
Secure Multiparty Computation with Partial Fairness

Amos Beimel∗
Department of Computer Science

Ben Gurion University
Be’er Sheva, Israel

Eran Omri†
Department of Computer Science

Bar Ilan University
Ramat Gan, Israel

Ilan Orlov‡
Department of Computer Science

Ben Gurion University
Be’er Sheva, Israel

November 23, 2010

Abstract

A protocol for computing a functionality is secure if an adversary in this protocol cannot cause more
harm than in an ideal computation where parties give their inputs to a trusted party which returns the
output of the functionality to all parties. In particular, in the ideal model such computation is fair –
all parties get the output. Cleve (STOC 1986) proved that, in general, fairness is not possible without
an honest majority. To overcome this impossibility, Gordon and Katz (Eurocrypt 2010) suggested a
relaxed definition – 1/p-secure computation – which guarantees partial fairness. For two parties, they
construct 1/p-secure protocols for functionalities for which the size of either their domain or their range
is polynomial (in the security parameter). Gordon and Katz ask whether their results can be extended to
multiparty protocols.

We study 1/p-secure protocols in the multiparty setting for general functionalities. Our main result is
constructions of 1/p-secure protocols when the number of parties is constant provided that less than 2/3
of the parties are corrupt. Our protocols require that either (1) the functionality is deterministic and the
size of the domain is polynomial (in the security parameter), or (2) the functionality can be randomized
and the size of the range is polynomial. If the size of the domain is constant and the functionality is
deterministic, then our protocol is efficient even when the number of parties is O(log log n) (where n is
the security parameter). On the negative side, we show that when the number of parties is super-constant,
1/p-secure protocols are not possible when the size of the domain is polynomial.

∗Supported by ISF grant 938/09 and by the Frankel Center for Computer Science.
†This research was generously supported by the European Research Council as part of the ERC project “LAST”.
‡Supported by ISF grant 938/09 and by the Frankel Center for Computer Science.

1 Introduction

A protocol for computing a functionality is secure if an adversary in this protocol cannot cause more harm
than in an ideal computation where parties give their inputs to a trusted party which returns the output of
the functionality to all parties. This is formalized by requiring that for every adversary in the real world,
there is an adversary in the ideal world, called simulator, such that the output of the real-world adversary
and the simulator are indistinguishable in polynomial time. Such security can be achieved when there is a
majority of honest parties [16]. Secure computation is fair – all parties get the output. Cleve [9] proved that,
in general, fairness is not possible without an honest majority.

To overcome the impossibility of [9], Gordon and Katz [22] suggested a relaxed definition – 1/p-secure
computation – which guarantees partial fairness. Informally, a protocol is 1/p-secure if for every adversary
in the real world, there is a simulator running in the ideal world, such that the output of the real-world
adversary and the simulator cannot be distinguished with probability greater than 1/p. For two parties,
Gordon and Katz construct 1/p-secure protocols for functionalities whose size of either their domain or
their range is polynomial (in the security parameter). They also give impossibility results when both the
domain and range are super-polynomial. Gordon and Katz ask whether their results can be extended to
multiparty protocols. We give positive and negative answers to this question.

Previous Results. Cleve [9] proved that any protocol for coin-tossing without an honest majority cannot
be fully secure, specifically, if the protocol has r rounds, then it is at most 1/r-secure. Protocols with partial
fairness, under various definitions and assumptions, have been constructed for coin-tossing [9, 10, 24, 4],
for contract signing/exchanging secrets [6, 23, 12, 5, 11, 7], and for general functionalities [27, 13, 2, 17,
25, 14, 22]. We next describe the papers that are most relevant to our paper. Moran, Naor, and Segev [24]
construct 2-party protocols for coin tossing that are 1/r-secure (where r is the number of rounds in the
protocol). Gordon and Katz [22] define 1/p-security and construct 2-party 1/p-secure protocols for every
functionality whose size of either the domain or the range of the functionality is polynomial. Finlay, in a
previous work [4] we construct multiparty protocols for coin tossing that are O(1/r)-secure provided that
the fraction of bad parties is slightly larger than half. In particular, our protocol is O(1/r)-secure when the
number of parties is constant and the fraction of bad parties is less than 2/3.

Gordon et al. [20] showed that complete fairness is possible in the two party case for some functions.
Gordon and Katz [19] showed similar results for the multiparty case. The characterization of the functions
that can be computed with full fairness without honest majority is open. Completeness for fair computations
has been studied in [21]. Specifically, they show a specific function that is complete for fair two-party
computation; this function is also complete for 1/p-secure two-party computation.

1.1 Our Results

We study 1/p-secure protocols in the multiparty setting. We construct two protocols for general function-
alities assuming that the fraction of corrupt parties is less than 2/3. The first protocol is efficient when (1)
The number of parties is constant, the functionality is deterministic, and the size of the domain of inputs is
at most polynomial in the security parameter, or (2) The number of parties is O(log log n) (where n is the
security parameter), the functionality is deterministic, and the size of the domain of inputs is constant. The
second protocol is efficient when the number of parties is constant, the functionality can be randomized, and
the size of the range of the functionality is at most polynomial in the security parameter. Our second proto-
col does not provide correctness, i.e., in a case of premature termination, with probability of 1/poly(n), the
remaining active parties output a value which might be inconsistent with their inputs. In contrast, our first
protocol provides correctness.

1

Our protocols combine ideas from the protocols of Gordon and Katz [22] and our paper [4], both of
which generalize the protocol of Moran, Naor, and Segev [24]. Specifically, our protocols proceed in rounds,
where in each round values are given to subsets of parties. There is a special round i? in the protocol. Prior to
round i?, the values given to a subset of parties are values that can be computed from the inputs of the parties
in this subset; staring from round i? the values are the “correct” output of the functionality. The values given
to a subset are secret shared such that only if all parties in the subset cooperate they can reconstruct the
value. If in some round many (corrupt) parties have aborted such that there is a majority of honest parties
among the active parties, then the set of active parties reconstructs the value given to this set in the previous
round.1 Similar to the protocols of [24, 22, 4], the adversary can cause harm (e.g., bias the output of the
functionality) only if it guesses i?; we show that in our protocols this probability is small and the protocols
are 1/p-secure. The values in our protocols are chosen similar to [22]. The mechanism to secret share the
values is similar to [4], however, there are important differences in this sharing, as the sharing mechanism
of [4] is not appropriate for 1/p-secure computations of functionalities which depend on inputs.

To complete the picture, we prove interesting impossibility results. We show that, in general, when the
number of parties is super-constant, 1/p-secure protocols are not possible without honest majority when the
size of the domain is polynomial. This impossibility result justifies the fact why in our protocols the number
of parties is constant. We also show that, in general, when the number of parties is ω(log n), 1/p-secure
protocols are not possible without honest majority even when the size of the domain is 2. The proof of the
impossibility result is rather simple and follows from an impossibility result of [22].

Our impossibility results should be contrasted with the coin-tossing protocol of [4] which is an efficient
1/p-secure protocol even when m(n), the number of parties, is polynomial in the security parameter and
the number of bad parties is m(n)/2 + O(1). Our results show that these parameters are not possible for
general 1/p-secure protocols even when the size of the domain of inputs is 2.

Open Problems. In both our impossibility results the size of the range is super-polynomial. It is open
if there is an efficient 1/p-secure protocol when the number of parties is not constant and the size of both
the domain and range is polynomial. In addition, the impossibility results do not rule out that the double-
exponential dependency on the number of parties can be improved.

The protocols of [22] are private – the adversary cannot learn any information on the inputs of the honest
parties (other than the information that it can learn in the ideal world of computing F). The adversary can
only bias the output. Our first protocol is not private (that is, the adversary can learn extra information).
However, we do not know whether the second protocol is private.2 It is open if there are general multiparty
1/p-secure protocols that are also private.

2 Preliminaries

A multi-party protocol with m parties is defined by m interactive probabilistic polynomial-time Turing
machines p1, . . . , pm. Each Turning machine, called party, has the security parameter 1n as a joint input
and a private input yj . The computation proceeds in rounds. In each round, the active parties broadcast and
receive messages on a common broadcast channel. The number of rounds in the protocol is expressed as
some function r(n) in the security parameter (typically, r(n) is bounded by a polynomial). At the end of
the protocol, the (honest) parties should hold a common value w (which should be equal to an output of a
predefined functionality).

1As parties can abort during this reconstruction, they actually reconstruct the value of a subset of this set.
2The problem in our protocols is that the adversary can keep one corrupted party active, thus, the adversary can get the output

of the honest parties.

2

In this work we consider a corrupt, static, computationally-bounded (i.e., non-uniform probabilistic
polynomial-time) adversary that is allowed to corrupt some subset of parties. That is, before the beginning
of the protocol, the adversary corrupts a subset of the parties and may instruct them to deviate from the
protocol in an arbitrary way. The adversary has complete access to the internal state of each of the corrupted
parties and fully controls the messages that they send throughout the protocol. The honest parties follow the
instructions of the protocol.

The parties communicate via a synchronous network, using only a broadcast channel. The adversary
is rushing, that is, in each round the adversary hears the messages broadcast by the honest parties before
broadcasting the messages of the corrupted parties for this round (thus, broadcast messages of the corrupted
parties can depend on the broadcast messages of the honest parties in this round).

Notation. For an integer `, define [`] = {1, . . . , `}. For a set J ⊆ [m], define QJ = {pj : j ∈ J}. An
m-party functionality F = {fn}n∈N is a sequence of polynomial-time computable, randomized mappings
fn : (Xn)m → Zn, where Xn = {0, 1}`d(n) and Zn = {0, 1}`r(n) are the domain of inputs of each party
and the range respectively; `d, `r : N → N are some fixed functions. We denote the size of the domain and
the range of F by d(n) and g(n) respectively, that is, d(n) = 2`d(n) and g(n) = 2`r(n). For a randomized
mapping fn, the assignment w ← fn(x1, . . . , xm) denotes the process of computing fn with the inputs
x1, . . . , xm and with uniformly chosen random coins and assigning the output of the computation to w. If
F is deterministic, we sometimes call it a function. We sometime omit n from functions of n (for example,
we write d instead of d(n)).

2.1 The Real vs. Ideal Paradigm

The security of multiparty computation protocols is defined using the real vs. ideal paradigm. In this
paradigm, we consider the real-world model, in which protocols are executed. We then formulate an ideal
model for executing the task. This ideal model involves a trusted party whose functionality captures the se-
curity requirements from the task. Finally, we show that the real-world protocol “emulates” the ideal-world
protocol: For any real-life adversary A there exists an ideal-model adversary S (called simulator) such that
the global output of an execution of the protocol with A in the real-world model is distributed similarly to
the global output of running S in the ideal model. In both models there are m parties p1, . . . , pm holding a
common input 1n and private inputs y1, . . . , ym respectively, where yj ∈ Xn for 1 ≤ j ≤ m.

The Real Model. Let Π be an m-party protocol computing F . Let A be a non-uniform probabilistic
polynomial time adversary that gets the input yj of each corrupted party pj and the auxiliary input aux.
Let REALΠ,A(aux)(~y, 1n), where ~y = (y1, . . . , ym), be the random variable consisting of the view of the
adversary (i.e., the inputs of the corrupted parties and the messages it got) and the output of the honest
parties following an execution of Π.

The Ideal Model. The basic ideal model we consider is a model without abort. Specifically, there is an
adversary S which has corrupted a subset B of the parties. The adversary S has some auxiliary input aux.
An ideal execution for the computing F proceeds as follows:

Send inputs to trusted party: The honest parties send their inputs to the trusted party. The corrupted par-
ties may either send their received input, or send some other input of the same length (i.e., xj ∈ Xn)
to the trusted party, or abort (by sending a special “abortj” message). Denote by x1, . . . , xm the in-
puts received by the trusted party. If pj does not send an input, then the trusted party selects xj ∈ Xn

3

with uniform distribution.3

Trusted party sends outputs: The trusted party computes fn(x1, . . . , xm) with uniformly random coins
and sends the output to the parties.

Outputs: The honest parties output the value sent by the trusted party, the corrupted parties output noth-
ing, and S outputs any arbitrary (probabilistic polynomial-time computable) function of its view (its
inputs, the output, and the auxiliary input aux).

Let IDEALF ,S(aux)(~y, 1n) be the random variable consisting of the output of the adversary S in this
ideal world execution and the output of the honest parties in the execution.

2.1.1 1/p-Indistinguishability and 1/p-Secure Computation

As explained in the introduction, some ideal functionalities for computing F cannot be implemented when
there is no honest majority. We use 1/p-secure computation, defined by [22], to capture the divergence from
the ideal worlds.

Definition 2.1 (1/p-indistinguishability) A function µ(·) is negligible if for every positive polynomial q(·)
and all sufficiently large n it holds that µ(n) < 1/q(n). A distribution ensemble X = {Xa,n}a∈Dn,n∈N
is an infinite sequence of random variables indexed by a ∈ Dn and n ∈ N, where Dn is a domain that
might depend on n. For a fixed function p(n), two distribution ensembles X = {Xa,n}a∈Dn,n∈N and

Y = {Ya,n}a∈Dn,n∈N are computationally 1/p-indistinguishable, denoted X
1/p≈ Y , if for every non-uniform

polynomial-time algorithm D there exists a negligible function µ(·) such that for every n and every a ∈ Dn,

∣∣∣ Pr[D(Xa,n) = 1]− Pr[D(Ya,n) = 1]
∣∣∣ ≤ 1

p(n)
+ µ(n).

Two distribution ensembles are computationally indistinguishable, denoted X
C≡ Y , if for every c ∈ N they

are computationally 1
nc -indistinguishable.

We next define the notion of 1/p-secure computation [22]. The definition uses the standard real/ideal
paradigm [15, 8], except that we consider a completely fair ideal model (as typically considered in the setting
of honest majority), and require only 1/p-indistinguishability rather than indistinguishability.

Definition 2.2 (1/p-secure computation [22]) Let p = p(n) be a function. An m-party protocol Π is said
to 1/p-securely compute a functionality F where there are at most t(n) corrupt parties, if for every non-
uniform probabilistic polynomial-time adversary A in the real model controlling at most t(n) parties, there
exists a non-uniform probabilistic polynomial-time adversary S in the ideal model, controlling the same
parties as A, such that the following two distribution ensembles are computationally 1/p-indistinguishable

{
IDEALF ,S(aux)(~y, 1n)

}
aux∈{0,1}∗,~y∈(Xn)m,n∈N

1/p≈ {
REALΠ,A(aux)(~y, 1n)

}
aux∈{0,1}∗,~y∈(Xn)m,n∈N .

We next define statistical distance between two random variables and the notion of perfect 1/p-secure
computation, which implies the notion of 1/p-secure computation.

3For the simplicity of the presentation of our protocols, we present a slightly different ideal world than the traditional one. In
our model there is no a default input in case of an “abort”. However, the protocol can be presented in the traditional model, where
a predefined default input is used if a party aborts.

4

Definition 2.3 (statistical distance) We define the statistical distance between two random variables A and
B as the function

SD (A,B) =
1
2

∑
α

∣∣∣Pr[A = α]− Pr[B = α]
∣∣∣.

Definition 2.4 (perfect 1/p-secure computation) An m-party protocol Π is said to perfectly 1/p-secure
compute a functionalityF if for every non-uniform adversaryA in the real model, there exists a polynomial-
time adversary S in the ideal model such that for every n ∈ N, for every ~y ∈ (Xn)m, and for every
aux ∈ {0, 1}∗

SD
(
IDEALF ,S(aux)(~y, 1n), REALΠ,A(aux)(~y, 1n)

) ≤ 1
p(n)

.

Security with abort and cheat detection is defined in Appendix A. The cryptographic tools we use are
described in Appendix B.

3 The Multiparty Secure Protocols

In this section we present our protocols. We start with a protocol that assumes that either the functionality is
deterministic and the size of the domain is polynomial, or that the functionality is randomized and both the
domain and range of the functionality are polynomial. We then present a modification of the protocol that is
1/p-secure for (possibly randomized) functionalities if the size of the range is polynomial (even if the size
of the domain of F is not polynomial). The first protocol is more efficient for deterministic functionalities
with polynomial-size domain. Furthermore, the first protocol has full correctness, while in the modified
protocol, correctness is only guaranteed with probability 1− 1/p.

Formally, we prove the following two theorems.

Theorem 1 Let F = {fn : (Xn)m → Zn} be randomized functionality where the size of domain is d(n)
and the size of the range is g(n), and let p(n) be a polynomial. If enhanced trap-door permutations ex-
ist, then for any m and t such that m/2 ≤ t < 2m/3, and for any polynomial p(n) there is an r(n)-
round m-party 1/p(n)-secure protocol computing F tolerating up to t corrupt parties where r(n) =
p(n) · (2 · d(n)m · g(n) · p(n))2

t

, provided that r(n) is bounded by a polynomial in n. If F is deterministic,
then there is a r(n)-round 1/p(n)-secure protocol for r(n) = p(n) ·d(n)m·2t

, provided that r(n) is bounded
by a polynomial in n.

Theorem 2 Let F = {fn : (Xn)m → Zn} be randomized functionality where the size of the range g(n) is
polynomial in n and m is constant, and let p(n) be a polynomial. If enhanced trap-door permutations exist,
then for t such that m/2 ≤ t < 2m/3 and for any polynomial p(n) there is an r(n)-round m-party 1/p(n)-
secure protocol computing F tolerating up to t corrupt parties where r(n) =

(
(2p(n))2

t+1 · g(n)2
t
)

.

Following [24, 4], we present the first protocol in two stages. We first describe in Section 3.1 a protocol
with a dealer and then in Section 3.2 present a protocol without this dealer. The goal of presenting the
protocol in two stages is to simplify the understanding of the protocol and to enable to prove the protocol in
a modular way. In Section 3.3, we present a modification of the protocol which is 1/p-secure if the size of
the range is polynomial (even if the size of the domain of f is not polynomial).

5

3.1 The Protocol for Polynomial-Size Domain with a Dealer

We consider a network with m parties where at most t of them are corrupt such that m/2 ≤ t ≤ 2m/3. In
this section we assume that there is a special trusted on-line dealer, denoted T . This dealer interacts with the
parties in rounds, sending messages on private channels. We assume that the dealer knows the set of corrupt
parties. In Section 3.2, we show how to remove this dealer and construct a protocol without a dealer.

In our protocol the dealer sends in each round values to subsets of parties; the protocol proceeds with the
normal execution as long as at least t + 1 of the parties are still active. If at some round i, there are at most t
active parties, then the active parties reconstruct the value given to them in round i−1, output this value, and
halt. Following [24], and its follow up works [22, 4], the dealer chooses at random with uniform distribution
a special round i?. Prior to this round the adversary gets no information and if the corrupt parties abort the
execution prior to i?, then they cannot bias the output of the honest parties or cause any harm. After round
i?, the output of the protocol is fixed, and, also in this case the adversary cannot affect the output of the
honest parties. The adversary cause harm only if it guesses i? and this happens with small probability.

We next give a verbal description of the protocol. This protocol is designed such that the dealer can be
removed from it in Section 3.2. A formal description is given in Figure 1. At the beginning of the protocol
each party sends its input yj to the dealer. The corrupted parties may send any values of their choice. Let
x1, . . . , xm denote the inputs received by the dealer. If a corrupt party pj does not send its input, then the
dealer sets xj to be a random value selected uniformly from Xn. In a preprocessing phase, the dealer T
selects uniformly at random a special round i? ∈ [r]. The dealer computes w ← fn(x1, . . . , xm). Then, for
every round 1 ≤ i < r and every J ⊆ {1, . . . , m} such that m − t ≤ |J | ≤ t, the dealer selects an output,
denoted σi

J , as follows (this output is returned by the parties in QJ = {pj : j ∈ J} if the protocol terminates
in round i + 1 and QJ is the set of the active parties):

CASE I: 1 ≤ i < i?. For every j ∈ J the dealer sets x̂j = xj and for every j /∈ J it chooses x̂j indepen-
dently with uniform distribution from the domain Xn; it computes the output σi

J ← fn(x̂1, . . . , x̂m).

CASE II: i? ≤ i ≤ r. The dealer sets σi
J = w.

The dealer T interacts with the parties in rounds, where in round i, for 1 ≤ i ≤ r, there are of three
phases:

The peeking phase. The dealer sends to the adversary all the values σi
J such that all parties in QJ are

corrupted.

The abort and premature termination phase. The adversary sends to T the identities of the parties that
abort in the current round. If there are less than t + 1 active parties, then T sends σi−1

J to the active
parties, where QJ is the set of the active parties when parties can also abort during this phase (see
exact details in Figure 1). The honest parties return this output and halt.

The main phase. If at least t + 1 parties are active, T notifies the active parties that the protocol proceeds
normally.

If after r rounds, there are at least t + 1 active parties, T sends w to all active parties and the honest parties
output this value.

Example 3.1 As an example, assume that m = 5 and t = 3. In this case the dealer computes a value σi
J

for every set of size 2 or 3. Consider an execution of the protocol where p1 aborts in round 4 and p3 and p4

abort in round 100. In this case, T sends σ99
{2,5} to p2 and p5, which return this output.

6

Inputs: Each party pj holds a private input yj ∈ Xn and the joint input: the security parameter 1n,
the number of rounds r = r(n), and a bound t on the number of corrupted parties.

Instructions for each honest party pj: (1) After receiving the “start ” message, send input
yj to the dealer. (2) If the premature termination step is executed with i = 1, then send
its input yj to the dealer. (3) Upon receiving output z from the dealer, output z. (Honest
parties do not send any other messages throughout the protocol.)

Instructions for the (trusted) dealer:

The preprocessing phase:

1. Set D0 = ∅ and send a “start ” message to all parties.

2. Receive an input, denoted xj , from each party pj . For every pj that sends an
“abortj” message, notify all parties that party pj aborted, select xj ∈ Xn with
uniform distribution, and update D0 = D0 ∪ {j}.

3. Let D = D0. If |D| ≥ m− t, go to premature termination with i = 1.

4. Set w ← fn(x1, . . . , xm) and select i? ∈ {1, . . . , r} with uniform distribution.

5. For each 1 ≤ i < i?, for each J ⊆ [m] \ D0 s.t. m− t ≤ |J | ≤ t: for each
j ∈ J set x̂j = xj , for each j 6∈ J select uniformly at random x̂j ∈ Xn, and set
σi

J ← fn(x̂1, . . . , x̂m).

6. For each i? ≤ i ≤ r and for each J ⊆ [m] \D0 s.t. m− t ≤ |J | ≤ t, set σi
J = w.

7. Send “proceed ” to all parties.

Interaction rounds: In each round 1 ≤ i ≤ r, interact with the parties in three phases:

• The peeking phase: For each J ⊆ [m] \ D0 s.t. m− t ≤ |J | ≤ t, if QJ contains
only corrupt parties, send the value σi

J to all parties in QJ .

• The abort phase: Upon receiving an “abortj” message from a party pj , notify
all parties that party pj aborted (ignore all other types of messages) and update D =
D ∪ {j}. If |D| ≥ m− t, go to premature termination step.

• The main phase: Send “proceed ” to all parties.

Premature termination step:

• If i = 1, then: Receive an input, denoted xj
′, from each active party pj . For every

party pj that sends an “abortj” message, update D = D∪{j} and select xj
′ ∈ Xn

with uniform distribution. Set w′ ← fn(x1
′, . . . , xm

′).

• Else, if i > 1, then: For each “abortj” message received from a party pj , update
D = D ∪ {j}. Set w′ = σi−1

J for J = [m] \D.

• Send w′ to each party pj s.t. j /∈ D0 and halt.

Normal termination: If the last round of the protocol is completed, send w to to each party pj

s.t. j /∈ D0 .

Figure 1: Protocol MPCWithDr.

7

The formal proof of the 1/p-security of the protocol appears in Appendix C. We next hint why for
deterministic functionalities, any adversary can cause harm in the above protocol by at most O(dO(1)/r),
where d = d(n) is the size of the domain of the inputs and the number of parties, i.e., m, is constant. As in
the protocols of [24, 22, 4], the adversary can only cause harm by causing the protocol to terminate in round
i?. In our protocol, if in some round there are two values σi

J and σi
J ′ that the adversary can obtain such that

σi
J 6= σi

J ′ , then the adversary can deduce that i < i?. Furthermore, the adversary might have some auxiliary
information on the inputs of the honest parties, thus, the adversary might be able to deduce that a round is
not i? even if all the values that it gets are equal. However, there are less than 2t values that the adversary
can obtain in each round (i.e., the values of subsets of the t corrupt parties of size at least m − t). We will
show that for a round i such that i < i?, the probability that all these values are equal to a fixed value is
1/dO(1) for a deterministic function fn (for a randomized functionality this probability also depends on the
size of the range). By [22, Lemma 2], the protocol is dO(1)/r-secure.

3.2 Eliminating the Dealer of the Protocol

We eliminate the trusted on-line dealer in a few steps using a few layers of secret-sharing schemes. First,
we change the on-line dealer, so that, in each round i, it shares the value σi

J of each subset QJ among
the parties of QJ using a |J |-out-of-|J | secret-sharing scheme – called inner secret-sharing scheme. As
in Protocol MPCWithDr described in Figure 1, the adversary is able to obtain information on σi

J only if
it controls all the parties in QJ . On the other hand, the honest parties can reconstruct σi−1

J (without the
dealer), where QJ is the set of active parties containing the honest parties. In the reconstruction, if an active
(corrupt) party does not give its share, then it is removed from the set of active parties QJ . This is possible
since in the case of a premature termination an honest majority among the active parties is guaranteed (as
further explained below).

Next, we convert the on-line dealer to an off-line dealer. That is, we construct a protocol in which the
dealer sends only one message to each party in an initialization stage; the parties interact in rounds using a
broadcast channel (without the dealer) and in each round i each party learns its shares of the ith round inner
secret-sharing schemes. In each round i, each party pj learns a share of σi

J in a |J |-out-of-|J | secret-sharing
scheme, for every set QJ such that j ∈ J and m − t ≤ |J | ≤ t (that is, it learns the share of the inner
scheme). For this purpose, the dealer computes, in a preprocessing phase, the appropriate shares for the
inner secret-sharing scheme. For each round, the shares of each party pj are then shared in a 2-out-of-2
secret-sharing scheme, where pj gets one of the two shares (this share is a mask, enabling pj to privately
reconstruct its shares of the appropriate σi

J although messages are sent on a broadcast channel). All other
parties get shares in a t-out-of-(m − 1) Shamir secret-sharing scheme of the other share of the 2-out-of-2
secret-sharing. See Construction B.1 for a formal description. We call the resulting secret-sharing scheme
the outer scheme.

To prevent corrupt parties from cheating, by say, sending false shares and causing reconstruction of
wrong secrets, every message that a party should send during the execution of the protocol is signed in the
preprocessing phase (together with the appropriate round number and with the party’s index). In addition,
the dealer sends a verification key to each of the parties. To conclude, the off-line dealer gives each party the
signed shares for the outer secret sharing scheme together with the verification key. A formal description of
the functionality of the off-line dealer, called Functionality MultiShareGen, is given in Figure 2.

The protocol with the off-line dealer proceeds in rounds. In round i of the protocol all parties broadcast
their (signed) shares in the outer (t+1)-out-of-m secret-sharing scheme. Thereafter, each party can unmask
the message it receives (with its share in the appropriate 2-out-of-2 secret-sharing scheme) to obtain its
shares in the |J |-out-of-|J | inner secret-sharing of the values σi

J (for the appropriate sets QJ ’s to which the
party belongs). If a party stops broadcasting messages or broadcasts improperly signs messages, then all

8

Joint input: The security parameter 1n, the number of rounds in the protocol r = r(n), a
bound t on the number of corrupted parties, and the set of indices of aborted parties D0.

Private input: Each party pj , where j /∈ D0, has an input xj ∈ Xn.

Computing default values and signing keys

1. For every j ∈ D0, select xj with uniform distribution from Xn.

2. Select i? ∈ [r] with uniform distribution and compute w ← fn(x1, . . . , xm).

3. For each 1 ≤ i < i?, for each J ⊆ [m] \D0 s.t. m− t ≤ |J | ≤ t,

(a) For each j ∈ J , set x̂j = xj .

(b) For each j 6∈ J , select uniformly at random x̂j ∈ Xn.

(c) Set σi
J ← fn(x̂1, . . . , x̂m).

4. For each i? ≤ i ≤ r and for each J ⊆ [m] \D0 s.t. m− t ≤ |J | ≤ t, set σi
J = w.

5. Compute (Ksign, Kver) ← Gen(1n).

Computing signed shares of the inner secret-sharing scheme

6. For each i ∈ {1, . . . , r} and for each J ⊆ [m] \D0 s.t. m− t ≤ |J | ≤ t,

(a) Create shares of σi
J in a |J |-out-of-|J | secret-sharing scheme for the parties in QJ .

For each party pj ∈ QJ , let Si,J
j be its share of σi

J .

(b) Sign each share Si,J
j : compute Ri,J

j ← (Si,J
j , i, J, j,Sign((Si,J

j , i, J, j), Ksign)).

Computing shares of the outer secret-sharing scheme

7. For each i ∈ [r], for each J ⊆ [m] \ D0 s.t. m− t ≤ |J | ≤ t, and each j ∈ J ,
share Ri,J

j using a (t + 1)-out-of-m secret-sharing scheme with respect to pj as defined

in Construction B.1: compute one masking share maskj(R
i,J
j) and m − 1 complement

shares (comp1(R
i,J
j), . . . , compj−1(R

i,J
j), compj+1(R

i,J
j), . . . , compm(Ri,J

j)).

Signing the messages of all parties

8. For every 1 ≤ q ≤ m, compute the message mq,i that pq ∈ P broadcasts in round i by
concatenating (1) q, (2) i, and (3) the complement shares compq(R

i,J
j) produced in Step (7)

for pq (for all J ⊆ [m] \D0 s.t. m− t ≤ |J | ≤ t and all j 6= q s.t. j ∈ J), and compute
Mq,i ← (mq,i, Sign(mq,i,Ksign)).

Outputs: Each party pj such that j /∈ D0 receives

• The verification key Kver.

• The messages Mj,1, . . . , Mj,r that pj broadcasts during the protocol.

• pj’s private masks maskj(R
i,J
j) produced in Step (7), for each 1 ≤ i ≤ r and each

J ⊆ [m] \D0 s.t. m− t ≤ |J | ≤ t and j ∈ J .

Figure 2: The initialization functionality MultiShareGenr.

9

other parties consider it as aborted. If m − t or more parties abort, the remaining parties reconstruct the
value of the set that contains all of them, i.e., σi−1

J . In the special case of premature termination already
in the first round, the remaining active parties engage in a fully secure protocol (with honest majority) to
compute fn.

The use of the outer secret-sharing scheme with threshold t+1 plays a crucial role in eliminating the on-
line dealer. On the one hand, it guarantees that an adversary, corrupting at most t parties, cannot reconstruct
the shares of round i before round i. On the other hand, at least m − t parties must abort to prevent the
reconstruction of the outer secret-sharing scheme (this is why we cannot proceed after m−t parties aborted).
Furthermore, since t ≤ 2m/3, when at least m− t corrupt parties aborted, there is an honest majority. To
see this, assume that at least m− t corrupt parties aborted. Thus, at most t − (m− t) = 2t − m corrupt
parties are active. There are m− t honest parties (which are obviously active), therefore, as 2t−m < m− t
(since t < 2m/3), an honest majority is achieved when m− t parties abort. In this case we can execute a
protocol with full security for the reconstruction.

Finally, we replace the off-line dealer by using a secure-with-abort and cheat-detection protocol comput-
ing the functionality computed by the dealer, that is, Functionality MultiShareGenr. Obtaining the outputs
of this computation, an adversary is unable to infer any information regarding the input of honest parties or
the output of the protocol (since it gets t shares of a (t+1)-out-of-m secret-sharing scheme). The adversary,
however, can prevent the execution, at the price of at least one corrupt party being detected cheating by all
other parties. In such an event, the remaining parties will start over without the detected cheating party.
This goes on either until the protocol succeeds or there is an honest majority and a fully secure protocol
computing fn is executed.

A formal description of the protocol appears in Figure 3. The reconstruction functionality used in this
protocol (when at least m− t parties aborted) appears in Figure 4. The details of how to construct a protocol
secure-with-abort and cheat-detection with O(1) rounds are given in [4].

Comparison with the multiparty coin-tossing protocol of [4]. Our protocol combines ideas from the
protocols of [22, 4]. However, there are some important differences between our protocol and the protocol
of [4]. In the coin-tossing protocol of [4], the bits σi

J are shared using a threshold scheme where the
threshold is smaller than the size of the set QJ . This means that a proper subset of QJ containing corrupt
parties can reconstruct σi

J . In coin-tossing this is not a problem since there are no inputs. However, when
computing functionalities with inputs, such σi

J might reveal information on the inputs of honest parties in
QJ , and we share σi

J with threshold |QJ |. As a result, we use more sets QJ than in [4] and the bias of the
protocol is increased (put differently, to keep the same security, we need to increase the number of rounds
in the protocol). For example, the protocol of [4] has small bias when there are polynomially many parties
and t = m/2. Our protocol is efficient only when there are constant number of parties. As explained in
Section 4, this difference is inherent as a protocol for general functionalities with polynomially many parties
and t = m/2 cannot have a small bias.

3.3 A 1/p-Secure Protocol for Polynomial Range

Using an idea of [22], we modify our protocol such that it will have a small bias when the size of the range of
the functionality F is polynomially bounded (even if F is randomized and has a big domain of inputs). The
only modification is the way that each σi

J is chosen prior to round i?: with probability 1/(2p) we choose σi
J

as a random value in the range of fn and with probability 1− 1/(2p) we choose it as in Figure 2. Formally,
in the model with the dealer, in the preprocessing phase of MPCWithDr described in Figure 1, we replace
Step (5) with the following step:

• For each i ∈ {1, . . . , i? − 1} and for each J ⊆ [m] \D0 s.t. m− t ≤ |J | ≤ t,

10

Inputs: Each party pj holds the private input yj ∈ Xn and the joint input: the security
parameter 1n, the number of rounds in the protocol r = r(n), and a bound t on the number
of corrupted parties.

Preliminary phase:

1. D0 = ∅
2. If |D0| < m− t,

(a) The parties in {pj : j ∈ [m] \D0} execute a secure-with-abort and cheat-detection
protocol computing Functionality MultiShareGenr. Each honest party pj inputs yj

as its input for the functionality.

(b) If a party pj aborts, that is, the output of the honest parties is “abortj”, then, set
D0 = D0 ∪ {j}, chose xj uniformly at random from xj , and goto Step (2).

(c) Else (no party has aborted), denote D = D0 and proceed to the first round.

3. Otherwise (|D0| ≥ m− t), the premature termination is executed with i = 1.

In each round i = 1, . . . , r do:

4. Each party pj broadcasts Mj,i (containing its shares in the outer secret-sharing scheme).

5. For every pj s.t. Ver(Mj,i,Kver) = 0 or if pj broadcasts an invalid or no message, then all
parties mark pj as inactive, i.e., set D = D ∪ {j}. If |D| ≥ m− t, premature termination
is executed.

Premature termination step

6. If i = 1, the active parties use a multiparty secure protocol (with full security) to compute
fn: Each honest party inputs yj and the input of each inactive party is chosen uniformly at
random from Xn. The active parties output the result, and halt.

7. Otherwise,

(a) Each party pj reconstructs Ri−1,J
j , the signed share of the inner secret-sharing scheme

produced in Step (6) of Functionality MultiShareGenr, for each J ⊆ [m] \ D0 s.t.
m− t ≤ |J | ≤ t and j ∈ J .

(b) The active parties execute a secure multiparty protocol with an honest majority to
compute Functionality Reconstruction, where the input of each party pj is Ri−1,J

j
for every J ⊆ [m] \D0 s.t. m− t ≤ |J | ≤ t and j ∈ J .

(c) The active parties output the output of this protocol, and halt.

At the end of round r:

8. Each active party pj broadcasts the signed shares Rr,J
j for each J such that j ∈ J .

9. Let J ⊆ [m] \ D be the lexicographical first set such that all the parties in QJ broadcast
properly signed shares Rr,J

j . Each active party reconstructs the value σr
J , outputs σr

J , and
halts.

Figure 3: The m-party protocol MPCr for computing F .

11

Joint Input: The round number i, the indices of inactive parties D, a bound t on the number of
corrupted parties, and the verification key, Kver.

Private Input of pj: A set of signed shares Ri−1,J
j for each J ⊆ [m] \D0 s.t. m− t ≤ |J | ≤ t

and j ∈ J .

Computation:

1. For each pj , if pj’s input is not appropriately signed or malformed, then D = D∪{j}.

2. Set J = [m] \D.

3. Reconstruct σi−1
J from the shares of all the parties in QJ .

Outputs: All parties receive the value σi−1
J (as their output).

Figure 4: Functionality Reconstruction for reconstructing the output in the premature termination step.

– with probability 1/(2p), select uniformly at random zi
J ∈ Zn and set σi

J = zi
J .

– with the remaining probability 1− 1/(2p),
1. For every j 6∈ J select uniformly at random x̂j ∈ Xn and for each j ∈ J , set x̂j = xj .
2. Compute σi

J ← fn(x̂1, . . . , x̂m).

Similarly, in the protocol without the dealer, Protocol MPCr, we replace Step (3) in MultiShareGenr

(described in Figure 2) with the above step. Denote the resulting protocols with and without the dealer
models by MPCWithDForRange and MPCForRanger, respectively.

The idea why this change improves the protocol is that now the probability that all values held by the
adversary are equal prior to round i? is bigger, thus, the probability that the adversary guesses i? is smaller.
This modification, however, can cause the honest parties to output a value that is not possible given their
inputs, and, in general, we cannot simulate the case (which happens with probability 1/(2p)) when the
output is chosen with uniform distribution from the range.

4 Impossibility of 1/p-secure Computation with Non-Constant Number of
Parties

For deterministic functions, our protocol is efficient when the number of parties m is constant and the size of
the domain or range is polynomial (in the security parameter n) or when the number of parties is O(log log n)
and the size of the domain is constant. We next show that, in general, there is no efficient protocol when the
number of parties is m(n) = ω(1) and the size of the domain is polynomial and when m(n) = ω(log n)
and the size of the domain of each party is 2. This is done using the following impossibility result of Gordon
and Katz [22].

Theorem 3 ([22]) For every `(n) = ω(log n), there exists a deterministic 2-party functionality F with
domain and range {0, 1}`(n) that cannot be 1/p-securely computed for p ≥ 2 + 1/poly(n).

We next state and prove our impossibility results.

Theorem 4 For every m(n) = ω(log n), there exists a deterministic m(n)-party functionality F ′ with
domain {0, 1} that cannot be 1/p-securely computed for p ≥ 2 + 1/poly(n) without an honest majority.

12

Proof: Let `(n) = m(n)/2 (for simplicity, assume m(n) is even). Let F = {fn}n∈N be the functionality
guaranteed in Theorem 3 for `(n). Define an m(n)-party deterministic functionality F ′ = {f ′n}n∈N, where
in f ′n party pj gets the jth bit of the inputs of fn and the outputs of fn and f ′n are equal Assume that F ′
can be 1/p-securely computed by a protocol Π′ assuming that t(n) = m(n)/2 parties can be corrupted.
This implies a 1/p-secure protocol Π for F with two parties, where the first party simulates the first t(n)
parties in Π′ and the second party simulates the last t(n) parties. The 1/p-security of Π is implied by the
fact that any adversary A for the protocol Π can be transformed into an adversary A′ for Π′ controlling
m(n)/2 = t(n) parties; as A′ cannot violate the 1/p-security of Π′, the adversary A cannot violate the
1/p-security of Π. ¤

Theorem 5 For every m(n) = ω(1), there exists a deterministic m(n)-party functionality F ′′ with domain
{0, 1}log n that cannot be 1/p-securely computed for p ≥ 2 + 1/poly(n) without an honest majority.

Proof: Let `(m) = 0.5m(n) log n and letF = {fn}n∈N be the functionality guaranteed in Theorem 3 for
`(m). We divide the 2`(n) bits of the inputs of fn into m(n) blocks of length log n. Define an m(n)-party
deterministic functionality F ′′ = {f ′′n}n∈N, where in f ′′n party pj gets the jth block of the inputs of fn and
the outputs of fn and f ′′n are equal. As in the proof of Theorem 4, a 1/p-secure protocol for F ′′ implies a
1/p-secure protocol for F contradicting Theorem 3. ¤

The above impossibility results should be contrasted with the coin-tossing protocol of [4] which is
an efficient 1/p-secure protocol even when m is polynomial in the security parameter and the number of
bad parties is m(n)/2 + O(1). Notice that in both our impossibility results the size of the range is super-
polynomial (as we consider the model where all parties get the same output). It is open if there is an efficient
1/p-secure protocol when the number of parties is not constant and the size of both the domain and range is
polynomial.

References

[1] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic ad-
versaries. In S. Vadhan, editor, Proc. of the Fourth Theory of Cryptography Conference – TCC 2006,
volume 4392 of Lecture Notes in Computer Science, pages 137–156. Springer-Verlag, 2007.

[2] D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. In Proc. of the 30th IEEE
Symp. on Foundations of Computer Science, pages 468–473, 1989.

[3] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with dishonest majority. Full
version of [4].

[4] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with dishonest majority. In
T. Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer
Science, pages 538–557. Springer-Verlag, 2010.

[5] M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. A fair protocol for signing contracts. In Proceedings
of the 12th Colloquium on Automata, Languages and Programming, pages 43–52. Springer-Verlag,
1985.

[6] M. Blum. How to exchange (secret) keys. ACM Trans. Comput. Syst., 1(2):175–193, 1983.

[7] D. Boneh and M. Naor. Timed commitments. In M. Bellare, editor, Advances in Cryptology – CRYPTO
2000, volume 1880 of Lecture Notes in Computer Science, pages 236–254. Springer-Verlag, 2000.

13

[8] R. Canetti. Security and composition of multiparty cryptographic protocols. J. of Cryptology,
13(1):143–202, 2000.

[9] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In Proc. of the 18th
STOC, pages 364–369, 1986.

[10] R. Cleve. Controlled gradual disclosure schemes for random bits and their applications. In G. Brassard,
editor, Advances in Cryptology – CRYPTO ’89, volume 435 of Lecture Notes in Computer Science,
pages 573–588. Springer-Verlag, 1990.

[11] I. Damgård. Practical and provably secure release of a secret and exchange of signatures. J. of Cryp-
tology, 8(4):201–222, 1995.

[12] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. CACM,
28(6):637–647, 1985.

[13] Z. Galil, S. Haber, and M. Yung. Cryptographic computation: Secure fault-tolerant protocols and the
public-key model. In C. Pomerance, editor, Advances in Cryptology – CRYPTO ’87, volume 293 of
Lecture Notes in Computer Science, pages 135–155. Springer-Verlag, 1988.

[14] J. A. Garay, P. D. MacKenzie, M. Prabhakaran, and K. Yang. Resource fairness and composability
of cryptographic protocols. In S. Halevi and T. Rabin, editors, Proc. of the Third Theory of Cryptog-
raphy Conference – TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages 404–428.
Springer-Verlag, 2006.

[15] O. Goldreich. Foundations of Cryptography, Voume II Basic Applications. Cambridge University
Press, 2004.

[16] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proc. of the 19th ACM
Symp. on the Theory of Computing, pages 218–229, 1987.

[17] S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral majority.
In A. J. Menezes and S. A. Vanstone, editors, Advances in Cryptology – CRYPTO ’90, volume 537 of
Lecture Notes in Computer Science, pages 77–93. Springer-Verlag, 1991.

[18] S. Goldwasser and Y. Lindell. Secure computation without agreement. In DISC ’02: Proceedings
of the 16th International Conference on Distributed Computing, pages 17–32, London, UK, 2002.
Springer-Verlag.

[19] D. Gordon and J. Katz. Complete fairness in multi-party computation without an honest majority. In
Proc. of the Sixth Theory of Cryptography Conference – TCC 2009, pages 19–35, Berlin, Heidelberg,
2009. Springer-Verlag.

[20] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party computation.
In Proc. of the 40th ACM Symp. on the Theory of Computing, pages 413–422, 2008.

[21] S. D. Gordon, Y. Ishai, T. Moran, R. Ostrovsky, and A. Sahai. On complete primitives for fairness. In
D. Micciancio, editor, Proc. of the Seventh Theory of Cryptography Conference – TCC 2010, volume
5978 of Lecture Notes in Computer Science, pages 91–108. Springer-Verlag, 2010.

[22] S. D. Gordon and J. Katz. Partial fairness in secure two-party computation. In Henri Gilbert, editor,
Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science,
pages 157–176. Springer-Verlag, 2010.

14

[23] M. Luby, S. Micali, and C. Rackoff. How to simultaneously exchange a secret bit by flipping a
symmetrically-biased coin. In Proc. of the 24th IEEE Symp. on Foundations of Computer Science,
pages 11–21, 1983.

[24] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In Proc. of the Sixth Theory of
Cryptography Conference – TCC 2009, pages 1–18, 2009.

[25] B. Pinkas. Fair secure two-party computation. In E. Biham, editor, Advances in Cryptology – EU-
ROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 87–105. Springer-Verlag,
2003.

[26] A. Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.

[27] A. C. Yao. How to generate and exchange secrets. In Proc. of the 27th IEEE Symp. on Foundations of
Computer Science, pages 162–167, 1986.

A Security with Abort and Cheat Detection

We next present a definition of secure multiparty computation that is more stringent than standard definitions
of secure computation with abort. This definition extends the definition for secure computation as given by
Aumann and Lindell [1]. Roughly speaking, the definition requires that one of two events is possible: (1)
The protocol terminates normally, and all parties receive their outputs, or (2) Corrupted parties deviate from
the prescribed protocol; in this case the adversary obtains the outputs of the corrupted parties (but nothing
else), and all honest parties are given an identity of one party that has aborted. The formal definition uses
the real vs. ideal paradigm as discussed in Section 2.1. We next describe the appropriate ideal model.

Execution in the ideal model. Let B ⊆ [m] denote the set of indices of corrupted parties controlled by
an adversary A. The adversary A receives an auxiliary input denoted aux. An ideal execution proceeds as
follows:

Send inputs to trusted party: The honest parties send their inputs to the trusted party. The corrupted
parties may either send their received input, or send some other input of the same length (i.e., xj ∈
Xn) to the trusted party, or abort (by sending a special “abortj” message). Denote by x1, . . . , xm

the inputs received by the trusted party. If the trusted party receives an “abortj” message, then it
sends “abortj” to all honest parties and terminates (if it received “abortj” from more than one j,
then it uses the minimal such j).

Trusted party sends outputs to adversary: The trusted party computes w ← fn(x1, . . . , xm) and sends
the output w to the adversary.

Adversary instructs the trusted party to continue or halt: A sends either a “continue ” message or
“abortj” to the trusted party for some corrupt party pj , i.e., j ∈ B. If it sends a “continue ”
message, the trusted party sends w to all honest parties. Otherwise, if the adversary sends “abortj”,
then the trusted party sends “abortj” to all honest parties.

Outputs: An honest party always outputs the value w it obtained from the trusted party. The corrupted
parties output nothing. The adversary A outputs any (probabilistic polynomial-time computable)
function of the auxiliary input aux, the inputs of the corrupt parties, and the value w obtained from
the trusted party.

15

We let IDEALCD
F ,S(aux)(~y, 1n) and REALΠ,A(aux)(~y, 1n) be defined as in Section 2.1 (where in this

case IDEALCD
F ,S(aux)(~y, 1n) refers to the above execution with cheat-detection of F). This ideal model is

different from that of [15] in that in the case of an “abort”, the honest parties get output “abortj” and not
a ⊥ symbol. This means that the honest parties know an identity of a corrupted party that causes the abort.
This cheat-detection is achieved by most multiparty protocols, including that of [16], but not all (e.g., the
protocol of [18] does not meet this requirement). Using this notation we define secure computation with
abort and cheat-detection.

Definition A.1 (security-with-abort and cheat-detection) LetF and Π be as in Definition 2.2. A protocol
Π is said to securely computeF against at most t(n) corrupt parties with abort and cheat-detection if
for every non-uniform polynomial-time adversaryA in the real model controlling at most t(n) parties, there
exists a non-uniform polynomial-time adversary S in the ideal model controlling the same parties, such that
{

IDEALCD
F ,S(aux)(~y, 1n)

}
aux∈{0,1}∗,~y∈(Xn)m,n∈N

C≡ {
REALΠ,A(aux)(~y, 1n)

}
aux∈{0,1}∗,~y∈(Xn)m,n∈N .

B Cryptographic Tools

Signature Schemes. Informally, a signature on a message proves that the message was created by its
presumed sender, and its content was not altered. A signature scheme is a triple (Gen,Sign, Ver) containing
the key generation algorithm Gen, which outputs a pair of keys, the signing key KS and the verification key
Kv, the signing algorithm Sign, and the verifying algorithm Ver. We assume that it is infeasible to produce
signatures without holding the signing key. For formal definition see [15].

Secret Sharing Schemes. An α-out-of-m secret-sharing scheme is a mechanism for sharing data among
a set of parties such that every set of size α can reconstruct the secret, while any smaller set knows nothing
about the secret. In this paper, we use two schemes: the XOR-based m-out-of-m scheme (i.e., in this scheme
α = m) and Shamir’s α-out-of-m secret-sharing scheme [26] which is used when α < m. In both schemes,
for every α − 1 parties, the shares of these parties are uniformly distributed and independent of the secret.
Furthermore, given such α − 1 shares and a secret s, one can efficiently complete them to m shares of the
secret s.

In our protocols we sometimes require that a single party learns the value of a secret that is shared
among all parties. Since all messages are sent over a broadcast channel, we use two layers of secret sharing
to obtain the above requirements as described below.

Construction B.1 (secret sharing with respect to a certain party) Let s be a secret taken from some finite
field F. We share s among m parties with respect to a (special) party pj in an α-out-of-m secret-sharing
scheme as follows:

1. Choose shares (s(1), s(2)) of the secret s in a two-out-of-two secret-sharing scheme (that is, select
s(1) ∈ F uniformly at random and compute s(2) = s − s(1)). Denote these shares by maskj(s) and
comp(s), respectively.

2. Compute shares (λ(1), . . . , λ(j−1), λ(j+1), . . . , λ(m)) of the secret comp(s) in an (α−1)-out-of-(m−
1) Shamir’s secret-sharing scheme. For each ` 6= j, denote comp`(s) = λ(`).

Output:

• The share of party pj is maskj(s). We call this share “pj’s masking share”.

16

• The share of each party p`, where ` 6= j, is comp`(s). We call this share “p`’s complement share”.

In the above scheme, we share the secret s among the parties in P in an α-out-of-m secret-sharing scheme
where only sets of size α that contain pj can reconstruct the secret. In this construction, for every β < α
parties, the shares of these parties are uniformly distributed and independent of the secret. Furthermore,
given such β < α shares and a secret s, one can efficiently complete them to m shares of the secret s. In
addition, given β shares and a secret s, one can efficiently select uniformly at random a vector of shares
competing the β shares to m shares of s.

C Proof of 1/p-Security of the Protocols with a Dealer

In this section we prove that our protocols described in Section 3 that assume an trusted dealer are perfect
1/poly-secure implementations of the ideal functionality F . We start by presenting in Appendix C.1 a
simulator for Protocol MPCWithDr. In Appendix C.2, we prove the correctness of the simulation by
showing the the global output in the ideal-world is distributed within 1/poly statistical distance from the
global output in the real-world. In Appendix C.3, we describe the required modifications to the simulator
for the protocol for F that has a polynomial-size range, and argue that the modified simulation is correct.

C.1 The Simulator for Protocol MPCWithDr

We next present a simulator ST for Protocol MPCWithDr, described in Figure 1. Let B be the set of
indices of corrupted parties in the execution.

The simulator ST invokes A on the set of inputs {yj : j ∈ B}, the security parameter 1n, and the auxil-
iary input aux, playing the role of the trusted dealer in the interaction with A.

Simulating the preprocessing phase:

1. D0 = ∅.
2. The simulator ST sends a “start ” message to all corrupt parties.
3. ST receives a set of inputs {xj : j ∈ B} that A submits to the computation of the dealer. If
A does not submit an input on behalf of pj , i.e., A sends an “abortj” message, then, the
simulator ST notifies all corrupted parties that party pj aborted and updates D0 = D0 ∪ {j}.

4. ST sets D = D0. If |D| ≥ m− t, the simulator sets i = 1 and proceeds to simulate the
premature termination step.

5. ST selects i? ∈ {1, . . . , r} with uniform distribution.
6. For each i ∈ {1, . . . , i? − 1} and for each J ⊆ B \D0 s.t. m− t ≤ |J | ≤ t do

(a) For each j ∈ [m], if j ∈ J , then ST sets x̂j = xj , else, ST selects uniformly at random
x̂j ∈ Xn.

(b) ST sets σi
J ← fn(x̂1, . . . , x̂m).

7. The simulator ST sends “proceed ” to all corrupt parties.

Simulating interaction rounds: In each round 1 ≤ i ≤ r, the simulator ST interacts in three phases with
the parties {pj : j ∈ B \D0}, i.e., the corrupt parties which are active so far:

• The peeking phase:
– If i = i?, the simulator ST sends the set of inputs {xj : j ∈ B \D0} to the trusted party

computing F and receives wS .

17

– For each J ⊆ B \D0 s.t. m− t ≤ |J | ≤ t do
1. If i ∈ {1, . . . , i? − 1}, the simulator ST sends the value σi

J (prepared in the simulation
of the preprocessing phase) to all parties in QJ (i.e., to the adversary).

2. Else, if i ∈ {i?, . . . , r}, ST sends the value wS to all parties in QJ (i.e., to the adver-
sary).

• The abort phase: Upon receiving an “abortj” message from a party pj ,
1. ST notifies all corrupted parties that party pj aborted.
2. ST updates D = D ∪ {j}.
3. If at least m− t parties have aborted so far, that is |D| > m− t, the simulator ST proceeds

to simulate the premature termination step.
• The main phase: ST sends “proceed ” to all corrupt parties.

Simulating the premature termination step:

• If the premature termination step occurred in round i = 1,

– The simulator ST receives a set of inputs {xj
′ : j ∈ B \D} that A submits to the compu-

tation of the dealer.
If A does not submit an input on behalf of pj , i.e., sends an “abortj” message, then, the
simulator S notifies all corrupted parties that party pj aborted and updates D = D ∪ {j}.

– The simulator ST sends the set of inputs {xj
′ : j ∈ B \D} to the dealer and receives wS .

• If the premature termination step occurred in round 1 < i < i?,
1. Upon receiving an “abortj” message from a party pj , the simulator ST updates D =

D ∪ {j}.
2. The simulator ST sends the set of inputs {xj : j ∈ B \D} to the trusted party computing
F and receives wS .

• (¦ If the premature termination step occurred in round i? ≤ i ≤ r, then ST already has wS ¦)
• ST sends the value wS to each party in {pj : j ∈ B \D0}.

Simulating normal termination: If the last round of the protocol is completed, then ST sends wS to each
party in {pj : j ∈ B \D0}.

At the end of the interaction withA, the simulator will output the sequence of messages exchanged between
the simulator and the corrupted parties.

C.2 Proof of the Correctness of the Simulation for MPCWithDr

In order to prove the correctness of the simulation described in Appendix C.1, we consider the two random
variables from Section 2.1, both of the form (V,C), where V describes a possible view ofA, and C describes
a possible output of the honest parties (i.e., C ∈ Zn). The first random variable REALMPCWithDr,A(aux)(~y, 1n)
describes the real world – an execution of Protocol MPCWithD, where V describes the view of the adver-
saryA in this execution, and C is the output of the honest parties in this execution. The second random vari-
able IDEALF ,ST (aux)(~y, 1n) describes the ideal world – an execution with the trusted party computing F
(this trusted party is denoted by TF), where V describes the output of the simulator ST in this execution, and
C is the output of the honest parties in this execution. For the rest of this section, we simplify notations and
denote the above two random variables by REAL = (VREAL, CREAL) and IDEAL = (VIDEAL, CIDEAL)
respectively.

18

We consider the probability of a given pair (v, c) according to the two different random variables. We
compare the two following probabilities: (1) The probability that v is the view of the adversary A in an
execution of Protocol MPCWithDr and c is the output of the honest parties in this execution, where the
probability is taken over the random coins of the dealer T . (2) The probability that v is the output of the
simulator ST in an ideal-world execution with the trusted party TF and c is the output of the honest parties
in this execution, where the probability is taken over the random coins of the simulator ST and the random
coins of the ideal-world trusted party TF .

In Lemma C.3 we prove the correctness of the simulation by showing that the two random variables are
within statistical distance 1/poly. For the proof of the lemma we need the following claim from [22].

Claim C.1 ([22, Lemma 2]) Let A be an adversary in Protocol MPCWithDr and let x1, . . . , xm be a
set of inputs. Assume that for every possible output w obtained by the dealer using this set of inputs the
probability that in a round i < i? all the values that the adversary sees are equal to w is at least α. Then,
the probability that A guesses i? (i.e., causes premature termination in round i?) is at most 1/αr.

As the adversary might have some auxiliary information on the inputs of the honest parties and know
the value of fn(x1, . . . , xm), the adversary might be able to deduce that a round is not i? if not all the values
that it gets are equal to this value (or a possible value for randomized functionalities). Specifically, in the
worst case scenario, the adversary knows the inputs of all the honest parties. In the next claim we show a
lower bound on the probability that all the values that the adversary obtains in a round i < i? of Protocol
MPCWithDr are all equal to a fixed value.

Claim C.2 Let d(n) and g(n) be the size of the domain and range, respectively, of a randomized function-
ality F computed by the protocol MPCWithDr. Let ε be a number such that Pr[fn(x1, . . . , xm) = w`] ≥ ε
for every set of inputs x1, . . . , xm and for each w` from the range of fn(x1, . . . , xm). Then, the proba-
bility that in a round i < i? all the values that the adversary sees are equal to a specific w is at least
(ε/d(n)m)2

t−1.
Furthermore, if F is deterministic, then, this probability is at least (1/d(n)m)2

t−1.

Proof: We start with the case of a deterministic functionality F . Recall that x1, . . . , xm are the inputs
used by the dealer to obtain w = fn(x1, . . . , xm) and σi?

J = w for each J ⊆ [m] s.t. m− t ≤ |J | ≤ t.
Let J be such that the adversary obtains σi

J in round i < i?. Recall that x̂1, . . . , x̂m are the inputs used by
the dealer to obtain σi

J , that is, σi
J = fn(x̂1, . . . , x̂m), where x̂j = xj for each j ∈ J and x̂j is selected

uniformly at random from x̂j for every j /∈ J . We bound the probability that σi
J = w by the probability that

x̂j = xj for all j /∈ J . The probability that x̂j = xj is 1/d. Therefore, the probability that both sets are the
same is (1/d)m−|J | > (1/d)m.

In each round of the protocol, A obtains the value σi
J for each subset QJ s.t. J ⊆ [m] and m− t ≤

|J | ≤ t, therefore, A obtains less than 2t values. For each such two values σi
J and σi

J ′ obtained by A
in round i < i?, the sets of inputs {x̂j : j /∈ J} and {x̂j : j /∈ J ′} are totally independent. Therefore, the
probability that all the values that the adversary sees in round i < i? are equal to w = fn(x1, . . . , xm) is at
least (1/dm)2

t−1.
For randomized functionality F , we think of the evaluation of fn(x̂1, . . . , x̂m) as two steps: first x̂j is

randomly chosen from Xn for every j 6∈ J and then the randomized functionality is evaluated. Therefore, as
A obtains less than 2t values in each round i < i?, that the probability that all the values that the adversary
sees in each round i < i? are equal to the specific w is at least (1/dm)2

t−1 · ε2t−1. ¤
In the next lemma, we prove the correctness of the simulation by using the previous two lemmas.

19

Lemma C.3 Let F be a (possibly randomized) functionality, A be a non-uniform polynomial-time adver-
sary corrupting t < 2m/3 parties in an execution of Protocol MPCWithD, and ST be the simulator
described in Appendix C.1 (where ST controls the same parties as A). Then, for every n ∈ N, for every
~y ∈ (Xn)m, and for every aux ∈ {0, 1}∗

SD
(

REALMPCWithDr,A(aux)(~y, 1n),IDEALF ,ST (aux)(~y, 1n)
)
≤ 2g(n)d(n)m/ (r(n))2

t

,

where d(n) and g(n) are the sizes of the range and the domain of F , respectively, and r(n) be the number
of rounds in the protocol.

Furthermore, if F is deterministic, then, the statistical distance between these two random variables is
at most (d(n)m)2

t
/r(n).

Proof: Our goal here is to show that the statistical distance between the above two random variables is
at most as described in lemma. The flow of our proof is as follows. We first bound the statistical distance
between the two random variables by the probability that the adversary A guesses the special round i?. We
do this by showing that, conditioned on the event that the adversary fails to guess round i?, the two random
variables are identically distributed. Then, we bound the probability of guessing i? in time using Claim C.1
and Claim C.2.

Observe that, in the simulation, ST follows the same instructions as the trusted party T in Protocol
MPCWithDr, except for two changes. First, ST does not compute the output wS , but rather gets wS

externally from TF . The simulator obtains this value either in the premature termination phase (if i < i?) or
in the peeking stage when i = i?. The second difference is that in the case of a premature termination, ST

will always use wS as its message to the corrupt parties, while T will use the value from round i?− 1 of the
appropriate subset QJ as its message.

We analyze the probabilities of (v, c) in the two random variables according to weather the premature
termination occurred before, during, or after the special round i?.

Premature termination before round i?. We argue that in this case, both in the real protocol and in
the simulation, the view of A is identically distributed in the two worlds. ST follows the same random
process in interacting with A (before sending the last message in the premature termination) as does T in
the real-world execution. The view of the adversary consists of values which are outputs of evaluations of
the function fn on the same input distributions. The adversary does not learn anything about the inputs of
the honest parties, hence, its decision to abort does not depend on any new information it obtains during the
interaction rounds so far. In addition, in both worlds, the output of the honest parties is the evaluation of
the function fn on the same set of inputs for the active parties and uniformly selected random inputs for the
aborted parties.

Premature termination after round i? or never occurs. Here v must contain σi?

J for some J , which,
in the real-world execution, is equal to the output value of all sets for any round i > i? (recall that the
output value of the honest parties will be determined by one such value), and in the simulation it equals wS .
Thus, in both scenarios, v must be consistent with i? and with c, hence, v completely determines C. Again,
since ST follows the same random process in interacting with A as does T in the real-world execution the
probabilities are the same.

Premature termination in round i?. This is the interesting case, which causes the statistical distance. In
the real world, the output of the honest parties is σi?−1

J for some J , while in the ideal world their output
is wS ← fn(x1, . . . , xm). In the first case the output is independent of the adversary’s view, while in the

20

second case, the view determines the output. Thus, in this case the probabilities of the views are different.
However, we will show that the event of premature termination in round i? happens with small probability.

Since the probabilities of (v, c) in the first two cases are equal, the statistical distance between the two
random variables is bounded by the probability of the adversary guessing i? correctly (before the abort phase
of round i?). That is,

SD (IDEAL,REAL) ≤ Pr[Premature termination in round i?]. (1)

We next use Claim C.1 and Claim C.2 to bound the probability that the adversary guesses i?. However,
there might be values such that Pr[w = fn(x1, . . . , xm)] is small. Therefore, we consider two events
of guessing i?, where p0 is a parameter specified below. We call an output values w heavy if Pr[w =
fn(x1, . . . , xm)] > 1/(p0 · g), otherwise, we call w light.

Case 1: The adversary guesses i? with some light w. Since there are at most g possible values of fn(x1, . . . , xm),
the probability of this event, by the union bound, is at most 1/p0.

Case 2: The adversary guesses i? with some heavy w. Thus, by Claim C.2 where ε = p0 · g, the probability
of w = σi

J for all values that the adversary sees in round i < i? is at least (1/dm · p0 · g)2
t−1. By

Claim C.1, the probability that the adversary guesses i? conditioned on the w being heavy is at most
(dm · p0 · g)2

t−1/r.

We take p0 = r2−t
/(g ·dm); the total probability that the adversary guesses i? in the two cases is at most

(dm · p0 · g)2
t−1

r
+

1
p0
≤ 2 · g · dm

r2−t .

Therefore, by Equation (1), the statistical distance between the two random variables in the randomized case
is as claimed in the lemma.

The case that F is deterministic is simpler. By combining Claim C.1 and Claim C.2 we get that the
probability that A guesses i? is at most (r/d(n)m)2

t−1. By applying Equation (1), we get the bound on
statistical distance between the two random variables for the deterministic case as claimed in the lemma. ¤

C.3 The Simulator for the Protocol with the Dealer for Polynomial Range

Lemma C.4 Let F be a (possibly randomized) functionality. For every non-uniform polynomial-time ad-
versary A corrupting t < 2m/3 parties in an execution of Protocol MPCWithDForRange, there exists a
simulator ST in the ideal model, that simulates the execution of A (where ST controls the same parties as
A). That is, for every n ∈ N, for every ~y ∈ (Xn)m, and for every aux ∈ {0, 1}∗

SD
(
REALMPCWithDr,A(aux)(~y, 1n), IDEALF ,ST (aux)(~y, 1n)

)
<

(2p(n) · g(n))2
t

r(n)
+

1
2p(n)

,

where g(n) is the size of the range ofF , with probability 1/(2p(n)) each value σi
J in round i < i? is selected

uniformly at random from the range, and r(n) be the number of rounds in the protocol.

Proof: The simulators and their proofs for Protocol MPCWithDForRange and Protocol MPCWithD
are similar; we only present (informally) the differences between the two simulators and the two proofs.

21

The modified simulator. Recall that the protocols MPCWithD and MPCWithDForRange are different
only in Step (3) of the share generation step. In MPCWithDForRange, each value σi

J prior to round i?

is chosen with probability 1/(2p) as a random value from the range of fn and with probability 1 − 1/(2p)
it is chosen just like in Figure 1. There are two modifications to the simulator. The first modification in
the simulator is in Step (6) in the simulation of the preprocessing phase, i.e., in the computation of σi

J for
i < i?. The step that replaces Step (6) appears below.

• For each i ∈ {1, . . . , i? − 1} and for each J ⊆ B \D0 s.t. m− t ≤ |J | ≤ t do

1. with probability 1/(2p), select uniformly at random zi
J ∈ Zn and set σi

J = zi
J .

2. with the remaining probability 1− 1/(2p),

(a) For each j ∈ [m], if j ∈ J , then ST sets x̂j = xj , else, ST selects uniformly at random
x̂j ∈ Xn.

(b) ST sets σi
J ← fn(x̂1, . . . , x̂m).

The second modification is less obvious. Recall that both random variables appearing in the lemma contain
the output of the honest parties. In the ideal world, the honest parties always output fn applied to their
inputs. In the real world, in a premature termination in round i < i?, with probability 1/(2p), the honest
parties output a random value from the range of fn. It is hard to simulate the output of the honest parties in
first case.4 We simply modify the simulator such that with probability 1/(2p) the simulator returns ⊥, i.e.,
it announces that the simulation has failed. The new premature termination step appears below.

Simulating the premature termination step:

• If the premature termination step occurred in round i < i?,

– With probability 1/(2p), for each j ∈ B \D0 send “abortj” to the trusted party comput-
ing F and return ⊥.

– With the remaining probability 1−1/(2p), execute the original simulation of the premature
termination step (appearing in Appendix C.1).

• Else (i ≥ i?), execute the original simulation of the premature termination step (appearing in
Appendix C.1).

The modified proof. The proof to the simulator for MPCWithDForRange remains basically the same,
except for two changes. We first modify Claim C.2 below and prove a slightly different claim, which changes
the probability of the adversary guessing i?.

Claim C.5 Let g(n) be the size of the range of the (possibly randomized) functionality F computed by the
protocol MPCWithDForRanger and w ∈ Zn. Then, the probability that in a round i < i? all the values
that the adversary sees are equal to w is at least (1/2p(n) · g(n))2

t
.

Proof: According to the protocol, there are two different ways to produce each value σi
J in round i < i?:

(1) Compute fn on a set of inputs and a set of uniformly selected values from the domain of the functionality,
and (2) Set σi

J as a uniformly selected value from the range of the functionality. We ignore the first case.
In the second option, with probability 1/2p, the value σi

J is uniformly selected from the range. Hence, the
probability that σi

J is equal to a specific value is at least 1/(2p · g).

4For example, there might not be possible inputs of the corrupt parties causing the honest parties to output such output.

22

It was explained in the proof of Claim C.2 that in each round of the protocol, A obtains less than 2t

values. Therefore, we conclude that he probability that all the values that A obtains in round i < i? are all
equal to w is at least (1/(2p · g))2

t
. ¤

By applying the Claim C.1 we conclude that the probability of the adversary guessing i? correctly in
Protocol MPCWithDForRanger is at most (2p ·g)2

t
/r. In case of a premature termination in round i < i?,

with probability 1 − 1/(2p) in both the ideal world and real world, the value that the honest parties output
is the evaluation of fn on the inputs of the active parties and random inputs for the parties that aborted.
However, with probability 1/(2p), if premature termination occurs prior to round i?, the output of the
honest parties Protocol MPCWithDForRanger is a random value from the range of fn; the simulator fails
to simulate the execution in this case and outputs ⊥. Thus,

SD (IDEAL, REAL)
≤ Pr[Premature termination in round i?] + (1/2p) · Pr[Premature termination before round i?]

≤ (2p · g)2
t
/r + (1/2p).

Therefore, the statistical distance is as claimed. ¤

D Proof of Security for the Protocols without the Dealer

D.1 The Simulator for Protocol MPCr

We next prove that Protocol MPCr is a secure real-world implementation of the (ideal) functionality of
Protocol MPCWithDr. By Lemma C.3, when r(n) is sufficiently large, Protocol MPCWithDr is a 1/p-
secure protocol for F . Thus, together we get that Protocol MPCr is a 1/p-secure protocol for F . according
to the definition appears in Appendix A. We analyze Protocol MPCr in a hybrid model where there are 3
ideal functionalities:

Functionality MultiShareGenWithAbortr. This functionality is an (ideal) execution of Functional-
ity MultiShareGenr in the secure-with-abort and cheat-detection model. That is, the functionality
gets a set of inputs. If the adversary sends “abortj” for some corrupt party pj , then this message
is sent to the honest parties and the execution terminates. Otherwise, Functionality MultiShareGenr

is executed. Then, the adversary gets the outputs of the corrupt parties. Next, the adversary decides
whether to halt or to continue: If the adversary decides to continue, it sends a “proceed ” message
and the honest parties are given their outputs. Otherwise, the adversary sends “abortj” for some
corrupt party pj , and this message is sent to the honest parties.

Functionality FairMPC. This functionality computes the value fn(x1, . . . , xm). That is, the functional-
ity gets a set of inputs. If a party pj sends “abortj” message then xj selected from Xn with uniform
distribution, computes an output of the randomized functionality fn for them, and gives it to all par-
ties. When this functionality is executed, an honest majority is guaranteed, hence, the functionality
can be implemented with full security (e.g., with fairness).

Functionality Reconstruction. This functionality is described in Figure 4; this functionality is used in
the premature termination step in Protocol MPCr for reconstructing the output value from the shares
of the previous round. When this functionality is executed, an honest majority is guaranteed, hence,
the functionality can be implemented with full security (e.g., with fairness).

23

We consider an adversary A in the hybrid model described above, corrupting t < 2m/3 of the parties
that engage in Protocol MPCr. We next describe a simulator S interacting with the honest parties in the
ideal-world via a trusted party TMPCWithD executing Functionality MPCWithDr. The simulator S runs the
adversary A internally with black-box access. Simulating A in an execution of the protocol, S corrupts the
same subset of parties as does A. Denote by B = {i1, . . . , it} the set of indices of corrupt party. At the end
of the computation it outputs a possible view of the adversary A. To start the simulation, S invokes A on
the set of inputs {yj : j ∈ B}, the security parameter 1n, and the auxiliary input aux.

Simulating the preliminary phase:

1. D0 = ∅.

2. The simulator S receives a set of inputs {xj : j ∈ B \D0} that A submits to Functionality
MultiShareGenWithAbortr.
If a party pj for j ∈ B \D0 does not submit an input, i.e., sends an “abortj” message, then,

(a) S sends “abortj” to the trusted party TMPCWithD.
(b) S updates D0 = D0 ∪ {j}.
(c) If |D0| < m− t, then Step (2) is repeated.
(d) Otherwise (|D0| ≥ m− t), simulate premature termination with i = 1.

3. S prepares outputs for the corrupted parties for Functionality MultiShareGenWithAbortr: The
simulator S sets σi

J = 0 for every J ⊆ [m] \D0 s.t. m− t ≤ |J | ≤ t and for all i ∈ {1, . . . , r}.
Then, S follows Step (1) and Steps 5–8 in the computation of Functionality MultiShareGenr

(skipping the Steps 2–4) to obtain shares for the parties.5

4. For each party pj s.t. j ∈ B \D0, the simulator S sends to A:

• The verification key Kver.
• The masking shares maskj(R

i,J
j) for each i ∈ {1, . . . , r} and for every J ⊆ [m] \D0 s.t.

m− t ≤ |J | ≤ t and j ∈ J .
• The messages Mj,1, . . . , Mj,r.

5. If A sends an “abortj” for some party pj s.t. j ∈ B \D0 to S, then,

(a) S sends “abortj” to the trusted party TMPCWithD.
(b) S updates D0 = D0 ∪ {j}.
(c) If |D0| < m− t, then Steps 2–5 are repeated.
(d) Otherwise (|D0| ≥ m− t), go to simulating premature termination with i = 1.

Otherwise (A sends a “continue ” message to S),

(a) The simulator S denotes D = D0.
(b) The simulator sends xj to TMPCWithD for every j ∈ B \ D0 (and gets as response a

“proceed ” message).

Simulating interaction rounds:
Let J be the collection of subsets J ⊆ B \D0 s.t. m− t ≤ |J | ≤ t. I.e., J is the collection of sets of
indices of active corrupt parties after the simulation of the executions of MultiShareGenWithAbortr
To simulate round i for i = 1, . . . , r, the simulator S proceeds as follows:

5These shares are temporary and will later be open to the actual values obtained from TMPCWithD during the interaction rounds
using the properties of Shamir’s secret-sharing scheme.

24

1. S gets from the trusted party TMPCWithD the values that the corrupted parties see. That is, S
gets a bit τ i

J for each J ∈ J .6

2. The simulator S selects shares for the inner secret-sharing scheme for corrupted parties: For
every J ∈ J , the simulator S selects uniformly at random shares of τ i

J in a |J |-out-of-|J |
Shamir secret sharing scheme. Denote these shares by

{
Xi,J

j : pj ∈ QJ

}
.

For each pj ∈ QJ , let Y i,J
j ← (Xi,J

j , i, J, j,Sign((Xi,J
j , i, J, j),Ksign)).

3. The simulator S selects complementary shares for all honest parties: For every J ∈ J and for
each j ∈ B \D0,

(a) S calculates αj = maskj(R
i,J
j)⊕ Y i,J

j .
(b) S selects uniformly at random m− t shares of αj uniformly at random over all possible

selections of m− t shares that are shares of αj together with the |B \D0| − 1 shares
{

compq(R
i,J
j) : q ∈ B \ (D0 ∪ {j})

}

produced in Step (3) in the simulation of the preliminary phase.
(This is possible according to the property of Shamir’s scheme)
Denote by compq(Y

i,J
j) the complementary share that S selects for the honest party pq for

a party pj s.t. j ∈ (B \D0) ∩ J , where J ∈ J .

4. For party pj and a subset J /∈ J , let compq(R
i,J
j) be the complementary share which was

produced in Step (3) in the simulation of the preliminary phase, i.e., compq(R
i,J
j).

5. Construct signed messages m′
q,i for each honest party pq in round i by concatenating:

(a) q.
(b) The round number i.
(c) The complement shares which were described in Step (4) above.
(d) The complement shares compq(Y

i,J
j) for all J ∈ J and for all j ∈ J produced in Step (3)

for pq.
Then, S signs m′

q,i, i.e., S computes M ′
q,i ← (m′

q,i, Sign(m′
q,i, Ksign)).

6. The simulator S sends all the message M ′
q,i on behalf of each honest party pq to A.

7. For every j ∈ B \ D0 s.t. A sends an invalid or no message on behalf of pj , the simulator S
sends “abortj” to TMPCWithD:
(a) D = D ∪ {j}.
(b) If |D| ≥ m− t go to premature termination step.
(c) Otherwise, the simulator S proceeds to the next round.

Simulating the premature termination step:

• If i = 1, then S simulates A’s interaction with Functionality FairMPC as follows:
1. S receives from A the inputs of the active corrupt parties.
2. For every j ∈ B \D: If pj does not send an input, then S sends “abortj” to TMPCWithD

else, S sends pj’s input to TMPCWithD.

6In Steps 2–5, the simulator S constructs the messages of the honest parties in order to allow the corrupted parties in each
J ∈ J to reconstruct τ i

J .

25

• If i > 1, then S simulates A’s interaction with Functionality Reconstruction as follows:
1. S receives from A the inputs of the active corrupt parties, i.e., pj s.t. j ∈ B \D.
2. If an active corrupt party pj , does not send an input, or its input is not appropriately signed

or malformed, then S sends “abortj” to TMPCWithD.
• S gets from TMPCWithD a value σ and sends it to A.
• The simulator S outputs the sequence of messages exchanged between S and the adversary A

and halts.

Simulating normal termination at the end of round r:

1. The simulator gets w from the trusted party TMPCWithD.
2. S constructs all the singed shares of the inner secret-sharing scheme for each J ⊆ [m] \D0 s.t.

m− t ≤ |J | ≤ t and for each honest party pj ∈ QJ as follows.
For each J /∈ J , the simulator S selects uniformly at random |J \B| shares of w uniformly at
random over all possible selections of |J \B| shares that together with the |J ∩B| given shares{

Ri,J
j : j ∈ B

}
(produced in Step (2) in the simulation of the preliminary phase) are a sharing

of w in a |J |-out-of-|J | secret sharing scheme.
(This is possible according to the property of Shamir’s scheme)
Denote these shares by

{
Xr,J

j

}
.

For each share Xr,J
j , the simulator concatenates the corresponding identifying details, and signs

them to obtain: Y r,J
j ← (Xr,J

j , r, J, j,Sign((Xr,J
j , r, J, j),Ksign)).

3. For each honest party pj , the simulator S sends to A the shares Y r,J
j for all subsets J , such that

pj ∈ QJ .
4. The simulator S outputs the sequence of messages exchanged between S and the adversary A

and halts.

D.2 Proving the Correctness of Protocol MPCr and Protocol MPCForRanger

It can be proved that Protocol MPCr is a secure implementation of the (ideal) functionality of the dealer’s
in Protocol MPCWithDr. That is,

Lemma D.1 Let t < 2m/3. If enhanced trap-door permutations exist, then Protocol MPCr presented in
Section 3.2, is a computationally-secure implementation (with full security) of the dealer functionality in
Protocol MPCWithDr.

In [3], a similar framework to the one used in this paper is used: first a protocol with a dealer for the
coin-tossing problem is presented and, then, a real-world protocol that is a computationally-secure imple-
mentation (with full security) of the dealer functionality is described. In [3], a simulator for this protocol
is given. This simulator is similar to the simulator described in Appendix D.1, than a full proof for the
simulator is provided. As the proof is very similar to the proof of our simulator, we omit the proof.

To conclude the proof, as MPCWithDr is a 1/p-secure implementation of F and MPCr is a secure
implementation of the (ideal) functionality of the dealer in Protocol MPCWithDr, by the composition
theorem of Canetti [8] we conclude that MPCr 1/p-secure implementation of F . That is, Theorem 1 is
proved.

Next, we claim that MPCForRanger is a secure implementation of the (ideal) functionality of the dealer
in Protocol MPCWithDForRanger. That is,

26

Lemma D.2 Let t < 2m/3. If enhanced trap-door permutations exist, then Protocol MPCForRanger

described in Section 3.3, is a computationally-secure implementation (with full security) of the dealer func-
tionality in Protocol MPCWithDForRanger.

Proof: Recall that the only difference between Protocol MPCr and Protocol MPCForRanger is in the
way that the values that the parties see prior round i? are produced, i.e., the difference is in Functional-
ity MultiShareGenr. Specifically, in Section 3.3 we presented a modification in Step (3) in Functional-
ity MultiShareGenr in order to get Protocol MPCr from Protocol MPCForRange. Now, observe that
the simulator presented above does not refer to Step (3) of Functionality MultiShareGenr in any step.
Therefore, the simulator presented in Appendix D.1 for Protocol MPCr is also a simulator for Protocol
MPCForRanger. ¤

Claim C.5 and Lemma D.2 imply Theorem 2.

27

