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Abstract In EUROCRYPT 2009, Galbraith, Lin and Scott constructed an efficiently computable en-
domorphism for a large family of elliptic curves defined over finite fields of large characteristic. They
demonstrated that the endomorphism can be used to accelerate scalar multiplication in the elliptic curve
cryptosystem based on these curves. In this paper we extend the method to any genus 2 hyperelliptic
curve defined over a finite field of even characteristic. We propose an efficient algorithm to generate a
random genus 2 hyperelliptic curve and its quadratic twist equipped with a fast endomorphism on the
Jacobian. The analysis of the operation amount of the scalar multiplication is also given.
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1 Introduction

In recent years elliptic curve cryptosystem and hyperelliptic cryptosystem have been extensively stud-
ied and deployed in the real world. The Jacobians of hyperelliptic curves provide an interesting alternative
to elliptic curves for the design of discrete-log based cryptosystems due to a larger variety of the curves
and smaller size of the underlying field for the same security level comparing with elliptic curves. Similar
as in the elliptic curve cryptosystem, the most time-consuming operation in the hyperelliptic cryptosys-
tem is the scalar multiplication (or point multiplication) [k]D by a large integer k for a divisor D on
the Jacobian of a hyperelliptic curve. The most conventional way is the double-and-add method, which
requires in average l doubles and l/2 additions, where l is the length of binary representation of k. Many
methods have been proposed to accelerate scalar multiplication. An improvement was carried out by
Koblitz on certain characteristic 2 elliptic curves, now called the Koblitz curves [13] using the Frobenius
map. The method was generalized by Gunther et al. [8] to hyperelliptic curves. Gallant, Lambert and
Vanstone (GLV) [6] showed that certain efficiently computable endomorphisms ϕ can be used to accel-
erate scalar multiplication on certain elliptic curves with the decomposition [k]D = [k0]D + [k1]ϕ(D),
where k0, k1 are almost half size of k. Park et al. [19] extended the GLV method to the hyperelliptic
setting. The related arithmetic and algorithms have been studied thoroughly (cf. [14] and [22]).

However, GLV method is only applicable to very special elliptic curves (analyzed in Section 7 of [20]).
Iijima et al. [11] first considered an endomorphism via composition of the Frobenius map defined over
a quadratic twist curve of the underlying elliptic curve. Galbraith, Lin and Scott (GLS) [5] applied this
endomorphism to a large class of elliptic curves to achieve a fast scalar multiplication method. They
also noticed similar endomorphism can be constructed for genus 2 hyperelliptic curves defined over finite
fields of odd characteristic. Hankerson et al. [10] analyzed the chance for GLS curves to be vulnerable to
the generalized GHS Weil descent attack [7] is small.
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The goal of this paper is to extend the GLS construction to all genus two hyperelliptic curves defined
over finite fields of even characteristic. Furthermore we propose an efficient algorithm to implement it.

The rest of the paper is organized as follows. In Section 2, we briefly summarize some facts on the
Jacobians of hyperelliptic curves. In Section 3, we construct an efficiently computable endomorphism
on the Jacobian of the quadratic twist curve for each isomorphism class of genus 2 hyperelliptic curves
defined over finite fields of even characteristic. In Section 4, We propose an efficient algorithm to generate
a random genus 2 hyperelliptic curve and its quadratic twist equipped with a fast endomorphism on the
Jacobian using Vercauteren’s algorithm [25]. In Section 5 we show the speedup of the scalar multiplication
in the hyperelliptic system with our endomorphism. Section 6 discusses known attacks and explains how
to avoid them.

2 Preliminaries

In this section, we summary some basic definitions and facts that will be used in throughout this
paper. For an extensive display, the readers are referred to [16].

2.1 Hyperelliptic Curves

Let Fq be a finite field and fix an algebraic closure Fq of it. Throughout this paper we fix q = 2l

for some prime l. Suppose that we are given a genus g hyperelliptic curve C with one point at infinity
defined over Fq with an affine model

C : Y 2 +H(X)Y = F (X), (1)

where H(X), F (X) ∈ Fq[X], F (X) is monic, degF (X) = 2g + 1, degH(X) ≤ g. There are no singular
points on C(Fq), i.e., if (x, y) ∈ Fq × Fq is a solution of (1), then 2y +H(x) and H ′(x)y − F ′(x) do not
vanish simultaneously.

For a given integer n > 1 there is a unique degree n extension field of Fq in Fq, denoted by Fqn .
The curve C defined in (1) can also be regarded as a curve defined over Fqn . The set of Fqn -rational
points on C, denoted by C(Fqn), is the set of all points P = (x, y) ∈ Fqn × Fqn satisfying equation
(1) together with a special point at infinity (denoted by ∞). The set of points C(Fq) is simply denoted
by C. The points in C other than ∞ are called finite points. The canonical involution of C is defined by
P = (x, y) 7→ P̃ = (x,−y−H(x)). If P = ∞ then define P̃ = ∞. As there is no group law of the points in
a hyperelliptic curve, one uses the group of the Jacobian of a hyperelliptic elliptic curve in hyperelliptic
cryptosystems, the main object considered in this paper.

The divisor class group of a hyperelliptic curve C denoted DC , is the free abelian group generated
by the points of C. A divisor D ∈ DC is a formal sum of points in C, i.e. D =

∑
P∈C nPP with nP ∈ Z

and nP = 0 for almost all P ’s. The degree of D is defined as deg(D) =
∑

P∈C nP . A divisor D is defined
over Fqn , if σ(D) = D for all σ ∈ Gal(F̄q/Fqn). The set DC(Fqn) of divisors defined over Fqn forms a
subgroup of DC . Divisors of degree zero in DC(Fqn) form a subgroup of DC(Fqn), denote by D0

C(Fqn).
To every element f of the function field of C a divisor is associated via the valuations at every point
of C, div(f) =

∑
P∈C vP (f)P. Such divisors are called principal divisors and they form a subgroup of

D0
C(Fqn), denoted by PC(Fqn). The quotient group JC(Fqn) = D0

C(Fqn)/PC(Fqn) is called the Jacobian
of C/Fqn , which is an abelian variety of dimension g over Fqn .

A reduced divisor of C is a divisor of the formD =
∑
miPi−(

∑
mi)∞, where eachmi > 0,

∑
mi 6 g

(g is the genus of C) and the Pi’s are finite points such that when Pi ∈ supp(D) then P̃i /∈ supp(D),
unless Pi = P̃i, in which case mi = 1. It follows from the Riemann-Roch theorem that each divisor
of a hyperelliptic curve is uniquely linear equivalent to a reduced divisor (see [21]). We handle the
elements of the Jacobian through their Mumford representation [18]: a reduced divisor D =

∑
miPi −

(
∑
mi)∞, where Pi = (xi, yi), is represented by a couple of polynomials u(X) and v(X), denoted by

D = (u(X), v(X)), where u(X) =
∏

Pi∈supp(D)(X − xi)
mi , deg(v) < deg(u) ≤ g, v(X) is such that

v(xi) = yi for each i, and u(X)|v2(X) + v(X)H(X) − F (X). The zero of this group is represented by
the pair (1, 0). The negative element of D = (u(X), v(X)) is −D = (u(X),−H(X)− v(X) mod u(X)).
If D = (u(X), v(X)) ∈ JC(Fq), then u(X), v(X) ∈ Fq[X]. In this guise adding two elements of the
Jacobian can be performed using Cantor’s algorithm [1] for odd characteristic and Koblitz’s algorithm
for even characteristic [12].
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It is shown in [2] that every genus 2 hyperelliptic curve over a finite field of even characteristic belongs
to exactly one of the following type of isomorphism classes:

Type 1: C : Y 2 + (X2 + a3X + a5)Y = X5 + a8X + a10, a1 ̸= 0
Type 2: C : Y 2 + a3XY = X5 + a4X

3 + a6X
2 + a10, a3 ̸= 0

Type 3: C : Y 2 + a5Y = X5 + a4X
3 + a8X + a10, a5 ̸= 0

The number of isomorphism classes of genus 2 hyperelliptic over Fq where q = 2l is 2q3 + q2 − q if l
is not divided by 4, and 2q3 + q2 − q + 8 otherwise [3]. In Section 3 we will construct an efficiently
computable endomorphism on the Jacobian of the quadratic twist curve for every type of isomorphism
classes, respectively.

2.2 Zeta-Functions

Let ψ : C1 → C2 be a non-constant morphism between two curves. The induced pushforward map
ψ∗ on the Jacobian is defined by

ψ∗ : JC1 −→ JC2∑
miPi − (

∑
mi)∞ 7→

∑
miψ(Pi)− (

∑
mi)∞.

(2)

Let C be a smooth projective curve of genus g defined over a finite field Fq. The q-th power Frobenius
automorphism on C defined by (x, y) 7→ (xq, yq) extends naturally to the Jacobian of C and its
characteristic polynomial is of the form

P (T ) = T 2g + c1T
2g−1 + · · ·+ cgT

g + qcg−1T
g−1 + · · ·+ qg−1c1T + qg, (3)

where c0 = 1, ici = Sic0 + Si−1c1 + · · ·+ S1ci−1 for Si := Ni − (qi + 1), 1 ≤ i ≤ g and Ni = #C(Fqi).
See [14] for details.

The zeta-function of C/Fq is of the form

Z(C/Fq;T ) =
L(T )

(1− T )(1− qT )
,

where L(T ) is a degree 2g polynomial with integer coefficients, called L-polynomial. L(T ) is factorized

in C as L(T ) =
∏2g

i=1(1−ωiT ) where |ωi| =
√
q for all i and ωi can be paired to be pairwise conjugate. It

is well known (cf. [25]) that L(1) = #JC(Fq) and L(T ) = T 2gP (1/T ). The curve C can also be regarded
as defined over an extension field Fqr with the zeta-function (cf. [21])

Z(C/Fqr ;T ) =
Lr(T )

(1− T )(1− qrT )
,

where Lr(T ) =
∏2g

i=1(1− ωr
i T ). The r = 2 case will be applied in the later section.

Vercauteren [25] described an efficient algorithm to compute the zeta function of a hyperelliptic curve
defined over a field Fq of even characteristic. His algorithm needs running time O(25+ϵ log3+ϵ

q ) for a genus
2 hyperelliptic curve.

3 The Endomorphism on the Jacobian

In this section for each type of genus 2 hyperelliptic curve C defined over a finite field Fq of even
characteristic, we give the explicit formula for the endomorphism on the Jacobian of the hyperelliptic
curve Ct, where Ct is a quadratic twist of C defined over Fq2 (cf. [4]). The endomorphism on the Jacobian
of Ct/Fq2 is defined as ϕ = σ∗π∗σ

−1
∗ , where σ is an isomorphism between C and Ct defined over Fq4 , π

is the the q-th Frobenius automorphism on C, and ∗ is the reduced pushforward map on the Jacobian.

It is straightforward to check that the curve Ct given below is isomorphic to the quadratic twist curve
listed in Galbraith’s book [4].
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3.1 Fast endomorphisms on Jacobians of type-1 hyperelliptic curves

Let C be a type-1 curve defined over Fq of the form

C : Y 2 + (X2 + a3X + a5)Y = X5 + a8X + a10,

and its quadratic twist over Fq2 Ct has the form

Ct : Y 2 + (X2 + a3X + a5)Y = X5 + a′2X
4 + a′8X + a′10,

where a′2 is an element in Fq2 with TrFq2/F2
(a′2) = 1, γ satisfies γ2 + γ = a′2,

δ = γa3, ε = δ2 + δa3 + γa5, (4)

a′8 = εa3 + δa5 + a8 and a′10 = ε2 + εa5 + a10.
Ct is defined over Fq2 as

a′8 = a′2a
3
3 + a8, a′10 = a′22 a

4
3 + a′2a

2
5 + a′2a

2
3a5 + a10 ∈ Fq2 . (5)

The isomorphism σ : C → Ct is (x, y) 7→ (x, y + γx2 + δx + ε). As any reduced divisor of a genus 2
hyperelliptic curve has a support of at most two finite points, the reduced divisors D are classified into
three cases:

Case 1: D = P −∞.
Case 2: D = P1 + P2 − 2∞, P1 ̸= P2.
Case 3: D = 2P − 2∞.

We construct endomorphism ϕ = σ∗π∗σ
−1
∗ on Jacobian of Ct for each case, respectively.

In Case 1, σ∗ : P−∞ 7→ σ(P )−∞. In Mumford representation, for P = (x, y), P−∞ = (u(X), v(X))
with u(X) = X − x, v(X) = y, and σ(P ) − ∞ = (ut(X), vt(X)) with ut(X) = X − x, vt(X) =
y + γx2 + δx+ ε. Hence the expression of σ∗ is (u0, v0) 7→ (u0, v0 + γu20 + δu0 + ε). Note that σ∗ is an
involution. The endomorphisms ϕ on the Jacobian of Ct is of the form

ϕ : (u0, v0)
σ−1
∗7→ (u0, v0 + γu20 + δu0 + ε)

π∗7→ (uq0, v
q
0 + γqu2q0 + δquq0 + εq)

σ∗7→ (uq0, v
q
0 + (γq + γ)u2q0 + (δq + δ)uq0 + εq + ε).

(6)

In fact, ϕ is defined over Fq2 as γq + γ =
∑l

i=1(γ
2i + γ2

i−1

) =
∑l

i=1(γ
2 + γ)2

i−1

=
∑l

i=1(a
′
2)

2i−1 ∈ Fq2 ,
δq + δ = (γq + γ)a3 ∈ Fq2 and εq + ε = (δq + δ)2 + (δq + δ)a3 + (γq + γ)a5 ∈ Fq2 . The cost of performing
the map ϕ is roughly equal to two multiplications in Fq2 .

In Case 2, σ∗ : P1 + P2 − 2∞ 7→ σ(P1) + σ(P2) − 2∞ where P1 = (x1, y1), P2 = (x2, y2), σ(P1) =
(x1, y1 + γx21 + δx1 + ε), σ(P2) = (x2, y2 + γx22 + δx2 + ε) are represented by P1 + P2 − 2∞ =
(u(X), v(X)), σ(P1) + σ(P2) − 2∞ = (ut(X), vt(X)) with u(X) = X2 + u1X + u0, v(X) = v1X +
v0, ut(X) = X2+ut1X+ut0, vt(X) = vt1X+vt0.We have u(X) = ut(X) = X2+(x1+x2)X+x1x2, i.e.,
ut1 = u1, ut0 = u0, and v(X) = ((y1 + y2)/(x1 + x2))X + (x1y2 + x2y1)/(x1 + x2) and also vt(X) =
((y1+ y2+γ(x

2
1+x

2
2)+ δ(x1+x2))/(x1+x2))X+(x1y2+x2y1+γx1x2(x1+x2)+ ε(x1+x2))/(x1+x2),

i.e., vt1 = v1 + γu1 + δ, vt0 = v0 + γu0 + ε. Hence the expression of σ∗ is (u1, u0, v1, v0) 7→
(u1, u0, v1 + γu1 + δ, v0 + γu0 + ε), and thus ϕ is of the form

ϕ : (u1, u0, v1, v0)
σ−1
∗7→ (u1, u0, v1 + γu1 + δ, v0 + γu0 + ε)

π∗7→ (uq1, u
q
0, v

q
1 + γquq1 + δq, vq0 + γquq0 + εq)

σ∗7→ (uq1, u
q
0, v

q
1 + (γq + γ)uq1 + (δq + δ), vq0 + (γq + γ)uq0 + εq + ε).

(7)

The map ϕ is also defined over Fq2 as γq + γ, δq + δ, εq + ε ∈ Fq2 . The cost of performing the map ϕ is
roughly equal to two multiplications in Fq2 .

In Case 3, σ∗ : 2P − 2∞ 7→ 2σ(P ) − 2∞ where P = (x, y), σ(P ) = (x, y + γx2 + δx + ε). Let
2P − 2∞ = (u(X), v(X)), 2σ(P )− 2∞ = (ut(X), vt(X)). In this case, u(X) = ut(X) = X2 − x2. Let
v(X) = v1X+v0, then v

2(x)+v(x)H(x)+F (x) = 0. Taking derivatives on both sides, obtain v′(x)H(x)+
v(x)H ′(x) + F ′(x) = 0, i.e., v1H(x) + yH ′(x) + F ′(x) = 0. Thus, v1 = (yH

′
(x) + F

′
(x))/H(x), and

v0 = v1x+y. Similarly, put vt(X) = vt1X+vt0, then vt1 = ((y+γx2+δx+ε)H ′
t(x)+F

′
t (x))/Ht(x) = v1+

δ, vt0 = vt1x+y+γx
2+δx+ε = v0+γx

2+ε, where F ′(X), F ′
t (X), H ′(X), H ′

t(X) denote the derivatives of
F (X), Ft(X), H(X), Ht(X), respectively. Hence the expression of σ∗ is (u1, u0, v1, v0) 7→ (u1, u0, v1+
δ, v0 + γu0 + ε). The map ϕ = σ∗π∗σ

−1
∗ is of the form

(u1, u0, v1, v0) 7→ (uq1, u
q
0, v

q
1 + δq + δ, vq0 + (γq + γ)uq0 + εq + ε). (8)
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3.2 Fast endomorphisms on Jacobians of type-2 hyperelliptic curves

Suppose a hyperelliptic curve C/Fq is defined by Y 2+a3XY = X5+a4X
3+a6X

2+a10 with a3 ̸= 0
and its quadratic twist Ct is given by

Ct : Y 2 + a3XY = X5 + a4X
3 + a′6X

2 + a10,

where a′6 ∈ Fq2 satisfies TrFq2/F2
(a−2

3 a′6) = 1. The isomorphism map σ : C → Ct is given by (x, y) 7→
(x, y + δx), where δ2 + a3δ = a6 + a′6. The fact δ ∈ Fq4\Fq2 follows from the next result.

Lemma 1 For a, b ∈ Fq, a ̸= 0, the equation x2 + ax + b = 0 has a solution in a characteristic 2 field
Fq if and only if TrFq/F2

(a−2b) = 0.

The map σ∗ is given by (u0, v0) 7→ (u0, v0 + δu0), (u1, u0, v1, v0) 7→ (u1, u0, v1 + δ, v0), and ϕ is

ϕ : (u0, v0) 7→ (uq0, v
q
0 + (δq + δ)uq0)

(u1, u0, v1, v0) 7→ (uq1, u
q
0, v

q
1 + δq + δ, vq0).

(9)

The map ϕ is defined over Fq2 as δq + δ = a3((δ/a3)
q + δ/a3) = a3

∑l
i=1((δ/a3)

2i + (δ/a3)
2i−1

) =

a3
∑l

i=1((δ/a3)
2 + (δ/a3))

2i−1

= a3
∑l

i=1((a6 + a′6)/a
2
3)

2i−1 ∈ Fq2 .

3.3 Fast endomorphisms on Jacobians of type-3 hyperelliptic curves

Suppose a hyperelliptic curve C/Fq is defined by Y 2 + a5Y = X5 + a4X
3 + a8X + a10 with a5 ̸= 0

and its quadratic twist is given by

Ct : Y 2 + a5Y = X5 + a4X
3 + a8X + a′10,

where a′10 ∈ Fq2 satisfies TrFq2/F2
(a−2

5 (a′10 + a10)) = TrFq2/F2
(a−2

5 a′10) = 1.

The isomorphism σ : C → Ct is given by (x, y) 7→ (x, y + ε) with ε2 + a5ε = a10 + a′10. Then
ε ∈ Fq4\Fq2 , Ct is defined over Fq2 and σ is defined over Fq4 .

The pushforward map of σ is σ∗ : (u0, v0) 7→ (u0, v0 + ε), (u1, u0, v1, v0) 7→ (u1, u0, v1, v0 + ε),
and thus ϕ = σ∗π∗σ

−1
∗ is

ϕ : (u0, v0) 7→ (uq0, v
q
0 + εq + ε)

(u1, u0, v1, v0) 7→ (uq1, u
q
0, v

q
1, v

q
0 + εq + ε).

(10)

The map ϕ is defined over Fq2 as εq + ε = a5((ε/a5)
q + ε/a5) = a5

∑l
i=1((ε/a5)

2i + (ε/a5)
2i−1

) =

a5
∑l

i=1((ε/a5)
2 + (ε/a5))

2i−1

= a5
∑l

i=1((a10 + a′10)/a
2
5)

2i−1 ∈ Fq2 .

4 Implement of the Endomorphism

In this section we give a fast scalar multiplication method on the Jacobian of Ct employing GLV
technique. We have

Lemma 2 Suppose that the characteristic polynomial of the Frobenius of C is P (t) = t4 + c1t
3 + c2t

2 +
qc1t+q

2. Then the endomorphism ϕ = σ∗π∗σ
−1
∗ defined above satisfies (ϕ4+c1ϕ

3+c2ϕ
2+qc1ϕ+q

2)D = O,
for any D ∈ JCt(Fq2).

The following result gives the value of the scalar when the endomorphism ϕ is regarded as a scalar
multiplication restricted on a unique prime order subgroup of the Jacobian. Note that the same holds in
both [5] and [10].

Theorem 1 Let r is a prime number with r > (q+1)2, r | #JCt(Fq2). Then ϕ(D) = [λ]D for any D ∈
JCt(Fq2)[r] with λ

2 + 1 ≡ 0 (mod r).
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Algorithm Key generation
OUTPUT: l, Ct, ϕ, λ

1. Choose a prime l and set q = 2l

2. repeat
3. Choose random a3, a5, a8 and a10 ∈ Fq . Compute c1, c2 in (3) of C/Fq using Vercauteren’s algorithm
4. Choose random a′2 ∈ F22l such that TrF

22l
/F2(a′2) = 1

5. Compute γ, δ, ε from (4)
6. Compute a′8, a′10 from (5)
7. Set Ct : Y 2 + (X2 + a3X + a5)Y = X5 + a′2X

4 + a′8X + a′10
8. Compute t = #JCt (Fq2 ) by (11)

9. until t = hr where r is a prime larger than (q + 1)2

10. Define ϕ by (6), (7), (8)

11. Let λ = (q − 1)−1c−1
1 (c2 − q2 − 1) (mod r)

12. return l, Ct, ϕ, λ

Proof We prove the theorem for each type of hyperelliptic curves, respectively.
Suppose C is a type-1 hyperelliptic curve. Fix a divisor D ∈ JCt(Fq2) (i.e., ui, vi ∈ Fq2 for each i),

we have ϕ2 : (u0, v0) 7→ (u0, v0 +(γq
2

+ γ)u20 +(δq
2

+ δ)u0 + εq
2

+ ε), (u1, u0, v1, v0) 7→ (u1, u0, v1 +

(γq
2

+γ)u1+(δq
2

+δ), v0+(γq
2

+γ)u0+(εq
2

+ε)) from (6), (7) and (8). Since γq
2

+γ = TrFq2/F2
(a′2) = 1,

δq
2

+ δ = (γq
2

+ γ)a3 = a3 and εq
2

+ ε = (δq
2

+ δ)2 + (δq
2

+ δ)a3 + (γq
2

+ γ)a5 = a5, ϕ
2 : (u0, v0) 7→

(u0, v0 + u20 + a3u0 + a5), (u1, u0, v1, v0) 7→ (u1, u0, v1 + u1 + a3, v0 + u0 + a5). If D = (X + u0, v0),
then −D = (X + u0, X

2 + a3X + a5 + v0 (mod X − u0)) = (X + u0, v0 + u20 + a3u0 + a5) = ϕ2(D). If
D = (X2 + u1X + u0, v1X + v0), then −D = (X2 + u1X + u0, X

2 + (a3 + v1)X + a5 + v0 (mod X2 +
u1X + u0)) = (X2 + u1X + u0, (v1 + u1 + a3)X + v0 + u0 + a5) = ϕ2(D).

If C is a type-2 hyperelliptic curve, then ϕ2 : (u0, v0) 7→ (u0, v0 + a3u0), (u1, u0, v1, v0) 7→
(u1, u0, v1+a3, v0). If C is a type-3 hyperelliptic curve, then ϕ2 : (u0, v0) 7→ (u0, v0+a5), (u1, u0, v1, v0) 7→
(u1, u0, v1, v0 + a5). In both cases ϕ2(D) = −D for any D ∈ JCt(Fq2).

The Hasse-Weil bound gives that (q − 1)4 ≤ #JCt(Fq2) ≤ (q + 1)4. If prime r > (q + 1)2, then
r2 - #JCt(Fq2) implying that there is a unique r-order subgroup of JCt(Fq2). Thus there exists an
integer λ ∈ [0, r − 1] such that ϕ(D) = [λ]D for all D ∈ JCt(Fq2)[r]. As −D = ϕ2(D) = [λ2]D,
λ2 + 1 ≡ 0 (mod r) which finishes the proof.

Corollary 1 The value λ is λ = (q − 1)−1c−1
1 (c2 − 1− q2) (mod r).

Proof From Theorem 1 and Lemma 2, we have λ4+c1λ
3+c2λ

2+qc1λ+q
2 ≡ 0 (mod r), λ2 ≡ −1 (mod r).

Therefore λ ≡ (q − 1)−1c−1
1 (c2 − 1− q2) (mod r).

The following result is used to compute the size of JCt(Fq2).

Proposition 1 Let C be a hyperelliptic curve over Fq,M1 = #C(Fq), M2 = #C(Fq2). Then #JCt(Fq2) =
(1 + c2 + q2)2 − (c1 + c1q)

2 − 2(2c2 − c21)(1 + q2), where c1 =M1 − 1− q, c2 = (M2 − 1− q2 + c21)/2.

Proof The L-polynomial of C/Fq is L(T ) = 1 + c1T + c2T
2 + c1qT

3 + q2T 4, where c1 = M1 − 1 − q,
c2 = (M2 − 1 − q2 + c21)/2. Suppose L(T ) factors as (1 − α1T )(1 − ᾱ1T )(1 − α2T )(1 − ᾱ2T ), then
#JC(Fq) = L(1) = 1 + c1 + c2 + c1q + q2, #JC(Fq2) = L2(1) = (1 − α2

1)(1 − ᾱ2
1)(1 − α2

2)(1 − ᾱ2
2) =

L(1)× L(−1) = (1 + c2 + q2)2 − (c1 + c1q)
2.

Suppose the characteristic polynomial of the q2-th Frobenius on C is P (T ) = T 4 + b1T
3 + b2T

2 +
q2b1T + q4. Then the q2-th Frobenius on Ct is P (−T ) = T 4 − b1T

3 + b2T
2 − q2b1T + q4. Thus the

L-polynomial of Ct/Fq2 is 1− b1T + b2T
2− b1q2T 3+ q4T 4, and L2(T ) = 1+ b1T + b2T

2+ b1q
2T 3+ q4T 4.

Now we have #JCt(Fq2) = L(Ct/Fq2 ; 1) = 1− b1 + b2 − b1q
2 + q4 = #JC(Fq2)− 2(b1 + b1q

2), where
b1 = 2c2 − c21. Thus it holds

#JCt(Fq2) = (1 + c2 + q2)2 − (c1 + c1q)
2 − 2(2c2 − c21)(1 + q2). (11)

We give a key generation algorithm to generate a random type-1 hyperelliptic curve and its quadratic
twist equipped with an explicit fast endomorphism and good Jacobian (good means the size of Jacobian
is the product of a large prime and a small integer). The algorithm also applies to other two types of
hyperelliptic curves with little change.

In the next section we employ various known methods for simultaneous scalar multiplication to
compare with the operation amount of scalar multiplication with our endomorphism. The analysis shows
that a significant speedup can be expected because a great number of doublings are eliminated at the
expense of a few additions on the Jacobian.



Fast Endomorphism for any Genus 2 Hyperelliptic Curve over a Finite Field of Even Characteristic 7

Table1: Expected number of Jacobian operations by single scalar multiplication methods

Precomputation stage Evaluation stage

2w-ary method (2w − 2)A m
w (1− 1

2w
)A+mD

width-w NAF method 1D + (2w−2 − 1)A m
w + 1A+mD

sliding window method

over NAF 1D + (
2w − (−1)w

3 − 1)A m
w + v(w)

A+mD
1

Table 2: Expected number of Jacobian operation for multiexponentition

Precomputation stage Evaluation stage

Simultaneous
2w-ary method (22w − 3)A m

2w (1− 1
22w

)A+ m
2 D

Simultaneous sliding 1A (w = 1)
window method

(22w − 22(w−1) − 2)A+ 2D (w > 1)
m
2 · 1

w + 1/3
A+ m

2 D

width-w NAF-based 0 (w = 2)
interleaving method

(2 · 2w−2 − 2)A+ 2D (w > 2)
m

w + 1A+ m
2 D

JSF method 2A
m
4 A+ m

2 D

5 Performance Comparisons

In this section, we compare the costs of computing a large scalar multiplication [k]D for general
curves and our hyperelliptic curves.

The basic idea used to speed up single scalar multiplication for general hyperelliptic curves is to use
the signed binary expansions of k (e.g. non-adjacent forms) with precomputations. A natural extension
of the NAF form is width-w NAF. The average density (i.e. proportion of non-zero coefficients) of a
width-w NAF is 1/(w + 1) and the precomputation costs 2w−2 Jacobian operations (cf. p.99 of [9]).
Another method is the sliding windows over NAF expansions (cf. p.101 of [9]) which is slightly cheaper
than a width-w NAF. Table 1 summarizes the average numbers of additions and doublings of different
single scalar multiplication, where A and D denote cost of addition and doubling on Jacobian, m is the
bitlength of k, w is the size of the window.

As analyzed in [20] the identity ϕ2(D) = −D for D ∈ JCt(Fq2)[r] leads to the decomposition [k]D =

[k0]D+[k1]ϕ(D) with k0, k1 ≤
√
2r. To use GLV decomposition to compute k0, k1, one firstly produces a

sequence of relations sir+tiλ = ri, for i = 0, 1, 2, · · · by making use of the extended Euclidean algorithm
applied to r, λ. The length of the sequence is less than 2log2r (cf. p.226 of [24]). Hence, the cost of finding
linearly independent short vectors v1, v2 is less than ⌈2log2r⌉ integer divisions. Note that ϕ(D) and v1, v2
(which do not depend on k) can be precomputed if λ, r, and D are known. When k is given, one needs to
take a vector close to (k, 0) which was generated by v1, v2 with integer coefficients. This is equal to solve
a system of two linear equations in two unknowns over rational number field, then round the solutions
to the nearest integers. They are much cheaper than computing a scalar multiplication.

Allowing precomputation, one can use the fixed window method, simultaneous sliding window method
(cf. [9], Section 3.3.1 and 3.3.3) and interleaving method [17] to accelerate simultaneous scalar multiplica-
tion. Other approaches include using the joint sparse form (JSF) [23] to save additions. In Table 2 the av-
erage number of Jacobian operation of different methods for multiexponentation [k]D = [k0]D+[k1]ϕ(D)
is listed, where the bitlength of components k0, k1 are assumed to be half that of k.

Lange [15] analyzed the cost of Jacobian operations over three different coordinate systems: affine
coordinates A, projective coordinates P and a new coordinates N , as listed in Table 3 where the pa-
rameter a1 is the coefficient in H(X) in (1). The addition C1 + C2 = C3 denotes the computation of an
addition, where the first input is in coordinate system C1, the second in C2 and the output is in C3. Same
for doubling 2C1 = C2.

1 v(w) = 4/3− (−1)w/(3 · 2w−2).
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Table 3: Jacobian operation cost for various coordinates
Doubling Addition

costs costs
operation

a1 ̸= 0 a1 = 0
operation

a1 ̸= 0 a1 = 0
2P = P 7S, 38M 7S, 36M A+ P = P 4S, 39M 4S, 39M
2N = N 6S, 37M 6S, 35M A+N = N 5S, 37M 6S, 36M

Multiplication cost in F2l is denoted by M , Squaring cost in F2l is denoted by S.

Table 4: Comparisons of cost by the number of field squaring and multiplication
Cost of sliding window method over NAF for general curves over F2127

m = 160, w = 2 m = 160, w = 3 m = 160, w = 4
1232.7S + 7943.3M 1153.8S + 7385.5M 1138.4S + 7297.6M
m = 256, w = 2 m = 256, w = 3 m = 256, w = 4

1968.7S + 12679.3M 1836.4S + 11726.8M 1805.8S + 11526.2M

Cost of wNAF-based interleaving method for our hyperelliptic curves over F267×2

m = 160, w = 2 m = 160, w = 3 m = 160, w = 4
746.7S + 4933.3M 702S + 4640M 682S + 4544M
m = 256, w = 2 m = 256, w = 3 m = 256, w = 4

1194.7S + 7893.3M 1110S + 7304M 1066S + 7030.4M
The cost of our curves is calculated for the case when a1 ̸= 0.

In Table 4, we list the field squaring and multiplication cost to compute [k]D for curves that we
constructed comparing with that the best known method for general random curves, where the cost of
squaring is denoted by S, and the cost of multiplication is denoted by M . We use the Jacobian doubling
formulae 2N = N and additionA+N = N in Table 3 to avoid field inversions in the evaluation stage with
a ”penalty” which takes one field inversion and seven multiplications for each precomputed entry as to
change coordinates N to coordinates A. In practice, this penalty is small unless the space constraints for
precomputation is very limited. We assume that the cost of one inversion equals six field multiplications
as in [10]. We use the sliding window method over NAF to compute scalar multiplication [k]D for
general random curves and width-w NAF-based interleaving method to compute multiexponentiation
[k]D = [k0]D + [k1]ϕ(D) for our curves. From the theoretical comparison of the cost listed in Table 4,
it is clear that a great number of multiplications and squarings are eliminated for our curves. We stress
that a strict comparison of the cost is impossible mainly due to the security requirement that our curves
should be defined over F22l with l being a prime, while the general curves are defined over F2k for some
prime k.

6 Security Considerations

For cryptographic purposes, it is essentially necessary to have the Jacobian of a hyperelliptic curve
with a large group order in the hyperelliptic cryptosystem based on the DLP on the Jacobian. In general
it is computationally hard to compute the order of the Jacobian. Here we present an algorithm to test
whether the twist of a random hyperelliptic curve is suitable for cryptography. We employ Vercautern’s
algorithm to compute the zeta function of a genus 2 hyperelliptic curve defined over a field that is half the
size of the underlying field of our curve, which makes the key generation comparatively fast. We require
the group order of the Jacobians of our hyperelliptic curves to be divisible by a large prime at least
160-bit to protect against Pollard-rho and BSGS attacks. To avoid the variant of Weil descent attack,
we can increase the field size so that our curves are intractable to Gaudry’s index-calculus attack.

7 Conclusion

We construct an efficiently computable endomorphism on the Jacobian of a quadratic twist curve
of any genus 2 hyperelliptic curves defined over a finite field of even characteristic. Our construction is
valid for every genus hyperellptic curve over a finite field of even characteristic. This broaden the range
for selecting suitable curves in hyperelliptic cryptosystem. The performance comparison shows that our
construction offers significant point multiplication acceleration via GLV decomposition technique.
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