
The Round Complexity of General VSS

Ashish Choudhury

Applied Statistics Unit

ISI Kolkata, India

partho 31@yahoo.co.in

Kaoru Kurosawa

Dept. of Computer and Information Sciences

Ibaraki University, Japan

kurosawa@mx.ibaraki.ac.jp

Arpita Patra

Dept. of Computer Science

Aarhus University, Denmark

arpitapatra10@gmail.com, arpita@cs.au.dk

Abstract

The round complexity of verifiable secret sharing (VSS) schemes has been studied extensively
for threshold adversaries. In particular, Fitzi et al. showed an efficient 3-round VSS for n ≥ 3t+1
[4], where an infinitely powerful adversary can corrupt t (or less) parties out of n parties. This
paper shows that for non-threshold adversaries,

1. Two round VSS is possible iff the underlying adversary structure satisfies Q4 condition;

2. Three round VSS is possible iff the underlying adversary structure satisfies Q3 condition.

Further as a special case of our three round protocol, we can obtain a more efficient 3-round
VSS than the VSS of Fitzi et al. for n = 3t+ 1. More precisely, the communication complexity
of the reconstruction phase is reduced from O(n3) to O(n2). We finally point out a flaw in the
reconstruction phase of VSS of Fitzi et al., and show how to fix it.

Keywords: Round Complexity, VSS, Non-threshold, Byzantine, Unbounded Computing Power.

1 Introduction

Verifiable Secret Sharing (VSS) [2, 1] is a two phase (sharing, reconstruction) protocol, carried out
among n parties and is used as a fundamental building block in many distributed cryptographic
protocols. VSS extends the notion of secret sharing [9] to the active corruption model. In VSS
protocols, an infinitely powerful malicious adversary can corrupt not only some subset of parties
but also the dealer, who shares the secret. Even then, a unique secret must be reconstructed in the
reconstruction phase no matter how malicious parties behave.

Round complexity is one of the important measures of any VSS protocol. Gennaro et al. [5]
studied the round complexity of VSS, where they defined the round complexity of a VSS protocol
as the number of communication rounds during sharing phase. In their model, the n parties are
pairwise connected by secure channels and a common broadcast channel is available, where the
broadcast channel allows any party to send some information identically to every party. The
adversary is characterized as a threshold adversary, who can corrupt any t parties. In such a model,
Gennaro et al. showed the following:

1. Two round VSS is possible iff n ≥ 4t+ 1;

2. Three round VSS is possible iff n ≥ 3t+ 1.

Their 3-round VSS for n ≥ 3t+ 1 is inefficient while their 2-round VSS for n ≥ 4t+ 1 is efficient.
A polynomial time 3-round VSS for n ≥ 3t+ 1 was given by Fitzi et al. [4]. Later on, Katz et al.
[7] improved the VSS of [4] in such a way that the broadcast channel is used only in one round
during the sharing phase, whereas it is used in two rounds in [4].

1

1.1 Motivation of Our Work

Modeling the adversary by a threshold helps in easy characterization of protocols and it also helps
in analyzing protocols. However, as mentioned in [6], modeling the (dis)trust in the network as a
threshold adversary is not always appropriate because threshold protocol requires more stringent
requirements than the reality. Let the set of n parties be denoted by P = {P1, . . . , Pn}. Then a
non-threshold general adversary A is characterized by an adversary structure Γ, which is a collection
of subsets of parties that the adversary A can potentially corrupt. That is,

Γ = {B ⊂ P | A can corrupt B}.

Moreover, we assume that if B ∈ Γ and if B′ ⊂ B, then B′ ∈ Γ. It is easy to see that a threshold
adversary is a special case of non-threshold adversary, such that |B| ≤ t, for each B ∈ Γ.

Definition 1 (Qk Condition [6]) We say that A satisfies Qk condition with respect to P, if there
exists no k sets in Γ, which adds upto the whole set P. That is:

∀B1, . . . , Bk ∈ Γ : B1 ∪ . . . ∪Bk 6= P.

Cramer et al. [3] showed a VSS for Q3 adversary structures by using a linear secret sharing scheme
(LSSS). The VSS of Cramer et al. [3] is efficient in the size of the underlying LSSS (see Sec. 2.2
for the definition of LSSS), but requires more than seven rounds. Maurer showed a four round VSS
for Q3 adversary structures [8]. However, its computation and communication cost is inefficient 1.

In threshold settings, any t + 1 honest parties can reconstruct not only the secret s but also
the randomness used by the dealer during the sharing phase. On the other hand, in non-threshold
settings, an access set of parties can reconstruct only s, but not the randomness of the dealer
in general. This is because the submatrix of the LSSS corresponding to an access set A is not
necessarily of full rank (see Section 2 and in general [3] for more details). Due to this reason, a
straight forward generalization of the techniques of [5, 4] will not work in non-threshold settings.
Indeed, Cramer et al. had to introduce a commitment transfer protocol and a commitment sharing
protocol to design their VSS for Q3 adversary structures [3].

Though there exist VSS protocols tolerating general adversary, to the best of our knowledge,
nothing is known in the literature regarding round complexity of VSS tolerating general adversary.
This motivates us to study the round complexity of general VSS.

1.2 Our Results

We strictly generalize the results of [5] to non-threshold adversary settings and show the following:

1. Two round VSS is possible iff A satisfies Q4 condition;

2. Three round VSS is possible iff A satisfies Q3 condition.

In our 2-round VSS, the communication cost is polynomial in the size of the underlying LSSS, and
the computation cost is polynomial in the size of Γ. In our 3-round VSS, both the communication
cost and the computation cost are polynomial in the size of the underlying LSSS.

Further as a special case of our 3-round protocol, we can obtain a more efficient 3-round VSS
than the VSS of Fitzi et al. for n = 3t+ 1. More precisely, the communication complexity of the
reconstruction phase is reduced from O(n3) to O(n2).

Fitzi et al. first designed a 3-round weak secret sharing (WSS) protocol. WSS is the same as
VSS except for that a unique secret or ⊥ must be reconstructed in the reconstruction phase (when
the dealer is corrupted). Then they constructed 3-round VSS by letting each party run the WSS
as a dealer in parallel. Typically, a party participates in the reconstruction phase of his own WSS

1We can see that its round complexity can be reduced to three by using the technique from [5] for making pairwise
consistency checks. Still it is very inefficient.

2

as like any other party and does not play any special role. On the other hand for constructing
our VSS protocol, we first design a 3-round weak commitment scheme (WCS), and then replace
the WSS with our WCS. An important difference now is that each party plays special role in the
reconstruction phase of his own WCS. It turns out that it is easier to construct a WCS than the
WSS, and the efficiency is improved. Our WCS is also conceptually much simpler.

To design our 2-round VSS protocol, we generalize the techniques used in [5]. Notice that a
straight forward generalization will not work, as the protocol of [5] uses the properties of Reed-
Solomon codes. To deal with this problem, we introduce the notion of A-clique.

We finally point out a flaw in the reconstruction phase of VSS of Fitzi et al., and show how to
fix it.

2 Preliminaries

2.1 Secret Sharing Scheme

In a secret sharing scheme, a dealer D ∈ P distributes a secret s ∈ F, where F is a finite field,
to the parties in P in such a way that some subsets of the participants (called as access sets)
can reconstruct s from their shares, while the other subsets of the participants (called forbidden
sets) have no information about s from their shares. The family of access sets is called an access
structure. Moreover, we assume that access structure is monotone, which is defined as follows:

Definition 2 An access structure Σ is monotone if A ∈ Σ and A′ ⊇ A, then A′ ∈ Σ.

Corresponding to the access structure Σ, we have the adversary structure Γ = Σc, where c denotes
the complement. The sets in Γ are called as forbidden sets. There exists a computationally un-
bounded adversary A, who can control any set in Γ. However, it is assumed D will not be under
the control of A and every party under the control of A will follow the protocol instruction.

2.2 Linear Secret Sharing Scheme (LSSS) [3]

A secret sharing scheme for any monotone access structure Σ can be realized by a linear secret
sharing scheme (LSSS) [3] as follows: Let M be an ℓ × e matrix over F and ψ : {1, · · · , ℓ} →
{1, · · · , n} be a labeling function, where ℓ ≥ e and ℓ ≥ n.

Sharing algorithm:

1. To share a secret s ∈ F, D first chooses a random vector ~ρ ∈ F
e−1 and compute a vector

~v = (v1, · · · , vℓ)
T = M·

(

s

~ρ

)

. (1)

2. Let
LSSS(s, ~ρ) = (share1, · · · , sharen), (2)

where sharei = {vj | ψ(j) = i}. The dealer gives sharei to Pi as a share for i = 1, · · · , n.

Reconstruction algorithm: A set of parties A ∈ Σ can reconstruct the secret s if and only if
(1, 0, · · · , 0) is in the linear span of

MA = {Vj | ψ(j) ∈ A},

where Vj denotes the jth row of M. If this is indeed the case then there exists a vector ~αA

called recombination vector, such that ~αA · MA = (1, 0, . . . , 0). Let ~sA denote the set of shares
corresponding to the parties in A. Then the parties in A can reconstruct s by computing s =
〈~αA, ~s

T
A〉, where 〈x, y〉 denotes dot product of x and y.

3

Definition 3 (Monotone Span Programme (MSP) [3]) We say that the above (M, ψ) is a
monotone span program which realizes Σ. The size of the MSP is the number of rows ℓ in M.

Theorem 1 ([3]) The above algorithm constitutes a valid secret sharing scheme.

Notice that there may be more than one row of M assigned to party Pi. However, as assumed in
[3], for the ease of presentation, we assume that each Pi is assigned exactly one row in M, namely
Vi. This is without loss of generality. Finally we use the following notation throughout our paper.

Notation 1 Let X be any subset of P i.e X ⊆ P. Then MX denotes the matrix containing the
rows of M corresponding to the parties in X . For example, if X = {P1, . . . , Pt}, then

MX =







V1

...
Vt






.

2.3 Verifiable Secret Sharing (VSS)

In the definition of secret sharing, we assumed that D 6∈ A and the parties under the control of
A honestly follows the protocol. A VSS scheme relaxes these assumptions. In a VSS protocol,
D ∈ P, holds a secret s ∈ F. The protocol consists of a sharing phase and a reconstruction phase.
During the protocol, a computationally unbounded adversary A can select any set B ∈ Γ (possibly
including D) for corruption. Moreover, the corrupted parties can behave in any arbitrary manner.
Now we call the protocol as a VSS protocol if it satisfies the following conditions:

1. Secrecy: If D is honest, then A will obtain no information about s during sharing phase.

2. Correctness: If D is honest, then the honest parties will output s at the end of the recon-
struction phase, irrespective of the behavior of corrupted parties.

3. Strong Commitment: If D is corrupted, then at the end of the sharing phase there is a
value s⋆ ∈ F, such that at the end of the reconstruction phase all honest parties will output
s⋆, irrespective of the behavior of the corrupted parties.

3 Two Round VSS Tolerating Q4 Adversary Structure

Let A be a non-threshold adversary, characterized by an adversary structure Γ, such that A satisfies
Q4 condition. Before presenting our protocol, we give the following definition:

Definition 4 (A-clique) Let G = (V,E) be an undirected graph, where V = P and let C be a
clique in G. Moreover, let VC denote the vertices belonging to C. Then we say that C is an A-clique
in G if V \ VC ∈ Γ. That is, the set B = V \ VC belongs to the adversary structure.

Algorithm for Finding A-clique: The algorithm is similar to linear search. We consider every
B ∈ Γ one by one and check whether the parties in P \ B form a clique in G, which requires
polynomial computation. The algorithm will stop either when all the sets in Γ are scanned and no
A-clique is found in G or when the first B ∈ Γ is found, such that the set of vertices in P \B forms
a clique in G. The algorithm requires a computation, which is polynomial in the size of Γ.

Our two round VSS protocol is now presented in Fig. 1. We now proceed to prove the properties
of the protocol. In the proof, we will use the following notations:

• Let ShHo (resp. ShB) denote the set of honest (resp. corrupted) parties in Sh at the end of
sharing phase when sharing phase is successful.

• Let ReHo (resp. ReB) denote the set of honest (resp. corrupted) parties in Rec.

4

Claim 1 An honest D will never be discarded during sharing phase.

Proof: For proof, see APPENDIX A. 2

Claim 2 If the sharing phase succeeds, then ShHo is an access set. Moreover, for each Pi, Pj ∈
ShHo, where i < j, 〈ui,Vj〉 = 〈uj ,Vi〉.

Proof: It is easy to see that ShHo ∪ ShB ∪ Sh-Del = P. If the sharing phase succeeds, then
Sh-Del ∈ Γ. Also ShB ∈ Γ. Now if ShHo ∈ Γ, then it implies that A does not satisfy Q3 (and
hence Q4) condition, which is a contradiction. The second part of the claim follows from the fact
if Pi, Pj ∈ ShHo, then aij = aji and both Pi and Pj would have honestly used rij. 2

Claim 3 Without loss of generality, let ShHo = {P1, . . . , Pt}. If the sharing phase succeeds, then
there exists a vector ~x = (s⋆, ~ρ), for some ~ρ, such that

(s1, . . . , st)
T = MShHo · ~x

T .

In other words, the shares of the parties in ShHo will be valid shares of s⋆, such that D will be
committed to s⋆. Moreover, if D is honest then s⋆ = s.

Figure 1: Two Round VSS for Sharing Secret s Tolerating A

Sharing Phase

Round I:

1. D selects a random, symmetric e × e matrix R, such that R[1, 1] = s.

2. D computes ui = Vi · R and sends ui to Pi. The first entry of ui, denoted by si, is referred as ith share of
s, given to Pi. Moreover, 〈ui,Vj〉, for j = 1, . . . , n, is referred as jth share-share of si, denoted by sij .

3. For i = 1, . . . , n − 1, party Pi selects a random rij for every Pj , where j > i and privately sends rij to Pj .

Round II:

1. For i = 1, . . . , n, party Pi broadcasts the following, for each j 6= i:

• aij = rij + 〈ui,Vj〉 = rij + sij , if j > i;

• aij = rji + 〈ui,Vj〉 = rji + sij , if j < i;

Local Computation (By Each Party):

1. Construct an undirected graph GSh over the set of parties P , where there exists an edge (Pi, Pj), for j > i,
if aij = aji. Notice that all honest parties will construct the same GSh.

2. Check if there exists an A-clique in GSh. If not, then the sharing phase fails and D is discardeda.

3. If there is an A-clique in GSh, then sharing phase succeeds. Let Sh denote the parties in A-clique and let
Sh-Del = P \ Sh. Notice that all honest parties will find the same A-clique and hence the same Sh.

Reconstruction Phase

Round I:

1. Each party Pi ∈ Sh broadcasts u received from D during sharing phase. Let it be denoted by ui.

Local Computation (By Each Party):

1. Construct an undirected graph GRec over the set of parties in Sh, where there exists an edge (Pi, Pj), for
j > i, if both Pi, Pj ∈ Sh and 〈ui,Vj〉 = 〈uj ,Vi〉.

2. Find A-clique (which is bound to exist) in GRec. Let Rec denote the parties in A-clique and let Rec-Del =
Sh \ Rec. Notice that all honest parties will find the same A-clique and hence the set Rec.

3. Without loss of generality, let P1, . . . , P|Rec| be the parties in Rec and let s1, . . . , s|Rec| be the shares (the
first entry of ui’s) revealed by these parties. Then reconstruct s by applying reconstruction algorithm of
the LSSS to the shares s1, . . . , s|Rec| and terminate.

a Following the convention of [5, 4, 7], if D is discarded during the sharing phase, then some
pre-defined value from F is taken as D’s secret.

5

Proof: From Claim 2, if the sharing phase succeeds, then for each Pi, Pj ∈ ShHo, we have sij = sji.
Let SShHo = {sij} be the t× t symmetric matrix. Then SShHo can be expressed as

SShHo = MShHo · UShHo = UT
ShHo · M

T
HaHo,

where UShHo = [~u1
T , . . . , ~ut

T]. From Claim 2, ShHo is an access set. Therefore, there exists a
recombination vector ~αShHo, such that

~αShHo · MShHo = (1, 0, . . . , 0).

Hence,

~αShHo · SShHo = ~αShHo ·MShHo · UShHo = (1, 0, . . . , 0) · UShHo = (s1, . . . , st).

On the other hand,

~αShHo · SShHo = ~αShHo · U
T
ShHo · M

T
ShHo = ~x · MT

ShHo,

where ~x = ~αShHo · U
T
ShHo. Therefore, (s1, . . . , st) = ~x · MT

ShHo = MShHo · ~x
T .

It is easy to see that if D is honest then s⋆ = s. Because, in this case, ~x = ~αShHo · U
T
ShHo =

~αShHo · MShHo ·R = (1, 0, . . . , 0) · R, which is nothing but the first row of R. 2

Claim 4 If sharing phase succeeds, then an A-clique will always be present in GRec.

Proof: For proof, see APPENDIX A. 2

Claim 5 If the sharing phase succeeds, then ReHo will be an access set. Moreover, the shares of
the parties in ReHo will define the same secret s⋆, as committed by D to the parties in ShHo during
the sharing phase.

Proof: Notice that ReHo ∪ ReB ∪ Rec-Del ∪ Sh-Del = P. Now we know that Sh-Del,Rec-Del ∈ Γ.
Also ReB ∈ Γ. Now if ReHo ∈ Γ, then it implies that A does not satisfy Q4 condition, which is a
contradiction. The second part of the lemma follows from the fact that ReHo ⊆ ShHo. 2

Claim 6 During reconstruction phase, every Pi ∈ Rec will correctly disclose si, the ith share of
secret s⋆, which is committed by D during sharing phase to the parties in ShHo.

Proof (sketch): The claim holds trivially when Pi ∈ Rec is honest. Now consider a corrupted
Pi ∈ Rec. Notice that ui revealed by Pi during reconstruction phase is pair-wise consistent with
every Pj ∈ ReHo. That is sij = sji for every Pj ∈ ReHo. Moreover, the shares of the parties in
ReHo uniquely define D’s committed secret s⋆. Furthermore, sji’s corresponding to Pj ∈ ReHo

uniquely define si, the ith share of s⋆, as ReHo is an access set. All these facts together imply that
ui1, the first entry of ui is nothing but si. For details, see APPENDIX A. 2

Theorem 2 The protocol in Fig. 1 is a two round VSS scheme tolerating A, satisfying Q4 con-
dition. The communication cost is polynomial in the size of M, and the computation cost is
polynomial in the size of Γ.

Proof: The complete proof is moved to APPENDIX A due to space constraints. 2

4 Three Round VSS Tolerating Q3 Adversary Structure

We first design a three round weak commitment scheme (WCS) protocol.

6

4.1 Three Round Weak Commitment Scheme Tolerating Q3 Adversary

In a weak commitment scheme (WCS), there exists a dealer D ∈ P, who has a secret s ∈ F, which
he wants to commit to the parties in P. The scheme consists of two phases as follows:

1. Commit phase:

• Initially, D has a secret s. At the end of commit phase, either D is discarded (by all
honest parties) or s is committed.

2. Decommit phase: Suppose that D is not discarded during commit phase. Then:

• D broadcasts (s, ρ), where ρ is the randomness used by D during commit phase.

• Each Pi broadcasts its view wi of the commit phase.

• Then a validity check function Valid is applied which outputs either valid or invalid.

We say that s is accepted as authentic if

Valid(s, ρ, w1, · · · , wn) = valid.

A protocol is a WCS scheme tolerating A if the following conditions are satisfied:

1. Secrecy: If D is honest, then A obtains no information about s during commit phase.

2. Correctness: If D is honest then s will be accepted as authentic during decommit phase.

3. Weak Commitment: If D is corrupted and not discarded during commit phase, then there
exists an s⋆ ∈ F, such that D is committed to s⋆ during commit phase. Moreover, if some s′

is accepted as authentic during decommit phase, then s′ = s⋆.

We define the round complexity of a WCS scheme as the number of communication rounds during
commit phase. We now present our three round WCS tolerating A, which is given in Fig. 2.
We now show that the scheme presented in Fig. 2 is a valid WCS scheme, tolerating A, provided
A satisfies Q3 condition. In the proofs, we use the following notations:

• Let HaHo (resp. HaB) denote the set of happy and honest (resp. happy and corrupted)
parties at the end of commit phase if commit phase is successful.

• Let WCoHo (resp. WCoB) denote the set of honest (resp. corrupted) parties in WCORE if
decommit phase is successful.

Claim 7 If D is honest, then D will not be discarded during commit phase. Moreover, s will be
accepted as authentic during decommit phase.

Proof (sketch): The proof follows from the fact that if D is honest then UnHappy ∈ Γ and
P \WCORE ∈ Γ. For details, see APPENDIX B. 2

Claim 8 If the commit phase succeeds, then HaHo is an access set. Moreover, for each Pi, Pj ∈
HaHo, where i < j, 〈ui,Vj〉 = 〈uj ,Vi〉.

Proof: It is easy to see that HaHo ∪ HaB ∪ UnHappy = P. If the commit phase succeeds, then
UnHappy ∈ Γ. Also HaB ∈ Γ. This implies that HaHo 6∈ Γ, otherwise A does not satisfy Q3

condition, which is a contradiction. The second part follows from arguments as used in Claim 2.2

Claim 9 Without loss of generality, let HaHo = {P1, . . . , Pt}. If the commit phase succeeds, then
there exists a vector ~x⋆ = (s⋆, ρ), such that

(s1, . . . , st)
T = MHaHo · ~x⋆

T
.

In other words, D will commit the secret s⋆ to the parties in HaHo. Moreover, if D is honest then
~x⋆ = ~x, where ~x is the first column of R used by D during sharing phase and hence s⋆ = s.

7

Figure 2: Three Round WCS for Committing Secret s Tolerating A

Commit Phase

Round I:

1. D selects a random, symmetric e × e matrix R, such that R[1, 1] = s. Let ~x = (s, ~ρ) be the first column
(and row) of R.

2. D computes ui = Vi ·R and privately sends ui to party Pi. The first entry of ui, denoted by si, is referred
as share of s, given to party Pi. Moreover, 〈ui,Vj〉 is referred as jth share-share of si, denoted by sij .

3. Party Pi, for i = 1, . . . , n − 1, selects a random pad rij , for each j > i and privately sends rij to party Pj .

Round II:

1. For i = 1, . . . , n, party Pi broadcasts the following, for each j 6= i:

• aij = rij + 〈ui,Vj〉 = rij + sij , if j > i;

• aij = rji + 〈ui,Vj , 〉 = rji + sij , if j < i;

Round III:

1. For each pair (i, j), such that j > i, if aij 6= aji, then

• Pi broadcasts αij = 〈ui,Vj〉;

• Pj broadcasts βji = 〈uj , Vi〉;

• D broadcasts γij = 〈ui,Vj〉 = 〈uj ,Vi〉.

A party is said to be unhappy, if the value broadcasted by him, mismatches the value broadcasted by D.

Local Computation (By Each Party):

1. Let UnHappy be the set of unhappy parties. If UnHappy ∈ Γ, then the commit phase succeeds. Otherwise,
commit phase fails and D is discarded.

Decommit Phase

Round I:

1. D broadcasts the first row of R used by him during the sharing phase. Let it be denoted by ~x′ and let s′

be the first entry of ~x′.

2. Each happy party Pi broadcasts the share received by him from D during the sharing phase. Let it be
denoted by s′i.

Local Computation (By Each Party):

1. Let WCORE be the set of all such happy Pi’s, such that ~x′ ·VT
i = s′i. In other words, a happy Pi is added

to WCORE if s′i broadcasted by Pi is a valid share of s′ according to the LSSS.

2. If P \ WCORE ∈ Γ, then decommit succeeds. In this case, accept s′ as authentic and terminate.

3. If P \ WCORE 6∈ Γ, then decommit fails. In this case s′ is not accepted as authentic.

Proof: The proof follows using same arguments as used in Claim 3. 2

Claim 10 If the decommit phase succeeds, then WCoHo is an access set. Moreover, for each
Pi, Pj ∈ WCoHo, we have 〈ui,Vj〉 = 〈uj ,Vi〉. Furthermore, the shares of the parties in WCoHo

define the same secret as defined by shares of the parties in HaHo.

Proof: Notice that WCoHo ∪ WCoB ∪ (P \WCORE) = P. If decommit phase succeeds, then
P \WCORE ∈ Γ. Also, WCoB ∈ Γ. This implies that WCoHo 6∈ Γ, otherwise A does not satisfy
Q3 condition. The second and third part follows from Claim 8 and fact that WCoHo ⊆ HaHo. 2

Theorem 3 The protocol in Fig. 2 is a three round WCS tolerating A. In the protocol, the honest
parties perform computation and communication which is polynomial in the size of Γ and M.

Proof: Due to space constraints, the proof is given in APPENDIX B. 2

4.2 Three Round VSS Tolerating Q3 Adversary Structure

Now we design our three round VSS (given in Fig. 3) using our three round WCS as a black-box.
We now prove the properties of the VSS protocol. For the proof, we use the following notations:

8

• Let ShHo (resp. ShB) denote the set of honest (resp. corrupted) parties in Sh at the end of
sharing phase when the sharing phase is successful.

• Let ReHo (resp. ReB) denote the set of honest (resp. corrupted) parties in Rec.

Claim 11 If D is honest then the sharing phase will always succeed.

Proof: Easy. For details, see APPENDIX C. 2

Claim 12 If the sharing phase succeeds, then ShHo is an access set. Moreover, for each Pi, Pj ∈
ShHo, 〈ui,Vj〉 = 〈uj ,Vi〉.

Proof: Follows using similar arguments as used in Claim 8. 2

Claim 13 Without loss of generality, let ShHo = {P1, . . . , Pt}. If the sharing phase succeeds, then
there exists a vector ~x = (s⋆, ρ), such that

(s1, . . . , st)
T = MShHo.~x

T .

In other words, D will commit the secret s⋆ to the parties in ShHo during the sharing phase.
Moreover, if D is honest then s⋆ = s.

Proof: Follows using similar arguments as in Claim 9. 2

Claim 14 If the sharing phase succeeds then ShHo = ReHo.

Proof: The proof is given in APPENDIX C due to space constraints. 2

Claim 15 For every Pi ∈ Rec, si computed during reconstruction phase, is same as the ith share
of secret s⋆, which is defined by the shares of the parties in ShHo (and hence ReHo).

Proof: From Claim 13 and Claim 14, the shares of the parties in ShHo = ReHo will define a
unique secret s⋆, which is D’s committed secret. Now we have the following two cases:

1. Pi ∈ Rec is honest: In this case, the claim holds trivially.

2. Pi ∈ Rec is corrupted: Since Pi ∈ Rec, it implies that decommit phase of WCSi is successful
and hence ri which was committed by Pi during commit phase is accepted as authentic.
Now Pi ∈ Rec also implies that P \ (Sh ∩ Hai) ∈ Γ. Now let CoHi be the set of common
honest parties in (Sh ∩ Hai). It is easy to see that CoHi is an access set, otherwise A will
not satisfy Q3 condition, which is a contradiction. Now CoHi ⊆ ShHo = ReHo. Also,
CoHi ⊆ WCOREi ⊆ Hai. Thus, ri

j revealed by every Pj ∈ CoHi during decommit phase of

WCSi is the correct share of ri, as given by Pi to Pj during commit phase of WCSi. Thus,
the computed sij, corresponding to every Pj ∈ CoHi is equal to sji. This is because there can
be either one of the following two possibilities:

(a) Both Pi and Pj are happy during sharing phase, but aij 6= bji. In this case, sij = γij =
βji = sji;

(b) Both Pi and Pj are happy during sharing phase and aij = bji. In this case, sij =
aij − ri

j = bji − ri
j = sji

Now the shares of the parties in CoHi define the same secret s⋆. This is because, as discussed
above, the access set CoHi ⊆ ReHo. Since CoHi is an access set, from the properties of MSP,
it follows that sji’s corresponding to P ′

js ∈ CoHi uniquely define si, the ith share of the
committed secret s⋆ (this can be shown using same arguments as used in Claim 6).

On the other hand, Pi ∈ Rec also implies that ui revealed by Pi is consistent with all sij = sji’s
of Pj ∈ CoHi. This further implies that ui1 is same as si because CoHi is an access set (again
this can be shown using same arguments as used in Claim 6). 2

9

Theorem 4 The protocol in Fig. 3 is a three round VSS tolerating non-threshold adversary A
characterized by adversary structure Γ, where A satisfies Q3 condition. In the protocol, the honest
parties perform computation and communication which is polynomial in the size of M.

Proof: The proof is given in APPENDIX C due to space constraints. 2

Figure 3: Three Round VSS for Sharing Secret s Tolerating A

Sharing Phase

Round I:

1. D performs the first two steps as in the commit phase of three round WCS.

2. Each party Pi selects a random value ri and starts executing an instance of three round WCS protocol to
commit ri, as a dealer. We denote the ith instance of WCS as WCSi. Let ri

1, . . . , r
i
n denote the shares of

ri generated in WCSi, such that Pi has given ri
j to Pj during Round I of WCSi.

Round II:

1. For i = 1, . . . , n, party Pi broadcasts the following, for each j 6= i: aij = ri
j + 〈ui,Vj〉 = ri

j + sij ; and

bij = r
j
i + 〈ui,Vj〉 = r

j
i + sij .

2. Concurrently, Round II of WCSi is executed, for i = 1, . . . , n.

Round III:

1. For each pair (i, j), such that aij 6= bji, parties do the following:

• Pi broadcasts αij = 〈ui,Vj〉;

• Pj broadcasts βji = 〈uj , Vi〉;

• D broadcasts γij = 〈ui,Vj〉 = 〈uj ,Vi〉.

A party is said to be unhappy, if the value broadcasted by him, mismatches the value broadcasted by D.

2. Concurrently, Round III of WCSi is executed, for i = 1, . . . , n.

Local Computation (By Each Party):

1. Let Sh be the set of happy parties such that their instance of the commit phase of WCS as a dealer is
successful. Let Hai denote the set of happy parties in the sharing phase of WCSi for Pi ∈ Sh.

2. Continue to keep a party Pi in Sh if P \ (Sh ∩ Hai) ∈ Γ. Otherwise remove Pi from Sh.

3. Repeat the previous step, till no more parties can be removed from Sh. Now if P \Sh ∈ Γ, then the sharing

phase succeeds. Otherwise, it fails and D is discarded.

Reconstruction Phase

Round I:

1. For each Pi ∈ Sh, run the decommit phase of WCSi.

2. Every Pi ∈ Sh broadcasts the vector obtained from D during Round I of the sharing phase. Let it be
denoted by ui.

Local Computation (By Each Party):

1. Let Rec be the set of parties Pi from Sh, such that both the following hold:

• The decommit phase of WCSi is successful, with output say ri being accepted as authentic. Let
WCOREi denote the set WCORE, corresponding to WCSi and let ri

j be the share of ri, as disclosed
by Pj ∈ WCOREi during the decommit phase of WCSi.

• Compute sij for every Pj ∈ WCOREi as follows:

(a) sij = γij ; if γij was broadcasted by D during Round III of the sharing phase.

(b) sij = aij − ri
j ; if γij was not broadcasted by D during Round III of the sharing phase. Here

aij was broadcasted by Pi during sharing phase.

Now the set of computed sij ’s corresponding to each Pj ∈ WCOREi must be consistent with ui

broadcasted by Pi. Precisely sij = 〈ui, Vj〉 must hold good, for every Pj ∈ WCOREi.

2. For every Pi ∈ Rec, assign si = ui1, where ui1 is the first entry of ui.

3. Apply reconstruction algorithm of LSSS to si’s corresponding to Pi’s in Rec, compute s and terminate.

10

5 Lower Bounds

Theorem 5 Two round perfectly secure VSS is possible iff A satisfies Q4 condition.

Proof: Sufficiency follows from Fig. 1. We now prove the necessity. On the contrary, assume that
a two round VSS protocol, say Π, is possible even though A does not satisfy Q4. This implies that
there exists B1, B2, B3 and B4, such that B1∪B2∪B3∪B4 = P. Now consider protocol Π′, involving
parties p1, p2, p3 and p4, where party pi performs the same computation and communication, as
done by the parties in Bi in Π, for i = 1, . . . , 4. It is easy to see that if Π is a two round VSS
protocol, then Π′s is also a two round VSS protocol involving four parties, out of which at most
one can be corrupted. However, from [5], Π′ does not exist. So Π also does not exist. 2

Theorem 6 Any r-round (r ≥ 3) VSS protocol is possible iff A satisfies Q3 condition.

Proof: Follows using similar arguments as used in Theorem 5 and by the result of [5]. 2

6 Flaw in the Reconstruction Phase of VSS of [4]

In [4], the authors presented a three round VSS tolerating a threshold adversary At with n = 3t+1,
using a three round WSS protocol as a black-box. However, we now show that there is a flaw in
the reconstruction phase of their VSS. Moreover, we also show the modifications to eliminate this
flaw. We start with a brief discussion on the WSS and VSS of [4]. Here we use slightly different
notations and steps, that were not there in [4]. However, the current discussion will be valid even
with the original notations and steps of [4]. The sharing phase of WSS of [4] is a special case of the
commit phase of our WCS. Precisely the matrix M here is an n × (t + 1) Vandermonde matrix,
whose ith row is [i0, i1, . . . , it] and R is the coefficient matrix of a random symmetric bi-variate
polynomial F (x, y) of degree-t in x, y, where F (0, 0) = s. The result of the computation in the
WSS of [4] can be viewed as follows (though this view was not presented in [4], the essence is same):
if D is not discarded during sharing phase, then there exists a degree-t univariate polynomial, say
f(x), such that D has WSS-shared f(x) and each happy and honest party Pi has received f(i) from
D. Moreover, if D is honest then D will not be discarded and f(x) = f0(x) = F (x, 0) and hence
f(0) = s. Now during reconstruction phase, either f(x) (and hence f(0) = s) or NULL will be
reconstructed. Moreover, if f(x) is reconstructed then it is reconstructed with the shares revealed
by a set of parties WCORE, such that WCORE is a subset of happy parties and there exists at least
t+ 1 honest parties in WCORE.

Now the VSS protocol of [4] works as follows: During the sharing phase, D selects a random
symmetric bi-variate polynomial F (x, y) of degree-t in x, y, where F (0, 0) = s and gives each Pi,
the degree-t polynomial fi(x) = F (x, i). Then the parties perform pair-wise checking to check the
consistency of their common values. To do this, each party Pi acts as a dealer and WSS-shares a
degree-t polynomial fW

i (x) and gives each Pj the share fW
i (j). Now to do the consistency checking,

each Pi broadcasts aij = fi(j) + fW
i (j) and bij = fi(j) + fW

j (i). Each inconsistency (i.e., aij 6= bji)
is resolved by D (by broadcasting fi(j)), as a result of which parties become happy/unhappy and
the computation proceeds. At the end of sharing phase, all honest parties agree on a set of at least
2t+ 1 happy parties, say CORESh, such that the following condition holds:

1. For each Pi, Pj ∈ CORESh, we have fi(j) = fj(i);

2. Each Pi ∈ CORESh as a dealer, has AWSS-shared a degree-t polynomial fW
i (x) to at least

2t+ 1 parties in CORESh.

Now notice that there is a subtle point here, which is the basis of the flaw in the reconstruction
phase of VSS protocol of [4]. Even though fi(j) = fj(i) is true for every Pi, Pj ∈ CORESh (as both
of them are happy), it does not imply that aij = bji is true for every Pi, Pj ∈ CORESh. Obviously,
if both Pi, Pj ∈ CORESh are honest, then aij = bji. However, if at least one of Pi, Pj ∈ CORESh

11

is corrupted, then it may happen that aij 6= bji, but still both Pi and Pj are happy and are present
in CORESh. More concretely, suppose Pi is corrupted, Pj and D are honest. Then during Round
II of sharing phase, Pi may broadcast aij that is not equal to bji. But during Round III, when D
tries to resolve the inconsistency, Pi may broadcast correct fi(j). That is D broadcasts γij = fi(j),
Pi broadcasts αij = fi(j) and Pj broadcasts βji = fj(i), such that γij = αij = βji. So both Pi and
Pj will be happy. Moreover Pi as a dealer can behave correctly during his instance of WSS to share
fW

i (x), such that Pi satisfies the second property stated above to be in CORESh.
We now recall the steps of the reconstruction phase of the VSS protocol of [4] in Fig. 4. In [4],

Figure 4: Reconstruction Phase of the VSS Protocol of [4]

For each Pi ∈ CORESh, run the reconstruction phase of WSSi (the instance of WSS initiated by Pi as a dealer).

Local Computation (By Each Party):

1. Initialize CORERec = CORESh.

2. Remove Pi from CORERec if reconstruction phase of WSSi outputs NULL.

3. If fW
i (x) is reconstructed during reconstruction phase of WSSi then compute fi(j) = aij − fW

i (j), for
j = 1, . . . , n. Check if the computed fi(j)’s lie on a unique degree-t polynomial. If not then remove Pi

from CORERec. Otherwise, let fi(x) be the degree-t polynomial.

4. Take fi(x)’s corresponding to any t+1 parties in CORERec, reconstruct F ⋆(x, y) and output s⋆ = F ⋆(0, 0).

the authors claimed that reconstructed fi(x)’s of any t + 1 parties in CORERec define the same
bivariate polynomial of degree-t in x and y (see Lemma 6 of [4]). However, we now show that this
is not the case. To be precise, consider a setting where D is honest and Pi is corrupted. During
Round I of sharing phase, Pi gets fi(x) = F (x, i). Then Pi as a dealer WSS-shares a degree-t
polynomial fW

i (x). During Round II, Pi broadcasts aij = f ′i(j)+fW
i (j), instead of fi(j)+fW

i (j),
corresponding to all Pj ’s, such that f ′i(x) 6= fi(x) is another degree-t polynomial. So aij 6= bji, for
all Pj ’s. But then during Round III, Pi behaves in such a way that Pi is considered as happy
along with all other Pj ’s (this he can do as discussed earlier). Pi also ensures that his WSS instance
satisfies the desired property so that Pi is included in CORESh.

Now during reconstruction phase of VSS, suppose the reconstruction phase of WSSi is suc-
cessful and hence the WSS-shared polynomial fW

i (x) is reconstructed correctly. But now when
the (honest) parties perform step 3 of the local computation (given in Fig. 4), they will get back
f ′i(j) = aij − fW

i (j), instead of original fi(j). Moreover, the computed f ′i(j)’s will lie on degree-t
polynomial f ′i(x) 6= fi(x) and Pi will be present in CORERec. But now notice that f ′i(x) 6= fi(x)
does not lie on the original bivariate polynomial F (x, y). This will further lead to the violation of
correctness property of VSS.

Elimination of the Flaw: From the above discussion, it is clear that the reason behind the above
flaw is that aij = bji may not hold for every Pi, Pj ∈ CORESh. To eliminate the above flaw, we
modify the step 3 of the local computation of Fig. 4 as follows:

3. If fW
i (x) is reconstructed during reconstruction phase of WSSi then compute fi(j)’s as follows:

• fi(j) = γij ; if γij was broadcasted by D during Round III of sharing phase.

• fi(j) = aij − fW
i (j); if aij = bji during sharing phase.

Check if the computed fi(j)’s lie on a unique degree-t polynomial. If not then remove Pi from
CORERec. Otherwise, let fi(x) be the degree-t polynomial.

Now it is easy to verify that with the above modification, Lemma 6 of [4] will hold.

12

7 More Efficient 3-round VSS for n ≥ 3t + 1

In the previous section, we pointed out a flaw in the 3-round VSS of Fitzi et al. [4], and presented
how to fix it. The communication complexity of the reconstruction phase of the proposed modified
protocol is O(n3). This results from the facts that there are n instances of WSS protocol in the
VSS and the communication cost of the reconstruction phase of WSS of [4] is O(n2).

On the other hand, if we restrict our three round VSS protocol given in Fig. 3 to threshold
adversary, then we get a three round VSS with n = 3t + 1 whose communication complexity of
reconstruction phase is O(n2). This results from the facts that in our VSS, WSS has been replaced
by WCS and the communication cost of the decommit phase of WCS is only O(n). If we compare
the definition of WCS and WSS (for formal definition of WSS, see [4]), then we find that in WSS,
the dealer D is not allowed to act/play a special role in the reconstruction phase. That is, D is
not allowed to reveal the secret and randomness used by him during the sharing phase. During
the reconstruction phase, every party reveal their entire view of sharing phase and a reconstruction
function is applied on them to reconstruct either the secret shared during sharing phase or NULL.
On the other hand, in WCS, D is allowed to act specially in the decommit phase. Precisely, he is
allowed to reveal the secret and randomness used by him during commit phase. As a result, the
decommit phase of our WCS is conceptually simpler than the reconstruction phase of WSS protocol
of [4] and we gain an efficiency of Θ(n) during reconstruction phase.

8 Conclusion

In this paper, we resolved the round complexity of VSS tolerating generalized adversary. Our
results strictly generalize the results of [4] to non-threshold settings. In our three round protocol,
we have not tried to optimize the use of broadcast channel. However, we conjecture that following
the techniques of [7], we can design a three round VSS tolerating Q3 adversary structure, which
uses broadcast channel in only one round during the sharing phase.

References

[1] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation (Extended Abstract). In Proceedings of the 20th An-
nual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages
1–10. ACM Press, 1988.

[2] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable Secret Sharing and Achieving
Simultaneity in the Presence of Faults (Extended Abstract). In Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA,
pages 383–395. ACM Press, 1985.

[3] R. Cramer, I. Damg̊ard, and U. M. Maurer. General Secure Multi-party Computation from any
Linear Secret Sharing Scheme. In B. Preneel, editor, Advances in Cryptology - EUROCRYPT
2000, International Conference on the Theory and Application of Cryptographic Techniques,
Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer
Science, pages 316–334. Springer Verlag, 2000.

[4] M. Fitzi, J. Garay, S. Gollakota, C. Pandu Rangan, and K. Srinathan. Round-Optimal and
Efficient Verifiable Secret Sharing. In S. Halevi and T. Rabin, editors, Theory of Cryptography,
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006,
Proceedings, volume 3876 of Lecture Notes in Computer Science, pages 329–342. Springer Verlag,
2006.

13

[5] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The Round Complexity of Verifiable Secret
Sharing and Secure Multicast. In Proceedings on 33rd Annual ACM Symposium on Theory of
Computing, July 6-8, 2001, Heraklion, Crete, Greece. ACM, pages 580–589. ACM Press, 2001.

[6] M. Hirt and U. M. Maurer. Complete Characterization of Adversaries Tolerable in Secure Multi-
Party Computation. In Proceedings of the Sixteenth Annual ACM Symposium on Principles of
Distributed Computing, Santa Barbara, California, USA, August 21-24, 1997, pages 25–34.
ACM Press, 1997.

[7] J. Katz, C. Koo, and R. Kumaresan. Improving the Round Complexity of VSS in Point-to-
Point Networks. In L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir,
and I. Walukiewicz, editors, Automata, Languages and Programming, 35th International Collo-
quium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic,
Semantics, and Theory of Programming & Track C: Security and Cryptography Foundations,
volume 5126 of Lecture Notes in Computer Science, pages 499–510. Springer Verlag, 2008.

[8] U. M. Maurer. Secure multi-party computation made simple. In S. Cimato, C. Galdi, and
G. Persiano, editors, Security in Communication Networks, Third International Conference,
SCN 2002, Amalfi, Italy, September 11-13, 2002. Revised Papers, volume 2576 of Lecture Notes
in Computer Science, pages 14–28. Springer, 2002.

[9] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

APPENDIX A: Proofs for Two Round VSS Protocol

Claim 1 An honest D will never be discarded during sharing phase.

Proof: If D is honest, then for each honest Pi, Pj , 〈ui,Vj〉 = 〈uj ,Vi〉 and hence aij = aji will
hold. So the set of honest parties will form an A-clique in GSh and D will not be discarded. 2

Claim 4 If the sharing phase succeeds, then during reconstruction phase, an A-clique will always
be present in GRec.

Proof: From Claim 2, ShHo is an access set and for each Pi, Pj ∈ ShHo, we have 〈ui,Vj〉 =
〈uj ,Vi〉. During reconstruction phase, each Pi, Pj ∈ ShHo will correctly broadcast ui = ui and
uj = uj respectively. So during reconstruction phase also, 〈ui,Vj〉 = 〈uj ,Vi〉 will hold. Thus ShHo

will always form an A-clique in GRec. 2

Claim 6 During reconstruction phase, every Pi ∈ Rec will correctly disclose si, the ith share of
secret s⋆, which is committed by D during sharing phase to the parties in ShHo.

Proof: We have to consider two cases, namely when Pi ∈ Rec is honest and when Pi ∈ Rec is
corrupted. The case when Pi ∈ Rec is honest is easy to prove. In this case, Pi ∈ ReHo and hence the
share si disclosed by Pi during reconstruction phase is the ith share of secret s⋆, which is committed
by D to the parties in ReHo (ShHo).

We now consider the case when Pi ∈ Rec is corrupted. Before proceeding further, notice that
Pi will have an edge with each of the parties in ReHo in graph GRec, since the set of parties in
Rec forms a clique. This further implies that ui disclosed by Pi satisfies 〈ui,Vj〉 = 〈uj,Vi〉, for
each Pj ∈ ReHo. That is, sij = sji, for each Pj ∈ ReHo. Also uj = uj, for each Pj ∈ ReHo. For
simplicity assume that ShHo and ReHo contains the first t and y parties respectively, where y ≤ t.
Now from Claim 3, we know that there exists ~x = (s⋆, ~ρ), such that

(s1, . . . , st)
T = MShHo · ~x

T

14

Now following the notations as used in Claim 3, we also have

(s1, . . . , sy)
T = MReHo · ~x

T

Now (s1, . . . , sy)
T = MReHo · ~x

T implies that ~x · MT
ReHo = ~αReHo · U

T
ReHo ·M

T
ReHo, since

MReHo · ~x
T = (s1, . . . , sy)

T

~x ·MT
ReHo = (s1, . . . , sy) (taking transpose on both sides)

= (1, 0, . . . , 0) · UReHo

= ~αReHo ·MReHo · UReHo

= ~αReHo · U
T
ReHo · M

T
ReHo

Here ~αReHo is the recombination vector corresponding to the access set ReHo and UReHo =
[~uT

1
, . . . , ~uT

y]. Now we will show that si = ui1, as revealed by corrupted Pi ∈ Rec is the ith share of

s⋆. That is, si = ~x · VT
i = Vi · ~x

T . Now notice that, ~αReHo · MReHo = (1, 0, . . . , 0). It is easy to
see that

~αReHo · [si1, . . . , siy]
T = ui1 (3)

Now we will show that following also is true:

~αReHo · [s1i, . . . , syi]
T = ~x · VT

i (4)

We start with the known equation:

SReHo = UT
ReHo · M

T
ReHo

Here SReHo = {sij : 1 ≤ i, j ≤ y} is the symmetric matrix. Now pre-multiplying both the sides of
above equation by ~αReHo, we get

~αReHo · SReHo = ~αReHo · U
T
ReHo ·M

T
ReHo

Now we know that ~αReHo ·U
T
ReHo ·M

T
ReHo = ~x ·MT

ReHo. So substituting in the above equation, we
get

~αReHo · SReHo = ~x · MT
ReHo

Both the sides of the above equation turns out to be some row vector of equal length. Now
concentrating on the value of the ith index of the row vectors in the above equation, we get

~αReHo · [s1i, . . . , syi]
T = ~x · VT

i

Now as discussed above, sij = sji, for j = 1, . . . , y. So left hand side of Eqn. 3 and Eqn. 4 are
same. This implies that si revealed by corrupted Pi ∈ Rec is the ith share of s⋆. 2

Theorem 2: The protocol given in Fig. 1 is a two round VSS scheme tolerating A, satisfying Q4

condition. The communication cost is polynomial in the size of M, and the computation cost is
polynomial in the size of Γ.

Proof: The round complexity is easy to analyze. Also, it is easy to see that every honest party
performs computation and communication which is polynomial in the size of Γ and M, respectively.
We now show that the protocol satisfies all the properties of VSS.

1. Secrecy: We have to only consider the case whenD is honest. Let the adversary corrupt some
B ∈ Γ. Then at the end of Round I of the sharing phase, adversary learns no information
about s from their shares, as B is a non-access set. Let i 6∈ B and j 6∈ B. Then at the end of
Round I of sharing phase, the adversary gains no information about rij . Hence at the end
of Round II, adversary gains no information about ui, as rij or rji works as the one-time
pad. Thus, at the end of sharing phase, s remains information theoretically secure (see [3]
for complete details).

15

2. Correctness: We have to consider the case when D is honest. If D is honest then the sharing
phase will succeed (see Claim 1). Now by Claim 3, the parties in ShHo is an access set and
defines s. Moreover, by Claim 6, correct share of s will be revealed by every Pi in Rec. These
facts guarantee that by applying reconstruction algorithm of the LSSS to the shares of the
parties in Rec, secret s will be reconstructed correctly.

3. Strong Commitment: We have to consider the case when D is corrupted. The proof is
very similar to the proof of correctness. By Claim 3, the parties in ShHo is an access set
and defines some secret s⋆, which is D’s committed secret. Moreover, from Claim 5, ReHo

is an access set where ReHo ⊆ ShHo and hence define the same secret s⋆. Furthermore, by
Claim 6, correct share of s⋆ will be revealed by every Pi in Rec. These facts guarantee that
by applying reconstruction algorithm of the LSSS to the shares of the parties in Rec, secret
s⋆ will be reconstructed correctly and uniquely.

APPENDIX B: Proofs for Three Round WCS Scheme

Claim 7 If D is honest, then D will not be discarded during commit phase. Moreover, s will be
accepted as authentic during decommit phase.

Proof: By easy inspection we note that the set UnHappy contains only corrupted parties, when
D is honest. This implies UnHappy ∈ Γ and therefore commit phase succeeds.

Now to show that s will be accepted as authentic during decommit phase, we prove that
P \ WCORE ∈ Γ during decommit phase. To begin with, an honest D will correctly broad-
cast ~x′ = ~x and each honest party Pi will correctly broadcast s′i = si. Thus, all honest parties
will be present in WCORE and hence P \WCORE will contain only corrupted parties. Hence
P \WCORE ∈ Γ. Thus decommit phase will also succeed and s will be accepted as authentic. 2

Theorem 3 The protocol given in Fig. 2 is a valid three round WCS scheme tolerating A, charac-
terized by adversary structure Γ, where A satisfies Q3 condition. In the protocol, the honest parties
perform computation and communication which is polynomial in the size of Γ and M.

Proof: The round complexity follows easily from inspection. Also, it is easy to see that in the
protocol, the honest parties perform computation and communication which is polynomial in the
size of Γ and M. We now show that the protocol satisfies the properties of WCS scheme.

1. Secrecy: Follows using similar arguments as used to prove the secrecy of two round VSS.

2. Correctness: Follows from Claim 7.

3. Weak Commitment: We have to consider the case when D is corrupted. If decommit phase
fails, then it satisfies weak commitment. On the other hand, if decommit succeeds and s′ is

accepted as authentic then it implies that for each Pi ∈ WCORE, ~x′ · VT
i = s′i = Vi · ~x′

T
,

where ~x′ = [s′, ρ′]. This will also be true for each party in WCoHo. Without loss of generality,
assume that the first y parties are present in WCoHo. The parties in WCoHo are honest
implies si = s′i for i = 1, . . . , y. Therefore we have

(s1, . . . , sy)
T = MWCoHo · ~x′

T

Also from Claim 9, we have

(s1, . . . , sy)
T = MWCoHo · ~x⋆T

.

The above two equations imply that

MWCoHo · (~x′
T
− ~x⋆T

) = MWCoHo · (s
′ − s⋆, ρ′ − ρ)T = (0, . . . , 0)T .

16

Now since WCoHo is an access set, there exists a recombination vector ~αWCoHo such that
~αWCoHo · MWCoHo = (1, 0 . . . , 0) i.e the target vector. Pre-multiplying both the sides of the
above equation by ~αWCoHo, we have

~αWCoHo · MWCoHo · (s
′ − s⋆, ρ′ − ρ)T = ~αWCoHo · (0, . . . , 0)

T (5)

(1, 0, . . . , 0) · (s′ − s⋆, ρ′ − ρ)T = 0

s′ − s⋆ = 0

Hence, the accepted secret s′ is the same secret s⋆, as committed by D to the parties in
WCoHo ⊆ HaHo during the commit phase. Thus, weak commitment holds in this case also.2

APPENDIX C: Proofs for Three Round VSS Scheme

Claim 11 If D is honest then the sharing phase will always succeed. Moreover, all honest parties
will be present in Sh.

Proof: To show that the sharing phase succeeds for an honest D, we prove that P \ Sh ∈ Γ. This
is proved by showing that an honest party can never be in P \ Sh and therefore P \ Sh contains
only a set of corrupted parties. First we note that each honest party Pi will be happy and their
instance of WCS will be successful and Hai will include all honest parties. Naturally, P \ (Sh∩Hai)
contains only corrupted parties and will belong to Γ. Thus, each honest party Pi will be present in
Sh. Equivalently, P \ Sh contains only a set of corrupted parties. 2

Claim 14 If the sharing phase succeeds then ShHo = ReHo.

Proof: During the reconstruction phase, every honest Pi ∈ Sh will correctly broadcast the vector
which it received from D during sharing phase. So we have ui = ui. Now from the correctness
property of WCS scheme, the decommit phase of WCSi, corresponding to the honest Pi will be
successful and ri will be accepted as authentic. So we have ri = ri and also ri

j = ri
j for every

Pj ∈WCOREi. Hence the computed sij will be equal to sij = 〈ui,Vj〉. So the honest Pi ∈ Sh will
be present in Rec. Therefore the claim holds. 2

Theorem 4 The protocol given in Fig. 3 is a VSS scheme tolerating non-threshold adversary A
characterized by adversary structure Γ, where A satisfies Q3 condition. In the protocol, the honest
parties perform computation and communication which is polynomial in the size of Γ and M.

Proof: Round complexity can be verified by inspection. Also, it is easy to see that the honest
parties perform computation and communication which is polynomial in the size of Γ and M. We
now show that the protocol satisfies the properties of VSS.

1. Secrecy: We have to only consider the case whenD is honest. Let the adversary corrupt some
B ∈ Γ. Then at the end of Round I of the sharing phase, adversary learns no information
about s from their shares, as B is a non-access set. From the secrecy property of WCS,
the adversary will not get any information about ri’s, which are committed by honest Pi’s.
Hence, at the end of Round I of sharing phase, the adversary gains no information about
ri
j’s and r

j
i ’s, corresponding to Pi, Pj 6∈ B. Hence at the end of Round II, adversary gains

no information about ui and uj , as ri
j’s and rj

i ’s works as the one-time pad.

During Round III, if aij 6= bji or vice-versa, then Pi or Pj is corrupted (as D is honest).
Hence, the adversary already knows the share-share 〈ui,Vj〉 = 〈uj ,Vi〉. Thus, D’s broadcast
of γij during Round III adds no extra information about ui to adversary’s view. Thus, at
the end of sharing phase, s remains information theoretically secure.

17

2. Correctness: We have to consider the case when D is honest. If D is honest then the sharing
phase will succeed (see Claim 11). Now by Claim 13, the parties in ShHo is an access set and
defines s. Moreover, by Claim 15, correct share of s will be reconstructed for every Pi in Rec.
These facts guarantee that by applying reconstruction algorithm of the LSSS to the shares of
the parties in Rec, secret s will be reconstructed correctly.

3. Strong Commitment: We have to consider the case when D is corrupted. The proof is very
similar to the proof of correctness. By Claim 13, the parties in ShHo is a access set and defines
some secret s⋆, which is D’s committed secret. Moreover, from Claim 14, ShHo = RecHo.
Furthermore, by Claim 15, correct share of s∗ will be reconstructed for every Pi in Rec. These
facts guarantee that by applying reconstruction algorithm of the LSSS to the shares of the
parties in Rec, secret s⋆ will be reconstructed correctly and uniquely. 2

18

