
Using Equivalence Classes to Accelerate Solving
the Discrete Logarithm Problem in a Short

Interval

Steven D. Galbraith? and Raminder S. Ruprai

1 Mathematics Department, Auckland University, Auckland, New Zealand.
s.galbraith@math.auckland.ac.nz

2 Mathematics Department, Royal Holloway University of London, Egham, Surrey
TW20 0EX, UK.

raminder@email.com

Abstract. The Pollard kangaroo method solves the discrete logarithm
problem (DLP) in an interval of size N with heuristic average case ex-
pected running time approximately 2

√
N group operations. A recent

variant of the kangaroo method, requiring one or two inversions in the
group, solves the problem in approximately 1.71

√
N group operations.

It is well-known that the Pollard rho method can be sped-up by using
equivalence classes (such as orbits of points under an efficiently computed
group homomorphism), but such ideas have not been used for the DLP
in an interval. Indeed, it seems impossible to implement the standard
kangaroo method with equivalence classes.

The main result of the paper is to give an algorithm, building on work
of Gaudry and Schost, to solve the DLP in an interval of size N with
heuristic average case expected running time of close to 1.36

√
N group

operations for groups with fast inversion. In practice the algorithm is not
quite this fast, due to problems with pseudorandom walks going outside
the boundaries of the search space, and due to the overhead of handling
fruitless cycles. We present some experimental results.

This is the full version (with some minor corrections and updates) of the
paper which was published in P. Q. Nguyen and D. Pointcheval (eds.),
PKC 2010, Springer LNCS 6056 (2010) 368-383.

Keywords: discrete logarithm problem (DLP), elliptic curves, negation
map, efficiently computable group homomorphisms.

1 Introduction

The discrete logarithm problem (DLP) in an interval is the problem: Given g, h
in a group G and N ∈ Z>0 such that h = gn for some 0 ≤ n ≤ N (where N
is less than the order of g), to compute n. This problem arises naturally in a
number of contexts, for example the DLP with c-bit exponents (c-DLSE) [17, 26,
24], decryption in the Boneh-Goh-Nissim homomorphic encryption scheme [2],

? This work supported by EPSRC grant EP/D069904/1.

counting points on curves or abelian varieties over finite fields [16], the analysis
of the strong Diffie-Hellman problem [4, 19], and side-channel or small subgroup
attacks [18, 20].

One can solve the DLP in an interval using the baby-step-giant-step algo-
rithm in at worst 2

√
N group operations (or, with minor modifications, with

average case running time of
√

2N group operations). But this method also
requires O(

√
N) group elements of storage.

Pollard [27] developed the kangaroo algorithm precisely with this application
in mind. Using distinguished points, van Oorschot and Wiener [25] (also see Pol-
lard [29]) achieve a heuristic average case expected complexity of essentially 2

√
N

group operations and low storage. We summarise this algorithm in Appendix A.
Note that this algorithm has success probability of 1, as do all algorithms in this
paper. Two new variants of the kangaroo method which require inversion of just
one or two group elements have been proposed by Pollard (see [11]); the heuristic
running times are roughly 1.82

√
N and 1.71

√
N group operations respectively.

These algorithms can also be parallelised (or distributed) with a linear speedup.
For comparison, the Pollard rho method [27] has heuristic expected running time
of
√
πr/2 ≈ 1.25

√
r operations if g has order r. All complexity statements in

this paper rely on heuristic assumptions; for steps toward a rigorous analysis of
the kangaroo method please see Montenegro and Tetali [22].

Gaudry and Schost [16] (building on earlier work of Gaudry and Harley [15])
presented a different approach to solve this problem using a birthday paradox
style analysis. Whilst their algorithm is not as fast as that of van Oorschot and
Wiener, it is easily parallelisable and importantly there is no requirement to know
the number of clients or processors before the algorithm begins. Parallelising the
Gaudry-Schost algorithm gives a linear speedup and this also applies to all the
algorithms in this paper. For brevity we state all running times for the serial
case. The average expected running time of their algorithm is 2.08

√
N group

operations on a serial computer (the algorithm of Gaudry and Harley [15] is less
efficient). We present their algorithm and recall the analysis of its complexity in
Section 2.

Gallant, Lambert and Vanstone [13] and Wiener and Zuccherato [32] showed
that the Pollard rho method can be used with equivalence classes (orbits of group
elements under an fast computable group homomorphism) to achieve a constant
speedup in some groups. In particular, for elliptic curves the rho algorithm can
be sped-up by a factor of

√
2 using the equivalence class {u, u−1} where u is

a group element (which is more commonly written as {P,−P} in the case of
elliptic curves). Since the algorithms use pseudorandom walks which do not
behave exactly like true random walks there are some challenges to achieving the
optimal theoretical running time. In particular, walks can fall into short cycles
and hence never arrive at a distinguished point; these are called “fruitless cycles”
and have been analysed by Duursma, Gaudry and Morain [7], Bos, Kleinjung
and Lenstra [3] and Bernstein [1].

It seems to be impossible to combine the standard kangaroo method with
equivalence classes in general (Section 19.6.3 of [6] claims it can be done but

gives no details, and this seems to be an error). Hence, it is necessary to consider
other algorithms. A natural observation is that, for a DLP instance (g, h) in an
interval of even length N , one can set h′ = hg−N/2 and then solve h′ = gn where
−N/2 ≤ n ≤ N/2. If the discrete logarithm of u lies in the interval [−N/2, N/2]
then the equivalence class {u, u−1} does correspond to a pair of group elements
in the region of interest.

In Sections 3 and 4 we show how to speed up the Gaudry-Schost method in
groups with fast inversion (such as elliptic curves, tori, LUC and XTR). Here
fast inversion means that computing u−1 for any u in the group is much faster
than a general group operation. We also present a further speedup by modifying
the search region. Our main result is a method to solve the DLP in an interval
in approximately 1.36

√
N group operations. The result uses a new variant of the

birthday paradox which is developed in [12]. The theoretical analysis of the al-
gorithm assumes it is run using a truly random walk. In practice one implements
the algorithm using a pseudorandom walk which has a number of undesirable
consequences, in particular it can walk outside the desired search space, and
there can be fruitless cycles which add some overhead to the computation. In
Section 5 we present experimental results which give a better idea of the actual
performance in practice (though it is likely that these figures can be improved).

Our algorithm, as with Gaudry-Schost, requires low storage and can be par-
allelised with linear speedup very easily.

We indicate in Appendix B how to speed up the Gaudry-Schost algorithm
for the multi-dimensional DLP using equivalence classes. The appendix contains
some results which were not present in the conference version [10] of this paper.

2 The Gaudry-Schost Algorithm

To introduce notation and the central ideas, we recall the Gaudry-Schost algo-
rithm [16]. The basic idea is the same as the kangaroo algorithm of Pollard in
the van Oorschot and Wiener [25] formulation. Let g and h be the DLP instance
we wish to solve, with h = gn for some integer −N/2 ≤ n ≤ N/2. We run a
large number of pseudorandom walks (possibly distributed over a large number
of processors). Half the walks are “tame walks”, which means that every ele-
ment in the walk is of the form ga where the integer a is known. The other half
are “wild walks”, which means that every element is of the form hga where the
integer a is known. As is typical in this subject, we visualise the group in terms
of the ‘exponent space’. More precisely, define the ‘tame set’

T = [−N/2, N/2]

(where by [N1, N2] we mean {a ∈ Z : N1 ≤ a ≤ N2}) and the ‘wild set’

W = n+ T = {n+ a : a ∈ [−N/2, N/2]}.

Note that, when N is even, |T | = |W | = N + 1, though we are frequently sloppy
and treat the sets as if |T | = N . Although T and W are of the same size, W is

a translation of T and of course we do not know the value of n. A tame walk
is a sequence of points ga where a ∈ T and a wild walk is a sequence of points
gb = hga with b ∈W .

Each walk proceeds until a distinguished point is hit. This distinguished point
is then stored on a server, together with the corresponding exponent a and a
flag indicating which sort of walk it was. This data is analogous to the ‘trap’ set
in the standard Pollard kangaroo method [27, 29]. When the same distinguished
point is visited by two different types of walk we have the “tame-wild collision”
ga1 = hga2 and one solves the DLP. We stress that the algorithm continues until
the DLP is solved. Hence the probability of success is 1.

The main difference between the Gaudry-Schost algorithm and the kangaroo
algorithm is that when a distinguished point is hit, Gaudry and Schost restart
the walk from a random starting point in a certain range, whereas the kangaroos
keep on running. The theoretical analysis is different too: Gaudry and Schost
use a variant of the birthday paradox whereas Pollard and van Oorschot and
Wiener use a different probabilistic argument (see Appendix A).

2.1 Theoretical Analysis

We now recall the precise analysis of the idealised version (i.e., using a truly
random walk, rather than a pseudorandom walk) of the Gaudry-Schost algo-
rithm [16]. Gaudry and Schost use the following variant of the birthday paradox,
which we will call the Tame-Wild birthday paradox.

Theorem 1. When sampling uniformly at random from a set of size R ∈ N,
with replacement, and alternately recording the element selected in 2 different
lists then the expected number of selections that need to be made in total before
we have a coincidence between the lists is

√
πR+O(1).

Proofs of this theorem can be found in Selivanov [31] or [12] or in [30] (which
derives it from a result of Nishimura and Sibuya [23]). For simplicity we will
omit the O(1) term from all subsequent running times.

Since tame points lie in T and wild points lie in W a collision between
tame and wild points can only occur in T ∩W . We call such a collision ‘tame-
wild’ and this is analogous to a coincidence between the lists in Theorem 1,
so we apply Theorem 1 in the case R = |T ∩ W |. Throughout the paper we
approximate |T ∩W | by the length of the interval of real numbers corresponding
to [−N/2, N/2] ∩ [n−N/2, n+N/2].

Figure 1 presents T ∩W in two cases. The first case is h = gn for n = N/4
so |T ∩W | = 3N/4 (this is the ‘average case’). The second case is h = gn for
n = N/2 so |T ∩W | = N/2 (which is the ‘worst case’).

Theorem 2. (Gaudry-Schost [16]) Let notation be as above. If elements are
sampled uniformly at random with replacement alternately from T and W and
recorded, the expectation, over all problem instances, of the number of selections
before a tame-wild collision is 2.08

√
N .

Fig. 1. Overlap between T and W . The sets T and W are represented by black hori-
zontal bars and the shading between them shows the length of the overlap. The first
case is when n = N/4 and the second case is n = N/2.

Proof. The running time of the Gaudry-Schost algorithm is dependent on the
problem instance h = gn but, by symmetry, we can restrict to the case 0 ≤ n ≤
N/2. We write this as h = gxN where x ∈ [0, 1/2].

Let R = |T ∩W | = N(1 − x). By Theorem 1 we expect to need to sample√
πR elements (half of each type) of T ∩W to find a collision. To select 1

2

√
πR

elements in T ∩W when sampling uniformly from T requires selecting

|T |
|R|

1
2

√
πR = 1

2

√
πN/(1− x).

The same argument applies to W . Hence, the expected running time of the
algorithm is

√
πN/(1− x) group operations. Note that this is the expected value

of the running time, over all choices for the random walk, for a specific problem
instance.

We now average this over all problem instances as

2
∫ 1/2

0

(1− x)−1/2
√
πNdx = 2

√
πN

[
2−
√

2
]

= 2(2−
√

2)
√
πN ≈ 2.08

√
N.

ut

This result has been improved to 2.05
√
N by using smaller sets for T and W

in [9].

2.2 Pseudorandom Walks and Practical Considerations

Gaudry and Schost present the result in Theorem 2 but they also consider the
practical implementation of the algorithm. First, to reduce storage, one does
not record every element sampled by the pseudorandom walk but instead uses
distinguished points. If we let θ be the probability that an element of the group
is a distinguished point then walks are of length 1/θ on average and we require
storage of around θ

√
N group elements.

Second, it is necessary to use a pseudorandom walk which performs close
enough to sampling uniformly at random that the Tame-Wild birthday paradox
still applies. Gaudry and Schost, as with the kangaroo method, partition the
group into, say, 32 subsets and use a pseudorandom walk where each step is
a multiplication of the current group element by gai , where ai is a fixed small
positive integer, if the current group element lies in the i-th block of the partition.
Our algorithms will necessarily have random walks which step in a “side-to-side”
manner, since the equivalence class representative of a group element could be
its inverse and steps to the right from the inverse of a group element are the
same as steps to the left from the original element. Hence, though we take ai ∈ N
and each step is multiplication by gai , in practice the walks look like the jumps
are of lengths ±ai. We denote by m the mean of the integers |ai| and call it the
mean absolute step size. For the analysis we recall the following result (note that
the mean absolute step size in this walk is 1

2).

Lemma 1. (Cofman, Flajolet, Flatto and Hofri [5]) Let y0, y1, . . . , yk be a sym-
metric random walk that starts at the origin (y0 = 0) and takes steps uniformly
distributed in [−1,+1] then the expected maximum excursion is

E(max {|yi| : 0 ≤ i ≤ k}) =

√
2k
3π

+O(1)

The average ‘distance’ covered by a random walk, from its starting point to
when it hits a distinguished point, is therefore O(m/

√
θ). To have good random

walks it is essential that this value is sufficiently large so that each walk covers
a reasonable proportion of the tame or wild set. If not, then the walks stay very
close to their starting point and the probability of two walks colliding is small.
On the other hand, when m/

√
θ is large then there is a good chance that the

pseudorandom walks will sometimes travel outside T or W . Steps outside the
regions of interest cannot be included in our probabilistic analysis and so such
steps are “wasted”. To reduce these wasted steps it is necessary to start walks
inside a subset of T and W . More details about how to do this are given in [9].

We therefore state the following heuristic result. The factor 1 + ε takes into
account the failure of a pseudorandom walk to behave exactly like a random
walk, in particular due to effects at the boundaries of the regions.

Heuristic 1 The average expected running time for the Gaudry-Schost algo-
rithm to solve the DLP in an interval of size N is 2.08(1 + ε)

√
N + 1/θ group

operations for some small ε > 0.

We admit that the statement of Heuristic 1 (and Heuristic 2 later) is essen-
tially vacuous (for example, is ε = 1 “small”?). We would like to be able to
replace ε by o(1). This may be reasonable for Heuristic 1 but it seems unlikely
to be reasonable for Heuristic 2. The extensive computational experiments per-
formed in [11] (for a slightly different problem) suggest it is reasonable to suggest
that ε can be around 0.05 to 0.06 in both Heuristics 1 and 2.

The standard Gaudry-Schost algorithm is therefore not as fast as the van
Oorschot and Wiener version of the Pollard kangaroo method. Nevertheless,
we will improve upon their approach in groups with fast inversion, to obtain a
method faster than any known method based on kangaroos.

3 Equivalence Classes

Following the work of Gallant, Lambert and Vanstone [13] and Wiener and Zuc-
cherato [32] it is natural to consider a pseudorandom walk on a set of equivalence
classes. For the DLP in an interval this only seems to give an improvement when
the equivalence class is a set of group elements all of whose discrete logarithms
lie in the interval. Groups with fast inversion are good candidates for this.

It is necessary to be able to compute a unique representative of the equiv-
alence class so that one can define a deterministic pseudorandom walk on the
equivalence classes. For example consider the group of points on an elliptic curve
E : y2 = x3 + Ax + B over a finite field Fq where q is an odd prime. If we let
P = (xP , yP) ∈ E(Fq) then the inverse of P is simply −P = (xP ,−yP). Now we
need a rule to define a unique representative for each equivalence class {P,−P}.
A simple rule in this case is: treat the y-coordinate of P as an integer 0 ≤ yP < q
and let the unique representative be (xP ,min{yP , q − yP }). The pseudorandom
walk is then defined using the unique equivalence class representative.

If we denote elements of the group by their discrete logarithms and order
those in the interval [−N/2, N/2], then the two elements in an equivalence class
are equidistant from the centre of the interval. A step to the right for one repre-
sentative of the equivalence class corresponds to a step to the left for the other.
Hence, when using equivalence classes there is no way to avoid having side-to-
side walks. This is essentially the reason why the standard kangaroo method
cannot be used with equivalence classes.

An important issue is that there is a danger of small cycles in the walks.
This phenomena was noted by Gallant, Lambert and Vanstone [13] and Wiener
and Zuccherato [32]. This can cause the pseudorandom walks to never reach
a distinguished point. A method to get around this problem is “collapsing the
cycle” which can be found in Gallant, Lambert and Vanstone [13, Section 6]. A
detailed analysis of these issues is given by Duursma, Gaudry and Morain [7],
Bos, Kleinjung and Lenstra [3] and Bernstein [1].

It is natural to try to apply the Gaudry-Schost algorithm on equivalence
classes to solve the DLP in an interval of size N .

3.1 The Gaudry-Schost Algorithm on Equivalence Classes

We only give a short sketch of the method, since our main result is a further
improvement on the basic idea. Recall that we wish to solve h = gn where
−N/2 ≤ n ≤ N/2. We assume that computing h−1 for any h in the group is
much faster than a general group operation.

The natural approach is to perform random walks in sets of equivalence
classes corresponding to the tame and wild sets of the standard Gaudry-Schost
method. In other words, it is natural to make the following definition.

Definition 1. Define the tame and wild sets by

T = {{a,−a} : a ∈ [−N/2, N/2]} ,
W = {{n+ a,−(n+ a)} : a ∈ [−N/2, N/2]} .

Note that |T | = 1 +N/2 ≈ N/2.
As before, our main focus is on T ∩ W . When n = 0 we have T = W

and when n is large then T ∩ W is only about half the size of T . However,
a subtlety which did not arise in the previous case appears: when n > N/4
and a > N/4 there is only one way an equivalence class {n + a,−(n + a)}
can arise, but when |n| is small there can be two ways. Specifically, suppose
−N/4 < n < 0, then the equivalence class {n+ a,−(n+ a)} can arise from a
and from a′ = −2n− a (for example, if n = −N/8 then a = N/4 and a′ = 0 are
such that {n+ a,−(n+ a)} = {n+ a′,−(n+ a′)}). This phenomena means that
the Gaudry-Schost algorithm samples from the wild set in a non-uniform way
and this means we cannot apply Theorem 1 to determine the expected running
time of the algorithm. We explain these issues more precisely in the next section.

We do not give an analysis of the average case expected number of group
operations for this algorithm. In the next section we make a further optimisation
which leads to a better algorithm. A full analysis of the improved algorithm is
then given.

4 The New Algorithm

We now give an algorithm for the discrete logarithm problem in an interval
for groups with efficient inversion. As usual, let N, g and h be given such that
4 | N , h = gn and −N/2 ≤ n ≤ N/2. The basic idea is to run the Gaudry-
Schost algorithm on the set of equivalence classes. A further speedup is given by
defining the wild set W to be, in some sense, smaller than the tame set.

Definition 2. We define the tame and wild sets (as sets of equivalence classes)
by

T = {{a,−a} : a ∈ [−N/2, N/2]} ,
W = {{n+ a,−(n+ a)} : a ∈ [−N/4, N/4]}

where, as always, [N1, N2] = {a ∈ Z : N1 ≤ a ≤ N2}.

The algorithm is then immediate. One samples from T and W using pseudo-
random walks which are well-defined on equivalence classes. When a walk hits
a distinguished point then we store the representative of the equivalence class,
its discrete logarithm (or the discrete logarithm of the group element divided by

h), and the ‘type’ of the walk. When the same equivalence class is reached by
walks of both types then the discrete logarithm problem is solved.

To understand the algorithm it is necessary to consider a ‘fundamental do-
main’ for the sets. In other words, we consider sets which are in one-to-one
correspondence with the set of equivalence classes. A fundamental domain for
T is T̃ = [0, N/2]; it is clear that every pair {a,−a} ∈ T corresponds to
exactly one value a ∈ [0, N/2]. One choice of fundamental domain for W is
{|n| + a | a ∈ [−N/4, N/4]}. However, to visualise T ∩W we really want the
fundamental domain for W to consist only of positive values, and this is not the
case when |n| < N/4. Hence, when |n| < N/4, we note that the set W in in
one-to-one correspondence with the multi-set

W̃ = {|n|+ a : a ∈ [−|n|, N/4]} ∪ {−(|n|+ a) : a ∈ [−N/4,−|n|)}
= [0, |n|+N/4] + [0, N/4− |n|). (1)

When |n| < N/4, sampling uniformly from W corresponds to sampling
uniformly from the multi-set W̃ , which in turn corresponds to sampling a ∈
[0, |n| + N/4] with probability 4/N for 0 ≤ a < N/4 − |n| and probability 2/N
for N/4− |n| ≤ a ≤ |n|+N/4. We describe this as saying that there is a ‘double
density’ of walks in the wild set.

Fig. 2. The set eT is pictured at the top of the diagram as a long black box. The setsfW are given for the values n = 0, N/8, N/4 and N/2 where the diagonal lines denote
single density and the cross hatching denotes double density (i.e., repetitions in the
multi-set).

To determine the complexity of the algorithm we need a generalisation of
Theorem 1. This is a variant of the birthday paradox which applies to coloured
balls and non-uniform probabilities. Such a result is proved in [12].

Theorem 3. Let R ∈ N and 0 ≤ A ≤ R/2. Suppose we have an unlimited
number of balls of two colours, red and blue, and R urns. Suppose we alternately
choose balls of each colour and put them in random urns. Red balls are assigned
uniformly and independently to the urns. Blue balls are assigned to the urns
independently with the following probabilities: urns 1 ≤ u < A are used with
probability 2/R, urns A ≤ u ≤ R−A are used with probability 1/R, and urns R−
A < u ≤ R are used with probability 0. Then the expected number of assignments
that need to be made in total before we have an urn containing two balls of the
different colour is

√
πR+O(R1/4).

We refer to [12] for the proof. However, it is relatively easy to see why the
result should be true: The probability that a red ball and a blue ball fall in the
same urn is

A 1
R

2
R + (R− 2A) 1

R
1
R +A 1

R0 = 1
R

which is exactly the same as the probability in the case where both red and
blue balls are distributed uniformly. One significant difference from the standard
Tame-Wild birthday paradox is that there is an increased chance of two or more
blue balls being placed in the same urn (and this has the effect of lowering the
probability of a collision among balls of different colour). Hence, Theorem 3 does
not seem to be an immediate consequence of the results in [23, 31].

Theorem 4. If elements are sampled uniformly at random with replacement
alternately from the sets T and W of Definition 2 and recorded, the expecta-
tion, over all problem instances, of the number of selections before a tame-wild
collision is

(5
√

2/4− 1)
√
πN +O(N1/4) ≈ 1.36

√
N.

Proof. Let h = gxN for −1/2 ≤ x ≤ 1/2. Due to symmetry we only need to
look at the positive half of the interval of exponents. As we have seen, when
0 ≤ x < 1/4 we have W ⊆ T and we are sampling in T ∩W uniformly with the
tame elements and non-uniformly with the wild elements. On the other hand,
when 1/4 ≤ x ≤ 1/2 then T and W are both sampled uniformly, but T ∩W is
now a proper subset of T and W in general. The analysis therefore breaks into
two cases.

In the case 0 ≤ x < 1/4, by Theorem 3 (taking R to be the size of the funde-
mental domain for T , which is N/2), the expected number of group operations
to get a collision is

√
πN/2 +O(N1/4).

In the case 1/4 ≤ x ≤ 1/2 one sees that (approximating the number of
integers in T ∩W with the length of the corresponding interval in R) |T ∩W | =
3N/4− xN = N(3/4− x) (here by |T ∩W | we mean the number of equivalence
classes in the intersection) and we are in a very similar situation to the proof of

Theorem 2. We need to sample
√
π|T ∩W | points in T ∩W (half of them tame

and half wild). Since |T | = |W | = N/2 we expect to sample

|T |
|T ∩W |

√
π|T ∩W | = N/2

N(3/4− x)

√
πN(3/4− x) = 1

2

√
πN/(3/4− x)

group elements in total.
We now average over all problem instances to get an average case running

time.
1
2

√
πN/2 + 2

∫ 1/2

1/4

1
2

√
πN/(3/4− x) =

√
πN

(
5
4

√
2− 1

)
.

ut

This result suggests the following heuristic statement about the running time
of the algorithm using pseudorandom walks. The value ε takes into account var-
ious undesirable properties of the pseudorandom walk, such as irregular proba-
bility distributions at the boundaries of the regions and detecting and escaping
from fruitless cycles.

Heuristic 2 Our algorithm to solve the DLP in an interval of size N in a
group with fast inversion has everage case expected running time of approximately
1.36(1 + ε)

√
N + 1/θ group operations for some small ε > 0.

As mentioned earlier, we believe that ε can be taken to be around 0.05.
This is a significant improvement on the standard Gaudry-Schost algorithm

(Heuristic 2) and the Improved Pollard kangaroo method with heuristic running
time 1.71

√
N group operations [11].

5 Experimental Results

We implemented the Improved Gaudry-Schost algorithm using equivalence classes
for solving the DLP in an interval using the software package Magma. The group
used was the group of points on the following elliptic curve

E : y2 = x3 + 40x+ 1 over Fp

where p = 3645540875029913. The group of points has cardinality

#E(Fp) = 3645540854261153 > 251.

We picked various interval sizes and ran a number of experiments on those
intervals. Each experiment involved choosing uniformly at random −N/2 ≤ n ≤
N/2 and solving the DLP for Q = [n]P . We counted the number of group
operations performed and averaged this over the total number of trials. Walks
were not permitted to start within a distance m

√
2/3πθ from the edge of any of

the sets (this is roughly half the size of the expected maximum distance travelled
by a walk).

of Experiments Improved GS on equivalence classes

Experiment 1 1000 1.49
√
N

N ≈ 234

m = 28

θ = 2−5

Experiment 2 300 1.47
√
N

N ≈ 240

m = 211

θ = 2−5

Experiment 3 50 1.46
√
N

N ≈ 248

m = 214.5

θ = 2−6

Table 1. Average number of group operations performed by our algorithm for different
values of N .

The average number of group operations performed for the different exper-
iments are given in Table 1. Note that the constants are all within 0.13 of the
theoretical value of 1.36. We believe that better experiments would bring this
gap down to around 0.05.

To detect small cycles we stored the previous 30 group elements in the walk
in the case N ≈ 234 (respectively, 30, 45 group elements for N ≈ 240, 248). Each
new step in the walk was compared with the previous 30 (respectively, 35, 45)
group elements visited. If this group element had already been visited then the
walk is in a cycle. We used a deterministic method to jump out of the cycle (using
a jump of distinct length from the other jumps used in the pseudorandom walk)
so that the pseudorandom walk as a whole remained deterministic. The cost of
searching the list of previous group elements is not included in our experimental
results, but our count of group operations does include the “wasted” steps from
being in a cycle.

We terminated walks which ran for 5/θ steps without arriving at a distin-
guished point (the usual recommendation is 20/θ steps; see [25]). This will give
us a slightly worse running time than optimal.

There is plenty of room for improvement in these experimental results. First,
improved techniques to handle cycles (see, for example, [1, 3]) may lead to faster
running times (though note that we cannot use doublings/squarings when work-
ing in an interval). However, we should remark that many of the costs of handling
cycles are hidden in our experimental results, as we only count the number of
group operations. Second, the relationship between the values of m and θ in our
examples is probably not optimal. Third, one might get better results by not
running the same number of tame walks as wild walks or by slightly changing

the sizes of the tame and wild regions (though we have investigated a number
of variants without success).

6 Conclusion

We have presented the first algorithm to exploit equivalence classes for the dis-
crete logarithm problem in an interval. Our algorithm can be applied in groups
where we have fast inversion such as in the group of points on an elliptic curve.
The average expected running time of our algorithm is close to 1.36

√
N group

operations. Our practical experiments confirm that we can achieve a significant
improvement over previous methods.

Acknowledgements

We thank the anonymous referees of PKC 2010 and ASIACRYPT 2009 for a
number of very helpful comments. We also thank Wei Liu (an MSc student of
the first author), who made some suggestions to improve the paper.

References

1. Bernstein, D.J. : Faster rho for elliptic curves. Rump session talk at ANTS IX.
(2010)
Available from: http://cr.yp.to/talks/2010.07.20/slides.pdf

2. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In
Kilian, J., ed.: TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer (2005)

3. Bos, J.W., Kleinjung, T., Lenstra, A.K.: On the use of the negation map in the
Pollard Rho method. preprint (2010)

4. Cheon, J.H.: Security Analysis of the Strong Diffie-Hellman Problem. In Vaudenay,
S., ed.: EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11, Springer-Verlag (2006)

5. Cofman, E.G., Flajolet, P., Flatto, L., Hofri, M.: The Maximum of a Random
Walk and its Application to Rectangle Packing. Technical report, INRIA (1997)

6. Cohen, H., Frey, G.: Handbook of Elliptic and Hyperelliptic Curve Cryptography.
Discrete Mathematics and its Applications. Chapman & Hall/CRC (2005)

7. Duursma, I.M., Gaudry, P., Morain, F.: Speeding up the discrete log computa-
tion on curves with automorphisms. In Lam, K.Y., Okamoto E., Xing, C. ed.:
ASIACRYPT 1999. LNCS, vol. 1716, pp. 103–121. Springer-Verlag (1999)

8. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for Faster Elliptic Curve
Cryptography on a Large Class of Curves. In Joux, A., ed.: EUROCRYPT 2009.
LNCS, vol. 5479, pp. 518–535. Springer-Verlag (2009)

9. Galbraith, S.D., Ruprai, R.S.: An improvement to the Gaudry-Schost algorithm for
multidimensional discrete logarithm problems. In Parker, M.G., ed.: Cryptography
and Coding, 12th IMA International Conference. LNCS, vol. 5921, pp. 368–382.
Springer (2009)

10. Galbraith, S.D., Ruprai, R.S.: Using Equivalence Classes to Speed Up the Discrete
Logarithm Problem in a Short Interval, in P. Nguyen and D. Pointcheval (eds.),
PKC 2010, Springer LNCS 6056 (2010) 368-383.

11. Galbraith, S.D., Pollard, J.M., Ruprai, R.S.: Computing Discrete Logarithms in
an Interval. Preprint (2010)

12. Galbraith, S.D., Holmes, M.: A non-uniform birthday problem with applications
to discrete logarithms. Preprint (2010)

13. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Improving the Parallelized Pollard
Lambda Search on Binary Anomalous Curves. Mathematics of Computation 69,
1699–1705 (2000)

14. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on El-
liptic Curves with Efficient Endomorphisms. In Kilian, J., ed.: CRYPTO 2001.
LNCS vol. 2139, pp. 190–200. Springer-Verlag (2001)

15. Gaudry, P., Harley, R.: Counting Points on Hyperelliptic Curves over Finite Fields.
In Bosma, W., ed.: Proceedings of Algorithm Number Theory Symposium - ANTS
IV. LNCS, vol. 1838, pp. 313–332. Springer-Verlag (2000)

16. Gaudry, P., Schost, E.: A low-memory parallel version of Matsuo, Chao and Tsu-
jii’s algorithm. In Buell, D.A., ed.: Proceedings of Algorithm Number Theory
Symposium - ANTS VI. LNCS, vol. 3076, pp. 208–222. Springer-Verlag (2004)

17. Gennaro, R.: An Improved Pseudo-random Generator Based on Discrete Log. In
Bellare, M., ed.: CRYPTO 2000. LNCS, vol. 1880, pp. 469–481. Springer-Verlag
(2000)

18. Gopalakrishnan, K., Thériault, N., Yao, C.Z.: Solving Discrete Logarithms from
Partial Knowledge of the Key. In Srinathan, K., Rangan, C.P., Yung, M., eds.:
INDOCRYPT 2007. LNCS, vol. 4859, pp. 224–237. Springer-Verlag (2007)

19. Jao, D., Yoshida, K.: Boneh-Boyen signatures and the Strong Diffie-Hellman prob-
lem. In Shacham, H., Waters, B., eds.: Pairing 2009. LNCS, vol. 5671, pp. 1–16.
Springer-Verlag (2009)

20. Lim, C.H., Lee, P.J.: A Key Recovery Attack on Discrete Log-based Schemes
Using a Prime Order Subgroup. In Kaliski Jr., B.S., ed.: CRYPTO 1997. LNCS,
vol. 1294, pp. 249–263. Springer-Verlag (1997)

21. Liu, W.: Improved algorithms for the 2-dimensional discrete logarithm problem
with equivalence classes. MSc Thesis, University of Auckland (2010)

22. Montenegro, R., Tetali, P.: How long does it take to catch a wild kangaroo? In:
41st ACM Symposium on Theory of Computing. (2009)

23. Nishimura, K., Sibuya, M.: Probability to meet in the middle. Journal of Cryp-
tology 2, 13–22 (1990)

24. van Oorschot, P.C., Wiener, M.J.: On Diffie-Hellman Key Agreement with Short
Exponents. In Maurer, U., ed.: EUROCRYPT 1996. LNCS, vol. 1070, pp. 332–343.
Springer-Verlag (1996)

25. van Oorschot, P.C., Wiener, M.J.: Parallel collision Search with Cryptanalytic
Applications. Journal of Cryptology 12, 1–28 (1999)

26. Patel, S., Sundaram, G.: An Efficient Discrete Log Pseudo Random Generator. In
Krawczyk, H., ed.: CRYPTO 1998. LNCS, vol. 1462, pp. 304–317. Springer-Verlag
(1998)

27. Pollard, J.M.: Monte Carlo Methods for Index Computation mod p. Mathematics
of Computation 32(143), 918–924 (1978)

28. Pollard, J.M.: Three kangaroos are better than two! Private Communication (2009)
29. Pollard, J.M.: Kangaroos, Monopoly and Discrete Logarithms. Journal of Cryp-

tology 13, 437–447 (2000)
30. Ruprai, R.S.: An improvement to the Gaudry-Schost algorithm for multidimen-

sional discrete logarithm problems and applications. PhD Thesis, Royal Holloway,
University of London (2010)

31. Selivanov, B.I.: On waiting time in the scheme of random allocation of coloured
particles. Discrete Math. Appl. 5(1), 73–82 (1995)

32. Wiener, M.J., Zuccerato, R.J.: Faster Attacks on Elliptic Curve Cryptosystems. In
Tavares, S.E., Meijer, H., eds.: Selected Areas in Cryptography. LNCS, vol. 1556,
pp. 190–200. Springer-Verlag (1998)

A Background on the Pollard kangaroo Method

We first briefly recall the Pollard kangaroo method using distinguished points
as described by van Oorschot and Wiener [25] and Pollard [29]. To fix notation:
We are given g, h and N and asked to find 0 ≤ n ≤ N such that h = gn.

As with the rho method, the kangaroo method relies on a pseudorandom
walk, however steps in the kangaroo walk correspond to known small increments
in the exponent (in other words, kangaroos make small jumps). The tame kan-
garoo starts in the middle of the interval (i.e., at gN/2) and jumps towards the
right. The wild kangaroo starts at the group element h and jumps to the right
using the same pseudorandom walk. On a serial computer one alternately jumps
the tame and wild kangaroos. Every now and then a tame or wild kangaroo
lands on a distinguished group element u and stores it in a sorted list, binary
tree or hash table together with its discrete logarithm (if the kangaroo is tame)
or the discrete logarithm of uh−1 (if the kangaroo is wild). Once the same group
element is visited twice by different kangaroos the DLP is solved.

The kangaroo method is not analysed using the birthday paradox but using
the mean step size m of the pseudorandom walks. Once the rear kangaroo reaches
the starting point of the front kangaroo it is jumping over a region where roughly
one in m group elements have been visited by the front kangaroo. Hence, there
is a roughly 1/m probability at each step that the back kangaroo lands on a
footprint of the front kangaroo. Therefore, the walks collide after an expected
m steps.

One obtains the heuristic average case expected running time of approxi-
mately 2

√
N group operations as follows: Choose m =

√
N/2. The rear kangaroo

is, on average, distance N/4 from the front kangaroo. The rear kangaroo there-
fore performs N/(4m) jumps to reach the starting point of the front kangaroo,
followed by m more steps until the walks collide (and then a small number more
steps until a distinguished point is hit). Since there are two kangaroos in action
the total running time is roughly 2(N/(4m) +m) = 2

√
N group operations.

B Two-Dimensional Problems

One can consider the multi-dimensional DLP: Given g1, . . . , gd, h and bounds
N1, . . . , Nd, to compute n1, . . . , nd ∈ Z such that h = gn1

1 · · · g
nd

d and |ni| ≤ Ni

for 1 ≤ i ≤ d. We call the integer d the dimension. The size of the solution
region is N =

∏d
i=1(2Ni + 1). This problem arises in a number of applications.

For example, Gaudry and Schost [16] use algorithms for the 2-dimensional DLP
in point counting on hyperelliptic curves of genus 2.

The 2-dimensional DLP also arises if one tries to analyse the security of ellip-
tic curve cryptography using the Gallant-Lambert-Vanstone (GLV) method [14].
In this method one has an efficiently computable group homomorphism ψ and
one computes nP for P ∈ E(Fq) and n ∈ N as n1P + n2ψ(P) where |n1|, |n2| ≈√
n. There is an algorithm to compute the pair (n1, n2) from n, but a natural

trick is to choose (n1, n2) directly. It is tempting to choose |n1| and |n2| to be a
little smaller than

√
n, and the extent to which this can be done without losing

security depends on the difficulty of the 2-dimensional DLP. Gaudry and Schost
do not give a precise figure for the running time of this algorithm but we have
the following heuristic under the usual assumptions (see [9] for further details of
this result and an improvement of the constant from 2.43 to 2.36).

Heuristic 3 The Gaudry and Schost [16] algorithm solves the 2-dimensional
DLP in as above in 2.43(1 + ε)

√
N + 1/θ group operations for small ε > 0.

B.1 Solving Using Equivalence Classes

In groups with efficiently computable inverse (such as the groups of interest to
Gaudry and Schost and the GLV method) one can consider equivalence classes
as we did in the 1-dimensional case. To be precise, let

T = {{(a, b), (−a,−b)} : a, b ∈ Z , −N1 ≤ a ≤ N1,−N2 ≤ b ≤ N2}

be the set of equivalence classes of points in a box of area 4N1N2 centered at 0.
Note that T contains N = (2N1 + 1)(2N2 + 1) integer points but, as throughout
this paper, we approximate the number of integer points in a region by its area.
For (n1, n2) such that −Ni ≤ ni ≤ Ni (i ∈ {1, 2}) we consider the set

W =

{(n1 + a, n2 + b), (−(n1 + a),−(n2 + b))} :
a, b ∈ Z,

−N1/2 ≤ a ≤ N1/2,
−N2/2 ≤ b ≤ N2/2

 .

Note that |W | = 1
4 |T |.

To analyse the algorithm again requires visualising the sets via a ‘funda-
mental domain’. Since the map (a, b) 7→ (−a,−b) is rotation by 180 degrees, a
natural fundamental domain is the halfplane b ≥ −a. One therefore defines the
fundamental domain T̃ for T to be

T̃ = {(a, b) : −N1 ≤ a ≤ N1,−a ≤ b ≤ N2}.

Note that |T̃ | ≈ 2N1N2. A fundamental domain for W̃ which is contained in T̃
is relatively easy to define, but note that, as in Section 4, this can be a multi-set
and we can again be in the case of non-uniform sampling of W̃ .

Write n1 = xN1 and n2 = yN2 with −1 ≤ x, y ≤ 1. Due to the symmetry in
the algorithm we can restrict attention to the upper-right quadrant 0 ≤ x, y ≤ 1.
When 0 ≤ x < 1/2 and 0 ≤ y < 1/2 then the wild region is fully contained
in T , but it has equivalence classes which arise from two different choices for

(a, b). In other words, one has a region in W̃ of ‘double density’ of area A =
1
2N1N2(1−2x)(1−2y). The area of the ‘single density’ part of W̃ is N1N2−2A.

When x ≥ 1/2 or y ≥ 1/2 then the distribution on W̃ is uniform, but W̃ is
not usually contained in T̃ any more. In these cases one can verify that |T̃ ∩ W̃ |
satisfies

|T̃ ∩ W̃ | =

N1N2(3/2− x) if 1/2 ≤ x ≤ 1, 0 ≤ y ≤ 1/2,
N1N2(3/2− y) if 0 ≤ x ≤ 1/2, 1/2 ≤ y ≤ 1,
N1N2(3/2− x)(3/2− y) if 1/2 ≤ x ≤ 1, 1/2 ≤ y ≤ 1.

Now perform the standard Gaudry-Schost algorithm on equivalence classes,
sampling equally from the tame and wild sets (not, sampling twice as often from
the tame set as the wild set, as was proposed in the conference version [10] of
this paper). The expected running time follows from the result of Galbraith and
Holmes.

Theorem 5. Let notation be as above. If elements are sampled uniformly at
random with replacement alternately from T̃ and W̃ and recorded, the expecta-
tion, over all problem instances, of the number of selections before a tame-wild
collision is 1.4776

√
N .

Proof. We have N = 4N1N2. We sample elements a ∈ T̃ uniformly with proba-
bility q1,a = 1/(2N1N2). We sample elements a ∈ W̃ uniformly with probability
q2,a = 1/(N1N2), except for the region of double density, which is sampled
with probability q2,a = 2/(N1N2), and probability 0 in T̃ − W̃ . The main re-
sult of [12] is that the expected number of trials before a collision occurs is√
π/(2AN) +O(N1/4) where, in this case,

AN = 2 1
2

1
2

∑
a∈eT

q1,aq2,a.

For 0 ≤ x, y ≤ 1/2 we compute that AN = 1/N (i.e., is independent of the size of
the region with double density just as was noted in Theorem 3). For 0 ≤ x ≤ 1/2
and 1/2 ≤ y ≤ 1 we find AN = (3/2 − y)/N and similarly for the other case.
Finally, when 1/2 ≤ x, y ≤ 1 we have AN = (3/2− x)(3/2− y)/N .

The expected running time in each case is, to leading order,
√
π/(2AN) =√

πN/2u(x, y) where u(x, y) is 1, (3/2−x)−1/2, (3/2−x)−1/2(3/2− y)−1/2 etc.
The average case expected running time is therefore the average over all these
values, which is √

πN/2
(

1
4 + 1

2Z + 1
2Z + Z2

)
where

Z =
∫ 1

1/2

(3/2− x)−1/2dx = 2−
√

2.

The result follows. ut

It has been shown (see Theorem 7 of [21]) that this result can be improved
by taking slightly smaller tame and wild sets. Experimental results which show
how closely one can get to the idealised theoretical analysis would be nice.

B.2 Larger Equivalence Classes in the GLV Method

We now assume that N1 = N2 and that the 2-dimensional DLP of interest is
Q = n1P + n2ψ(P) with |n1|, |n2| ≤ N1. Again write N = (2N1 + 1)(2N2 + 1).
Since one knows the logarithm of ψ(P) to the base P it is sufficient to compute
n1 and n2.

Frequently with the GLV method [14] the homomorphism ψ satisfies ψ2 =
−1. This happens, for example, with the standard curve y2 = x3 + Ax over Fp

with ψ(x, y) = (−x, iy). It also holds for the homomorphisms used by Galbraith,
Lin and Scott [8]. In this setting one can consider the equivalence classes

{Q,−Q,ψ(Q),−ψ(Q)}

of size 4. If Q = n1P + n2ψ(P) then these 4 points correspond to the pairs of
exponents

{(n1, n2), (−n1,−n2), (−n2, n1), (n2,−n1)}

and so action by ψ corresponds to rotation by 90 degrees.
It is natural to apply the Gaudry-Schost algorithm on these equivalence

classes. We take the sets T and W analogous to those in Section B.1. Find-
ing a suitable fundamental domain for the symmetry under rotation is not hard
(for example take {(x, y) : 0 ≤ x, 0 ≤ y}). One now finds that some regions of
the wild set can have quadruple density (as well as single and double density).
However, exactly as in Theorem 3, the expected number of group operations
over all these cases is the same.

The analysis has been completed in the thesis of Liu. Theorem 8 of [21] shows
that the basic algorithm (in the idealised formulation) requires approximately
1.044

√
N group operations. This result is improved in Theorem 9 of [21], by

taking a slightly smaller tame and wild sets. Again, it would be nice to have
experimental results to confirm this.

