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Abstract. We consider a generalisation of the birthday problem that arises in the analysis of algorithms for
certain variants of the discrete logarithm problem in groups. More precisely, we consider sampling coloured
balls and placing them in urns, such that the distribution of assigning balls to urns depends on the colour
of the ball. We determine the expected number of trials until two balls of different colours are placed in the
same urn. As an aside we present an amusing “paradox” about birthdays.

Keywords: birthday paradox, discrete logarithm problem (DLP), probabilistic analysis of randomised
algorithms

1. Introduction

In the classical birthday problem one samples uniformly with replacement from a set of size N until the
same value is sampled twice. It is known that the expected time at which this match first occurs grows as
√

πN/2. The word “birthday” arises from a common application of this result: the expected value of the
minimum number of people in a room before two of them have the same birthday is approximately 23.94
(assuming birthdays are uniformly distributed over the year). The birthday problem can be generalised
in a number of ways. For example, the assumption that births are uniformly distributed over the days
in the year is often false. Hence, researchers have studied the expected time until a match occurs for
general distributions. One can also generalise the problem to multi-collisions (e.g., 3 people having the same
birthday) or coincidences among individuals of different “types” (e.g., in a room with equal numbers of boys
and girls, when can one expect a boy and girl to share the same birthday). A good modern survey of results
is DasGupta [6].

The main topic of this paper is matches of different types. This problem has important applications to
computing discrete logarithms and our result has been used to obtain the results in [9, 10]. The problem
will be stated in terms of sampling coloured balls and placing them in urns: What is the expected number
of trials before there is an urn containing two balls of different colours? (We call such an event a collision.)
Such problems have been considered by Nishimura and Sibuya [13, 14] and Selivanov [17]. If there are N
urns, two colours, and balls are coloured independently with probability 0.5 and placed in urns uniformly
with probability 1/N then the expected number of trials to get a collision is order

√
πN . An application

is: if one has n boys and n girls in a room, what is the expected value of n before a girl and a boy share a
birthday? The answer is 16.93 (the expected number of people in the room is 2n = 33.86).

Described in terms of urn problems, the purpose of this paper is to consider collisions between balls of
different colours when the balls are not assigned uniformly to urns. Some results of this type were obtained
by Selivanov [17], however that paper assumes the distribution of assigning balls to urns is independent of
the colour. For the applications to discrete logarithms it is necessary to consider the problem where the
distribution of assigning balls to urns depends on the colour. In Section 6 we give a corollary of our result
which is counter-intuitive and may be of independent interest.

It is well-known to probability theorists that such problems can be solved using the Stein-Chen method,
and the techniques are quite standard. Nevertheless, the results are not immediate and it is necessary to
check a number of technical details. For example, one must formulate the problem under consideration in
the appropriate way to apply the Stein-Chen method, and one must ensure that the error terms are of lower
order than the leading term etc. An alternative approach to these problems, that we did not investigate, is
given by Flajolet, Gardy and Thimonier [7].
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1.1. The discrete logarithm problem. The discrete logarithm problem (DLP) in a finite group G is:
Given g, h ∈ G to find an integer a, if it exists, such that h = ga. This is a fundamental computational
problem with applications to public key cryptography. There are a number of variants of the discrete
logarithm problem. One example is the DLP in an interval: Given g, h ∈ G and an integer N to find an
integer a, if it exists, such that h = ga and 0 ≤ a < N . These variants arise in certain cryptosystems.

The best algorithms to solve the discrete logarithm problem in a general group originate in the work of
Pollard [15, 16]. These algorithms exploit pseudorandom walks, are easily parallelised, and do not require
large amounts of storage. Despite having exponential complexity, these algorithms are the best algorithms
known to solve the discrete logarithm problem on general elliptic curves over finite fields (it is important to
note that more efficient algorithms exist for certain other groups, such as large subgroups of the multiplicative
group of a finite field). Recent work extending and improving Pollard’s algorithms for certain variants of
the discrete logarithm problem (such as the DLP in an interval) has been performed by the first author
and his collaborators [8, 9, 10]. The analysis of these algorithms requires the generalisation of the birthday
problem mentioned above. The purpose of this paper is to state and prove a theorem which can be used to
analyse all algorithms of this type. Our result allows the expected running time of the algorithms in [9, 10]
to be determined (to leading order) and hence one can determine optimal choices of parameters for these
algorithms.

1.2. Statement of the main result. We now present our main result and the assumptions which are
required to formulate the problem. The assumptions are supposed to capture any scenario that will arise in
the analysis of algorithms for the discrete logarithm problem (not just the cases in [9, 10]).

Assumption 1 (Colour selection). We assume that there are C ∈ N different colours of balls. The k-th ball
sampled has probability rk,c of being colour c (independent of all previous selections) where, for every c =
1, 2, . . . , C, qc := limn→∞ n−1

∑n
k=1 rk,c exists, and q1 ≥ q2 ≥ · · · ≥ qC > 0. Let bn,c = qc − n−1

∑n
k=1 rk,c.

Note that bn,c denotes the deviation of the average probability of type c balls up to time n from the asymptotic
average. We assume that there is a constant K such that |bn,c| ≤ K/n for all c.

Assumption 2 (Urn selection). There are N ∈ N distinct urns (our results will be asymptotic as N → ∞).
If the k-th ball has colour c then the probability that it is put in urn a is qc,a(N) (i.e., independent of previous
colour and urn selections and of k). There exists d > 0 such that for every 1 ≤ c ≤ C and 1 ≤ a ≤ N ,

0 ≤ qc,a ≤ d/N.

There exist constants α, µ > 0 such that the set SN := {1 ≤ a ≤ N : q1,a, q2,a ≥ µ/N} is such that
|SN | ≥ αN . This says that there is a set SN ⊂ {1, . . . , N} that is “large” (i.e., |SN | ≥ αN) and such that,
for all subsets S ⊆ SN , if a ball of colour one or two is chosen then the probability that the ball is put in
S is at least proportional to the size of S (essentially this says that balls of different colour do not go into
disjoint sets of urns).

Define

(1) AN =

C
∑

c=1

qc









C
∑

c′=1,
c′ 6=c

qc′

(

N
∑

a=1

qc,aqc′,a

)









.

This is the limiting (as n → ∞) probability that two balls (n and n + n′ for n′ > 0) are given different
colours but assigned to the same urn.

Observe that by the above assumptions

AN ≥ q1q2

∑

a∈SN

q1,aq2,a ≥ q1q2αN
( µ

N

)2

whence there exists a constant f > 0 (independent of N) such that AN ≥ f/N . Similarly

AN ≤
(

N
∑

a=1

d2

N2

)

C
∑

c=1

qc









C
∑

c′=1,
c′ 6=c

qc′









≤ d2

N
.
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This says that AN = Θ(N−1), where the notation Θ(x) denotes some quantity satisfying α1x ≤ Θ(x) ≤ α2x
for some constants 0 < α1 < α2. For x ≥ 0 we write O(x) for some quantity satisfying |O(x)| ≤ βx for some
constant β > 0.

For notational convenience, we assume that the random ball and urn selections are defined for all N
simultaneously on a common probability space with probability measure P. For example, this can be achieved
by letting {Ui}i∈N and {Vi}i∈N be independent standard uniform random variables under the probability
measure P and choosing ball k to be of colour c and put in urn a if and only if

Uk ∈
(

c−1
∑

c′=1

rk,c′ ,

c
∑

c′=1

rk,c′

]

and Vi ∈
(

a−1
∑

a′=1

qc,a′(N),

a
∑

a′=1

qc,a′(N)
]

.

Note that this is an event of probability rk,cqc,a(N). In this paper P(X = x) denotes the probability that a
random variable X takes a value x ∈ R, and we write E[X ] for the expected value of X with respect to P.
For events A and B we write P(A, B) for P(A ∩ B).

We can now state our main result.

Theorem 1. Let ZN be the first time that there are two balls of different colours in the same urn, under
Assumptions 1 and 2. Let AN be as in equation (1). Then

E[ZN ] =

√

π

2AN
+ O(N1/4)

as N → ∞ and the implied constant in the O depends on C, qc, d, K, α, µ but does not depend on N or the
values of qc,a.

For the error term one can group the colours into two disjoint groups and call one of them “colour 1” and
the other “colour 2”. But to get the right leading term it is necessary to keep the colours separate.

2. Method of Proof

A powerful method employed many times [2, 3, 6] when studying variants of the birthday problem is
to use Poisson approximation and the Stein-Chen method [5, 1]. The method gives bounds on the error
involved in approximating the distribution of a sum of dependent Bernoulli random variables by the Poisson
distribution. For our particular problem, the basic idea is that when N is large, collision probabilities are
“close” to a binomial distribution for moderate numbers (n ≪ N) of trials. The number of collisions after
n ≪ N trials should therefore behave like a Poisson random variable, and we are asking for the typical
number of trials required to get a collision.

To state the form of the error bounds, we closely follow Section 10 of Chatterjee, Diaconis and Meckes [4]
(also see Arratia, Goldstein and Gordon [1]). Let I be a finite set, and suppose that {Xi}i∈I are random
variables on a common probability space, taking values in {0, 1}. For i, j ∈ I let

(2) pi = P(Xi = 1), and pi,j = P(Xi = 1, Xj = 1).

For i ∈ I let Ni ⊂ I be such that Xi and {Xj : j ∈ I \ Ni} are independent. Define

Err(I) =
∑

i∈I

∑

j∈Ni−{i}

pi,j +
∑

i∈I

∑

j∈Ni

pipj .

Recall that a random variable Y has a Poisson distribution with parameter λ, (i.e., Y ∼ Pois(λ)) if

(3) P(Y = k) =
λk

k!
e−λ, k ∈ Z≥0.

Theorem 15 of [4] is as follows.

Theorem 2. Let {Xi}i∈I be random variables on a common probability space, taking values in {0, 1}, and
let λ =

∑

i∈I pi and W =
∑

i∈I Xi. Then for Y ∼ Pois(λ),

(4) 1
2

∑

k∈Z≥0

∣

∣P(W = k) − P(Y = k)
∣

∣ ≤ min{1, 1/λ}Err(I).
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This says that the total variation (which is called the statistical difference in the cryptography com-
munity) of the distribution of W and the Poisson distribution with parameter λ is bounded above by
min{1, 1/λ}Err(I). As we will see in Section 4, our main result follows from Theorem 2 for a suitable choice
of the random variables Xi. Most of our work is devoted to controlling the error terms.

3. Recovering a Theorem of Selivanov

As a sanity check, we show how a special case of the result of Selivanov [17] is also a special case of our
Theorem 1. Selivanov considers balls coloured with colour c with probability qc and placed in urn a with
probability pa. So, translating to our notation, qc = qc, bn,c = 0 and qc,a = pa. Selivanov defines, for k ∈ N,

vk =
∑N

a=1 pk
a and wk =

∑C
c=1 qk

c . Selivanov makes the assumption that v2 = o(1) (this is weaker than our
assumption qc,a ≤ d/N which implies v2 ≤ d2/N). Hence, to apply our result we must impose the stronger
condition pa ≤ d/N . Since pa does not depend on the colour, the existence of α and µ is easy to check.
Theorem 4.1 of Selivanov [17] is that the expected value of the number of balls assigned to get a collision is

√

π

2v2(1 − w2)
(1 + o(1)).

In our case we find that

AN =





C
∑

c=1

qc

C
∑

c′=1,c′ 6=c

qc′





(

N
∑

a=1

p2
a

)

which is easily checked to be (1 − w2)v2. Hence, we obtain Selivanov’s result with a stronger error bound.
One of the contributions to the error term in Theorem 2 is the quantity pi,j . Later in this paper the

analogous quantity will be denoted pN,(i,i′),(j,j′), and its value is bounded in the proof of Lemma 2. In
Selivanov’s notation this value is v3(1 − 2w2 + w3), which appears in equation (3.6) of Section 3 of [17].
Poisson approximation is used in that section of [17].

4. Proof of Theorem 1

For i ∈ N write Ki for the colour of ball i and UN,i for the urn into which it has been put. Set
I(n) = {(i, i′) : 1 ≤ i < i′ ≤ n} so that #I(n) =

(

n
2

)

. Define, for (i, i′) ∈ I(n),

XN (i, i′) =

{

1 if UN,i = UN,i′ and Ki 6= Ki′

0 otherwise.

In other words, the random variable XN(i, i′) takes the value 1 if and only if the i-th and i′-th balls form a
collision (it will always be understood that this is a rare event).

Define
WN (n) =

∑

(i,i′)∈I(n)

XN (i, i′), and ZN = inf{n ∈ N : WN (n) > 0}.

Note that WN (0) = 0.
For n ∈ Z≥0, the following equalities between events hold: {ZN = n+1} = {WN (n+1) = 1}∩{WN(n) =

0} (this is the event that there is no collision among the first n balls, but the n+1-th ball leads to a collision)
and {ZN > n} = {WN (n) = 0} (this is the event that there is no collision among the first n balls). Our
problem is to determine E[ZN ] to leading order as N → ∞. We use Theorem 2 to answer this, and our
notation is intended to be analogous to the notation used in [4]. Recall that the expected value of ZN is

E[ZN ] =

∞
∑

n=0

nP(ZN = n) =

∞
∑

n=0

P(ZN > n) =

∞
∑

n=0

P(WN (n) = 0).

The proof determines an approximation to the sum on the right hand side.
The proof is broken down into a number steps. The first step is to determine the various probabilities and

the error term in Theorem 2. We determine the expected value by splitting the sum
∑∞

n=0 P(WN (n) = 0)

into two parts: first the sum of n from 1 to M = N1/2+1/16 (which gives the leading term) and then the
sum from M + 1 to ∞ (which is the “tail”). A big part of the proof (see Section 4.2) is giving a bound for
the tail.

For the convenience of the reader we give a table of the notation in Figure 1.
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N Number of urns
C Number of colours of balls
rk,c Probability the k-th ball sampled has colour c
qc,a(N) Probability, given that the k-th ball has colour c, that it is put in urn a
d Constant such that 0 ≤ qc,a ≤ d/N
qc Asymptotic average value for rk,c

bn,c Deviation of the average probability of colour c balls up to time n from
the asymptotic average

K Constant such that |bn,c| ≤ K/n for all c
α, µ, SN The set SN = {1 ≤ a ≤ N : q1,a, q2,a ≥ µ/N} satisfies |SN | ≥ αN
AN Defined in equation (1)
I(n) {(i, i′) : 1 ≤ i < i′ ≤ n}
XN (i, i′) Random variable which is 1 if and only if the i-th and i′-th balls have different

colours but are put in the same urn
WN (n)

∑

(i,i′)∈I(n) XN(i, i′)

ZN inf{n ∈ N : WN (n) > 0}
M N1/2+1/16

pN,(i,i′) P(XN (i, i′) = 1)
N(i,i′) Set of indices (j, j′) ∈ I(n) such that XN (i, i′) and XN (j, j′) are not independent
λN (n) Defined in Lemma 1
pN,(i,i′),(j,j′) P(XN (i, i′) = 1 and XN (j, j′) = 1)
ErrN (n) Defined in equation (6)
Vn,N , V ′

n,N Defined in Section 4.2

ǫ Small quantity used in Section 4.2

δ N−1/2

QN (δ), P1(n, N, δ), Defined in Section 4.2
P2(n, N, δ)

Figure 1. Table of notation

4.1. Determining Probabilities and Error Terms. We use notation analogous to that used in Theo-
rem 2. In particular, the random variables XN (i, i′) are defined for (i, i′) ∈ I(n) and we denote P(XN(i, i′) =
1) by pN,(i,i′), and P(XN (i, i′) = 1, XN(j, j′) = 1) by pN,(i,i′),(j,j′).

By Assumptions 1 and 2, using the independence of ball and urn choices we have

P(XN (i, i′) = 1) =

N
∑

a=1

C
∑

c=1

P(UN,i = a, Ki = c)P(UN,i′ = a, Ki′ 6= c)

=
N
∑

a=1

C
∑

c=1

ri,cqc,a

C
∑

c′=1,
c′ 6=c

ri′,c′qc′,a.

So that

(5) pN,(i,i′) = P(XN(i, i′) = 1) =

N
∑

a=1

C
∑

c=1

C
∑

c′=1,
c′ 6=c

ri,cqc,ari′,c′qc′,a.

Lemma 1. Define

λN (n) =
∑

(i,i′)∈I(n)

pN,(i,i′).

Then

λN (n) =
n2

2
AN + O(n/N)
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where the term O(n/N) is a real number which is positive or negative but whose absolute value is bounded
by cn/N for some constant c > 0.

Proof. It follows from the definitions and (5) that

λN (n) =
∑

(i,i′)∈I(n)

N
∑

a=1

C
∑

c=1

C
∑

c′ 6=c

qc,aqc′,ari,cri′,c′

=
1

2

N
∑

a=1

C
∑

c=1

qc,a

∑

c′ 6=c

qc′,a

[

nqcnqc′ −
(

nqcnqc′ −
n
∑

i=1

ri,c

n
∑

i′=1

ri′,c′

)

−
n
∑

i=1

ri,cri,c′

]

=
n2

2
AN − 1

2

N
∑

a=1

C
∑

c=1

qc,a

∑

c′ 6=c

qc′,a

[

nbn,cnqc′ + nbn,c′

n
∑

i=1

ri,c +
n
∑

i=1

ri,cri,c′

]

=
n2

2
AN − 1

2

N
∑

a=1

C
∑

c=1

qc,a

∑

c′ 6=c

qc′,a

[

nbn,cnqc′ + nbn,c′nqc − nbn,c′nbn,c +

n
∑

i=1

ri,cri,c′

]

.

We now want to bound the error term. Since |bn,c| ≤ K/n and ri,c ≤ 1, we find that
∣

∣

∣

∣

∣

nbn,cnqc′ + nbn,c′nqc − nbn,c′nbn,c +

n
∑

i=1

ri,cri,c′

∣

∣

∣

∣

∣

< nqc′K + nqcK + K2 + n

which is O(n). There are NC(C − 1) terms being added, and qc,a < d/N , hence the error term is O(n/N).

It follows that λN (n) = n2

2 AN + O(n/N). �

Poisson approximation already suggests the distribution to be like e−λN (n) and so the expected value of
n should be like

√

π/(2AN ). However, it is important to keep track of the error terms since n/N is bigger
than the leading term when n is large.

Note that XN (i, i′) and XN(j, j′) are independent if and only if {i, i′} ∩ {j, j′} = ∅. In other words,
whether or not the i and i′-th balls are a collision is independent of whether or not the j and j′-th balls are
a collision when {i, i′} ∩ {j, j′} = ∅. Furthermore, it is clear in this case that, for any set J ⊆ I(n), XN (i, i′)
is independent of {XN (j, j′) : (j, j′) ∈ J} if and only if {i, i′} ∩ (∪(j,j′)∈J{j, j′}) = ∅.

Hence, we have

N(i,i′) = {(j, j′) ∈ I(n) : i = j or i = j′ or i′ = j or i′ = j′}
and |N(i,i′)| ≤ 4n. Now we determine pN,(i,i′),(j,j′), which is only non-trivial when (j, j′) ∈ N(i,i′) (in the
other case, XN (i, i′) and XN(j, j′) are independent and pN,(i,i′),(j,j′) = pN,(i,i′)pN,(j,j′)).

Lemma 2. Let notation be as above and (i, i′) ∈ I(n). Let (j, j′) ∈ N(i,i′). Then

pN,(i,i′),(j,j′) = P(XN (i, i′) = 1 and XN (j, j′) = 1) ≤ C(C − 1)2d3/N2.

Proof. Without loss of generality suppose j = i. So UN,i = UN,i′ = UN,j = UN,j′ (which are all equal to
some value 1 ≤ a ≤ N) and Ki = Kj . It follows that Ki′ 6= Ki and Kj′ 6= Ki (the values of Ki, Ki′ and Kj′

are called c, c′ and c′′ below). Therefore

pN,(i,i′),(j,j′) =

C
∑

c=1

ri,c

C
∑

c′=1,
c′ 6=c

ri′,c′

C
∑

c′′=1,
c′′ 6=c

rj′,c′′

N
∑

a=1

qc,aqc′,aqc′′,a.

Since 0 ≤ ri,c ≤ 1 and 0 ≤ qc,a ≤ d/N the result follows. �

Define, as in Theorem 2,

(6) ErrN (n) =
∑

(i,i′)∈I(n)

∑

(j,j′)∈N(i,i′)−{(i,i′)}

pN,(i,i′),(j,j′) +
∑

(i,i′)∈I(n)

∑

(j,j′)∈N(i,i′)

pN,(i,i′)pN,(j,j′).

We set ErrN (0) = ErrN (1) = 0. We now give some bounds which will be used later.
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Lemma 3. Let notation be as above and conditions as in Theorem 1. Then

pN,(i,i′) = O(1/N) , pN,(i,i′),(j,j′) = O(1/N2) , AN = Θ(1/N) and ErrN (n) = O(n3/N2).

Proof. We have

pN,(i,i′) = P(XN(i, i′) = 1) =

N
∑

a=1

C
∑

c=1

C
∑

c′=1,
c′ 6=c

ri,cqc,ari′,c′qc′,a.

Since 0 ≤ ri,c ≤ 1 and 0 ≤ qc,a < d/N this is at most C(C − 1)N(d/N)2 which is O(1/N). The second
statement is Lemma 2. The claim about AN has already been established in Section 1. The final result
follows from the first, and the facts that |I(n)| =

(

n
2

)

< n2/2 and |N(i,i′)| ≤ 4n. �

We have shown in Lemma 3 that ErrN (n) ≤ c1n
3/N2 for some constant c1 > 0 and for sufficiently large

N . Taking M = N1/2+1/16 gives

(7)

M
∑

n=0

ErrN (n) ≤ c1

N2

M
∑

n=0

n3 =
c1M

2(M + 1)2

4N2
= O(N4/16) = O(N1/4).

This explains why we take M = N1/2+1/16. One could try to handle slightly larger values using the bound
min{1, 1/λN(n)}ErrN (n), but we prefer not to do this.

Obtaining the leading term of Theorem 1 using Poisson approximation is given in Section 4.3. Before
then we need to bound the contribution to the expected value coming from values n > M . This is the aim
of the next section.

4.2. Bounding the Tail. The aim of this section (which is the most detailed part of the paper) is to show
that

∑

n>M P(XN > n) = O(1).
We need to bound P(ZN > n) directly for n ≥ M . Recall that there exists a subset SN of the urns of

size at least αN and such that q1,a, q2,a ≥ µ/N for all a ∈ SN . Given any such SN , let Vn,N be the random
variable giving the number of urns in SN containing a ball of colour 1 once n balls have been put in urns,
and let V ′

n,N ≤ Vn,N be the number of urns in SN containing a ball of colour 1 that also contain a ball of
some other colour. The dependence of these quantities on SN will be left implicit. For δ > 0 we define

P1(n, N, δ) = P(Vn,N ≤ δ|SN |), and P2(n, N, δ) = P(Vn,N > δ|SN |, V ′
n,N = 0).

The first event says that after n balls have been put in urns, the collection of urns in SN containing a ball
of colour 1 is a small subset of SN . The second event says that this collection is not so small, yet there is
still no collision of colour 1 with some other colour in SN . Then

P(ZN > n) ≤ P1(n, N, δ) + P2(n, N, δ).

Lemma 4. For every 0 < ǫ, δ < 1 such that ǫ < min{q1, q2} and all n sufficiently large (depending on ǫ),

P1(n, N, δ) ≤ 2e−
ǫ2

2 n +
∑

S∈QN (1−δ)

(

1 −
∑

a∈S

q1,a(N)

)⌈q1−ǫ⌉n

,

and

P2(n, N, δ) ≤ 2e−
ǫ2

2 n + max
S∈QN (δ)

(

1 −
∑

a∈S

q2,a(N)

)⌈q2−ǫ⌉n

.

Proof. The probability that the kth ball has colour 1 is rk,1. Let Yn be the number of balls of colour 1 chosen
by time n. Let ǫ > 0 and choose n0 such that for all n ≥ n0, |n−1

∑n
k=1 rk,1−q1| < ǫ/2. Then for all n ≥ n0,

P(|Yn − nq1| > nǫ) ≤ P

(

∣

∣Yn −
n
∑

k=1

rk,1

∣

∣ > nǫ/2

)

≤ 2e−2
(nǫ/2)2

n = 2e−
ǫ2

2 n,

where the second inequality holds by Hoeffding’s inequality (e.g. [12]).
7



It follows that

P(Vn,N ≤ δ|SN |) ≤ P(Vn,N ≤ δ|SN |, Yn ≥ (q1 − ǫ)n) + P(Yn < (q1 − ǫ)n)

≤ P

(

Vn,N ≤ δ|SN |
∣

∣

∣Yn ≥ (q1 − ǫ)n
)

P(Yn ≥ (q1 − ǫ)n) + 2e−
ǫ2

2 n

≤ P

(

Vn,N ≤ δ|SN |
∣

∣

∣Yn ≥ (q1 − ǫ)n
)

+ 2e−
ǫ2

2 n.(8)

Now, consider the event {Vn,N ≤ δ|SN |}. If all balls of colour 1 in SN lie in a small subset, say S, of these
urns then all balls of colour 1 avoid a large set S′ = SN − S of urns. Hence, this set of events is equal to

{∃S′ ⊂ SN with |S′| > (1 − δ)|SN | : all Yn balls of colour 1 miss S′}
= {∃S′ ⊂ SN with |S′| = ⌊(1 − δ)|SN |⌋ + 1 : all Yn balls of colour 1 miss S′}
=

⋃

S′∈QN (1−δ)

{all Yn balls of colour 1 miss S′}.

Therefore,

P
(

Vn,N ≤ δ|SN |
∣

∣Yn ≥ (q1 − ǫ)n
)

= P





⋃

S′∈QN (1−δ)

{all Yn colour 1 balls miss S′}
∣

∣

∣Yn ≥ (q1 − ǫ)n





≤
∑

S′∈QN (1−δ)

P

(

all Yn colour 1 balls miss S′
∣

∣

∣Yn ≥ (q1 − ǫ)n
)

≤
∑

S′∈QN (1−δ)

P(⌈(q1 − ǫ)n⌉ colour 1 balls all miss S′)

=
∑

S′∈QN (1−δ)

(

1 −
∑

a∈S′

q1,a(N)

)⌈(q1−ǫ)n⌉

.

Putting this back into (8) gives

P(Vn,N ≤ δ|SN |) ≤ 2e−
ǫ2

2 n +
∑

S′∈QN (1−δ)

(

1 −
∑

a∈S′

q1,a(N)

)⌈(q1−ǫ)n⌉

,

which gives the first claim of the Lemma.
For the second bound, let Y ′

n be the number of balls of colour 2 chosen by time n. (It is sufficient to
consider the balls of colour 2, but one could equally consider all balls of colour c 6= 1.) Choose n1 such that
for all n ≥ n1, |n−1

∑n
k=1 r2,c − q2| < ǫ/2. Then, as above,

P(Vn,N > δ|SN |, V ′
n,N = 0) ≤ P(Vn,N > δ|SN |, V ′

n,N = 0, Y ′
n ≥ (q2 − ǫ)n) + P(Y ′

n < (q2 − ǫ)n)

≤ P(Vn,N > δ|SN |, V ′
n,N = 0, Y ′

n ≥ (q2 − ǫ)n) + 2e−
ǫ2

2 n.(9)

Now

{Vn,N > δ|SN |} ⊂ {∃S ⊂ SN : |S| > δ|SN |, each a ∈ S contains a ball of colour 1}
= {∃S ⊂ SN : |S| = ⌊δ|SN |⌋ + 1, each a ∈ S contains a ball of colour 1}
=

⋃

S∈QN (δ)

{each a ∈ S contains a ball of colour 1}.

Let {S1, S2, . . . S|QN (δ)|} be an enumeration of QN (δ), and for i = 1, . . . , |QN(δ)| let

Bi,n = {each urn a ∈ Si contains a ball of colour 1} ∩ {Y ′
n ≥ (q2 − ǫ)n}.

Then the first term on the right hand side of (9) is bounded by

P

(

⋃

1≤i≤|QN (δ)|

Bi,n, V ′
n,N = 0

)

≤ P

(

V ′
n,N = 0

∣

∣

∣

⋃

1≤i≤|QN (δ)|

Bi,n

)

= P

(

V ′
n,N = 0

∣

∣

∣

⋃

1≤i≤|QN (δ)|

Di,n

)

,(10)

8



where Di,n = Bi,n \ (∪j<iBi,n), are disjoint events. We claim that for a finite collection of disjoint events Di

(of positive probability),

(11) P(E| ∪i Di) ≤ max
i

P(E|Di).

To see this note that it is equivalent to
∑

i P(E ∩ Di)
∑

i P(Di)
≤ max

i

P(E ∩ Di)

P(Di)
.

However this is true since it is easy to prove (by induction on n) that for any xi, yi > 0, i = 1, . . . , n,
∑n

i=1 xi
∑n

i=1 yi
≤ max

1≤i≤n

xi

yi
.

Applying (11) to (10) we see that (10) is bounded above by

max
i≤|QN (δ)|

P

(

V ′
n,N = 0

∣

∣

∣Di,n

)

≤ max
1≤i≤|QN (δ)|

P(⌈(q2 − ǫ)n⌉ colour 2 balls all miss Si)

≤ max
1≤i≤|QN (δ)|

(

1 −
∑

a∈Si

q2,a(N)

)⌈(q2−ǫ)n⌉

,

which completes the proof.
�

Lemma 5. Let notation be as above, conditions as in Theorem 1 and define M = N1/2+1/16. Then
∞
∑

n=M

P1(n, N, N−1/2) = O(1).

Proof. Lemma 4 showed that for n sufficiently large (not depending on N) and for 0 < δ < 1

P1(n, N, δ) ≤ 2e−ǫ2n/2 +
∑

S∈QN (1−δ)

(

1 −
∑

a∈S

q1,a(N)

)⌈q1−ǫ⌉n

.

By Assumption 2, for S ⊂ SN with |S| = ⌊(1 − δ)|SN |⌋ + 1 we have

µ(1 − δ) ≤
∑

a∈S

q1,a(N).

Hence,

P1(n, N, δ) ≤ 2e−ǫ2n/2 +

( |SN |
⌊(1 − δ)|SN |⌋ + 1

)

(1 − µ(1 − δ))⌈q1−ǫ⌉n.

By taking subsets of SN , if necessary, for any α′ > α and for all N sufficiently large, there is an SN satisfying
Assumption 2 with |SN | = ⌈αN⌉ ≤ α′N . Fixing such an SN and using the bounds

(

n
k

)

≤ (ne/k)k and
δx − 1 ≤ x − (⌊(1 − δ)x⌋ + 1) ≤ δx gives (for N sufficiently large)

( |SN |
⌊(1 − δ)|SN |⌋ + 1

)

=

( |SN |
|SN | − (⌊(1 − δ)|SN |⌋ + 1)

)

≤
( |SN |e

δ|SN | − 1

)δ|SN |

≤
(

2e

δ

)δα′N

= exp
(

(1 + ln(2/δ))δα′N
)

.

Taking δ = 1/
√

N → 0 and 0 < µ < 1, for N sufficiently large, 1 − µ(1 − δ) ≤ 1 − µ/2 < 1. Hence, for N
and n sufficiently large (depending only on constants in the model and not depending on each other),

P1(n, N, N−1/2) ≤ 2 exp
(

−ǫ2n/2
)

+ exp
(

(1 + ln(2/
√

N))α′
√

N
)

(1 − µ/2)⌈q1−ǫ⌉n.
9



Therefore, setting η = (1 − µ/2)⌈q1−ǫ⌉ < 1 and η′ = − ln η > 0,

∞
∑

n=M

P1(n, N, N−1/2) ≤ O(1) + exp((1 + ln(2/
√

N))α′
√

N)

∫ ∞

M

ηxdx

≤ O(1) + exp((1 + ln(2/
√

N))α′
√

N) exp(−η′M)/η′.

The result now follows from the facts that M = N1/2+1/16 and (1 + ln(2/
√

N))α′
√

N ≤ η′
√

NN1/16 for all
N sufficiently large. �

Lemma 6. Let notation be as above, conditions as in Theorem 1 and let M = N1/2+1/16. Then

∞
∑

n=M

P2(n, N, N−1/2) = O(1).

Proof. Lemma 4 showed that for n sufficiently large (not depending on N)

P2(n, N, δ) ≤ 2e−ǫ2n/2 + max
S∈QN (δ)

(

1 −
∑

a∈S

q2,a(N)

)⌈q2−ǫ⌉n

.

For any SN satisfying Assumption 2, µα |S|
|SN | ≤

∑

a∈S q2,a(N) so for all S ∈ QN(δ) and sufficiently large N ,

1 −
∑

a∈S

q2,a(N) ≤ 1 − µα
δ|SN | + 1

|SN | ≤ 1 − µα
δ

2
< 1.

We have 1 − µαδ/2 ≤ e−
1
2µαδ so that

(

1 −
∑

a∈S

q2,a(N)

)⌈q2−ǫ⌉n

≤ (1 − µαδ/2)⌈q2−ǫ⌉n ≤ exp(−1

2
µα⌈q2 − ǫ⌉nδ).

Therefore for all N and n sufficiently large (depending only on constants in the model and not depending
on each other),

P2(n, N, δ) ≤ 2 exp(−ǫ2n/2) + exp
(

− 1
2µα⌈q2 − ǫ⌉nδ

)

.

It follows that
∞
∑

n=M

P2(n, N, N−1/2) ≤ O(1) +

∫ ∞

M

exp
(

− 1
2µαN− 1

2 (q2 − ǫ)x
)

dx

= O(1) +
2N

1
2

µα(q2 − ǫ)
exp
(

− 1
2µαN− 1

2 (q2 − ǫ)M
)

= O(1) + O
(

N1/2 exp
(

−cN1/2+1/16−1/2
)

)

= O(1) + O
(

N1/2e−cN1/16
)

for some constant c > 0. Therefore this term is O(1) as required. �

4.3. Proof of Theorem 1. Recall that WN (n) is the number of collisions of balls of different colour when
n balls have been put in urns. Then P(ZN > n) = P(WN (n) = 0) and we wish to compute

E[ZN ] =

∞
∑

n=0

P(ZN > n) =

∞
∑

n=0

P(WN (n) = 0).

Therefore
M
∑

n=0

P(WN (n) = 0) ≤ E[ZN ] ≤
M
∑

n=0

P(WN (n) = 0) +
∑

n>M

P(ZN > n).

The final term is O(1) by Lemmas 5 and 6.
10



The first term is equal to

M
∑

n=0

e−λN (n) +

M
∑

n=0

(

P(WN (n) = 0) − e−λN (n)
)

.

By Theorem 2 and equation (7), the second term here is at most

2

M
∑

n=0

ErrN (n) = O(N1/4).

Now, by Lemma 1 we have |λN (n) − n2AN/2| = O(n/N). Hence, for some constant c > 0,

M
∑

n=0

e−n2AN /2−cn/N ≤
M
∑

n=0

e−λN (n) ≤
M
∑

n=0

e−n2AN /2+cn/N .

For 0 ≤ n ≤ M we have ecn/N ≤ ecM/N = ec/N1/2−1/16

. Further, since ex ≤ 1 + 2x for 0 ≤ x ≤ 1.25, we have

ec/N1/2−1/16 ≤ 1 + 2c/N1/2−1/16 for N sufficiently large. Similarly e−c/N1/2−1/16 ≤ 1 − c/N1/2−1/16 using
1 − x ≤ e−x. Hence,

M
∑

n=0

e−λN (n) =
(

1 + O(N− 7
16 )
)

M
∑

n=0

e−n2AN /2.

Now,
∫ M

0

e−x2AN /2dx ≤
M
∑

n=0

e−n2AN /2 ≤ 1 +

∫ M

0

e−x2AN /2dx.

We write the integral as
∫ ∞

0

e−x2AN /2dx −
∫ ∞

M

e−x2AN /2dx.

As is well-known,
∫ ∞

0

e−x2AN /2dx = 1
2

√

π2/AN =
√

π/(2AN )

which provides the leading term of Theorem 1.
Since AN ≥ f/N ,

∫ ∞

M

e−x2AN /2dx ≤
∫ ∞

M

e−fx2/(2N)dx ≤
∫ ∞

M

e−fMx/(2N)dx =
2N

fM
e−fM2/(2N).

This is O(1) since M = N1/2+1/16.
Putting it all together we have

E[ZN ] =

M
∑

n=0

P(WN (n) = 0) + O(1)

=

M
∑

n=0

e−λN (n) + O(N
1
4 )

=
(

1 + O(N− 7
16 )
)

M
∑

n=0

e−
1
2n2AN + O(N

1
4 )

=
(

1 + O(N− 7
16 )
)

[√

π

2AN
+ O(1)

]

+ O(N
1
4 )

=
(

1 + O(N− 7
16 )
)

√

π

2AN
+ O(N

1
4 ).

Finally, since
√

1/AN = O(N1/2) it follows that

(

1 + O(N− 7
16 )
)

√

π

2AN
=

√

π

2AN
+ O(N1/16).
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This completes the proof. �

Note that with more work one could presumably obtain a tighter error bound, but this is sufficient for
the applications in [9, 10].

5. Applications to the DLP

Recall the discrete logarithm problem from the introduction. There are a number of algorithms to solve
the DLP in an interval, but recent work of Galbraith and Ruprai [8] and Galbraith, Pollard and Ruprai [10]
has shown that variants of an algorithm due to Gaudry and Schost [11] can be used to give good results.
For background on the Gaudry-Schost algorithm and its analysis we refer to [8, 11].

These algorithms perform pseudorandom walks in certain sets. Recall that an instance of the DLP
consists of a pair (g, h) of group elements such that h = ga for some integer a that we wish to compute. A
pseudorandom walk is a sequence of group elements x1, x2, . . . . A walk is called “tame” if each element is of
the form xi = gai where the integers ai are known to the algorithm. A walk is called “wild” if each element
is of the form xj = hgbj where the integers bj are known to the algorithm. A collision in the walk therefore
gives an equation of the form gai = hgbj , from which one solves the problem as h = gai−bj . The expected
number of group operations performed by the algorithm depends on the expected number of samples from
the group until a tame and wild walk collide. We think of the “tame” walks as being colour 1 and the “wild”
walks as being colour 2 (sometimes there is another type of wild walk, in which case a third colour is needed).
The group elements are thought of as urns, and if a walk visits a group element then we think of a ball of
the corresponding colour being placed in the corresponding urn.

The subclass of models relevant to the above algorithm is as follows. Let C ∈ {2, 3} be the number of
colours and let q1 = q2 = · · · = qC = 1/C (with bk,c satisfying the required property).

Let α ∈ (0, 1) and let {MN}N∈N be an N-valued sequence satisfying MN < N and pN = MN/N . Suppose
that for each colour 1 ≤ c ≤ C and each N there is a subset Sc(N) of the N urns such that |Sc(N)| = MN

and that for each c, a, N

qc,a(N) =

{

pN , a ∈ Sc(N)
0, otherwise.

For this class of models, since
N
∑

a=1

qc,aqc′,a = |Sc(N) ∩ Sc′(N)|p2
N ,

we have

AN =
p2

N

C2

C
∑

c=1

C
∑

c′=1

|Sc(N) ∩ Sc′(N)| =
2p2

N

C2

C
∑

c=1

∑

c′>c

|Sc(N) ∩ Sc′(N)|.

Therefore,

√

π

2AN
=

C
√

π

2pN

(

C−1
∑

c=1

C
∑

c′=c+1

|Sc(N) ∩ Sc′(N)|
)− 1

2

.(12)

Suppose further that there exist colours c, c′ 6= c such that |Sc(N)∩Sc′(N)| ≥ αN . It follows immediately
from our main result (taking SN = Sc(N) ∩ Sc′(N) for the specific colours c and c′ mentioned above) that
the expected time of the algorithm is (12) to leading order.

More relevant for this paper is that Galbraith and Ruprai [9] have used the Gaudry-Schost algorithm to
solve the discrete logarithm problem in an interval taking advantage of equivalence classes under inversion.
This variant leads to non-uniform distributions on the group elements sampled, and the distributions depend
on whether one is running a tame or wild walk. The analysis of the algorithm requires the main result of our
paper. We now explain how Theorem 3 of [9] is derived from this result. First, we give the statement of it.

Theorem 3. Let N ∈ N and 0 ≤ A ≤ N/2. Suppose we have an unlimited number of balls of two colours,
red and blue, and N urns. Suppose we alternately1 choose balls of each colour and put them in random urns,

1When running the algorithm on a serial computer one can arrange the computation so that tame and wild walks take
alternate steps. This corresponds to alternate choices of colours. However, in practice one often considers distributed or parallel
implementations and in this setting it is much more realistic to assume that balls are coloured with probability 1/2.
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independently of previous urn selections. Red balls are assigned to the N urns uniformly. Blue balls are
assigned to the N urns with the following probabilities: each urn 1 ≤ u ≤ A is chosen with probability 2/N ,
each urn A < u ≤ N −A is chosen with probability 1/N , and urns N −A < u ≤ N are used with probability
0. Then the expected number of assignments that need to be made in total before we have an urn containing
two balls of different colour is

√
πN + O(N1/4).

Proof. The colours are chosen alternately, so suppose the k-th ball has colour 1 when k is odd and colour 2
when k is even. In the language of Assumption 1 this means that rk,1 = (1−(−1)k)/2 and rk,2 = (1+(−1)k)/2.
It follows that q1 = q2 = 1/2 and

bn,1 =
1

2
− 1

n

n
∑

k=1

1 − (−1)k

2
=

1

2n

n
∑

k=1

(−1)k ∈
{

0,− 1

2n

}

, and bn,2 =
1

2
− 1

n

n
∑

k=1

1 + (−1)k

2
∈
{

0,
1

2n

}

.

Hence |bn,c| ≤ K/n with K = 1
2 .

If colour 1 is red and colour 2 is blue, then in the language of Assumption 2, q1,a = 1/N for 1 ≤ a ≤ N ,
and

q2,a =







2/N, 1 ≤ a ≤ A
1/N, A < a < N − A
0, N − A ≤ a ≤ N.

Since A ≤ N/2 we can let SN = {a ∈ Z : 1 ≤ a ≤ N/2} so that |SN | = ⌊N
2 ⌋ and α = 1/2 − ǫ. Since

qc,a ≥ 1/N for all a ∈ SN and c = 1, 2, Assumption 2 holds. Hence, we can apply Theorem 1.
One computes

AN = 2
1

2

1

2

(

A
2

N

1

N
+ (N − 2A)

1

N

1

N

)

=
1

2N
.

Hence, by Theorem 1 the expected number of trials until there is a collision is
√

πN + O(N1/4)

as claimed. �

As shown in [9] this leads to an algorithm for the DLP in an interval of length N with conjectural

average case expected asymptotic complexity of (1.36 + ǫ)
√

N group operations for small ǫ > 0. The factor
ǫ comes from a number of practical issues with the algorithm (in particular the fact that we are using a
pseudorandom walk and that the equivalence classes can lead to small cycles) and it is unclear whether ǫ
can be made arbitrarily small without other aspects of the algorithm starting to dominate the running time.

6. A Paradox about Birthdays

In some variants of the discrete logarithm algorithms it happens that balls of one colour are assigned to
a smaller set of possible urns than balls of another colour. One might believe that to minimise the expected
time until a collision occurs, the latter colour should be sampled more than the former one. However, a
consequence of our results is that, at least asymptotically, one should sample equally from both sets. Since
this result is potentially counter-intuitive (at least to non-experts) and seems to be not well known, we give
a formulation in terms of “birthday problems”.

Suppose a conference center has two rooms, one holding a meeting of the “boys born in January club”
and the other holding a meeting of “random girls” (i.e., ones whose birthdays are uniformly distributed over
the whole year). We ask boys and girls to sequentially enter the lobby and and wish to maximise the chances
that there is a girl and a boy of the same birthday, while minimising the number of people in the lobby. It
is natural to ask boys and girls to enter the lobby in a manner so that the ratio of boys to girls converges to
some fixed value (for example, one can ask a boy to enter the room with a certain fixed probability). What
should this value be? Further, what is the best strategy as the number N of days in a year tends to infinity
and the month of January contains roughly one twelfth of all days?

One’s intuition might be that significantly more girls than boys should be brought into the lobby. On the
contrary, it follows from our main result that (at least asymptotically) one should choose the same number
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Figure 2. Simulations of the expected number of people chosen before a birthday collision
occurs between males born in a subset of size M of the total (size N) days in a year and
females born at any time of year, when (M, N) = (31, 365) or (M, N) = (310, 3650). The
expected number is plotted as a function of p = q2, the probability of selecting a person
from the female group, each time a person is selected.

of boys as girls. To see this, suppose boys are colour 1 and girls are colour 2. Then (assuming 12 | N),
q2,a = 1/N while

q1,a =

{

12/N, 1 ≤ a ≤ N/12
0, N/12 < a ≤ N.

The expected number of trials is of order
√

π/(2AN ) and so one wants to maximise AN . We have q1 and
q2 = 1 − q1 being the probability of choosing boys and girls respectively. The formula for AN in this case
simplifies to

AN = 2q1q2(N/12)(12/N)(1/N) = 2q1q2/N.

It immediately follows that to maximise AN one should choose q1 = q2 = 1/2, in which case the expected

number of trials is asymptotically
√

πN just as it is in the case where the boys and girls birthdays are
distributed uniformly over the whole year.

Simulations (see Figure 2) suggest that, for the case N = 365 and January containing 31 days, the optimal
choice of sampling is roughly q2 = 0.6. For the case N = 3650 and January containing 310 days, the optimal
choice of sampling appears to be taking q2 just slightly larger than 0.5.
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