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Abstract

Let Z=(pq) be the integer residue ring modulo pq with odd prime numbers p and q.

This paper studies the distinctness problem of modulo 2 reductions of two primitive

sequences over Z=(pq), which has been studied by H.J. Chen and W.F. Qi in 2009.

First, it is shown that almost every element in Z=(pq) occurs in a primitive sequence

of order n > 2 over Z=(pq). Then based on this element distribution property of

primitive sequences over Z=(pq), previous results are greatly improved and the set of

primitive sequences over Z=(pq) that are known to be distinct modulo 2 is further

enlarged.
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1 Introduction

For an integer N � 2, let Z=(N) = f0; 1; : : : ; N � 1g be the integer residue ring modulo N ,

and for any integer a, let [a]modN denote the minimal nonnegative residue of a modulo N .

Moreover, for an integer sequence a = (a(t))t�0, denote [a]modN = ([a(t)]modN)t�0.

If a sequence a = (a(t))t�0 over Z=(N) satis�es

a(i+ n) = � (cn�1a(i+ n� 1) + � � �+ c1a(i+ 1) + c0a(i))modN; i � 0 (1)

with constant coe¢ cients c0; c1; : : : ; cn�1 2 Z=(N), then a is called a linear recurring se-

quence of order n generated by f(x) over Z=(N) (or a is a sequence of order n over Z=(N)

in short), where f(x) = xn + cn�1xn�1 + : : : + c0. The set of sequences generated by f(x)

over Z=(N) is denoted by G (f (x) ; N).

Let p be a prime number and e a positive integer. Every element u 2 Z=(pe) has a

unique p-adic expansion as u = u0 + u1 � p+ : : :+ ue�1 � pe�1, where ui 2 f0; 1; � � � ; p� 1g

and can be naturally seen as an element in Z=(p). Similarly, a sequence a over Z=(pe) has

a unique p-adic expansion as a = a0 + a1 � p+ : : :+ ae�1 � pe�1, where ai is a sequence over

f0; 1; � � � ; p� 1g and can be naturally seen as a sequence over Z=(p). ai is called the ith-

level sequence of a for 0 � i � e� 1 and ae�1 is also called the highest level sequence

of a.

A monic polynomial f(x) over Z=(pe) is called a primitive polynomial if the period

of f(x) over Z=(pe), denoted by per(f(x); pe), is equal to pe�1(pn � 1), that is pe�1(pn � 1)

is the minimal positive integer P such that xP � 1 is divisible by f(x) in Z=(pe)[x]. A

sequence a = (a(t))t�0 over Z=(pe) is called a primitive sequence (or maximal length

sequence) if a is generated by a primitive polynomial over Z=(pe) and a0 6= 0, where a0
is the 0th-level sequence of a and 0 = (0; 0; : : :) is a constant sequence. The period of a

primitive sequence a over Z=(pe) is equal to pe�1(pn � 1), i.e., per (a; pe) = pe�1(pn � 1),

see [1].

Let a = a0+a1�p+: : :+ae�1�pe�1 be a primitive sequence over Z=(pe) and '(x0; : : : ; xe�1)
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be an e-variable function over Z=(p). Then '(a0; : : : ; ae�1) is a sequence over Z=(p) and

is called a compressing sequence derived from a. Many cryptographical properties of such

compressing sequences have been studied during the last 20 years [2]-[15], especially the dis-

tinctness of the compressing sequences [2], [3], [6], [8]-[11] and [14], that is, a = b if and only

if '(a0; : : : ; ae�1) = '(b0; : : : ; be�1), where a and b are two primitive sequences generated

by the same primitive polynomial over Z=(pe). Obviously, for a given primitive polynomial

f(x) over Z=(pe), if the compressing sequences of all primitive sequences generated by f(x)

are pairwise distinct, then there is a one-to-one correspondence between compressing se-

quences and primitive sequences, which implies that every compressing sequence preserves

all the information of its original primitive sequences. Thus such compressing sequences

are thought to be a good type of nonlinear sequences available for the design of stream

cipher.

Recently, modular reduction, another compressing method of primitive sequences over

Z=(pe), is proposed and has attracted much attention. For example, the well known l-

sequences, i.e., maximal length FCSR sequences, introduced by A. Klapper and M. Goresky

in [17], are in fact modulo 2 reductions of primitive sequences of order 1 over Z=(pe). In

[16], the distinctness of modular reductions of primitive sequences over Z=(pe) has been

completely solved. It was shown that if a and b are two primitive sequences generated by

a primitive polynomial of degree n � 1 over Z=(pe), then a = b if and only if [a]modM =

[b]modM , where M is a positive integer and has a prime factor other than p. It can be seen

that the operation of modM destroys the inherent structure of sequences over Z=(pe), and

in particular for M = 2, the compression ratio is very large and easy to implement.

Furthermore, in [18], the authors generalized the modular reductions of primitive se-

quences over Z=(pe) to primitive sequences over every integer residue ring Z=(N), where

N is an integer greater than 1. Before introduce their result, we �rst give the de�nitions

of a primitive polynomial and a primitive sequence over Z=(N).

De�nition 1 Let N be an integer greater than 1 and N = pe11 �pe22 � � � � �p
ek
k be the canonical
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factorization of N . A monic polynomial f(x) of degree n over Z=(N) is called a primitive

polynomial if f(x) (mod peii ) is a primitive polynomial of degree n over Z=(p
ei
i ) for every

1 � i � k. A sequence a of order n over Z=(N) is called a primitive sequence if [a]mod peii
is a primitive sequence of order n over Z=(peii ) for every 1 � i � k.

With the above de�nition, it is easy to see that both the period of a primitive polynomial

f(x) of degree n over Z=(N) and the period of a primitive sequence of order n over Z=(N)

are equal to lcm
�
pe1�11 (pn1 � 1) ; : : : ; p

ek�1
k (pnk � 1)

�
, that is

per (f(x); N) = per (a;N) = lcm
�
pe1�11 (pn1 � 1) ; : : : ; p

ek�1
k (pnk � 1)

�
.

For convenience, the set of primitive sequences generated by a primitive polynomial f(x)

over Z=(N) is denoted by G0(f(x); N).

IfN has at least two di¤erent prime factors, there indeed exist many primitive sequences

of order 1 over Z=(N) such that their modular reductions are the same [18]. It is still open,

however, whether the modular reductions of primitive sequences of order n � 2 over Z=(N)

are distinct. In [18], the authors proved the following result for n � 2.

Theorem 2 ([18]) Let p and q be two odd prime numbers with p < q and f(x) be a primitive

polynomial of degree n � 2 over Z=(pq). If the following two conditions are satis�ed:

(1) there exist a positive integer S and a primitive element � in Z=(pq) such that

xS � � � 0mod(f(x); pq);

(2) (q � 1) is not divisible by (p� 1) or 2 (p� 1) divides (q � 1),

then for a; b 2 G0(f(x); pq), a = b if and only if [a]mod 2 = [b]mod 2.

In this paper, we also study the distinctness of primitive sequences over Z=(pq) modulo

2, and with our new result, the set of primitive sequences that can be proved to be distinct

modulo 2 is greatly enlarged. First we estimate the element distribution of primitive

sequences over Z=(pq). Experiments show that for most of the cases, our estimation implies
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that every element in Z=(pq) occurs in a given primitive sequence of order n > 2 over

Z=(pq). Based on the result of element estimation, we obtain a new su¢ cient condition on

the distinctness of primitive sequences over Z=(pq) modulo 2 as follows.

Theorem 3 Let p and q be two odd prime numbers with p < q and f(x) be a primitive

polynomial of degree n � 2 over Z=(pq). Set T = lcm (pn � 1; qn � 1) and

E =

8><>:
(p�1)�(q�1)�(pq)

n
2

1� p�1
pn�1�

q�1
qn�1

; if v2 (pn � 1) 6= v2 (qn � 1) ;

max

�
(p�1)�(q�1)�(pq)

n
2

1� p�1
pn�1�

q�1
qn�1

;
j
q
p

k
� lcm

�
pn � 1; qn�1

q�1

��
, if v2 (pn � 1) = v2 (qn � 1) .

where v2 (u) is the greatest nonnegative integer m such that 2m divides u. If the following

two conditions are satis�ed:

(1) there exist a positive integer S and an even number C in Z=(pq) such that

xS � C � 0 (mod f(x); pq);

(2) T > E,

then for a; b 2 G0(f(x); pq), a = b if and only if [a]mod 2 = [b]mod 2.

The proportion of (n; p; q) satisfying the conditions of Theorem 3 is tested for di¤erent

ranges of n, p and q, and results show that such proportion is very high. For example,

the proportion is at least 93:756% for 2 � n � 31 and 3 � p < q < 1000, whereas the

corresponding proportion of Theorem 2 is only 48:765% [18]. Moreover, the existence of S

and C described in condition (1) of Theorem 3 is discussed. A su¢ cient condition is given

in Corollary 17 for the existence of such S and C. Experiments show that for the same

ranges of n, p and q, the proportion of (n; p; q) satisfying the conditions of Corollary 17

is also higher than that of Theorem 1 in [18], though the conditions of Corollary 17 are

stronger than those of Theorem 3.

The rest of this paper is organized as follows. In Section 2 the element distribution of

primitive sequences over Z=(pq) is estimated. Section 3 gives the proof of Theorem 3 and
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discusses the number of primitive sequences satisfying the su¢ cient conditions given by

Theorem 3.

2 Element distribution of primitive sequences over

Z=(pq)

In the following of the paper, suppose that p and q are two �xed odd prime numbers with

p < q.

Let a be a periodic sequence over Z=(pq) with T = per (a; pq). For any �xed integer

s 2 Z=(pq), if there exists an integer 0 � t � T � 1 such that a (t) = s, then we say that

the element s occurs in a. Let N
�
aT ; s

�
denote the frequency of element s occurring in a

complete period of the sequence a, that is,

N
�
aT ; s

�
= # ft j a (t) = s; 0 � t � T � 1g .

If a is a primitive sequence generated by a primitive polynomial of degree n = 1 over

Z=(pq), then it is easy to see that not all elements in Z=(pq) occur in a. However, as n

increases, it seems that every element in Z=(pq) occurs in a. In this section, we present a

su¢ cient condition for this element distribution property.

Let em (�) be the canonical additive character over Z=(m) given by em(a) = e2�ia=m,

where a 2 Z=(m). Then it is easy to see that the following lemma holds.

Lemma 4 Let m be an integer greater than 1. Then for any integer c,

m�1X
a=0

em (ca) =

8<: m; if m j c;

0; otherwise.

For any positive integer n, denote

(Z=(pq))n = f(a1; a2; : : : ; an) j ai 2 Z=(pq); 1 � i � ng:
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Lemma 5 Let f(x) = xn � (cn�1xn�1 + � � � + c1x + c0) be a primitive polynomial over

Z=(pq) and let d = (1; 0; � � � ; 0) 2 (Z=(pq))n. Then d � Am 6= d � Ak for 0 � m < k <

lcm (pn � 1; qn � 1), where

A =

26666666666664

0 1 0 0 � � � 0

0 0 1 0 � � � 0

0 0 0 1 � � � 0
...

...
...

...
...

...

0 0 0 0 � � � 1

c0 c1 c2 c3 � � � cn�1

37777777777775
: (2)

Proof. Let T = lcm (pn � 1; qn � 1). Suppose there exist two integers m and k, 0 � m <

k < T such that d � Am = d � Ak. Then we have

�
d � Aj

�
� Am =

�
d � Aj

�
� Ak for 0 � j � n� 1 (3)

Note that

d � Aj = (0; : : : ; 0| {z }
j

; 1; 0; : : : ; 0); 0 � j � n� 1;

and so (3) implies that

Am = Ak. (4)

Let d = (d (t))t�0 be a primitive sequence generated by f(x) over Z=(pq) and dt =

(d (t) ; d (t+ 1) ; � � � ; d (t+ n� 1)) be the t-th state of the sequence d for an integer t � 0.

It follows from (1) that

d�t = A
t � d�0,

where d� is the transpose of d. Then by (4) we have

d�m = A
m � d�0 = Ak � d�0 = d�k,

a contradiction to per (d; pq) = T . Therefore d � Am 6= d � Ak for 0 � m < k < T .
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Lemma 6 Let a be a primitive sequence generated by a primitive polynomial of degree

n � 2 over Z=(pq) with period T = lcm (pn � 1; qn � 1). Then�����
T�1X
t=0

epq (a (t))

����� � (pq)n2 .
Proof. For any vector b = (b0; b1; � � � ; bn�1) 2 (Z=(pq))n, let

� (b) =

T�1X
t=0

epq (b0a (t) + b1a (t+ 1) + � � �+ bn�1a (t+ n� 1)) . (5)

Note that

epq (b0a (0) + b1a (1) + � � �+ bn�1a (n� 1))

= epq (b0a (T ) + b1a (T + 1) + � � �+ bn�1a (T + n� 1)) ,

and so we obtain

� (b) =
T�1X
t=0

epq (b0a (t+ 1) + b1a (t+ 2) + � � �+ bn�1a (t+ n)) . (6)

Assume f(x) = xn � (cn�1xn�1 + � � �+ c1x+ c0). Then we have

a(t+ n) = [c0a(t) + c1a(t+ 1) + � � �+ cn�1a(t+ n� 1)]mod pq ; t � 0. (7)

Hence, (6) and (7) yield

j� (b)j =
�����
T�1X
t=0

epq (b0a (t+ 1) + b1a (t+ 2) + � � �+ bn�1a (t+ n))
�����

=

�����
T�1X
t=0

epq

 
b0a (t+ 1) + b1a (t+ 2) + � � �+ bn�1

 
n�1X
k=0

cka(t+ k)

!!�����
= j� (bn�1c0; b0 + bn�1c1; � � � ; bn�2 + bn�1cn�1)j

= j� (b � A)j ,

where A is an n� n matrix over Z=(pq) of the form described in (2).

Recursively, we have

j� (b)j = j� (b � A)j =
��� �b � A2��� = � � � = ��� �b � AT�1��� . (8)
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Therefore, it follows thatX
b2(Z=(pq))n

j� (b)j2

=
X

b2(Z=(pq))n
� (b) � � (b)

=
X

0�s;t�T�1

0@ X
b02Z=(pq)

epq (b0 (a (s)� a (t)))

1A � � � �
�

0@ X
bn�12Z=(pq)

epq (bn�1 (a (s+ n� 1)� a (t+ n� 1)))

1A
=

X
0�s;t�T�1

s=t

0@ X
b02Z=(pq)

epq (b0 (a (s)� a (t)))

1A � � � �
�

0@ X
bn�12Z=(pq)

epq (bn�1 (a (s+ n� 1)� a (t+ n� 1)))

1A (9)

= T � (pq)n , (10)

where the equality (9) holds since for 0 � s; t � T � 1,

(a (s) ; � � � a (s+ n� 1)) = (a (t) ; � � � a (t+ n� 1)) if and only if s = t.

Let d = (1; 0; � � � ; 0) 2 (Z=(pq))n and 
 = fd � At j 0 � t � T � 1g. By Lemma 5, we

have j
j = T . Thus, (5), (8) and (10) yield

T �
�����
T�1X
t=0

epq (a (t))

�����
2

= T � j� (d)j2

=

T�1X
t=0

��� �dAt���2
=

X
b2


j� (b)j2

�
X

b2(Z=(pq))n
j� (b)j2

= T � (pq)n ,
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and so we get �����
T�1X
t=0

epq (a (t))

����� � (pq)n2 .

Lemma 7 Let a be a primitive sequence generated by a primitive polynomial of degree

n � 2 over Z=(pq) with period T = lcm (pn � 1; qn � 1). For any �xed elements sp 2 Z=(p)

and sq 2 Z=(q), we have

T�1X
t=0

p�1X
h1=0

ep (h1 (a (t)� sp)) =

8<:
pT
pn�1 (p

n�1 � 1) ; if sp = 0;
pT
pn�1p

n�1; if sp 2 Z=(p)�.
(11)

and
T�1X
t=0

q�1X
h2=0

eq (h2 (a (t)� sq)) =

8<:
qT
qn�1 (q

n�1 � 1) ; if sq = 0;
qT
qn�1q

n�1; if sq 2 Z=(q)�.
(12)

Proof. Let b = [a]mod p. Since b is a primitive sequence generated by f(x) over Z=(p), it

follows that

N
�
bT ; sp

�
=
1

p

T�1X
t=0

p�1X
h1=0

ep (h1 (b (t)� sp)) =
1

p

T�1X
t=0

p�1X
h1=0

ep (h1 (a (t)� sp)) .

Hence, (11) immediately follows from the theory of m-sequence over �nite �elds. Similarly,

we can get (12).

Let a and T be described as in Lemma 7. For any �xed element s 2 Z=(pq), set

sp = [s]mod p and sq = [s]mod q. Then

N
�
aT ; s

�
=

1

pq

T�1X
t=0

 
p�1X
h1=0

ep (h1 (a (t)� sp)) �
q�1X
h2=0

eq (h2 (a (t)� sq))
!

= � T
pq
+
1

pq

T�1X
t=0

p�1X
h1=0

ep (h1 (a (t)� sp)) +
1

pq

T�1X
t=0

q�1X
h2=0

eq (h2 (a (t)� sq))

+
1

pq

T�1X
t=0

p�1X
h1=1

q�1X
h2=1

ep (h1 (a (t)� sp)) eq (h2 (a (t)� sq)) . (13)
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Denote

E (sp; sq) = �
T

pq
+
1

pq

T�1X
t=0

p�1X
h1=0

ep (h1 (a (t)� sp)) +
1

pq

T�1X
t=0

q�1X
h2=0

eq (h2 (a (t)� sq)) . (14)

Then by Lemma 7, we can deduce that

E (sp; sq) =

8>>>>>>><>>>>>>>:

T
pq

�
1� p�1

pn�1 �
q�1
qn�1

�
; if sp = 0 and sq = 0;

T
pq

�
1 + 1

pn�1 �
q�1
qn�1

�
; if sp 2 Z=(p)� and sq = 0;

T
pq

�
1� p�1

pn�1 +
1

qn�1

�
; if sp = 0 and sq 2 Z=(q)�;

T
pq

�
1 + 1

pn�1 +
1

qn�1

�
; if sp 2 Z=(p)� and sq 2 Z=(q)�.

(15)

From (13) and (14) we can get

��N �aT ; s�� E (sp; sq)�� =
1

pq

�����
p�1X
h1=1

q�1X
h2=1

T�1X
t=0

ep (h1 (a (t)� sp)) eq (h2 (a (t)� sq))
�����

� 1

pq

p�1X
h1=1

q�1X
h2=1

�����
T�1X
t=0

ep (h1a (t)) eq (h2a (t))

�����
=

1

pq

p�1X
h1=1

q�1X
h2=1

�����
T�1X
t=0

epq ((qh1 + ph2) a (t))

�����
� (p� 1) � (q � 1)

pq
� (pq)

n
2 . (16)

The last inequality (16) follows from Lemma 6 and the fact that [(qh1 + ph2) a]mod pq is also

a primitive sequence over Z=(pq) for 1 � h1 � p � 1 and 1 � h2 � q � 1. Therefore, we

have the following theorem.

Theorem 8 Let a be a primitive sequence of order n � 2 over Z=(pq) with period T =

lcm (pn � 1; qn � 1). For a given element s 2 Z=(pq), the element s occurs in the sequence

a if

E (sp; sq) >
(p� 1) � (q � 1)

pq
� (pq)

n
2 ,

where sp = [s]mod p, sq = [s]mod q and E (sp; sq) is de�ned in (15). In particular, every

element in Z=(pq) occurs in the sequence a if

T �
�
1� p� 1

pn � 1 �
q � 1
qn � 1

�
> (p� 1) � (q � 1) � (pq)

n
2 . (17)
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Proportion of (n; p; q) satisfying the inequality (17) of Theorem 8 is tested under di¤er-

ent ranges of n, p and q, and the results are listed in Table 1, where prime (k) is the k-th

prime number. For example, the proportion is 96:461% for 2 � n � 31 and 3 � p < q �

prime (200) = 1223. It can be seen from Table 1 that the proportion is very close to 100%

if n > 2.

Table 1 Proportion of (n;p;q) satisfying the inequality (17) of Theorem 8

3 � p < q � prime (k)

n k = 200 k = 500 k = 1000 k = 3000 k = 5000 k = 10000

2 � n � 31 96:461% 96:570% 96:612% 96:644% 96:562% 96:658%

3 � n � 31 99:787% 99:900% 99:944% 99:977% 99:985% 99:991%

4 � n � 31 99:921% 99:977% 99:991% 99:998% 99:999% 99:999%

5 � n � 31 100% 100% 100% 99:999% 99:999% 99:999%

6 � n � 31 100% 100% 100% 99:999% 99:999% 99:999%

7 � n � 31 100% 100% 100% 100% 100% 100%

Remark 9 Not all elements in Z=(pq) occur in a primitive sequence of order n = 2 over

Z=(pq). For example, f(x) = x2� (4x+ 13) is a primitive polynomial of degree n = 2 over

Z=(pq) with period T = lcm (32 � 1; 52 � 1) = 24 and

a = (1; 0; 13; 7; 2; 9; 2; 5; 1; 9; 4; 13; 14; 0; 2; 8; 13; 6; 13; 10; 14; 6; 11; 2; � � � )

is a primitive sequence generated by f(x) over Z=(pq). It can be seen that the element 3

and the element 12 do not occur in the sequence a.

Corollary 10 Let a and T be given as in Theorem 8. For n > 2, every element in Z=(pq)

occurs in the sequence a if

q �
�
403

354

� 2
n�2

� p
n+2
n�2 .
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Proof. On the one hand, we have

T �
�
1� p� 1

pn � 1 �
q � 1
qn � 1

�
= T �

�
1� 1

pn�1 + � � �+ p+ 1 �
1

qn�1 + � � �+ q + 1

�
� T �

�
1� 1

p2 + p+ 1
� 1

q2 + q + 1

�
� T �

�
1� 1

32 + 3 + 1
� 1

52 + 5 + 1

�
=

359

403
� T

� 359

403
� (qn � 1) . (18)

Note that qn � 53 = 125, and so it follows from (18) that

T �
�
1� p� 1

pn � 1 �
q � 1
qn � 1

�
� 359

403
� (qn � 1) > 354

403
� qn.

On the other hand, it is clear that

(p� 1) � (q � 1) � (pq)
n
2 < (pq)

n
2
+1 . (19)

Since q �
�
403
354

� 2
n�2 � p

n+2
n�2 , we get

354
403
� qn

(pq)
n
2
+1
=

354
403
� q n2�1

p
n
2
+1

� 1. (20)

Then (18), (19) and (20) yield

T �
�
1� p� 1

pn � 1 �
q � 1
qn � 1

�
>

354

403
� qn

� (pq)
n
2
+1

> (p� 1) � (q � 1) � (pq)
n
2 ,

and so the corollary follows from Theorem 8.

For two given odd prime numbers p and q with p < q, since

lim
n!1

�
403

354

� 2
n�2

� p
n+2
n�2 = p;
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there exists a positive integer N such that q �
�
403
354

� 2
n�2 � p

n+2
n�2 for any integer n > N , and

so it follows from Corollary 10 that every element in Z=(pq) occurs in a primitive sequence

a of order n.

3 Distinctness of primitive sequences over Z=(pq)mod-

ulo 2

In this section, we �rst give the complete proof of Theorem 3 presented in Section 1 and

then discuss the proportion of primitive sequences covered by Theorem 3.

3.1 The proof of Theorem 3

Throughout this subsection, let p and q be two odd prime numbers with p < q and f(x)

be a primitive polynomial of degree n � 2 over Z=(pq).

Lemma 11 Let a and b be two sequences in G0(f(x); pq) with [a]mod 2 = [b]mod 2. If

(1) there exist a positive integer S and an even number C in Z=(pq) such that xS�C �

0 (mod f(x); pq); and

(2) for any sequence z 2 G0(f(x); pq), either 1 or pq � 1 occurs in z,

then [a]mod p = [b]mod p or [a]mod q = [b]mod q.

Proof. Denote c = [a� b]mod pq. It su¢ ces to prove that [c]mod p = 0 or [c]mod q = 0.

Suppose [c]mod p 6= 0 and [c]mod q 6= 0. Then c 2 G0(f(x); pq), and so it follows from

condition (2) that there exists an integer t � 0 such that c (t) = 1 or c (t) = pq � 1.

If c (t) = 1, i.e., [a(t)� b(t)]mod pq = 1, then it follows from [a (t)]mod 2 = [b (t)]mod 2 that

a (t) = 0 and b (t) = pq � 1.
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Thus, by condition (1) we have

a (t+ S) = [C � 0]mod pq = 0 and b (t+ S) = [C � (pq � 1)]mod pq = pq � C.

Note that C is an even number, and so this implies that

[a (t+ S)]mod 2 = 0 6= 1 = [pq � C]mod 2 = [b (t+ S)]mod 2 ,

a contradiction to the assumption that [a]mod 2 = [b]mod 2.

Similarly, it can be shown that if c (t) = pq � 1, then [a]mod 2 6= [b]mod 2.

Therefore, we get that either [c]mod p = 0 or [c]mod q = 0.

In the following we discuss the two cases [a]mod p = [b]mod p and [a]mod q = [b]mod q,

respectively.

Lemma 12 Let a and b be two sequences in G0(f(x); pq) with [a]mod 2 = [b]mod 2 and

[a]mod p = [b]mod p. Then a = b if for any sequence z 2 G0(f(x); pq), every element in

Z=(pq) occurs in z.

Proof. Since [a]mod p = [b]mod p, it su¢ ces to show [a]mod q = [b]mod q. By the Chinese

Remainder Theorem we get that

a � q �
�
q�1 � a

�
mod p

+ p �
�
p�1 � a

�
mod q

mod pq (21)

and

b � q �
�
q�1 � b

�
mod p

+ p �
�
p�1 � b

�
mod q

mod pq. (22)

Denote m1 = [q
�1 � a]mod p = [q�1 � b]mod p, m2 = [p

�1 � a]mod q and m3 = [p
�1 � b]mod q. It can

be seen that m1 2 G0(f(x); p), m2;m3 2 G0(f(x); q), and (21), (22) can be written as

a = [q �m1 + p �m2]mod pq and b = [q �m1 + p �m3]mod pq . (23)

Supposem2 6= m3. We will show [a]mod 2 6= [b]mod 2 by discussing the following two cases,

respectively.
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Case 1: m2 and m3 are linearly independent over Z=(q)

Since m2 and m3 are two m-sequences over the �nite �eld Z=(q), it can be seen that

there exists an integer t � 0 such that m2(t) = 0 and m3(t) = 1. Hence (23) yields

a (t) = [q �m1 (t)]mod pq and b (t) = [q �m1 (t) + p]mod pq . (24)

Note that q �m1 (t) � q � (p� 1) < pq and q �m1 (t) + p � q � (p� 1) + p < pq, and so (24)

implies that

a (t) = q �m1 (t) and b (t) = q �m1 (t) + p.

This shows that [a (t)]mod 2 6= [b (t)]mod 2.

Case 2: m2 and m3 are linearly dependent over Z=(q)

Since m2 6= m3, we have m3 = [� �m2]mod q for some integer 2 � � � q � 1. It follows

from condition (1) that (m1 (t) ;m2 (t)) runs through the set f(u; v) j u 2 Z=(p); v 2 Z=(q)g

when t runs from 0 to lcm (pn � 1; qn � 1)� 1.

If � is even, then choose an integer t � 0 such that m1 (t) = 0 and m2 (t) = 1, and so

(23) immediately yields

a (t) = p and b (t) = � � p < pq.

This shows that [a (t)]mod 2 6= [b (t)]mod 2.

If � is odd, then let us denote � =
�
q
�

�
. Since

q = � � q
�
� � � � = � �

l q
�

m
< � �

� q
�
+ 1
�
= q + � < 2 � q,

it follows that [� � �]mod q = � � � � q. Choose an integer t � 0 such that m1 (t) = 0 and

m2 (t) = �. Then (23) yields

a (t) = [p � �]mod pq = p � �

and

b (t) =
h
p � [� � �]mod q

i
mod pq

= p � [� � �]mod q = p � (� � � � q) .
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It follows that

[a (t)]mod 2 = [�]mod 2 6= [� � 1]mod 2 = [p � (� � � � q)]mod 2 = [b (t)]mod 2 .

The above discussions imply that m2 = m3, and so [a]mod q = [b]mod q.

For a positive integer u, let v2 (u) denote the greatest nonnegative integer m such that

2m divides u. With the notation, v2 (u) = 0 if and only if u is odd.

Lemma 13 Let a and b be two sequences in G0(f(x); pq) with [a]mod 2 = [b]mod 2 and

[a]mod q = [b]mod q. Set T = lcm (p
n � 1; qn � 1) and

E =

8<: 0; if v2 (pn � 1) 6= v2 (qn � 1) ;j
q
p

k
� lcm

�
pn � 1; qn�1

q�1

�
, if v2 (pn � 1) = v2 (qn � 1) .

Then a = b if

(1) for any sequence z 2 G0(f(x); pq), every element in Z=(pq) occurs in z; and

(2) T > E.

Proof. Since [a]mod q = [b]mod q, it su¢ ces to show [a]mod p = [b]mod p. Proceed as in the proof

of Lemma 12, we get

a = [q �m1 + p �m3]mod pq and b = [q �m2 + p �m3]mod pq , (25)

where m1 = [q�1 � a]mod p ;m2 = [q�1 � b]mod p 2 G0(f(x); p) and m3 = [p�1 � a]mod q =

[p�1 � b]mod q 2 G0(f(x); q).

Suppose m1 6= m2. We will show [a]mod 2 6= [b]mod 2 or T � E by discussing the following

two cases, respectively.

Case 1: m1 and m2 are linearly independent over Z=(p)

Since m1 and m2 are two m-sequences over the �nite �eld Z=(p), there exists an integer

t � 0 such that m1(t) = 0 and m2(t) = 1. Let q = k � p+ r with 0 < r � p� 1.
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Case 1.1: 0 � m3 (t) � q � k � 1

Since q � 1 + p �m3 (t) � q + p � (q � k � 1) < pq, we have

a (t) = [0 + p �m3 (t)]mod pq = p �m3 (t)

and

b (t) = [q � 1 + p �m3 (t)]mod pq = q + p �m3 (t) ,

then we get [a (t)]mod 2 = [m3 (t)]mod 2 6= [m3 (t) + 1]mod 2 = [b (t)]mod 2.

Case 1.2: q � k � m3 (t) � q � 1

(a) If v2 (pn � 1) > v2 (qn � 1), then we get�
T

2

�
mod pn�1

=
pn � 1
2

and
�
T

2

�
mod qn�1

= 0. (26)

Note that f(x) (mod p) is a primitive polynomial over Z=(p) with per (f (x) ; p) = pn � 1,

and so x
pn�1
2 � �1mod (f(x); p). Then (26) implies that

x
T
2 � x

pn�1
2 � �1mod (f(x); p) and xT

2 � 1mod (f(x); q) .

Applying x
T
2 � �1mod (f(x); p) to m1, m2 and using m1(t) = 0, m2(t) = 1, we obtain

m1

�
t+

T

2

�
= [�m1 (t)]mod p = 0;m2

�
t+

T

2

�
= [�m2 (t)]mod p = p� 1. (27)

Applying x
T
2 � 1mod (f(x); q) to m3 leads to

m3

�
t+

T

2

�
= m3 (t) . (28)

Thus (25), (27) and (28) yield

a

�
t+

T

2

�
=

�
q �m1

�
t+

T

2

�
+ p �m3

�
t+

T

2

��
mod pq

= p �m3 (t)

and

b

�
t+

T

2

�
=

�
q �m2

�
t+

T

2

�
+ p �m3

�
t+

T

2

��
mod pq

= [q � (p� 1) + p �m3 (t)]mod pq .
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Since q � k � m3 (t) � q � 1, it follows that

q � (p� 1) + p �m3 (t) � pq + p � (q � k)� q > pq + (p� 2) � q > pq

and

q � (p� 1) + p �m3 (t) � pq + p � (q � 1)� q < 2pq,

and so

b

�
t+

T

2

�
= [q � (p� 1) + p �m3 (t)]mod pq = p �m3 (t)� q:

Hence we have�
a

�
t+

T

2

��
mod 2

= [m3 (t)]mod 2 6= [m3 (t)� 1]mod 2 =
�
b

�
t+

T

2

��
mod 2

.

(b) If v2 (pn � 1) < v2 (qn � 1), then we get�
T

2

�
mod pn�1

= 0 and
�
T

2

�
mod qn�1

=
qn � 1
2

,

and so

x
T
2 � 1mod (f(x); p) and xT

2 � x
qn�1
2 � �1mod (f(x); q) .

Similarly, we can get

m1

�
t+

T

2

�
= m1 (t) = 0;m2

�
t+

T

2

�
= m2 (t) = 1.

and

m3

�
t+

T

2

�
= [�m3 (t)]mod q = q �m3 (t) .

Hence

a

�
t+

T

2

�
=

�
q �m1

�
t+

T

2

�
+ p �m3

�
t+

T

2

��
mod pq

= p � (q �m3 (t))

and

b

�
t+

T

2

�
=

�
q �m2

�
t+

T

2

�
+ p �m3

�
t+

T

2

��
mod pq

= [q + p � (q �m3 (t))]mod pq .

(29)
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Since q + p � q + p � (q �m3 (t)) � q + kp < 2q < pq, then (29) yields

b

�
t+

T

2

�
= q + p � (q �m3 (t)) .

Therefore�
a

�
t+

T

2

��
mod 2

= [1�m3 (t)]mod 2 6= [�m3 (t)]mod 2 =

�
b

�
t+

T

2

��
mod 2

.

(c) If v2 (pn � 1) = v2 (qn � 1), then note that
j
q
p

k
� 1, and so by condition (2) we

get

T > lcm

�
pn � 1; q

n � 1
q � 1

�
. (30)

Since f(x) (mod q) is a primitive polynomial of degree n over Z=(q), there exists a primitive

element � in Z=(q) such that

x
qn�1
q�1 � �mod (f (x) ; q) .

Denote S = lcm
�
pn � 1; qn�1

q�1

�
. Then we get

xS � 1mod (f (x) ; p) and xS � �hmod (f (x) ; q) ; (31)

where h =
�

S
qn�1
q�1

�
mod q�1

=
h
(q�1)�S
qn�1

i
mod q�1

6= 0 (Otherwise h = 0, and (31) yields xS �

1mod (f (x) ; pq), then (30) implies that f(x) is not a primitive polynomial over Z=(pq), a

contradiction). It follows from (25) and (31) that

a (t+ k � S) = [q �m1 (t+ k � S) + p �m3 (t+ k � S)]mod pq

=
�
q �m1 (t) + p � �hk �m3 (t)

�
mod pq

= p �
�
�hk �m3 (t)

�
mod q

(32)

and

b (t+ k � S) = [q �m2 (t+ k � S) + p �m3 (t+ k � S)]mod pq

=
�
q �m2 (t) + p � �hk �m3 (t)

�
mod pq

=
h
q + p �

�
�hk �m3 (t)

�
mod q

i
mod pq

, (33)
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for 0 � k < T
S
. In the following we will deduce a contradiction by showing that T � E.

First, we claim that
�
�hk1 �m3 (t)

�
mod q

6=
�
�hk2 �m3 (t)

�
mod q

if k1 6= k2 for 0 � k1; k2 < T
S
.

Otherwise, there exist two integer k1 and k2, 0 � k1 < k2 < T
S
such that

�
�hk1 �m3 (t)

�
mod q

=�
�hk2 �m3 (t)

�
mod q

. Then we get
h
�h(k2�k1)

i
mod q

= 1. Using xS � �hmod (f (x) ; q), it fol-

lows that

xS�(k2�k1) � 1mod (f (x) ; q) ,

where S � (k2 � k1) < T , a contradiction to the assumption that f(x) is a primitive poly-

nomial over Z=(pq).

Second, [a]mod 2 = [b]mod 2 implies that [a (t+ k � S)]mod 2 = [b (t+ k � S)]mod 2 for 0 �

k < T
S
, then it follows from (32) and (33) that

q + p �
�
�hk �m3 (t)

�
mod q

� pq for 0 � k < T

S
.

Note that
�
�hk �m3 (t)

�
mod q

is an integer, and so we can get

q �
�
q

p

�
�
�
�hk �m3 (t)

�
mod q

� q � 1 for 0 � k < T

S
.

Hence we deduce T
S
�
j
q
p

k
, i.e., T � E.

Case 2: m1 and m2 are linearly dependent over Z=(p)

Since m1 6= m2, we have m2 = [� �m1]mod p for some integer 2 � � � p � 1. It follows

from condition (1) that (m1 (t) ;m2 (t)) runs through the set f(u; v) j u 2 Z=(p); v 2 Z=(q)g

when t runs from 0 to T � 1.

If � is even, then choose an integer t � 0 such that m1 (t) = 0 and m3 (t) = 1, and so

a (t) = q and b (t) = � � p < pq.

This shows that [a (t)]mod 2 = 1 6= 0 = [b (t)]mod 2.

If � is odd, then let us denote � =
�
p
�

�
. Since

p = � � p
�
� � � � = � �

lp
�

m
< � �

�p
�
+ 1
�
= p+ � < 2 � p,
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it follows that [� � �]mod p = � � � � p. Choose an integer t � 0 such that m1 (t) = � and

m3 (t) = 0, then we have

a (t) = [q � �]mod pq = q � �

and

b (t) =
h
q � [� � �]mod q

i
mod pq

= q � [� � �]mod p = q � (� � � � p) .

It follows that

[a (t)]mod 2 = [�]mod 2 6= [� � 1]mod 2 = [q � (� � � � p)]mod 2 = [b (t)]mod 2 .

The above discussions imply that m1 = m2, and so [a]mod p = [b]mod p.

Proof of Theorem 3. It can be seen that Theorem 3 immediately follows from Theorem 8,

Lemma 11, Lemma 12 and Lemma 13.

3.2 Discussions on the conditions of Theorem 3

Experiments show that the condition (2) of Theorem 3 is very weak. For example, the

proportion of (n; p; q) satisfying it reaches 99:843% for 3 � n � 20 and 3 � p < q � 104729,

where 104729 is the 10000-th prime number. Therefore, in this subsection we focus on the

condition (1) of Theorem 3.

Let p and q be two odd prime numbers and let 
p and 
q be the set of primitive elements

in Z= (p) and the set of primitive elements in Z= (q), respectively. If f(x) is a primitive

polynomial over Z= (pq) of degree n � 2, then f (x) is a primitive polynomial both over

Z= (p) and Z= (q). It follows that there exist a primitive element �p 2 
p and a primitive

element �q 2 
q such that

x
pn�1
p�1 � �pmod (f (x) ; p) and x

qn�1
q�1 � �qmod (f (x) ; q) .

Let us denote

�p;n =
lcm(p

n�1
p�1 ;

qn�1
q�1 )

pn�1
p�1

and �q;n =
lcm(p

n�1
p�1 ;

qn�1
q�1 )

qn�1
q�1

.
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Then for any positive integer k we have

xk�lcm(
pn�1
p�1 ;

qn�1
q�1 ) � �k��p;np mod (f (x) ; p) ;

xk�lcm(
pn�1
p�1 ;

qn�1
q�1 ) � �k��q;nq mod (f (x) ; q) ;

and so

xk�lcm(
pn�1
p�1 ;

qn�1
q�1 ) � Lift(�k��p;np ; �k��q;nq )mod (f (x) ; pq)

where Lift(�k��p;np ; �k��q;nq ) denotes the unique integer m between 0 and pq � 1 such that

m � �k��p;np mod p and m � �k��q;nq mod q.

This shows that if there exists some positive integer k such that Lift(�k��p;np ; �k��q;nq ) is an

even number, then f(x) satis�es the condition (1) of Theorem 3. Thus, if for every pair

of primitive elements (�p; �q) 2 
p � 
q, there is an integer k such that Lift(�k��p;np ; �k��q;nq )

is an even number, then every primitive polynomial over Z=(pq) of degree n satis�es the

condition (1) of Theorem 3. Based on this observation, We tested the proportion of (n; p; q)

satisfying the conditions of Theorem 3 for degree n up to 31 and odd prime numbers p; q

up to the 168-th prime, and to make a comparison with the result of [18], we also tested

the proportion of (n; p; q) satisfying the conditions of Theorem 1 in [18] for the same range

of n and odd prime numbers p; q. Results are listed in Table 2. It can be seen from Table

2 that the su¢ cient conditions of our Theorem 3 are much weaker than those of Theorem

1 in [18].
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Table 2 Comparison between the proportion of (n; p; q) satisfying the

conditions of Theorem 3 and those of Theorem 1 in [18]

Theorem 3 Theorem 1 in [18]

n 3 � p < q � prime(k) 3 � p < q � prime(k)

k = 50 k = 100 k = 168 k = 50 k = 100 k = 168

2 � n � 31 � 90:439% � 92:606% � 93:756% 46:638% 48:143% 48:765%

3 � n � 31 � 93:558% � 95:800% � 96:989% 47:930% 49:434% 50:037%

4 � n � 31 � 93:732% � 95:899% � 97:051% 46:747% 48:243% 48:858%

5 � n � 31 � 94:174% � 96:121% � 97:184% 48:246% 49:767% 50:376%

6 � n � 31 � 93:972% � 95:992% � 97:094% 46:775% 48:281% 48:914%

7 � n � 31 � 94:153% � 96:095% � 97:168% 48:381% 49:920% 50:550%

Remark 14 There do exist (n; p; q) that does not satisfy the condition (1) of Theorem 3.

For example, f(x) = x4 + 4x3 + 2x2 + 3x+ 3 is a primitive polynomial over Z= (7� 101),

and it can be veri�ed that

xk�lcm(
7n�1
7�1 ;

11n�1
11�1 ) �

8<: 405mod(f (x) ; 7� 101), if [k]mod 2 = 1;

1mod(f (x) ; 7� 101), if [k]mod 2 = 0.

Therefore, there is no positive integer S and even number C in Z=(pq) such that xS �C �

0 (mod f(x); pq).

It can be seen that for relatively larger prime numbers p; q, it is di¢ cult for us to run

through 
p � 
q. Thus, in the following, we give another su¢ cient condition for (n; p; q)

satisfying the condition (1) of Theorem 3, which is much easier to verify but stronger than

the previous one discussed above. First, we introduce a classic result given by H. L. Garner

in 1958.

Lemma 15 ([19])Let m1;m2; � � � ;mk be pairwise coprime positive integers. Then

u = vk �mk�1 � � � �m2 �m1 + � � �+ v3 �m2 �m1 + v2 �m1 + v1
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is a number satisfying

0 � u <
kQ
i=1

mi, u � uj (modmj) for 1 � j � k,

where

v1 = [u1]modm1
;

v2 = [(u2 � v1) � c1;2]modm2
;

v3 = [((u3 � v1) � c1;3 � v2) � c2;3]modm3
;

� � � � � �

vk = [(� � � ((uk � v1) � c1;k � v2) � c2;k � � � � � vk�1) � ck�1;k]modmk
;

with ci;j =
�
m�1
i

�
modmj

, 1 � i < j � k.

Based on Lemma 15, we are easy to get the following results.

Lemma 16 Let p and q be two odd prime numbers and let f(x) be a primitive polynomial

of degree n � 2 over Z=(pq). Then there exist a positive integer S and an even number C

in Z=(pq) such that

xS � C � 0mod(f(x); pq),

if one of the following three conditions is satis�ed:

(1) v2 (p
n � 1) = v2 (qn � 1);

(2) v2 (p
n � 1) > v2 (qn � 1) and [p�1]mod q >

q
2
;

(3) v2 (p
n � 1) < v2 (qn � 1) and [q�1]mod p >

p
2
.

Proof. Denote T = lcm(pn � 1; qn � 1).

(1) If v2 (pn � 1) = v2 (qn � 1), then

T

2
� pn � 1

2
(mod pn � 1) and

T

2
� qn � 1

2
(mod qn � 1) ,
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and so we have

x
T
2 � �1mod(f (x) ; p) and xT

2 � �1mod(f (x) ; q).

By the Chinese Remainder Theorem, we get

x
T
2 � pq � 1mod(f (x) ; pq).

Thus S = T=2 and C = pq � 1 are desirable integers.

(2) If v2 (pn � 1) > v2 (qn � 1), then we have

x
T
2 � �1mod(f (x) ; p) and xT

2 � 1mod(f (x) ; q).

By Lemma 15, we get

x
T
2 �

h
(1� (p� 1)) �

�
p�1
�
mod q

i
mod q

� p+ (p� 1)

�
h
2 �
�
p�1
�
mod q

� 1
i
mod q

� p+ (p� 1)mod(f (x) ; pq).

Since [p�1]mod q >
q
2
, it follows thath

2 �
�
p�1
�
mod q

� 1
i
mod q

= 2 �
�
p�1
�
mod q

� q � 1

is an even number, and so S = T=2 and C =
h
2 � [p�1]mod q � 1

i
mod q

� p + (p� 1) are

desirable integers.

(3) The proof is similar to (2).

The following corollary immediately follows from Theorem 3 and Lemma 16.

Corollary 17 Let p and q be two odd prime numbers with p < q and f(x) be a primitive

polynomial of degree n � 2 over Z=(pq). Set T = lcm (pn � 1; qn � 1),

E1 =
(p� 1) � (q � 1) � (pq)

n
2

1� p�1
pn�1 �

q�1
qn�1

; and E2 =
�
q

p

�
� lcm

�
pn � 1; q

n � 1
q � 1

�
.

If one of the following three conditions is satis�ed:



27

(1) v2 (p
n � 1) = v2 (qn � 1) and T > max fE1; E2g;

(2) v2 (p
n � 1) > v2 (qn � 1), [p�1]mod q >

q
2
and T > E1;

(3) v2 (p
n � 1) < v2 (qn � 1), [q�1]mod p >

p
2
and T > E1,

then for a; b 2 G0(f(x); pq), a = b if and only if [a]mod 2 = [b]mod 2.

We compared the proportion of (n; p; q) satisfying the conditions of Corollary 17 and

the proportion of (n; p; q) satisfying the conditions of Theorem 1 in [18], and results are

listed in Table 3. Though the conditions of Corollary 17 is stronger than the conditions

of Theorem 3, it can be seen that the proportion of (n; p; q) satisfying the conditions of

Corollary 17 is still higher than that of Theorem 1 in [18]. This again con�rms that the

main result of this paper, i.e., Theorem 3, is really an improvement of Theorem 1 in [18].

Table 3 Comparison between the proportion of (n; p; q) satisfying the

conditions of Corollary 17 and those of Theorem 1 in [18]

Corollary 17 Theorem 1 in [18]

n 3 � p < q � prime(k) 3 � p < q � prime(k)

k = 1000 k = 3000 k = 5000 k = 1000 k = 3000 k = 5000

2 � n � 31 63:847% 64:106% 64:284% 49:538% 49:730% 49:756%

3 � n � 31 66:049% 66:316% 66:501% 50:811% 51:003% 51:031%

4 � n � 31 66:054% 66:319% 66:501% 49:633% 49:826% 49:860%

5 � n � 31 66:067% 66:322% 66:503% 51:158% 51:355% 51:388%

6 � n � 31 66:039% 66:309% 66:494% 49:679% 49:867% 49:897%

7 � n � 31 66:058% 66:317% 66:500% 51:325% 51:514% 51:545%
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