output by the mix. Anyone can verify these proofs.

8. The election officer decrypts each ciphertext and publishes the election
result. Anyone can check these decryptions.

See Lee et al. [LBD+04] for further details.

6.2.3 Attacking ballot secrecy

We show that the voting protocol by Lee et al. [LBD+04] does not satisfy bal-
lot secrecy by recalling the attack by Dreier, Lafourcade & Lakhnech [DLL11]
that exploits malleability to reveal a voter’s vote. Intuitively, an adversary may
identify a voter’s encrypted vote on the bulletin board, since it is signed by
the voter. This ciphertext can be submitted to a tamper-resistant hardware
device (possibly after re-encryption) and the device will return (â, b̂), σ̂, τ̂ ; the

ballot (â, b̂), σ̂, σ̂′ can then be submitted by the adversary to the bulletin board,
where σ̂′ is a signature on σ̂ constructed by a registered voter under the adver-
sary’s control. As explained in Section 6.1.2, the multiple occurrences of the
voter’s ballot will leak information in the tally and the adversary can exploit
this knowledge to violate the voter’s privacy.

Variant exploiting homomorphic encryption. The adversary can exploit
the homomorphic properties of ElGamal to avoid casting the same vote as an
honest voter. In this variant, suppose the adversary wants to recover the vote
from ballot (a′k, b

′
k), σk, σ

′
k, the adversary derives the ciphertext (c, d) = (a′k, b

′
k)·

(c′, d′), where (c′, d′) is an ElGamal ciphertext containing some message m. The
adversary submits the ciphertext (c, d) to a tamper-resistant hardware device

and the device will return (ĉ, d̂), σ̂, τ̂ ; the ballot (ĉ, d̂), σ̂, σ̂′ can be submitted by
the adversary to the bulletin board, where σ̂′ is a signature on σ̂ constructed
by a registered voter. The output of the mix will include the adversaries re-
encrypted ciphertext and the election officer will publish m · v on the bulletin
board, where ciphertext (a′k, b

′
k) includes the vote v. This variant of the attack

is interesting because the adversary’s ballots are undetectable, in particular,
weeding ballots would clearly not be sufficient to ensure privacy.

6.2.4 Exploiting replays in protocols based upon mixnets

In homomorphic election schemes, voters encrypt their votes and ciphertexts are
homomorphically combined before decryption. By comparison, in mixnet elec-
tion schemes, voters encrypt their votes, ciphertexts are shuffled, and individual
ciphertexts are decrypted. (The decryption of individual ciphertexts in mixnet
elections can provide an advantage over homomorphic elections, since ballot
construction can be simplified, for example, the number of ciphertexts used
by Helios corresponds to the number of candidates, whereas, one ciphertext
is sufficient in mixnet elections.) Privacy is ensured in homomorphic election
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schemes by never revealing the contents of individual ciphertexts, whereas, pri-
vacy is ensured in mixnet election schemes by breaking the link between the
mix’s input and output. As highlighted by Pfitzmann & Pfitzmann [PP89], in-
dependence is necessary in mixnets because the input ciphertexts are eventually
decrypted, therefore, any meaningfully related ciphertexts input to the mixnet
can be meaningfully related once the mix’s output is decrypted. In the con-
text of electronic voting, it follows that a voter’s privacy can be violated if an
adversary can construct a ciphertext meaningfully related to the voter’s cipher-
text and the election result contains exactly two votes satisfying the adversary’s
relation.

7 Relationships between security properties

The variants of our attack (Section 3.2) abuse ballot malleability to violate
privacy and our ballot weeding solution achieves privacy by ensuring ballots are
independent. In this section, we study the relationships between independence
and privacy, and independence and malleability.

7.1 Independence and privacy are unrelated properties

In the context of Helios, we have shown that ballot independence is sufficient for
ballot secrecy, however, we will now present examples that suggest independence
and privacy are unrelated in a more general context.

A protocol with independence but no privacy. Consider a variant of
the fixed Helios voting scheme in which each of the trustees publish a partial
decryption of individual ciphertexts (rather than a partial decryption of the ho-
momorphically combined ciphertexts, that is, the encrypted tally). Intuitively,
this variant preserves ballot independence but does not satisfy ballot secrecy,
since the partial decryptions allow votes to be recovered from ballots and the
link between a voter and her ballot is known. Formally, this variant is captured

by modelling the Helios administrator process as sAφ
sol

n , defined in Figure 5. The
violation of ballot secrecy can be witnessed since

sAφ
sol

2 [V {a1/xauth}σ | V {a2/xauth}τ ] 6≈l sAφ
sol

2 [V {a1/xauth}τ | V {a2/xauth}σ]

where σ = {zero/xvote1
, one/xvote2

} and τ = {one/xvote1
, zero/xvote2

}. Similarly, a further
variant of the fixed Helios scheme in which each of the trustees publishes their
private key at the end of the voting phase, rather than a partial decryption of
the encrypted tally, also satisfies independence but not ballot secrecy.

A protocol with privacy but no independence. Consider a voting scheme
in which each voter broadcasts their vote on an anonymous communication
channel. Formally, the voter is modelled by the process P = c〈xvote〉, where
variable xvote is parametrised by the voter’s vote. For ballot secrecy it is sufficient

36



Figure 5 Helios administrator that preserves independence but not privacy

Given the number of voters n ≥ 2 the administration process sAφ
sol

n is defined
below, where process T is presented in Figure 4.

sAφ
sol

n = ν skT , a1, a2, d . ( | ĚBB
φsol

n | !T | {pk(skT )/zpk})

ĚBB
φsol

n = a1(y1) . c〈y1〉 . a2(y2) . c〈y2〉 .
a3(y3) . if φsol{y3/yballot} then
· · · an(yn) . if φsol{yn/yballot} then

d〈(π1(y1), π2(y1))〉 . d(z1) . c〈z1〉 .
· · · . d〈(π1(yn), π2(yn))〉 . d(zn) . c〈zn〉

to show P{M/xvote} | P{N/xvote} ≈l P{N/xvote} | P{M/xvote} for all ground
terms M and N ; this result trivially holds by structural equivalence and hence
the scheme satisfies ballot secrecy. However, independence is intuitively violated
in this setting, because an adversary may observe the voting system and replay
a previously cast vote, that is, an adversary can cast the same vote as another
voter (without knowing which voter). In addition, it follows that early results
are available in this scheme.

We also expect some published electronic voting schemes based upon blind
signatures to satisfy ballot secrecy but not independence; in particular, a more
realistic example of a protocol that satisfies this property is the protocol by
Fujioka, Okamoto & Ohta [FOO92] under the assumption that duplicates are
not rejected. Indeed, independence can be violated by a verbatim replay of the
signed committed vote.

Nonetheless, we believe a weaker property exists: privacy and authenticated
ballots implies independence, where the term authenticated ballot means the
link between an arbitrary ballot and associated voter is known (for example,
our unique identifiers solution uses authenticated ballots). Informally, this can
be witnessed as follows: suppose a system satisfies privacy and authenticated
ballots but not independence, it follows that an adversary can identify a voter’s
ballot and, since there is no independence, replay that ballot; privacy is then
violated, as we have shown in this article, hence deriving a contradiction. In
addition, Bernhard, Pereira & Warinschi [BPW12] propose a context where
privacy implies independence.

7.2 Non-malleability is stronger than independence

Non-malleability asserts that an adversary can only construct meaningfully re-
lated ballots if the related ballots are constructed by the adversary [DDN91,
BDPR98, DDN00]. By comparison, given an election’s bulletin board, ballot
independence asserts that an adversary can only construct a ballot which will
be accepted by the bulletin board and be meaningfully related to an existing
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ballot on the board, if the adversary constructed both ballots. It intuitively
follows that non-malleability implies ballot independence, since an adversary
that is unable to construct a ballot meaningfully related to a non-adversarial
ballot, is also unable to construct a ballot that will be accepted by an election’s
bulletin board and be meaningfully related to a non-adversarial ballot from the
bulletin board. By contrast, our ballot weeding solution (Section 4.1) suggests
that non-malleability is not necessary for independence. Indeed, we have shown
that an adversary can form several ballots that are meaningfully related to an
initial one. All ballots are of the right format (in particular they contain a valid
proof). In that sense, ballots are malleable. However, the additional checks
of the ballot box (weeding duplicates) will reject them. Our unique identifier
solution (Section 4.2) provides further evidence to support our claim that non-
malleability is not necessary for independence. In this setting, a non-adversarial
ballot from the bulletin board can be manipulated using all of the techniques
defined in Section 3.2 to derive a meaningfully related ballot, nevertheless, if
the adversary constructs such a ballot, then the ballot will be rejected by the
bulletin board, because it is not bound to the adversary’s identity. Our exam-
ples therefore provide evidence to suggest that non-malleability is not necessary
for independence.

7.3 Discussion

In this article, we cannot make any definitive mathematical statements about
the relationships between independence and privacy or independence and non-
malleability, because independence has not been formally defined. Nonetheless,
we hope this section provides some insight into the relationships we expect.

8 Related work

Our attack against Helios relies upon the lack of ballot independence. The
concept of independence was introduced by Chor et al. [CGMA85] and the
possibility of compromising security properties due to the lack of independence
has been considered, for example, in [CR87, PP89, Pfi94, DDN91, DDN00,
Gen00]. In the context of electronic voting, Gennaro [Gen95] demonstrates that
the application of the Fiat-Shamir heuristic in the Sako-Kilian electronic voting
protocol [SK94] violates ballot independence, and Wikström [Wik06, Wik08]
studies non-malleability for mixnets to achieve ballot independence. Sako &
Kilian [SK95, §2.4] and Michels & Horster [MH96, §3] discuss how the absence
of ballot independence can be exploited to compromise privacy.

Our attack is also reliant on the voter’s ability to cast a ballot as a function
of another voter’s ballot, for example, our basic attack (Section 3.1) applies the
identity function and our variant in Section 3.2.2 performs a permutation on
the ballot’s internal structure. In related work, Benaloh [Ben96] demonstrates
that a simplified version of his voting scheme allows the administrator’s private
key to be recovered by an adversary who constructs (and casts) a ballot as a
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function of other voters’ ballots.
Estehghari & Desmedt [ED10] claim to present an attack which undermines

privacy and end-to-end verifiability in Helios. However, their attack is depen-
dent on compromising a voter’s computer, a vulnerability which is explicitly
acknowledged by the Helios specification [AMPQ09]: “a specifically targeted
virus could surreptitiously change a user’s vote and mask all of the verifications
performed via the same computer to cover its tracks.” Accordingly, [ED10] rep-
resents an exploration of known vulnerabilities rather than an attack.

Other studies of Helios have also been conducted, in particular, Langer et
al. [Lan10, LSBV10] and Volkamer & Grimm [VG10] study privacy in Helios.
Langer et al. propose a taxonomy of informal privacy requirements [Lan10,
LSBV10, LSB+10] to facilitate a more fine-grained comparison of electronic
voting systems, this framework is used to analyse Helios and the authors claim
ballot secrecy is satisfied if the adversary only has access to public data [Lan10,
LSBV10]. Volkamer & Grimm introduce the k-resilience metric [VG10, Vol09]
to calculate the number of honest participants required for ballot secrecy in
particular scenarios, this framework is used to analyse Helios and the authors
claim ballot secrecy is satisfied if the software developers are honest and the key
holders do not collude [VG10]. Our attacks invalidate these claims. We believe
the erroneous results reported by Langer et al. are due to a lack of formally
written proofs, and the approach by Volkamer & Grimm failed because only
some particular scenarios were considered.

In our further work with Bernhard et al. [BCP+11], we present a compu-
tational security proof demonstrating that any variant of Helios using an IND-
CCA2 secure encryption scheme provides ballot secrecy and, more concretely,
propose a variant using the Naor-Yung paradigm [NY90] to derive an IND-
CCA2 secure encryption scheme from ElGamal. In this setting, independence
is achieved using non-malleable ballots. Intuitively, the use of ElGamal and a
suitable signature of knowledge scheme allows us to derive an IND-CCA2 se-
cure encryption scheme; indeed, Tsiounis & Yung [TY98] and Schnorr & Jakob-
sson [SJ00] provide some evidence to support this hypothesis, however, these
results are presented in the generic group model and proving this result under
weaker assumptions is an open problem [SG98, SG02]. Nonetheless, it appears
that a more efficient provably secure variant of Helios can be derived.

In principle, work by Bernhard, Pereira & Warinschi [BPW12] supports the
aforementioned proposal that a more efficient variant of Helios exists: Bern-
hard, Pereira & Warinschi prove that an IND-CPA encryption scheme and a
suitable signature of knowledge can be combined to derive NM-CPA security,
and the minivoting scheme [BCP+11] is shown to satisfy ballot secrecy for any
NM-CPA secure encryption scheme. Bernhard, Pereira & Warinschi argue that
the minivoting scheme forms the basis of Helios and informally claim that Helios
is therefore secure since the transformation from minivoting to Helios does not
affect ballot secrecy. However, the minivoting scheme is restricted to ballots
containing a single ciphertext, hence the security of Helios can only be guar-
anteed for ballots that contain a vote for a single candidate (for example, in
referendums).
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A further variant of Helios is proposed by Bulens, Giry & Pereira [BGP11]
using mixnets rather than homomorphic encryption. As highlighted by Pfitz-
mann & Pfitzmann [PP89], independence is necessary in mixnets because the
input ciphertexts are eventually decrypted and Bulens, Giry & Pereira use an
IND-CCA2 secure encryption scheme to derive non-malleability and therefore
independence.

Delaune, Kremer & Ryan [DKR06, DKR09] have shown that a variant of the
Lee et al. protocol satisfies coercion resistance for two honest voters; but, based
upon our preliminary results [CS11], Dreier, Lafourcade & Lakhnech [DLL11]
demonstrate an attack against privacy for three voters, when one voter is under
the adversary’s control3. Furthermore, using a stronger definition of coercion
resistance, Küsters & Truderung [KT09] have demonstrated a forced abstention
attack; in addition, Küsters & Truderung propose a variant of the scheme by
Lee et al. which is claimed to satisfy their stronger definition. In this article,
we show a new attack against the original Lee et al. protocol and show that the
revised scheme by Küsters & Truderung might not be secure under reasonable
assumptions.

A preliminary version of this work [CS11] appeared at the 24th Computer
Security Foundations Symposium. By comparison, in this article, we provide
further variants of our attack (a preliminary presentation of these variants ap-
pears on ePrint [Smy12]), a more detailed description of our results, a generali-
sation of our ballot secrecy proof to a setting with arbitrary many candidates,
and include complete proofs. In addition, we show that other electronic voting
protocols are vulnerable to our attack and we discuss the relationships between
independence and privacy, and independence and malleability.

9 Conclusion

This article identifies a vulnerability in the Helios 2.0 electronic voting protocol
which can be used to violate ballot secrecy. Critics may argue that an attack is
unrealistic due its high cost; indeed, in some cases, the attack may change the
outcome of an election (that is, the votes introduced for the purposes of violating
privacy may swing the result), and large scale privacy invasions would be expen-
sive in terms of the required number of dishonest voters. However, if the views of
these critics are to be entertained, then we must revise the standard definitions
of ballot secrecy in the literature – for example, [KR05, DKR06, BHM08] – be-
cause Helios cannot satisfy them. Furthermore, we believe all voters should be
considered equally and, hence, the preservation of ballot secrecy should be uni-
versal. But, for elections using Helios, our case study demonstrates the contrary:
in French legislative elections a coalition of voters can gain some information
about a voter’s vote in an arbitrary polling station and, moreover, if the number
of voters registered at a particular polling station is small (for example, in a ru-

3The formal model by Dreier, Lafourcade & Lakhnech includes the voter’s signature on the
signed re-encrypted ciphertext and this is exploited by their attack; by comparison, the model
by Delaune, Kremer & Ryan omits this detail and therefore the attack cannot be witnessed.
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ral setting), then a voter’s privacy can be violated by a few dishonest voters. It
follows that privacy of individual voters can be compromised by a few dishonest
voters and, accordingly, we believe our attack is significant. To address the
problem, we have introduced a variant of the Helios protocol which has been
shown to satisfy definitions of ballot secrecy in the applied pi calculus and in our
further work [BCP+11] we present a security proof in the cryptographic setting
(Section 8 summarises this result). We have also shown that the absence of bal-
lot independence can be similarly exploited in other electronic voting protocols
to violate privacy; in particular, we demonstrate verbatim replay attacks against
the schemes by Sako & Kilian [SK94] and Schoenmakers [Sch99], and we show
that the malleable cryptographic scheme adopted by Lee et al. [LBD+04] can
be exploited to replay a voter’s ballot or a variant of it, thereby violating ballot
secrecy. In addition, we argue that independence and privacy are unrelated
in general, and non-malleability is strictly stronger than independence. Finally,
with the exception of Schoenmakers, all of the vulnerabilities in this article have
been acknowledged by the respective protocol authors, in particular, Adida &
Pereira have acknowledged the vulnerability in Helios [Adi10, AP10], but since
the vulnerability can only be exploited in elections where voters are willing to
forfeit their vote to compromise another voter’s privacy, they believe an attack
would be “without serious practical impact.” Nonetheless, Adida & Pereira have
scheduled a fix for future Helios releases (at the time of writing, the software im-
plementation of Helios has been patched to prevent the replay attack described
in Section 3.1, but the software is still vulnerable to the variants described in
Section 3.2).
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A Signatures of knowledge

Helios is reliant on signatures of knowledge to ensure secrecy and integrity of
the ElGamal scheme. This appendix presents suitable cryptographic primitives.

A.1 Knowledge of discrete logs

Given the cryptographic parameters (p, q, g) and hash function H (see Section 2
for details), a signature of knowledge demonstrating knowledge of a discrete
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logarithm h = logg g
x can be derived, and verified, as defined by [CEGP87,

CEG88, Sch90]:

Sign. Given x, select a random nonce w ∈R Z∗q . Compute witness g′ =
gw mod p, challenge c = H(g′) mod q and response s = w + c · x mod q.

Verify. Given h and signature g′, s, check gs ≡ g′ · hc (mod p), where c =
H(g′) mod q.

A valid proof asserts knowledge of x such that x = logg h, that is, h ≡ gx mod p.
These proofs are used in distributed ElGamal to ensure secrecy (see Section 2.1).

A.2 Equality between discrete logs

Given the aforementioned cryptographic parameters (p, q, g) and hash function
H, a signature of knowledge demonstrating equality between discrete logarithms
logf f

x and logg g
x can be derived, and verified, as defined by [Ped91, CP93]:

Sign. Given f, g, x, select a random nonce w ∈R Z∗q . Compute witnesses
f ′ = fw mod p and g′ = gw mod p, challenge c = H(f ′, g′) mod q and response
s = w + c · x mod q.

Verify. Given f, g, h, k and signature f ′, g′, s, check fs ≡ f ′ · hc (mod p) and
gs ≡ g′ · kc (mod p), where c = H(f ′, g′) mod q.

A valid proof asserts logf h = logg k, that is, there exists x, such that h ≡
fx mod p and k ≡ gx mod p.

Signatures of knowledge demonstrating equality between discrete logarithms
are used to ensure integrity of distributed decryption in ElGamal (see Sec-
tion 2.1), moreover, the signature scheme forms the basis of disjunctive proofs
of equality between discrete logs (Section 2.2). Formally, the signature scheme
can be used to ensure integrity of distributed decryption in ElGamal as follows.
Given a ciphertext (a, b), each trustee would derive a signature on g, a, xi, where
xi is the trustee’s private key share. The ith trustee’s signature g′i, a

′
i, ci, si would

be verified with respect to g, a, hi, ki, where hi is the trustee’s share of the public
key and ki is the trustee’s partial decryption. The signature g′i, a

′
i, ci, si asserts

logg hi = loga ki, as required for integrity of decryption.

B Proof of Theorem 1

B.1 Preliminaries

Before commencing our proof, let us first introduce some useful lemmas for the
applied pi calculus.

42



Lemma 5. Given frames ϕ,ψ, ground term M and variable x 6∈ dom(ϕ) ∪
dom(ψ), we have ϕ ≈s ψ iff ϕ | {M/x} ≈s ψ | {M/x}.

Lemma 6. Given frames ϕ, ψ, terms M , N , and a variable x 6∈ dom(ϕ) ∪
dom(ψ), such that ϕ = ν m̃.σ and ψ = ν ñ.τ for some names m̃, ñ and substi-
tutions σ, τ , we have ν m̃.(σ | {M/x}) ≈s ν ñ.(τ | {N/x}) implies ϕ ≈s ψ.

The proofs of these lemmas are straightforward.
The following lemma shows when static equivalence implies the same branch-

ing behaviour for conditionals.

Lemma 7. Given extended processes A ≡ C[if M = N then P else Q] and B ≡
C ′[if M = N then P ′ else Q′] such that A ≈s B, (bn(C) ∪ bn(C ′)) ∩ (fn(M) ∪
fn(N)) = ∅, fv(M)∪ fv(N) ⊆ dom(C) and fv(M)∪ fv(N) ⊆ dom(C ′), for some
closing evaluation context C,C ′, terms M,N and processes P, P ′, Q,Q′, then
A −→ C[P ] iff B −→ C ′[P ′] and A −→ C[Q] iff B −→ C ′[Q′].

Proof. Suppose A ≡ C[if M = N then P else Q] and B ≡ C ′[if M = N then P ′

else Q′] such that A ≈s B, (bn(C) ∪ bn(C ′)) ∩ (fn(M) ∪ fn(N)) = ∅, fv(M) ∪
fv(N) ⊆ dom(C) and fv(M)∪fv(N) ⊆ dom(C ′), for some closing evaluation con-
text C,C ′, terms M,N and processes P, P ′, Q,Q′. Further suppose ϕ(C[if M =
N then P else Q]) = ν m̃.σ and ϕ(C ′[if M = N then P ′ else Q′]) = ν ñ.τ , for
some names m̃ and ñ. By Lemma 8 we have ν m̃.σ ≈s ν ñ.τ , because static
equivalence is closed under structural equivalence. Moreover, by the definition
of static equivalence, for all terms U, V such that (m̃∪ ñ)∩ (fn(U)∪ fn(V )) = ∅,
we have Uσ =E V σ iff Uτ =E V τ .

Let us first show A −→ C[P ] iff B −→ C ′[P ′]. For the ⇒ implication, suppose
A −→ C[P ]. Since fv(M)∪fv(N) ⊆ dom(C), it must be the case thatMσ =E Nσ.
We have m̃∪ ñ ⊆ bn(C)∪ bn(C ′) by definition of the function ϕ, and we derive
(m̃∪ñ)∩(fn(M)∪fn(N)) = ∅ because (bn(C)∪bn(C ′))∩(fn(M)∪fn(N)) = ∅; it
follows that Mσ =E Nσ is a special case of Uσ =E V σ. We derive Mτ =E Nτ
from the implication (Uσ =E V σ) ⇒ (Uτ =E V τ). It trivially follows that
B ≡ C ′[if Mτ = Mτ then P ′ else Q′], and by closure of internal reduction
under structural equivalence we derive B −→ C ′[P ′]. The⇐ implications follows
by symmetry.

We will now show A −→ C[Q] iff B −→ C ′[Q′]. For the⇒ implication, suppose
A −→ C[Q]. It must be the case that Mσ 6=E Nσ and, as before, we derive
Mτ 6=E Nτ . It trivially follows that B ≡ C ′[if Mτ = Nτ then P ′ else Q′],
and since fv(M) ∪ fv(N) ⊆ dom(C ′) we are assured that terms Mτ,Nτ are
ground; by closure of internal reduction under structural equivalence we derive
B −→ C ′[Q′]. The ⇐ implications follows by symmetry.

This result can naturally be extended to formula. Given φ, let us denote the
set of free names, respectively variables, in φ as fn(φ), respectively fv(φ).

Corollary 1. Given extended processes A ≡ C[if φ then P else Q] and B ≡
C ′[if φ then P ′ else Q′] such that A ≈s B, (bn(C) ∪ bn(C ′)) ∩ fn(φ) = ∅,
fv(φ) ⊆ dom(C) and fv(φ) ⊆ dom(C ′), for some closing evaluation context
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C,C ′, formulae φ and processes P, P ′, Q,Q′, then A −→ C[P ] iff B −→ C ′[P ′]
and A −→ C[Q] iff B −→ C ′[Q′].

We conclude this subsection with a useful result stated by Abadi & Four-
net [AF01].

Lemma 8. Static equivalence is closed by structural equivalence.

B.2 Notations and Definitions

For the remainder of this article, let ` be some number of candidates, n ≥ 2 be
some number of voters, and σ and σ′ be candidate substitutions.

B.2.1 Notations

We introduce the following notations for all 1 ≤ i ≤ n and 1 ≤ j ≤ `:

tallyj = πj(y1) ∗ · · · ∗ πj(yn)

partial j = partial(skT , tallyj)

resultj = dec(partial j , tallyj)

ciphi,j = penc(zpk, ri,j , x
vote
i,j )

spk i,j = spk(zpk, ri,j , x
vote
i,j , ciphi,j)

ŝpk i = spk(zpk, ri,1 ◦ · · · ◦ ri,`, xvotei,1 + · · ·+ xvotei,` , ciphi,1 ∗ · · · ∗ ciphi,`)

ballot i = (ciphi,1, . . . , ciph ′i,`, spk i,1, . . . , spk ′1,`, ŝpk i)

τL = {M/xvote1,i
| for all 1 ≤ i ≤ ` such that{M/xvotei

} ∈ σ}
∪ {N/xvote2,i

| for all 1 ≤ i ≤ ` such that {N/xvotei
} ∈ σ′}

τR = {N/xvote1,i
| for all 1 ≤ i ≤ ` such that{N/xvotei

} ∈ σ′}
∪ {M/xvote2,i

| for all 1 ≤ i ≤ ` such that {M/xvotei
} ∈ σ}

B.2.2 Definitions

Given N3, . . . , Nk terms such that fv(Nj) ⊆ {zpk, y1, . . . , yj−1}, we define

σÑk
= {ballot1/y1, ballot2/y2,Nj/yj | j ∈ {3, . . . , k}}

Given an integer k ∈ N+ and a term N , we define Nk (resp. k.N) to be
N ◦ · · · ◦N (resp. N + · · ·+N) where N is replicated k times.

We associate to the equational theory E a rewriting system RE by orienting
the Equations E1,E2 and E5 to E9 from left to right. We denote by E′ the
equational theory that asserts functions +, ∗, ◦ are commutative and associative
in addition to Equations E3 and E4. RE modulo E′ forms a convergent rewriting
system (modulo E′). We denote by u→E v (or often simply u→ v) if u modulo
E′ can be rewritten to v modulo E′, using RE . We denote by u ↓ a normal
form of u modulo E′.
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We will say that a term M is free w.r.t. a set of names ñ if it does not contain
any name of ñ. We simply say that a term is free when the set of names is clear
from the context (typically free w.r.t. to the restricted names of a frame).

B.3 Some useful lemmas

We prove some useful results about our definitions and notations. We first show
that ballots accepted by the bulletin board must have a particular form due to
the checks performed by φsol`,n̄.

Lemma 9. Let ` be a number of candidates, n̄ ≥ 2 be an integer, and M be term
free w.r.t. r1,1, . . . , r1,`, r2,1, . . . , r2,` and such that fv(M) ⊆ {zpk, y1, y2}. Let
substitution τ ∈ {τL, τR} and substitution σ = {pk(skT )/zpk, ballot1/y1, ballot2/y2}.
If [[φsol`,n̄{M/yballot}στ ]] = true, then there exists a term

M ′ = (penc(zpk, N1,M1), . . . , penc(zpk, N`,M`), S1, . . . , S`+1)

for some terms M1, . . . ,M`, N1, . . . , N`, S1, . . . , S`+1 such that Mστ =E M ′στ ,
M ′ is free w.r.t. r1,1, . . . , r1,`, r2,1, . . . , r2,`, fv(M ′) ⊆ {zpk, y1, y2}, and {M1/xvote1

,
. . . ,M`/xvote`

} is a candidate substitution.

Proof. Let M , τ and σ be defined as in the Lemma, and suppose [[φsol`,n̄{M/yballot}
στ ]] = true. We say that a term N is a minimal recipe if it is minimal (in
size) among the terms N ′ such that Nστ =E N ′στ . It is easy to check by
induction on the size of N that, whenever N = f(N1, . . . , Nk) with f ∈ {dec, πj |
1 ≤ j ≤ `} then either N = πj(x) for some j and variable x or (Nστ) ↓ =
f((N1στ) ↓, . . . , (Nkστ) ↓) (*).

W.l.o.g. suppose M ′ is a minimal recipe such that Mστ =E M ′στ and M ′

is free w.r.t. r1,1, . . . , r1,`, r2,1, . . . , r2,`. Further suppose w.l.o.g. that M ′ is in
normal form. We know [[φsol`,n̄{M

′/yballot}στ ]] = true. Thus it must be the case
that M ′στ is of the form (U1, . . . , U`, V1, . . . , V`,W ), where for 1 ≤ j ≤ ` we
have Uj = penc(pk(skT ), Rj , Cj), Cj ∈ {zero, one} and {C1/xvote1

, . . . ,C`/xvote`
} is

a candidate substitution. Due to the disequality tests in φsol`,n̄, it must be the case
that M ′ is of the form (T1, . . . , T`, S1, . . . , S`, Z ) and Tj 6∈ {πk(yi) | 1 ≤ k ≤ `}.
We have Tjστ = penc(Aj , Bj , Cj). Assume first that Tj = πk(T ′j). Due to (*),
we must have T ′j variable, which is excluded by the fact that Tj 6∈ {πk(yi) | 1 ≤
k ≤ `}. Thus, due to the equational theory and (*), it must be the case that
Tj = penc(Kj , Nj ,Mj) ∗

∏
1≤k≤` πk(y1)αk ∗ πk(y2)βk where each component

is optional and αi ∈ N. By convention αi = 0 or βi = 0 means that the
component is skipped. Assume that one of the αi or βi is not null. Then
Rj = r ◦ R′j with r ∈ {r1,1, . . . , r1,`, r2,1, . . . , r2,`}. Due to the tests in φsol`,n̄, we
know Vj = spk(pk(skT ), Rj , Cj , V

′
j ).

Let us show that Vj cannot be a signature of knowledge that appears in
either ballot1τL or ballot2τL. Assume (by contradiction) that Vj is a signature
of knowledge that appears in either ballot1τL or ballot2τL. Due to weeding,
we cannot have Vj = spki,k. Indeed, due to the equational theory, this would
imply that Uj is equal to a previsouly received cyphertext, which is excluded by
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weeding. Thus we must have Vj = ŝpki for some i ∈ {1, 2}. Then Rj = ri,1 ◦
· · · ◦ri,`. In that case, let us have a look at W . We know W = spk(pk(skT ), R1 ◦
· · · ◦ R`, C1 + · · · + C`, U1 ∗ · · · ∗ U`). Thus W cannot be one of the signatures
of knowledge that appear in ballot1τL or ballot2τL (the depth of R1 ◦ · · · ◦ R`
is too big). Therefore (and due to the equational theory and minimality of Z),
we must have Z = spk(Z1, Z2, Z3, Z4). Since ri,1 ◦ · · · ◦ ri,` is not deducible, we
cannot have Z2στ =E ri,1 ◦ · · · ◦ ri,` ◦R1 ◦Rj−1 ◦Rj+1 ◦R`, contradiction.

We must have Sj = spk(S1
j , S

2
j , S

3
j , S

4
j ), since Vj cannot be one of the sig-

natures of proof of knowledge that appear in ballot1τL or ballot2τL, and due
to the equational theory. Since r is not deducible, we cannot have S2

j στ =E

r ◦ R′j , contradiction. We therefore deduce that Tj = penc(Kj , Nj ,Mj). More-
over, Kjστ =E pk(skT ) implies Kj = zpk and Mjστ =E zero or one implies
Mj ∈ {zero, one} due to the equational theory. Due to the validity check, we
also deduce that {M1/xvote1

, . . . ,M`/xvote`
} is a candidate subsitution.

Lemma 10. Let φ1 = ν skT , d, r1,1, . . . , r1,`, r2,1, . . . , r2,` . ({ballot1/x1} |
{ballot2/x2} | {pk(skT )/zpk}). We have φ1τL ≈s φ1τR.

Proof. First, we decompose φ1 and consider φ = ν ñ.θ, where ñ = {skT , d, r1,1,

. . . , r1,`, r2,1, . . . , r2,`} and θ = {pk(skT )/zpk} |
{
{ciphi,j/xciphi,j

} | {spk i,j/xspki,j
} |

{ŝpk i/x
ŝpki

}
∣∣∣ i ∈ {1, 2} ∧ 1 ≤ j ≤ `

}
. It follows immediately that φ1τL ≈s φ1τR

if and only if φτL ≈s φτR.
Secondly, witness that the adversary can arbitrarily combine ciphertexts

from the frame – namely, ciphertexts ciph1,1, ciph2,1, . . . , ciph1,`, ciph2,` – with
ciphertexts in the frame or freshly constructed ciphertexts, we enrich the frame
φ with any such combination of ciphertexts. Formally, for any αj , βj ∈ N and
terms P,R we define Cα1,...,α`,β1,...,β`,α4,P,R as follows:

penc(pk(skT ), R ◦©1≤j≤`r
αj

1,j ◦ r
βj

2,j , P +
∑

1≤j≤`

αj .x
vote
1,j + βj .x

vote
2,j )

We define the extended frame φe below.

φe = ν ñ.(θ | {Cα1,α2,α3,α4,P,R/xα1,α2,α3,α4,P,R
| α1, α2, α3, α4 ∈ N and terms

P,R s.t. (fn(P ) ∪ fn(R)) ∩ ñ = ∅, fv(P,R) ⊆ dom(φe) with no cycle})

Note that φe is infinite. By Lemma 6, it is sufficient to show φeτL ≈s φeτR. We
introduce the following two claims.

Claim 1. Let M be a term such that fv(M) ∩ (fv(φe) \ dom(φe)) = ∅ and
fn(M) ∩ ñ = ∅. If Mφeτ → U for some τ ∈ {τR, τL}, then there exists N such
that U =E′ Nφeτ and Mφeτ

′ → Nφeτ
′ for any τ ′ ∈ {τR, τL}.

Claim 2. Let M,N be two terms such that (fv(M) ∪ fv(N)) ∩ (fv(φe) \
dom(φe)) = ∅ and fn(M,N) ∩ ñ = ∅. If Mφeτ =E′ Nφeτ for some τ ∈
{τR, τL}, then Mφe =E′ Nφe.
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The above claims allow the construction of our proof. Let M,N be two
terms such that fn(M,N) ∩ ñ = ∅ and MφeσÑk

τL =E NφeσÑk
τL. We assume

(possibly by renaming) that (fv(M) ∪ fv(N)) ∩ (fv(φe)\dom(φe)) = ∅. We have
MφeτL =E NφeτL. Thus (MφeτL) ↓ =E′ (NφeτL) ↓. Applying repeatedly
Claim 1, we deduce that there exists M ′ such that (MφeτL) ↓ = M ′φeτL and
MφeτR →∗ M ′φeτR. Similarly, there exists N ′ such that (NφeτL) ↓ = N ′φeτL
and NφeτR →∗ N ′φeτR. From M ′φeτL =E′ N ′φeτL and Claim 2, we deduce
M ′φe =E′ N ′φe. Therefore M ′φeτR =E′ N ′φeτR and thus MφeτR =E NφeτR,
that is MφeσÑk

τR =E NφeσÑk
τR.

Proof of Claim 1: This result is proved by inspection of the rewrite rules,
using the fact that the decryption key skT is not deducible. More precisely,
assume that Mφeτ → U for some τ ∈ {τR, τL}. It means that there exists a
rewriting rule l → r ∈ RE and a position p such that Mφeτ |p =E′ lθ for some
θ. p cannot occur below M since φeτ is in normal form. If M |p = lθ′ for some
θ′ then we conclude that we can rewrite M as expected. The only interesting
case is thus when M |p is not an instance of l but Mφeτ |p is. By inspection
of the rules, l → r can only correspond to one of the three equations E5, E6
or E7. The case of Equations E5 or E6 is ruled out by the fact that skT is not
deducible from φeτ . The last case is when the rule corresponding to Equation E7
is applied. Then it must be the case that M |p = x ∗ y with x, y variables of
dom(φe). By construction of φe, we have that (x ∗ y)φe → zφe (applying the
rule corresponding to Equation E7), thus the result.

Proof of Claim 2: Assume by contradiction that there exist M,N two terms
such that Mφeτ =E′ Nφeτ for some τ ∈ {τR, τL} and Mφe 6=E′ Nφe. Consider
M,N two minimal terms that satisfy this property. By case inspection, it must
be the case that M and N are both variables. Thus we have xφeτ =E′ yφeτ
and xφe 6=E′ yφe with x, y ∈ dom(φe), x 6= y. The head symbol of xφeτ must
be penc. Then by construction of φe, τ does not change the randomness used
in penc and the randomness uniquely determines the variable, which implies
x = y, contradiction.

We now demonstrate that tallying valid ballots yields the same result in
both worlds.

Lemma 11. Let ` be a number of candidates. Let N3, . . . , Nk be terms, free
w.r.t. skT , d, r1,1, . . . , r1,`, r2,1, . . . , r2,`. Let θÑk

= {Nk/yk | k ∈ {3, . . . , n}}
such that NiθÑk

στ is a valid ballot for any τ ∈ {τL, τR}. Let σ = {pk(skT )/zpk,
ballot1/y1, ballot2/y2}. Then

result i θÑk
στL =E result i θÑk

στR

and both resultj θÑk
στL and resultj θÑk

στR are terms built from constants one
and zero by application of the function symbol +.

Proof. We first define N ′i = NiθÑk
. By Lemma 9, we know that πj(N

′
iστL) =E

penc(zpk, U
i
j , V

i
j )στL for some free terms U ij , V

i
j . By Lemma 10, we know that
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φ1τL ≈s φ1τR thus we can deduce πj(N
′
iστR) =E penc(zpk, U

i
j , V

i
j )στR. The

equational theory ensure that penc(K,U, V ) =E penc(K ′, U ′, V ′) implies K =E

K ′, U =E U ′, and V =E V ′. Thus we deduce V ij στL =E V ij στR. Therefore,

we get that resultj θÑk
στL =E xvote1,j τL + xvote2,j τL + +(V 3

j + · · · + V kj )στL =E

xvote1,j τR + xvote2,j τR + +(V 3
j + · · ·+ V kj )στR =E resultj θÑk

στR.

Moreover, V ij στ ∈ {one, zero} is ensured by the fact that NiθÑk
στ is a valid

ballot. Therefore we deduce that both resultj θÑk
στL and resultj θÑk

στR are
terms built from constants one and zero by application of the function symbol +.

We finally show that the encrypted ballots of honest voters and the partial
decryptions do not leak any information to the adversary.

Lemma 12. Let φ6 = ν skT , d, r1,1, . . . , r1,`, r2,1, . . . , r2,` . ({ballot1/x1} |
{ballot2/x2} | {pk(skT )/zpk} | {partialj/xpartialj

| 1 ≤ j ≤ `}). We have φ6σÑk
τL ≈s

φ6σÑk
τR.

The proof is very similar to the proof of Lemma 10

Proof. First, we decompose φ6 and consider φ = ν ñ.θ where ñ = {skT , d, r1,1,

. . . , r1,`, r2,1, . . . , r2,`} and θ = {pk(skT )/zpk} |
{
{partialj/xpartialj} | {ciphi,j/xciphi,j

}

| {spk i,j/xspki,j
} | {ŝpk i/x

ŝpki

}
∣∣∣ i ∈ {1, 2} ∧ 1 ≤ j ≤ `

}
. It follows immediately

that φ6τL ≈s φ6τR if and only if φτL ≈s φτR.
Secondly, witness that the adversary can arbitrarily combine ciphertexts

from the frame – namely, ciphertexts ciph1,1, ciph2,1, . . . , ciph1,`, ciph2,` – with
ciphertexts in the frame or freshly constructed ciphertexts, we enrich the frame
φ with any such combination of ciphertexts. Formally, for any αj , βj ∈ N and
terms P,R we define Cα1,...,α`,β1,...,β`,α4,P,R as follows:

penc(pk(skT ), R ◦©1≤j≤` r
αj

1,j ◦ r
βj

2,j , P +
∑

1≤j≤`

αj .x
vote
1,j + βj .x

vote
2,j )

We define the extended frame φe below.

φe = ν ñ.(θ | {Cα1,α2,α3,α4,P,R/xα1,α2,α3,α4,P,R
| α1, α2, α3, α4 ∈ N and terms

P,R s.t. (fn(P ) ∪ fn(R)) ∩ ñ = ∅, fv(P,R) ⊆ dom(φe) with no cycle})

Note that φe is infinite. By Lemma 6, it is sufficient to show φeτL ≈s φeτR. Let
φ′e = φeσÑk

. We introduce the following two claims.

Claim 3. Let M be a term such that fv(M) ∩ (fv(φ′e) \ dom(φ′e)) = ∅ and
fn(M) ∩ ñ = ∅. If Mφ′eτ → U for some τ ∈ {τR, τL} then there exists N such
that U =E′ Nφ′eτ and Mφ′eτ

′ → Nφ′eτ
′ for any τ ′ ∈ {τR, τL}.

Claim 4. Let M,N be two terms such that (fv(M) ∪ fv(N)) ∩ (fv(φ′e) \
dom(φ′e)) = ∅ and fn(M,N) ∩ ñ = ∅. If Mφ′eτ =E′ Nφ′eτ for some τ ∈ {τR, τL}
then Mφ′e =E′ Nφ′e.
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The above claims allow the construction of our proof. Let M,N be two
terms such that fn(M,N) ∩ ñ = ∅ and Mφ′eσÑk

τL =E Nφ′eσÑk
τL. We assume

(possibly by renaming) that (fv(M) ∪ fv(N)) ∩ (fv(φ′e)\dom(φ′e)) = ∅. We have
Mφ′eτL =E Nφ′eτL. Thus (Mφ′eτL) ↓ =E′ (Nφ′eτL) ↓. Applying repeatedly
Claim 3, we deduce that there exists M ′ such that (Mφ′eτL) ↓ = M ′φ′eτL and
Mφ′eτR →∗ M ′φ′eτR. Similarly, there exists N ′ such that (Nφ′eτL) ↓ = N ′φ′eτL
and Nφ′eτR →∗ N ′φ′eτR. From M ′φ′eτL =E′ N ′φ′eτL and Claim 4, we deduce
M ′φ′e =E′ N ′φ′e. Therefore M ′φ′eτR =E′ N ′φ′eτR and thus Mφ′eτR =E Nφ′eτR,
that is Mφ′eσÑk

τR =E Nφ′eσÑk
τR.

Proof of Claim 3: This result is proved by inspection of the rewrite rules,
using the fact that the decryption key skT is not deducible. More precisely,
assume that Mφ′eτ → U for some τ ∈ {τR, τL}. It means that there exists a
rewriting rule l → r ∈ RE and a position p such that Mφ′eτ |p =E′ lθ for some
θ. p cannot occur below M since φ′eτ is in normal form. If M |p = lθ′ for some
θ′ then we conclude that we can rewrite M as expected. The only interesting
case is thus when M |p is not an instance of l but Mφ′eτ |p is. By inspection of
the rules, l→ r can only correspond to one of the three equations E5, E6 or E7.
The case of Equations E5 is ruled out by the fact that skT is not deducible
from φ′eτ . For Equation E6, it must be the case that Mφ′e|p = resultjσÑk

.
Using Lemma 11, we deduce that Mφ′e|pτ → R modulo E′ where R is a sum
of ones and zero. Therefore Mφ′eτ → M [R]pφ

′
eτ . The last case is when the

rule corresponding to Equation E7 is applied. Then it must be the case that
M |p = x ∗ y with x, y variables of dom(φ′e). By construction of φ′e, we have
that (x ∗ y)φ′e → zφ′e (applying the rule corresponding to Equation E7), thus
the result.

Proof of Claim 4: Assume by contradiction that there exist M,N two terms
such that Mφ′eτ =E′ Nφ′eτ for some τ ∈ {τR, τL} and Mφ′e 6=E′ Nφ′e. Consider
M,N two minimal terms that satisfy this property. By case inspection, it must
be the case that M and N are both variables. Thus we have xφ′eτ =E′ yφ′eτ
and xφ′e 6=E′ yφ′e with x, y ∈ dom(φ′e), x 6= y. The head symbol of xφ′eτ
must be penc or partial. Assume first that the head symbol of xφ′eτ is penc.
Then by construction of φ′e, τ does not change the randomness used in penc
and the randomness uniquely determines the variable, which implies x = y,
contradiction. Assume now that the head symbol of xφ′eτ is partial. Then it must
be the case that tallyj1σÑk

τ =E′ tallyj2σÑk
τ while tallyj1σÑk

6=E′ tallyj2σÑk
.

This would require xciphi,j1
τ = x′ciphi′,j2

τ for some i, i′, which is excluded due

to the randomness.

B.4 Proof of Theorem 1

We introduce some partial evolutions of the Helios process specification in Fig-
ure 6 and define a relationR between processes in Figure 7. We clearly have that
Aφ`,n[V {a1/xauth}σ | V {a2/xauth}σ′] R Aφ`,n[V {a1/xauth}σ′ | V {a2/xauth}σ]. We now

wish to show that R ∪ R−1 satisfies the three properties of Definition 2. By
symmetry we focus on R. Overwriting the definition, we may say that a term
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Figure 6 Partial evolutions of the Helios process specification

We introduce some partial evolutions of the Helios process specification:

A1 = ν skT , a2, d, r1,1, . . . , r1,`, y1 . ( | {ballot1/y1} | {pk(skT )/zpk})
A2 = A1[ | {ballot1/x1}]
A3 = ν skT , d, r1,1, . . . , r1,`, r2,1, . . . , r2,`, y1, y2 . ( |

{ballot1/y1} | {ballot2/y2} | {ballot1/x1} | {pk(skT )/zpk})
A4 = A3[ | {ballot2/x2}]
A5 = A4[ν ypartial.( | {partials/ypartial}]
A6 = A5[ | {partials/xpartial})]
A7 = A6[{results/xresult}]

BB1
n = c〈y1〉 . BB2

n

BB2
n = a2(y2) . BB3

n

BB3
n = c〈y2〉 . BB

′

3,n

BB
′

j,n = aj(yj) . if φsol`,j−1{yj/yballot} then

· · · an(yn) . if φsol`,n−1{yn/yballot} then

BB4
n

BB
′′

j,n = if φsol`,j−1{yj/yballot} then

aj+1(yj+1) . if φsol`,j{yj+1/yballot} then

· · · an(yn) . if φsol`,n−1{yn/yballot} then

BB4
n

BB4
n = d〈(tally1, . . . , tally`)〉 . BB5

n

BB5
n = d(ypartial) . BB

6
n

BB6
n = c〈ypartial〉 . BB7

n

BB7
n = c〈(dec(π1(ypartial), tally`), . . . , dec(π`(ypartial), tally`))〉

T 1
` = d〈partials〉

where partials = (partial(skT , tally1), . . . , partial(skT , tally`)) and results =
(dec(partial(skT , tally1), tally1), . . . , dec(partial(skT , tally`), tally`)).

N is a valid ballot if both NστL and NστR are valid ballots, where σ is defined
Figure 7.

Static equivalence. We must show for all extended processes A and B, where
A R B, that A ≈s B. By Lemma 6, it is sufficient to show A7ττL ≈s A7ττR
for any N3, . . . , Nn valid ballots. Let φ7 = ν skT , d, r1,1, . . . , r1,`, r2,1, . . . , r2,` .
({ballot1/x1} | {ballot2/x2} | {pk(skT )/zpk} | {(partial1, . . . , partialn )/xpartial} |
{(result1, . . . , resultn )/xresult}). We have to show φ7σN3,...,Nn

τL ≈s φ7σN3,...,Nn
τR.

By Lemma 11, we deduce that (result1, . . . , result`)σN3,...,NnτL = (result1, . . . ,
result`)σN3,...,NnτR and is equal to a constant (always deducible) term. Thus by
Lemma 5, it is sufficient to show that φ6σN3,...,Nn

τL ≈s φ6σN3,...,Nn
τR, where

φ6 as defined in Lemma 12. We conclude by Lemma 12.
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Figure 7 Definition of the relation R
Consider the smallest relation R which is closed under structural equivalence
and includes the following pairs of extended processes, where for all 3 ≤ j ≤ n,
terms M , terms N1, . . . , Nj , substitutions σ = {Nk/yk | k ∈ {3, . . . , n}} and dis-
tinct variables xpartial, xresult, x1, x2 such that NjστL and NjστR are valid ballot,
fv(M)∪

⋃
3≤i≤j fv(Ni) ⊆ dom(A4) and (fn(M)∪

⋃
3≤i≤j fn(Ni))∩ bn(A4) = ∅.

Aφ
sol

`,n [V {a1/xauth}σ | V {a2/xauth}σ
′], Aφ

sol

`,n [V {a1/xauth}σ
′ | V {a2/xauth}σ] (R1)

A1[V {a2/xauth}σ
′ | BB1

n | T`]τL, A1[V {a2/xauth}σ | BB
1
n | T`]τR (R2)

A2[V {a2/xauth}σ
′ | BB2

n | T`]τL, A2[V {a2/xauth}σ | BB
2
n | T`]τR (R3)

A3[BB3
n | T`]τL, A3[BB3

n | T`]τR (R4)

A4[BB
′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} | T`]τL,

A4[BB
′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} | T`]τR (R5)

A4[BB
′′

j,n{Nk/yk | k ∈ {3, . . . , j − 1}}{M/yj} | T`]τL,

A4[BB
′′

j,n{Nk/yk | k ∈ {3, . . . , j − 1}}{M/yj} | T`]τR (R6)

A4[0 | T`]τL, A4[0 | T`]τR (R7)

A4[BB4
nτ | T`]τL, A4[BB4

nτ | T`]τR (R8)

A4[BB5
n | T 1

` ]ττL, A4[BB5
n | T 1

` ]ττR (R9)

A5[BB6
n]ττL, A5[BB6

n]ττR (R10)

A6[BB7
n]ττL, A6[BB7

n]ττR (R11)

A7ττL, A7ττR (R12)

Internal reductions. We must show for all extended processes A and B,
where A R B, that if A −→ A′ for some A′, then B −→∗ B′ and A′ R B′

for some B′. We observe that if A ≡ A1[V {a2/xauth}σ′ | BB1
n | T`]τL and

B ≡ A1[V {a2/xauth}σ | BB1
n | T`]τR – that is, A R B by (R2) – then there is no

extended process A′ such that A −→ A′; similarly, for (R4), (R5), (R7), (R10),
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(R11) and (R12). We proceed by case analysis on the remaining cases.

(R1) We haveA ≡ Aφ
sol

`,n [V {a1/xauth}σ | V {a2/xauth}σ′] andB ≡ Aφ
sol

`,n [V {a1/xauth}σ′
| V {a2/xauth}σ]. If A −→ A′, then it must be the case that A ≡ C[a1〈y1〉.0 |
a1(y1).BB1

n]τL and A′ ≡ C[0 | BB1
n]τL, where C[ ] = A1[ν a1.( | V

{a2/xauth}σ′ | T`)]. It follows from B ≡ C ′[a1〈y1〉.0 | a1(y1).BB1
n]τR,

that B −→ B′, where C ′[ ] = A1[ν a1.( | V {a2/xauth}σ | T`)] and B′ =
A1[V {a2/xauth}σ | BB1

n | T`]τR. Since A1[V {a2/xauth}σ′ | BB1
n | T`]τL R

B′ and A′ ≡ A1[V {a2/xauth}σ′ | BB1
n | T`]τL, we derive A′ R B′ by the

closure of R under structural equivalence.

(R3) This case is similar to (R1). We have A ≡ A2[V {a2/xauth}σ′ | BB2
n | T`]τL

and B ≡ A2[V {a2/xauth}σ | BB2
n | T`]τR. If A −→ A′, then it must be the

case that A ≡ C[a2〈y2〉.0 | a2(y2).BB3
n]τL and A′ ≡ C[0 | BB3

n]τL, where
C[ ] = A3[ν a2.( | T`)]. It follows from B ≡ C[a2〈y2〉.0 | a2(y2).BB3

n]τR,
that B −→ B′, where B′ = A3[BB3

n | T`]τR. Since A3[BB3
n | T`]τL R B′

and A′ ≡ A3[BB3
n | T`]τL, we derive A′ R B′ by the closure of R under

structural equivalence.

(R6) We have A ≡ A4[BB
′′

j,n{Nk/yk | k ∈ {3, . . . , j − 1}}{M/yj} | T`]τL and

B ≡ A4[BB
′′

j,n{Nk/yk | k ∈ {3, . . . , j − 1}}{M/yj} | T`]τR for some integer
j ∈ {3, . . . , n}, valid ballots N3, . . . , Nj−1 and term M such that fv(M) ∪⋃

3≤i≤j−1 fv(Ni) ⊆ dom(A4) and (fn(M)∪
⋃

3≤i≤j−1 fn(Ni))∩bn(A4) = ∅.

If A −→ A′, then it must be the case that A ≡ C[if φsol`,j−1{M/yballot,
ballot1/y1, ballot2/y2,N3/y3, . . . ,Nj−1/yj−1} then P else 0]τL, where C[ ] =

A4[ | T`]. Furthermore, if j < n, then P = BB
′

j+1,n{Nk/yk | j > 3 ∧ k ∈
{3, . . . , j − 1}}{M/yj}; otherwise P = BB4

n{Nk/yk | j > 3 ∧ k ∈ {3, . . . ,
j−1}}{M/yj}. We also have B ≡ C[if φsol`,j−1{M/yballot, ballot1/y1, ballot2/y2,
N3/y3, . . . ,Nj−1/yj−1} then P else 0]τR.

Let σR = {ballot1τR/x1, ballot2τR/x2, pk(skT )/zpk}, we have ballot1τR is syn-
tactically equal to x1σR and ballot2τR is syntactically equal to x2σR, it fol-
lows thatB ≡ C[if φsol`,j−1{M/yballot, x1σR/y1, x2σR/y2,N3/y3, . . . ,Nj−1/yj−1}
then P else 0]τR and, moreover, since ϕ(C[0]τR) = ν skT , d, r1,1, . . . , r1,`,
r2,1, . . . , r2,`, y1, y2.σR we haveB ≡ C[if φsol`,j−1{M/yballot, x1/y1, x2/y2,N3/y3,
. . . ,Nj−1/yj−1} then P else 0]τR. We proceed by case analysis on the
structure of A′:

– If A′ ≡ C[P ]τL, then by closure of internal reduction under struc-
tural equivalence we have C[if φsol`,j−1{M/yballot, x1/y1, x2/y2,N3/y3, . . . ,
Nj−1/yj−1} then P else 0]τL −→ C[P ]τL because ballot1τL is syntac-
tically equal to x1σL, ballot2τL is syntactically equal to x2σL and
ϕ(C[0]τL) = ν skT , d, r1,1, . . . , r1,`, r2,1, . . . , r2,`, y1, y2.σL, where σL =
{ballot1τL/x1, ballot2τL/x2, pk(skT )/zpk}.
Assume A and B satisfy the preconditions of Corollary 1, it follows
that B −→ B′ = A4[P | T`]τR. We now prove our assumption. Since
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A R B, it follows by Condition 1 of Definition 2 that A ≈s B. Let
φ = φsol`,j−1{M/yballot, x1/y1, x2/y2,N3/y3, . . . ,Nj−1/yj−1}. By inspec-

tion of φsol`,j−1, we have fn(φ) = fn(M) ∪
⋃

3≤i≤j−1 fn(Ni) and since

bn(C) = bn(A4) it follows that bn(C) ∩ fn(φ) = ∅; we also have
fv(φ) = {x1, x2, zpk} ∪ fv(M)∪

⋃
3≤i≤j−1 fv(Ni) and since dom(C) =

{x1, x2, zpk} it follows that fv(φ) ⊂ dom(C). We have shown that the
preconditions of Corollary 1 are satisfied, hence B −→ B′ = A4[P |
T`]τR. It remains to show A′ R B′.

We know [[φsol`,j−1{M/yballot, x1/y1, x2/y2,N3/y3, . . . ,Nj−1/yj−1}σL]] =

true and [[φsol`,j−1{M/yballot, x1/y1, x2/y2,N3/y3, . . . ,Nj−1/yj−1}σR]] =

true; it follows, for τ ∈ {τL, τR}, that [[φsol`,j−1{M/yballot}{pk(skT )/zpk,
ballot1/y1, ballot2/y2,N3/y3, . . . ,Nj−1/yj−1}τ ]] = true and we know that
M is a valid ballot. We continue by case analysis on the structure of
P :

1. If P = BB
′

j+1,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}}{M/yj},
then we have j < n. Let j′ = j + 1 and Nj = M , observe P =

BB
′

j′,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j}} and A4[BB
′

j′,n{Nk/yk |
j > 3 ∧ k ∈ {3, . . . , j}} | T`]τL R B′. The result A′ R B′ follows
by closure of R under structural equivalence.

2. If P = BB4
n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}}{M/yj}, then it

must be the case that j = n. Let Nj = M and hence P = BB4
nτ .

Since A4[BB4
nτ | T`]τL R B′ and A′ ≡ A4[BB4

nτ | T`]τL, we
derive A′ R B′ by the closure of R under structural equivalence.

– A′ ≡ C[0]τL, then similarly to above we have C[if φsol`,j−1{M/yballot,
x1/y1, x2/y2,N3/y3, . . . ,Nj−1/yj−1} then P else 0]τL −→ C[0]τL and it

follows by Corollary 1 that B −→ B′ = C[0]τR. Since A4[0 | T`] R B′

and A′ ≡ A4[0 | T`], we derive A′ R B′ by the closure of R under
structural equivalence.

(R8) We have A ≡ A4[BB4
nτ | T`]τL and B ≡ A4[BB4

nτ | T`]τR, where BB4
n =

d〈(tally1, . . . , tally`)〉 . BB5
n and T` = d(ytally) . d〈(partial(skT , π1(ytally)),

. . . , partial(skT , π`(ytally)))〉. If A −→ A′, then it must be the case that
A′ ≡ A4[BB5

n | T 1
` ]ττL. It follows immediately that B −→ B′, where

B′ = A4[BB5
n | T 1

` ]ττR. We derive A′ R B′ by the closure of R under
structural equivalence.

(R9) We have A ≡ A4[BB5
n | T 1

` ]ττL and B ≡ A4[BB5
n | T 1

` ]ττR. If A −→ A′,
then it must be the case that A ≡ A5[d〈ypartial〉.0 | d(ypartial).BB

6
n}]ττL

and A′ ≡ A5[0 | BB6
n]ττL. It follows from B ≡ A5[d(ypartial).BB

6
n |

d〈ypartial〉.0]ττR that B −→ B′, where B′ = A5[BB6
n]ττR. We derive A′ R

B′ by the closure of R under structural equivalence.

Labelled reductions. We must show for all extended processes A and B,
where A R B, that if A

α−→ A′ such that fv(α) ⊆ dom(A) and bn(α)∩ fn(B) = ∅,
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then B −→∗ α−→−→∗ B′ and A′ R B′ for some B′. We observe cases (R1), (R3),
(R6), (R7), (R8), (R9) and (R12) cannot be reduced by labelled reductions and
proceed by case analysis on the remaining cases.

(R2) We have A ≡ A1[V {a2/xauth}σ′ | BB1
n | T`]τL and B ≡ A1[V {a2/xauth}σ |

BB1
n | T`]τR. If A

α−→ A′ such that fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅,
then it must be the case that A ≡ A1[V {a2/xauth}σ′ | c〈y1〉.BB2

n | T`]τL
and A′ ≡ A2[V {a2/xauth}σ′ | BB2

n | T`]τL for some variable x1 where
α = ν x1.c〈x1〉 and x1 6= zpk. It follows from B ≡ A1[V {a2/xauth}σ |
c〈y1〉.BB2

n | T`]τR, that B
α−→ B′ where B′ = A2[V {a2/xauth}σ | BB2

n |
T`]τR. We have A2[V {a2/xauth}σ′ | BB2

n | T`]τL R B′ and by closure of R
under structural equivalence A′ R B′.

(R4) We have A ≡ A3[BB3
n | T`]τL and B ≡ A3[BB3

n | T`]τR. If A
α−→ A′ such

that fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then it must be the case
that A ≡ A3[c〈y2〉.BB

′

3,n | T`]τL and A′ ≡ A4[BB
′

3,n | T`]τL for some
variable x2, where α = ν x2.c〈x2〉 and x2 6∈ {x1, zpk}. It follows from

B ≡ A3[c〈y2〉.BB
′

3,n | T`]τR, that B
α−→ B′, where B′ = A4[BB

′

3,n | T`]τR.

Since A4[BB
′

3,n | T`]τL = A4[BB
′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} |
T`]τL and A4[BB

′

3,n | T`]τR = A4[BB
′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j −
1}} | T`]τR when j = 3, we have A4[BB

′

3,n | T`]τL R B′ and derive
A′ R B′ by closure of R under structural equivalence A′ R B′.

(R5) We have A ≡ A4[BB
′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} | T`]τL and

B ≡ A4[BB
′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} | T`]τR for some in-
teger j ∈ {3, . . . , n} and terms N3, . . . , Nj−1, where

⋃
3≤i≤j−1 fv(Ni) ⊆

dom(A4) and bn(A4) ∩
⋃

3≤i≤j−1 fn(Ni) = ∅. If A
α−→ A′ such that

fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then it must be the case that
A ≡ A4[aj(yj).BB

′′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} | T`]τL and A′ ≡
A4[BB

′′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}}{M/yj} | T`]τL, where α =

c(M) for some term M . It follows from B ≡ A4[aj(yj).BB
′′

j,n{Nk/yk | j >
3∧k ∈ {3, . . . , j−1}} | T`]τR, that B

α−→ B′, where B′ = A4[BB
′′

j,n{Nk/yk |
j > 3∧ k ∈ {3, . . . , j − 1}}{M/yj} | T`]τR. We have A4[BB

′′

j,n{Nk/yk | k ∈
{3, . . . , j − 1}}{M/yj} | T`]τL R B′, and derive A′ R B′ by closure of R
under structural equivalence.

(R10) We have A ≡ A5[BB6
n]ττL and B ≡ A5[BB6

n]ττR. If A
α−→ A′ such that

fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then it must be the case that
A′ ≡ A6[BB7

n]ττL for some variable xpartial, where α = ν xpartial.c〈xpartial〉
and xpartial 6∈ {x1, x2, zpk}. It follows immediately that B

α−→ B′, where
B′ = A6[BB7

n]ττR. We have A6[BB7
n]ττL R B′ and by closure of R under

structural equivalence A′ R B′.

(R11) This case is similar to (R10). We have A ≡ A6[BB7
n]ττL and B ≡

A6[BB7
n]ττR. If A

α−→ A′ such that fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅,
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then it must be the case that A′ ≡ A7ττL for some variable xresult, where
α = ν xresult.c〈xresult〉 and xresult 6∈ {x1, x2, xpartial, zpk}. It follows immedi-

ately that B
α−→ B′, where B′ = A7ττR. We have A7ττL R B′ and by

closure of R under structural equivalence A′ R B′.
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[CS13] Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An
analysis of ballot secrecy. Journal of Computer Security, 21(1):89–
148, 2013.

[Dag07] Participants of the Dagstuhl Conference on Frontiers of E-Voting.
Dagstuhl Accord, 2007. http://www.dagstuhlaccord.org/.

[DC12a] Yvo Desmedt and Pyrros Chaidos. Applying Divertibility to Blind
Ballot Copying in the Helios Internet Voting System. In ES-
ORICS’12: 17th European Symposium on Research in Computer
Security, volume 7459 of LNCS, pages 433–450. Springer, 2012.

[DC12b] Yvo Desmedt and Pyrros Chaidos. Private communication, March
2012.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-Malleable
Cryptography. In STOC’91: 23rd Theory of computing Symposium,
pages 542–552. ACM Press, 1991.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable Cryp-
tography. Journal on Computing, 30(2):391–437, 2000.

[DJ01] Ivan Damg̊ard and Mads Jurik. A Generalisation, a Simplifica-
tion and Some Applications of Paillier’s Probabilistic Public-Key
System. In PKC’01: 4th International Workshop on Practice and
Theory in Public Key Cryptography, volume 1992 of LNCS, pages
119–136. Springer, 2001.

[DJN10] Ivan Damg̊ard, Mads Jurik, and Jesper Buus Nielsen. A Generaliza-
tion of Paillier’s Public-Key System with Applications to Electronic
Voting. International Journal of Information Security, 9(6):371–
385, 2010.
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Schröeder-(Lowe) Protocol. In CSFW’03: 16th Computer Security
Foundations Workshop, pages 248–262. IEEE Computer Society,
2003.

[War05] Bogdan Warinschi. A computational analysis of the Needham-
Schroeder-(Lowe) protocol. Journal of Computer Security,
13(3):565–591, 2005.

[Wik06] Douglas Wikström. Simplified Submission of Inputs to Protocols.
Cryptology ePrint Archive, Report 2006/259, 2006.

[Wik08] Douglas Wikström. Simplified Submission of Inputs to Protocols.
In SCN’08: 6th International Conference on Security and Cryptog-
raphy for Networks, volume 5229 of LNCS, pages 293–308. Springer,
2008.

64


