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Abstract

Let Z/(pq) be the integer residue ring modulo pg with odd prime numbers p and gq.
This paper studies the distinctness problem of modulo 2 reductions of two primitive
sequences over Z/(pq), which has been studied by H.J. Chen and W.F. Qi in 2009.
First, it is shown that almost every element in Z/(pq) occurs in a primitive sequence
of order n > 2 over Z/(pq). Then based on this element distribution property of
primitive sequences over Z/(pq), previous results are greatly improved and the set of
primitive sequences over Z/(pq) that are known to be distinct modulo 2 is further
enlarged.
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1 Introduction

For an integer N > 2, let Z/(N) = {0,1,..., N — 1} be the integer residue ring modulo N,
and for any integer a, let [a] _,  denote the minimal nonnegative residue of @ modulo N.

Moreover, for an integer sequence a = (a(t)):>0, denote [a] .4 n = ([a(t)] noa )

t>0°
If a sequence a = (a(t)):>o over Z/(N) satisfies
a(i+n)=—(cpqra(i+n—1)+ -+ ca(i+1) + coa(i)) mod N, i >0 (1)
with constant coefficients ¢, cq,...,¢,—1 € Z/(N), then a is called a linear recurring se-

quence of order n generated by f(x) over Z/(N) (or a is a sequence of order n over Z/(N)
in short), where f(z) = 2" + ¢,_12" ' + ... + ¢o. The set of sequences generated by f(z)
over Z/(N) is denoted by G (f (x), N).

Let p be a prime number and e a positive integer. Every element v € Z/(p°) has a
unique p-adic expansion as u = ug + Uy - p+ ... + Ue_1 - p° ', where u; € {0,1,--- ,p— 1}
and can be naturally seen as an element in Z/(p). Similarly, a sequence a over Z/(p€) has
a unique p-adic expansion as @ = aq +a; - p+ ...+ a. ;- p° !, where g, is a sequence over
{0,1,--- ,p—1} and can be naturally seen as a sequence over Z/(p). g, is called the ith-
level sequence of a for 0 <i <e—1 and a,_, is also called the highest level sequence

of a.

A monic polynomial f(x) over Z/(p°) is called a primitive polynomial if the period
of f(z) over Z/(p®), denoted by per(f(z),p°), is equal to p~!(p" — 1), that is p*~'(p" — 1)
is the minimal positive integer P such that ¥ — 1 is divisible by f(z) in Z/(p®)[z]. A
sequence a = (a(t))s>o over Z/(p) is called a primitive sequence (or maximal length
sequence) if g is generated by a primitive polynomial over Z/(p°®) and g, # 0, where a,
is the Oth-level sequence of a¢ and 0 = (0,0,...) is a constant sequence. The period of a
primitive sequence a over Z/(p°) is equal to p*~1(p™ — 1), i.e., per (a,p°) = p*~L(p" — 1),
see [1].

Let a = ag+a;-p+...+a,_;-p°* be a primitive sequence over Z/(p®) and ¢(z, . . ., Tc_1)



be an e-variable function over Z/(p). Then ¢(ay,...,a,_;) is a sequence over Z/(p) and
is called a compressing sequence derived from a. Many cryptographical properties of such
compressing sequences have been studied during the last 20 years [2]-[15], especially the dis-
tinctness of the compressing sequences [2], [3], [6], [8]-[11] and [14], that is, a = b if and only
if p(ag,...,a,_1) = @(by,---,b._1), where a and b are two primitive sequences generated
by the same primitive polynomial over Z/(p®). Obviously, for a given primitive polynomial
f(z) over Z/(p®), if the compressing sequences of all primitive sequences generated by f(x)
are pairwise distinct, then there is a one-to-one correspondence between compressing se-
quences and primitive sequences, which implies that every compressing sequence preserves
all the information of its original primitive sequences. Thus such compressing sequences
are thought to be a good type of nonlinear sequences available for the design of stream

cipher.

Recently, modular reduction, another compressing method of primitive sequences over
Z/(p°), is proposed and has attracted much attention. For example, the well known [-
sequences, i.e., maximal length FCSR sequences, introduced by A. Klapper and M. Goresky
in [17], are in fact modulo 2 reductions of primitive sequences of order 1 over Z/(p°). In
[16], the distinctness of modular reductions of primitive sequences over Z/(p®) has been
completely solved. It was shown that if ¢ and b are two primitive sequences generated by
a primitive polynomial of degree n > 1 over Z/(p¢), then a = b if and only if [a] 4, =
0] 0q 17> Where M is a positive integer and has a prime factor other than p. It can be seen

that the operation of mod M destroys the inherent structure of sequences over Z/(p®), and

in particular for M = 2, the compression ratio is very large and easy to implement.

Furthermore, in [18], the authors generalized the modular reductions of primitive se-
quences over Z/(p°) to primitive sequences over every integer residue ring Z/(N), where
N is an integer greater than 1. Before introduce their result, we first give the definitions

of a primitive polynomial and a primitive sequence over Z/(N).

Definition 1 Let N be an integer greater than 1 and N = p{* -pg? - - - pir be the canonical



factorization of N. A monic polynomial f(z) of degree n over Z/(N) is called a primitive
polynomial if f(x) (modpi") is a primitive polynomial of degree n over Z/(p;') for every
1 <i<k. A sequence a of order n over Z/(N) is called a primitive sequence if [al,,q,

is a primitive sequence of order n over Z/(p;") for every 1 <i < k.

With the above definition, it is easy to see that both the period of a primitive polynomial
f(z) of degree n over Z/(N) and the period of a primitive sequence of order n over Z/(N)
are equal to lem (pir1 (pr—1),... ,pZ’“*l (p} — 1)), that is

per (f(z),N) = per (a,N) =lem (p{ " (p} = 1),...,p* " (0f — 1))

For convenience, the set of primitive sequences generated by a primitive polynomial f(x)

over Z/(N) is denoted by G'(f(x), N).

If N has at least two different prime factors, there indeed exist many primitive sequences
of order 1 over Z/(N) such that their modular reductions are the same [18]. It is still open,
however, whether the modular reductions of primitive sequences of order n > 2 over Z/(N)

are distinct. In [18], the authors proved the following result for n > 2.

Theorem 2 ([18]) Let p and q be two odd prime numbers withp < q and f(x) be a primitive
polynomial of degree n > 2 over Z/(pq). If the following two conditions are satisfied:

(1) there ezist a positive integer S and a primitive element £ in Z/(pq) such that

2% — € = 0mod(f(z),pq);

(2) (¢ — 1) is not divisible by (p — 1) or 2(p — 1) divides (¢ — 1),
then for a,b € G'(f(2),pq), a = b if and only if [al noq2 = [Olmod2-

In this paper, we also study the distinctness of primitive sequences over Z/(pq) modulo
2, and with our new result, the set of primitive sequences that can be proved to be distinct
modulo 2 is greatly enlarged. First we estimate the element distribution of primitive

sequences over Z/(pq). Experiments show that for most of the cases, our estimation implies



that every element in Z/(pg) occurs in a given primitive sequence of order n > 2 over
Z/(pq). Based on the result of element estimation, we obtain a new sufficient condition on

the distinctness of primitive sequences over Z/(pq) modulo 2 as follows.

Theorem 3 Let p and q be two odd prime numbers with p < q and f(x) be a primitive
polynomial of degree n > 2 over Z/(pq). Set T =lem (p” — 1,¢" — 1) and
B if oy (p" — 1) # v (q" — 1)

E — ] 1 ¢g—1 N
max {—“’1”,;@1“'5@2 2] tem (pr 1,252 } Cif v (= 1) = v (g" — 1)

pt—1 - " —1

where vg (u) is the greatest nonnegative integer m such that 2™ divides u. If the following

two conditions are satisfied:

(1) there exist a positive integer S and an even number C in Z/(pq) such that
r¥ = C'=0(mod f(z), pg);

(2) T > E,
then for a.b € G'(f(x),pq), a = b if and only if [a]ogs = [Dlods-

The proportion of (n, p, q) satisfying the conditions of Theorem 3 is tested for different
ranges of n, p and ¢, and results show that such proportion is very high. For example,
the proportion is at least 93.756% for 2 < n < 31 and 3 < p < ¢ < 1000, whereas the
corresponding proportion of Theorem 2 is only 48.765% [18]. Moreover, the existence of S
and C described in condition (1) of Theorem 3 is discussed. A sufficient condition is given
in Corollary 17 for the existence of such S and C'. Experiments show that for the same
ranges of n, p and ¢, the proportion of (n,p,q) satisfying the conditions of Corollary 17
is also higher than that of Theorem 1 in [18], though the conditions of Corollary 17 are

stronger than those of Theorem 3.

The rest of this paper is organized as follows. In Section 2 the element distribution of

primitive sequences over Z/(pq) is estimated. Section 3 gives the proof of Theorem 3 and



discusses the number of primitive sequences satisfying the sufficient conditions given by

Theorem 3.

2 Element distribution of primitive sequences over

Z/(pq)

In the following of the paper, suppose that p and ¢ are two fixed odd prime numbers with

P <q.

Let a be a periodic sequence over Z/(pq) with T = per (a,pq). For any fixed integer
s € Z/(pq), if there exists an integer 0 < t < T — 1 such that a () = s, then we say that
the element s occurs in a. Let N (QT, s) denote the frequency of element s occurring in a

complete period of the sequence a, that is,
N(a",s)=#{t|a(t)=50<t<T—1}.
If a is a primitive sequence generated by a primitive polynomial of degree n = 1 over
Z/(pq), then it is easy to see that not all elements in Z/(pq) occur in a. However, as n

increases, it seems that every element in Z/(pq) occurs in a. In this section, we present a

sufficient condition for this element distribution property.
Let e, (-) be the canonical additive character over Z/(m) given by e, (a) = */™,

where a € Z/(m). Then it is easy to see that the following lemma holds.

Lemma 4 Let m be an integer greater than 1. Then for any integer c,

Z . (ca) = m, if m|c;

a—0 0, otherwise.

For any positive integer n, denote

(Z/(p0))" = A{(a1, a2, an) | ai € Z/(pg),1 < i < n}.



Lemma 5 Let f(x) = 2" — (¢, 12" ' + -+« + c17 + ¢) be a primitive polynomial over
Z/(pq) and let d = (1,0,---,0) € (Z/(pq))". Thend - A™ # d - A* for0 < m < k <
lem (p" — 1,¢" — 1), where

(001 0 0 0 |
0 0 1 0 0
L ooon 0 o
000 0 - 1
| o a1 o3 o G |

Proof. Let T' = lem (p" — 1,¢™ — 1). Suppose there exist two integers m and k, 0 < m <
k < T such that d - A™ = d - A*. Then we have

(d-A7) - A" =(d-A)- A for0<j<n-1 (3)

Note that
d-A’=(0,...,0,1,0,...,0),0< j <n—1,
W—/
J
and so (3) implies that
A™ = Ak, (4)

Let d = (d(t)),»o be a primitive sequence generated by f(z) over Z/(pq) and d; =
(d(t),d(t+1),---,d(t+mn—1)) be the t-th state of the sequence d for an integer ¢ > 0.
It follows from (1) that

dy = A" dj,

where d7 is the transpose of d. Then by (4) we have
d’ = A".d] = A" . d] = d,

a contradiction to per (d, pq) = T. Therefored- A™ #d-A*for0<m<k<T. R



Lemma 6 Let a be a primitive sequence generated by a primitive polynomial of degree

n > 2 over Z/(pq) with period T = lem (p™ — 1,¢" — 1). Then

E :epq

< (pq)? .

Proof. For any vector b = (bg, b1, ,b,—1) € (Z/(pq))", let
b) = epg (boa (t) + bra(t + 1) + -+ + bysa(t +n—1)). (5)
Note that

epg (boa (0) +bra (1) + -+ bpqa(n —1))

= epg (boa (T) +bra(T+1)+ -+ by1a(T+n—1)),

and so we obtain
T—

,_.

epg (boa (t+1) +bia(t+2)+ - +by,1a(t+n)). (6)
t=0

Assume f(z) = 2" — (c,_12" 1+ -+ + 12 + ¢p). Then we have
a(t +n) = lea(t) +cra(t +1) + -+ cpralt +n — 1)] 04,0t = 0. (7)

Hence, (6) and (7) yield

T-1

o (b)] =

(]

€pq (boa (t + 1) +b1a(t+2)+---+bn_1a(t+n))‘

n—1
= epq<boa(t—|—1)+b1a(t+2)—|-...—|—bn_1(cht—l—k))‘

t=0 k=0
= ‘ ( n—1C0, bO + bn 1C1, * 7bn72 + bnflcn71)|
(b-

A,

T T
Lo

= ‘O’
where A is an n X n matrix over Z/(pq) of the form described in (2).

Recursively, we have

lo(b)|=o(b-A)=|o(b-A%)|=---=]|o(b-A"7)|. (8)



Therefore, it follows that

Y, o)

be(Z/(pg))"

= > o(b)-o(b)

be(Z/(pg))"

= > (Z epq(bo(a(s)a(t))))....

0<s,t<T—1 \bo€Z/(pq)

. ( 3 epq(bnl(a(s—l—nl)Cl(t‘l‘nl))))
b

n—1€Z/(pq)

= > (Z €pq(b0(a(s)a(t))>)....

0<s,t<T—1 \ bo€Z/(pq)
s=t

( > epq<bn1<a<s+n1>a<t+n1>>>) (9)

bn—1€Z/(pq)

= T-(pg)", (10)
where the equality (9) holds since for 0 < s,t < T — 1,
(a(s),-ra(s+n—1)=(a(t),---a(t+n—1)) if and only if s = ¢.
Let d = (1,0,---,0) € (Z/(pg))" and 2 = {d- A" | 0<¢<T —1}. By Lemma 5, we
have |Q2| = T. Thus, (5), (8) and (10) yield

2

= Tl (@)

= Yo (an)y
= > lo)F

bef

< ) o)

be(Z/(pq))"
= T (pg)",
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and so we get

< (pq)

S ()

Lemma 7 Let a be a primitive sequence generated by a primitive polynomial of degree
n > 2 over Z/(pq) with period T = lcm (p" — 1,¢" — 1). For any fized elements s, € Z/(p)
and s, € Z/(q), we have

T-1 p—1 pT ( n=1_1 ; =0
mn__ p ) Y Zfs 07
ep (1 (a(t) —sp)) = ”pTl L ’ (11)
t=0 h1=0 pnflpn ) Zf Sp S Z/(p)*'
and
T-1 g—1 qT ( n—1 _ 1 ; —0-
mn__ q )7 7/f8 07
calha(a®) =) =4 "1 q (12)
t=0 ha—=0 s A if s € Z/(q)"-

Proof. Let b = [a] .4, Since b is a primitive sequence generated by f(x) over Z/(p), it
follows that

-1

S

—1 -1

3
S

—
=

N (2", sp) = ep (ha (b(1) = 5p)) =

0

ep (hi (a(t) = 5p)) -

aS
Il

==
Il

t

Il
o
>

t

Il
=)
=

1 1
Hence, (11) immediately follows from the theory of m-sequence over finite fields. Similarly,

we can get (12). W

Let a and T be described as in Lemma 7. For any fixed element s € Z/(pq), set

$p = [8)oa a0l 54 = [8],100, Then

N(a's) = Ly (Z ep (ha (a(t) = sp)) - eq(h2(a(t)—8q)))

T 1= _ 1 &
= + ” ; };)ep (h1(a(t) —sp)) + P 2 2. eq (ha (a (t) — s4))
1 T-1 p—1 g-1
—|—p—q €p (hl (CL (t) - 3p)) €q (h2 (a (t) - Sq)) <13)
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Denote
1 T—-1 p—1 1 T—-1 qg—1
E(sp,sq) = ——+ — Z Z ep (hi(a(t) —sp)) + — eq(ha (a(t) —sq)). (14)
pq p t=0 h1=0 Pq t=0 ho=0

Then by Lemma 7, we can deduce that

.
Z<1—p*1 g1 , if s, =0 and s, = 0;

E (s, 5.) = plq (1 + pnl_l — qn__ll) , if s, € Z/(p)* and s, = 0; (15)
P 2q)
plq <1 pﬂ__ll + qn1_1> , if s, =0and s, € Z/(q)%;
|z (1 T qnal) L if s, € Z/(p)* and s, € Z/(q)".

From (13) and (14) we can get

1 p—1 q—1 T-1
[N (") = E(sp,s0)] = — ep (hn (a (t) = sp)) eq (ha (a (t) — sq))

Pa, 2o

IA
| —
[
™
=
—~
=
—
S
—~
~
~—
~—
D
=}
—~
>
[\
IS
—~
~
~—
~—

Pq h1=1ho=1 | t=0
1 p—1 q—1 |T-1
S 2D o) SRR
hi=1ha=1 | t=0
(r=1)-(¢=1) z
< “(pg)2 . 16
p (pg) (16)
The last inequality (16) follows from Lemma 6 and the fact that [(ghi + ph2) al 04, 1S also

a primitive sequence over Z/(pq) for 1 < hy <p—1and 1 < hy < g — 1. Therefore, we

have the following theorem.

Theorem 8 Let a be a primitive sequence of order n > 2 over Z/(pq) with period T =

lem (p™* — 1,¢" — 1). For a given element s € Z/(pq), the element s occurs in the sequence

a if

P—1)-(¢g—1)
pq

S¢ = [8lmoay and E (sp,sq) is defined in (15). In particular, every

M\S

E (sp,54) > (pq)?,

where s, = [s]modp,

element in Z/(pq) occurs in the sequence a if

T-(l—p‘l—q‘1)><p—1>-<q—1>-<pq>’2‘. an)

pr—1 ¢ =1
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Proportion of (n, p, q) satisfying the inequality (17) of Theorem 8 is tested under differ-
ent ranges of n, p and ¢, and the results are listed in Table 1, where prime (k) is the k-th
prime number. For example, the proportion is 96.461% for 2 <n < 3land 3 <p < ¢ <

prime (200) = 1223. It can be seen from Table 1 that the proportion is very close to 100%

if n > 2.
Table 1 Proportion of (np.q) satisfying the inequality (17) of Theorem 8
3 <p<q<prime(k)

n k=200 | k=500 | k=1000 | k=3000 | k= 5000 | k= 10000
2<n<31|96.461% | 96.570% | 96.612% | 96.644% | 96.562% | 96.658%
<n<31199.787% | 99.900% | 99.944% | 99.977% | 99.985% | 99.991%
4<n<31(99.921% | 99.977% | 99.991% | 99.998% | 99.999% | 99.999%
<n<3l1 100% 100% 100% 99.999% | 99.999% | 99.999%
<n<31| 100% 100% 100% | 99.999% | 99.999% | 99.999%

<n<3l1 100% 100% 100% 100% 100% 100%

Remark 9 Not all elements in Z/(pq) occur in a primitive sequence of order n = 2 over
Z/(pq). For example, f(x) = x* — (4= + 13) is a primitive polynomial of degree n = 2 over
Z/(pq) with period T =lecm (3% — 1,52 — 1) = 24 and

a=(1,0,13,7,2,9,2,5,1,9,4,13,14,0,2,8, 13,6, 13,10,14,6,11,2, - - -)
is a primitive sequence generated by f(x) over Z/(pq). It can be seen that the element 3

and the element 12 do not occur in the sequence a.

Corollary 10 Let a and T be given as in Theorem 8. For n > 2, every element in Z/(pq)
occurs in the sequence a if
2
403\ »—2
92\ 55
354

n+2

. pn72 .



Proof. On the one hand, we have

13

7.(1_ p—1 q¢-1
pr—1 q”—l
-7 (1- - L
P 1+ +p+1 e R /|
> T-(1-— L
p? +p+1 R ES!
1
> T-(1-
32+3+1 52 45+1
359
T 403
359
> — (" —1). 18
> - (13)
Note that ¢" > 5% = 125, and so it follows from (18) that
p—1 q—1 359 354
T-(1- . > 27 (-1
( -1 qn—1> =303 D> o3 1
On the other hand, it is clear that
(p=1) (a1 (e)? < (pg)*™" (19)
: 403\ 7z |, "t
Since q > (354) -pn—2, we get
354  n 354 -1
03 9 03 g3 >
(pg)2 ™ prt! = 20)
Then (18), (19) and (20) yield
-1 —
T.(1= _a-1 %.qn
pr—1 qgr—1 403
> (pg)*"
> (p—1)-(¢g—1)-(pg)?

and so the corollary follows from Theorem 8. W

For two given odd prime numbers p and ¢ with p < ¢, since

i (198)7
n—oo \ 354

. pn—2

n+2

=Db
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403

2 n+2 .
38) =2 . pn—2 for any integer n > N, and

there exists a positive integer NV such that ¢ > (
so it follows from Corollary 10 that every element in Z/(pq) occurs in a primitive sequence

a of order n.

3 Distinctness of primitive sequences over Z/(pq) mod-

ulo 2

In this section, we first give the complete proof of Theorem 3 presented in Section 1 and

then discuss the proportion of primitive sequences covered by Theorem 3.

3.1 The proof of Theorem 3

Throughout this subsection, let p and ¢ be two odd prime numbers with p < ¢ and f(x)

be a primitive polynomial of degree n > 2 over Z/(pq).

Lemma 11 Let a and b be two sequences in G'(f(x), pq) with [a] .45 = [0l noaz- If

1) there exist a positive integer S and an even number C' in Z/(pq) such that v° —C =
( g

0 (mod f(z),pq); and

or any sequence z € x),pq), either 1 or pg — 1 occurs in 2z,
2 Y G’ ither 1 1 '

then [Q]modp = [l—)]modp or [Q]modq - [l—)]modq'

0.

Proof. Denote ¢ = [a — b] It suffices to prove that [c] =0or [c] 00, =0

=Imod pq* ~Imod p

# 0 and [¢]

mod p ~lmod ¢

Suppose [c] # 0. Then ¢ € G'(f(x),pq), and so it follows from

condition (2) that there exists an integer ¢ > 0 such that ¢ (t) = 1 or ¢ (t) = pg — 1.

If ¢(t) =1, ie., [a(t) — b(t)] = 1, then it follows from [a (¢)] .40 = [0 (t)],10q2 that

mod pgq

a(t)=0and b(t) = pg— 1.
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Thus, by condition (1) we have

a(t+S)=[C-0] =0and b(t+5) =[C (pg — 1], 0ap, = P2 — C-

mod pq

Note that C' is an even number, and so this implies that

[CL (t + S)]mod2 =0 7é 1= [pq - C(]mon = [b (t + S)]m0d2 ’
a contradiction to the assumption that [a] .40 = [0],042-

Similarly, it can be shown that if ¢ (t) = pg — 1, then [a] 49 7 [0l nod2-

Therefore, we get that either [c] 4, =0or [d, 4, =0 W
In the following we discuss the two cases [a] 0q, = [Blmodp A [@]i0ay = [Bliodys
respectively.
Lemma 12 Let a and b be two sequences in G'(f(x),pq) with [a] .40 = [0loq2 and
[a)in0ap = [Oloap Then a = b if for any sequence z € G'(f(x),pq), every element in
Z/(pq) occurs in z.
Proof. Since [a] ,0qp, = [blnoa,» it suffices to show [a] .4, = [0]0q,- By the Chinese
Remainder Theorem we get that
a=q- (¢ a] g, TP [P a] ., modpg (21)
and
b=q-[¢7" 0] g, +P [P ] 0q, mod pg- (22)
Denote m, = [q_l ) Q]modp = [q_l ) l—)]modp’ my = [p_l ’ Q}modq and ms = [p_l ’ l—)}modq' It can

be seen that m, € G'(f(z),p), my, ms € G'(f(x),q), and (21), (22) can be written as

a= [(] "My +p- m2]modpq and b = [q "my +p- m?)]modpq : (23)

Suppose m, # ms. We will show [a] 4o 7 [0],,0q2 Py discussing the following two cases,

respectively.
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Case 1: m, and mg are linearly independent over Z/(q)

Since m, and msy are two m-sequences over the finite field Z/(g), it can be seen that

there exists an integer ¢ > 0 such that my(t) = 0 and ms(t) = 1. Hence (23) yields

a(t) =[g-m1 ()]moap, and b(t) = [q-m1 () + Pliodp, - (24)

Note that - my (t) <g-(p—1)<pgand q-my(t)+p<q-(p—1)+p < pq, and so (24)
implies that

a(t)=q-my(t) and b(t) = q-mq (t) + p.
This shows that [a (t)] .42 7 [0 (1) ed -

Case 2: m, and ms are linearly dependent over Z/(q)

Since my, # my, we have mg = [\ - m,] for some integer 2 < XA < ¢ — 1. It follows

mod q

from condition (1) that (m; (t),ms (t)) runs through the set {(u,v) | v € Z/(p),v € Z/(q)}

when ¢ runs from 0 to lem (p" — 1,¢" — 1) — 1.

If A is even, then choose an integer ¢ > 0 such that m; (t) = 0 and ms (t) = 1, and so
(23) immediately yields
a(t)y=pand b(t) =\ p < pg.

This shows that [a ()] .42 7 [0 ()] mod2-

If X is odd, then let us denote § = ’—%‘ Since

g=r-L<ns=n [ an ($41)=g+r<2g,

it follows that [\ -6 = A-0 — q. Choose an integer ¢ > 0 such that m; (t) = 0 and
mod g

mg (t) = 0. Then (23) yields

and

b(t) = [+ [\ Oea |



17

It follows that
[@ ()] moa2 = [0lmodz # [0 = Lnoaz = [P (A0 = @)]soa2 = [0 (D) moas -

The above discussions imply that m, = mg, and so [a],,,q4, = [Blmed -

For a positive integer u, let vs (1) denote the greatest nonnegative integer m such that

2™ divides u. With the notation, v, (u) = 0 if and only if u is odd.

Lemma 13 Let a and b be two sequences in G'(f(x),pq) with [a] .45 = [0loq2 and
[Q]modq = [Q]modq' Set T = lem (pn - 17 q" — 1) and

0, ifva(p" —1) #v2(¢" —1);

E = {J lcm<p —1,q1>,zfv2(p—1)—vg(q —1).

Then a = b if
(1) for any sequence z € G'(f(x),pq), every element in Z/(pq) occurs in z; and

(2) T > E.

Proof. Since [a = [b] oa 4+ it suffices to show [a] = [b] o, Proceed as in the proof

mod ¢ modp
of Lemma 12, we get
a= [q t1my +p- m?x]modpq and Z—) = [q L) +p- mii]modpq ’ (25)
where m; = [¢7" alpoqp e = (071 bpea, € G'(f(2),p) and my = [p~' -], =
[p ! b]modq € Gl(f<x)7Q)
Suppose m; # m,. We will show [a] 4o 7 [0] ,0q2 O 7' < E by discussing the following

two cases, respectively.
Case 1: m, and my are linearly independent over Z/(p)

Since m, and m, are two m-sequences over the finite field Z/(p), there exists an integer

t > 0 such that m;(t) =0 and ma(t) = 1. Let g=k-p+r with0 <r <p—1.
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Case 1.1: 0 <mgz(t) <qg—k—1

Since ¢-1+p-m3(t) <qg+p-(g—k—1) < pg, we have

a(t)=1[0+p-ms(t)]neap =P ms(t)
and
b(t) =lg-1+p-m3(t)]neap, = ¢ +p-m3(l),
then we get [a (t)] 002 = [13 (D] inoaz 7 (M3 (1) + Uinoas = [0 (D] moas:
Case 1.2: q—k <ms(t) <qg—1
(a) If vg (p" — 1) > vy (¢™ — 1), then we get
F
2
Note that f(z)(modp) is a primitive polynomial over Z/(p) with per (f (z),p) = p" — 1,
and so 2“7 = —1mod (f(x),p). Then (26) implies that

1 T
_P and {—

. = 0. (26)

mod p™—1 :| mod ¢g"—1

=22 =—1mod(f(x),p) and 27 = 1mod (f(z),q).
Applying 27 = —1mod (f(x),p) to m,, my, and using m4(t) = 0, my(t) = 1, we obtain
T T
mi{t+5 )= [=m1 ()] moap = 0,ma2 [ £ + 37)= [=ma ()] moap =P — 1. (27)

r
2

Applying 22 = 1mod (f(z), q) to ms leads to

s (t + g) — (28)

Thus (25), (27) and (28) yield

(D) < o (D) e (5 D)) et

)2 e
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Since g — k < mg(t) < q — 1, it follows that

q-(p—1)+p-ms(t)>pg+p-(q—k)—qg>pg+(p—2)-q>pq

and
qg-p—1)+p-mg(t) <pg+p-(¢g—1)—q<2pq,

and so
b(t+—) g (= 1) pema (O], = p-ma (1) — q.

Hence we have

(1 5)] Ol £ b )= A= o (e 5)]

(b) If vy (p" — 1) < we (¢" — 1), then we get

T T
[—} =0 and [
2 mod p"—1

’
:| mod g™ —1 2

N

and so

Similarly, we can get

s (t+z> — ma (t) = 0,my (t+§) —ma(f) = 1.

2
and
(14 5 ) = o Olgy = = ma 0.
Hence
(Do) erme ] v e
and

b<t+§) = [q-mQ <t+§) +p-ms (H%)L()dpq: [g+ D (=15 ()] mod pq -
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Since ¢ +p < q+p- (¢ —ms(t)) < g+ kp < 2q < pg, then (29) yields

b<t+§) =q+p-(g—ms(1)).

Therefore

(o 5)] e Ol # Ol = p (14 )]

(c) If vg (p" — 1) = w3 (¢™ — 1), then note that L%J > 1, and so by condition (2) we

get

q"—1
T>1 "1 . 30
A (30)

Since f(z) (mod q) is a primitive polynomial of degree n over Z/(q), there exists a primitive

element ¢ in Z/(q) such that

-1

27T = Emod (f (x),q).

n "—1
Denote S = lem <p -1, qq_l ) Then we get

2% = 1mod (f (z),p) and 2° = "mod (f (), q), (31)

where h = [qni_l] _ [(q—l)S
mod g—1

q—1 " -1 }modq—l
Imod (f (z),pq), then (30) implies that f(x) is not a primitive polynomial over Z/(pq), a

# 0 (Otherwise h = 0, and (31) yields z° =

contradiction). It follows from (25) and (31) that

CL(t‘i‘ICS) — [qml(t+kS)+pm3<t+k‘s)]modpq
= fg-m(®)+p-&" ms®)] i

- p'[ﬁhk'm?»(t)]modq (32)
and
b(t+k-S) = [¢g-ma(t+k-S)+p-mg(t+k-S)

= [¢-ma(t)+p- " ms(t)]

_ [q +p- [€" - mg <t)]modq}

mod pq

mod pgq

’
mod pq
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for 0 <k < % In the following we will deduce a contradiction by showing that T' < E.

First, we claim that [é’hkl Mg (t)}modq =+ [5hk2 -Mm3 (t)}modq ifky # ko for 0 < ky, ko < %

Otherwise, there exist two integer ky and ko, 0 < k1 < ky < % such that [fhkl “Mms (t)}

[ghlcz M3 (t)]
lows that

mod g

Then we get [Eh(kr’“)} = 1. Using 2° = " mod (f (z),q), it fol-

mod ¢ mod g

xS~(k2*kl) = 1 mod (f <£E') 7Q) )

where S - (ky — k1) < T, a contradiction to the assumption that f(z) is a primitive poly-

nomial over Z/(pq).

Second, [a] 4o = [0],oqo implies that [a (t 4+ k- S5)] oqa = D&+ k- S5)] 0qe for 0 <
k < %, then it follows from (32) and (33) that

T
q+p.[§hk-m3(t)] 2qu0r0§k:<§.

mod ¢

Note that [fhk -mg (t)] , is an integer, and so we can get

mod

q— {%J < [ﬁhk‘mS(tﬂmodqSq_1f0r0§k<

Sl

Hence we deduce % < L%J, ie, T <FE.

Case 2: m, and m, are linearly dependent over Z/(p)

Since m, # m,, we have m, = [\ - my] for some integer 2 < A\ < p — 1. It follows

mod p

from condition (1) that (m; (t),ms (t)) runs through the set {(u,v) | v € Z/(p),v € Z/(q)}

when ¢ runs from 0 to 7" — 1.
If A is even, then choose an integer ¢ > 0 such that m; (t) = 0 and mg (t) = 1, and so
a(t)y=qand b(t) =X -p <pq.
This shows that [a (t)] .40 =1 7# 0= [0(t)] yoqo-
If X is odd, then let us denote § = {ﬂ Since

p=A-

>3

<xa=x [ <x (Ba1)=pra<zp
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it follows that [\ - d] = A -0 —p. Choose an integer t > 0 such that m, (t) = ¢ and

mod p

mg (t) = 0, then we have
a (t) = [q : 5]modpq =4q- 0

and

b(t) = [0 D Ooas] = N0y =0 (A5 ).

mod pq

It follows that
a (t)]mon = [5]mod2 #[0— ]'Lnon =[qg- (A6~ p)]mod2 =[b (tﬂmon‘

The above discussions imply that m; = m,, and so [a] 04, = 0] mod -

Proof of Theorem 3. It can be seen that Theorem 3 immediately follows from Theorem 8,

Lemma 11, Lemma 12 and Lemma 13. W

3.2 Discussions on the conditions of Theorem 3

Experiments show that the condition (2) of Theorem 3 is very weak. For example, the
proportion of (n, p, q) satisfying it reaches 99.843% for 3 <n <20 and 3 < p < ¢ < 104729,
where 104729 is the 10000-th prime number. Therefore, in this subsection we focus on the

condition (1) of Theorem 3.

Let p and ¢ be two odd prime numbers and let €2, and €2, be the set of primitive elements
in Z/ (p) and the set of primitive elements in Z/ (¢), respectively. If f(z) is a primitive
polynomial over Z/ (pq) of degree n > 2, then f(x) is a primitive polynomial both over
Z/(p) and Z/ (q). It follows that there exist a primitive element £, € Q, and a primitive

element &, € €2, such that

p" — n

% = ¢,mod (f (z),p) and 21 = £,mod (f (v) q).

Let us denote

n_ n__ n__ n__
lem(Z=1 =1 lem(2=E 221
p—17 ¢—1 p—1’ g—1
0,0 = and 0,, =
p,n p—1 q,n q"—1

p—1 q—1
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Then for any positive integer k we have

mkdcm(pp:ll ,qq:ll) = fl;'ep’" mod (f (SL’) 7p) ’
s = 5’;'9%" mod (f (z),q),

and so

p"—1 ¢q"—1

M) = L (¢ %) mod (f (x), pg)
where Lift({;f'g"*", flg'eq*") denotes the unique integer m between 0 and pq — 1 such that

k-04,n
q

m = 5’;'9”’" modp and m=¢ mod q.

This shows that if there exists some positive integer k£ such that Lift({”;'e”’",ﬁg’aq’") is an
even number, then f(z) satisfies the condition (1) of Theorem 3. Thus, if for every pair
of primitive elements (£,,§,) € €, X Q,, there is an integer & such that Lift(é";'e”’”, 5’;'9‘1’”)
is an even number, then every primitive polynomial over Z/(pq) of degree n satisfies the
condition (1) of Theorem 3. Based on this observation, We tested the proportion of (n, p, q)
satisfying the conditions of Theorem 3 for degree n up to 31 and odd prime numbers p, q
up to the 168-th prime, and to make a comparison with the result of [18], we also tested
the proportion of (n, p, q) satisfying the conditions of Theorem 1 in [18] for the same range
of n and odd prime numbers p, q. Results are listed in Table 2. It can be seen from Table

2 that the sufficient conditions of our Theorem 3 are much weaker than those of Theorem

1in [18].



Table 2 Comparison between the proportion of (n,p, q) satisfying the

conditions of Theorem 3 and those of Theorem 1 in [18]

Theorem 3

Theorem 1 in [1§]

k=50

k =100

3 <p<q<prime(k)

k=168

3 <p<q<prime(k)

k=50

k =100

k=168

2<n<31
3<n<3l
4<n<31
0<n <31
6 <n<3l

T<n<3l

> 90.439%
> 93.558%
> 93.732%
> 94.174%
> 93.972%
> 94.153%

> 92.606%
> 95.800%
> 95.899%
> 96.121%
> 95.992%
> 96.095%

> 93.756%
> 96.989%
> 97.051%
> 97.184%
> 97.094%
> 97.168%

46.638%
47.930%
46.747%
48.246%
46.775%
48.381%

48.143%
49.434%
48.243%
49.767%
48.281%
49.920%

48.765%
50.037%
48.858%
50.376%
48.914%
50.550%
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Remark 14 There do exist (n,p,q) that does not satisfy the condition (1) of Theorem 3.
For example, f(x) = x* + 42 + 22% + 3z + 3 is a primitive polynomial over Z/ (7 x 101),

and it can be verified that

405mod(f (x),7 x 101), if [k] g0 = 1;
Imod(f (x),7 x 101), if [k] .q9 = O.

7n—1 11”—1)
7—1 7 11—1

plem(

Therefore, there is no positive integer S and even number C in Z/(pq) such that z° — C =

0 (mod f(x), pq).

It can be seen that for relatively larger prime numbers p, ¢, it is difficult for us to run
through €2, x Q,. Thus, in the following, we give another sufficient condition for (n,p, q)
satisfying the condition (1) of Theorem 3, which is much easier to verify but stronger than
the previous one discussed above. First, we introduce a classic result given by H. L. Garner

in 1958.

Lemma 15 ([19/)Let my,ma, - - ,my be pairwise coprime positive integers. Then

U=V M1 Mg Mg+ -+ V3 -Mg-M1 + Va2 M+ Vg



25

s a number satisfying

k
0<u<[[mi u=u;j(modm;) forl<j <k,
i=1

where

v = [ul]modnu )

Vg = {(UQ - Ul) : c1,2],000(17712 )

vy = [((ug —v1)-cr13—1v2)- 62:3]modm3 ;

/Uk - [( o ((U/k - Ul) ° cl,k - UQ) : CQ,k -t Uk—l) ' Ck_lyk]modmk ’
with ¢; j = [m;l}modmj, <i<j<k

Based on Lemma 15, we are easy to get the following results.

Lemma 16 Let p and q be two odd prime numbers and let f(x) be a primitive polynomial
of degree n > 2 over Z/(pq). Then there exist a positive integer S and an even number C
in Z/(pq) such that

2% — C = 0mod(f(z), pq),

if one of the following three conditions is satisfied:
(1) vz (p" = 1) = v2 (¢" = 1);
(2) U2 (pn - 1) > Uy (qn o ]') and [p_l]modq > %"

(3) va (p" — 1) < vy (¢™ — 1) and [qil]modp > L.

Proof. Denote T' = lem(p"” — 1,¢" — 1).

(1) If vy (p" — 1) = v (¢™ — 1), then

~

2 2

(modp™ —1) and

p"—1 T q¢"—1
2
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and so we have

r T
2 2

x?2 = —1mod(f (z),p) and x

= —1mod(f (z),q).

By the Chinese Remainder Theorem, we get

r
2

z? = pq — 1mod(f (z),pg).
Thus S = T/2 and C' = pg — 1 are desirable integers.

(2) If vo (p — 1) > v2 (¢" — 1), then we have

T
T2z

= —1mod(f (z),p) and 77 = 1mod(f (x),q).

By Lemma 15, we get

T _
o= 0= 0= [ ), P
= [2 P odg 1} g P (p — D)mod(f (x), pq).
Since [p~ ' 0q, > 3, it follows that
_1 f— . _1 —_— —_—
|:2 |:p :|modq_1:|modq_2 |:p :|modq q 1
is an even number, and so S = 7/2 and C = [2 [P Ninodq — 1} -p+ (p—1) are
mod q

desirable integers.
(3) The proof is similar to (2). W

The following corollary immediately follows from Theorem 3 and Lemma 16.

Corollary 17 Let p and q be two odd prime numbers with p < q and f(x) be a primitive
polynomial of degree n > 2 over Z/(pq). Set T'=lem (p™ —1,¢" — 1),

(p—1)-(g—1)(pg)? q ¢ —1
1 1_p—1_q—1 , an 2 D cm |\ p 7q_1

=1 q"-1

If one of the following three conditions is satisfied:
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(1) v (p" —1) =v3(¢" — 1) and T > max {Ey, Es};

and T’ > FEy;

N

(2) v (p" = 1) > v2(¢" = 1), [P | oaq >

(3) v (" = 1) <v2(q" = 1), [ spoap > 5 and T > Ey,
then for a,b € G'(f(x),pq), a ="b if and only if [a] 042 = [Olymoa2-

We compared the proportion of (n,p,q) satisfying the conditions of Corollary 17 and
the proportion of (n,p,q) satisfying the conditions of Theorem 1 in [18], and results are
listed in Table 3. Though the conditions of Corollary 17 is stronger than the conditions
of Theorem 3, it can be seen that the proportion of (n,p,q) satisfying the conditions of
Corollary 17 is still higher than that of Theorem 1 in [18]. This again confirms that the

main result of this paper, i.e., Theorem 3, is really an improvement of Theorem 1 in [18].

Table 3 Comparison between the proportion of (n, p, q) satisfying the

conditions of Corollary 17 and those of Theorem 1 in [18]

Corollary 17 Theorem 1 in [18]

n 3 <p<q<prime(k) 3 <p<q<prime(k)
k =1000 k =3000 Kk =5000 |k =1000 £k =3000 k= 5000
<n<31] 63.847% 64.106% 64.284% | 49.538%  49.730%  49.756%
3<n<31| 66.049% 66.316% 66.501% | 50.811% 51.003% 51.031%
4<n<31| 66.054% 66.319% 66.501% | 49.633% 49.826%  49.860%
5<n<31l| 66.067% 66.322% 66.503% | 51.158% 51.355%  51.388%
6 <n<31| 66.039% 66.309% 66.494% | 49.679% 49.867%  49.897%
7<n<31| 66.058% 66.317% 66.500% | 51.3256% 51.514%  51.545%
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