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Abstract. In this work, we provide a software benchmark for a large range of 256-bit blockcipher-based hash
functions. We instantiate the underlying blockcipher with AES, which allows us to exploit the recent AES in-
struction set (AES-NI). Since AES itself only outputs 128 bits, we consider double-block-length constructions,
as well as (single-block-length) constructions based on RIJNDAEL-256. Although we primarily target archi-
tectures supporting AES-NI, our framework has much broader applications by estimating the performance of
these hash functions on any (micro-)architecture given AES-benchmark results. As far as we are aware, this is
the first comprehensive performance comparison of multi-block-length hash functions in software.

1 Introduction

Historically, the most popular way of constructing a hash function is to iterate a compression function
that itself is based on a blockcipher (this idea dates back to Rabin [63]). This approach has the prac-
tical advantage—especially on resource-constrained devices—that only a single primitive is needed to
implement two functionalities (namely encrypting and hashing). Moreover, trust in the blockcipher can
be conferred to the corresponding hash function. The wisdom of blockcipher-based hashing is still valid
today. Indeed, the current cryptographic hash function standard SHA-2 and some of the SHA-3 candi-
dates are, or can be regarded as, blockcipher-based designs. In the 80s, several methods were proposed
with an eye towards using the then-standard Data Encryption Standard (DES) as the underlying prim-
itive [52,39,21]. At present, the contemporary Advanced Encryption Standard (AES [53]) is a more
obvious choice instead.

A well-studied class of blockcipher-based hash functions are the PGV hash functions (after Preneel,
Govaerts and Vandewalle [62]), encompassing Davies–Meyer (DM) and Matyas–Meyer–Oseas (MMO)
as special cases. When based on a blockcipher operating on n-bit blocks with k-bit keys, these functions
compress k bits per blockcipher call and they output an n-bit digest. The PGV hash functions are simple
(low overhead) and are provably secure in the ideal-cipher model [17]. Yet they suffer from one major
drawback: in order to achieve an acceptable level of collision resistance, one needs a primitive operating
on more than 160 bits [23]. This rules out most existing blockciphers, including AES (which operates on
128-bit blocks only).

As a remedy, double-block-length and more generally multi-block-length compression and hash func-
tions were introduced. These are compression functions outputting an rn-bit digest (for an integer r ≥ 2,
r = 2 for the double-block-length case), even though they are based on a primitive operating only on
n-bit blocks. The longer digest size opens up the possibility of collision resistance of 2n time (primi-
tive evaluations) even when using a relatively small primitive. Today, there is truly a wealth of suitable
blockcipher-based constructions to choose from and Table 1 gives an overview of the constructions we
consider. We do not consider all possibilities, for instance we omit versions of GRØSTL, JH or SPONGE

based on RIJNDAEL-256. As can be seen, we instantiate the underlying blockcipher with either AES-
128, AES-256 or RIJNDAEL-256. The latter option allows us to consider single-block-length construc-
tions achieving a 256-bit digest (using an AES-related primitive).

Our choice of constructions includes several different design ideas and paradigms. For years, most
cryptographic hash function designs revolved around the same principle [63,52,21]: the Merkle-Damgård



Table 1. A brief taxonomy of the schemes considered. Nr stands for the number of rounds.

Blockcipher Variable-key Fixed-key
(dimensions) Constructions Constructions

AES-128 MDC-2, MJH, LP362
(k = 128, n = 128, Nr = 10) PEYRIN ET AL.(I)

AES-256 ABREAST-DM, HIROSE-DBL,
(k = 256, n = 128, Nr = 12) KNUDSEN–PRENEEL, MJH-DOUBLE, n.a.

QPB-DBL, PEYRIN ET AL.(II)

RIJNDAEL-256 DM LANE?, LUFFA?,
(k = 256, n = 256, Nr = 14) LP231, SS

paradigm. In this cascaded mode of operation, the main focus is to construct a secure and efficient
compression function; these properties are then inherited by the overall hash function. Later constructions
started to deviate from this paradigm, for instance by some form of strengthening [47,12] or by only
targeting security in the iteration [17,9].

A more fundamental design shift occurred in the way the blockcipher itself is used. A blockcipher,
operating on n bits with a k-bit key, can already be regarded as a compressing primitive itself. This facil-
itates the transformation into a proper compression function, but a disadvantage of using a blockcipher
this way is that it requires frequent re-keying, which tends to be expensive (see Section 2.1 for details).
For this reason, there have been substantial efforts in recent years to design permutation-based compres-
sion functions. Obviously, given a blockcipher one can construct a permutation by simply fixing the key
(we focus on permutations with either n = 128 or 256 bits).

While the design and analysis of multi-block-length compression functions have garnered significant
attention, the focus in the literature seems squarely at security evaluation and theoretical notions of
efficiency (expressed as the ratio of message blocks compressed per blockcipher call). Although the
latter is known to give only a coarse indication of real-life efficiency, actual performance benchmarks,
in hard- or software, are normally left as future work. (A notable exception is the work by Bogdanov
et al. [18], who provide hardware benchmarks for some multi-block-length compression functions in
hardware using the lightweight blockcipher PRESENT as the underlying building block.)

Our Contribution. In this work we bring together the mainly theoretical world of compression function
designs with the practical demand of fast implementations. Instantiating the blockcipher-based primitives
with AES-128, AES-256, respectively RIJNDAEL-256 (and their fixed-key versions to build permuta-
tions), we obtain hash functions with a fixed 256-bit digest size. Apart from three constructions (LANE?,
LUFFA? and KNUDSEN–PRENEEL) all constructions have known proofs of security in the ideal-cipher
model (see Appendix A for a more detailed discussion on the security of our target constructions). The
former SHA-3 candidates LANE? and LUFFA? do not have security proofs, neither for collision resis-
tance nor for preimage resistance. We include them in our benchmark (with different building blocks) to
illustrate their performance capabilities; KNUDSEN–PRENEEL is another exception where a good colli-
sion resistance lower bound is still an open problem.

To the best of our knowledge, this is the first overview of software implementations of the most
studied and influential blockcipher- and permutation-based compression and hash functions. The target
designs (see also Table 1) have been implemented and measured on an Intel Core i5 650 (3.20GHz)
using C intrinsics to implement the various SS(S)E{2,3,4} and the recent AES instruction set (AES-NI)
extensions [26,27]. Although measured on a single Intel architecture with AES-NI we expect the relative
performance obtained to be representative for other Intel architecture families with AES-NI support as
well. The Intel compiler version 12.0.0 and GNU Compiler Collection (gcc) version 4.4.3 were used for
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code compilation. For each design we performed specific optimizations to fully exploit AES-NI. The
details are discussed in Section 3, with Table 3 providing a summary of our findings.

Our major conclusion (see also Section 4) is that, when assuming that the underlying primitives
behave ideally, one can obtain fast and provably secure blockcipher based hash functions on soon to be
mainstream architectures supporting AES-NI.

The Choice for AES. Our choice for AES (and RIJNDAEL-256) is a natural one: it is the official US
and de facto world standard blockcipher. AES’ prime position has led to a large body of research on
AES, both on its security and implementation. Consequently, AES runs very fast in hard- and software,
making AES an obvious choice from a performance perspective. The deal is sweetened further by the
recent introduction of AES-NI. Indeed, as reported in [27], one can achieve significant speed using the
new instruction set (e.g. up to 1.3 cycles/byte on a single core Intel Core i7-980X for AES-128 in parallel
modes). To benefit from synergy with AES and AES-NI in particular, several SHA-3 candidates were
instantiated by using some of AES components as well (e.g. the AES round function), which was later
demonstrated to indeed lead to fast hashing [4]. Our goal here is to investigate the potential of AES-NI for
fast hashing even further by focusing on well-known blockcipher- and permutation-based (compression
function) designs that can be instantiated with AES (or more generally RIJNDAEL).

From a security perspective, AES remains unbroken as a blockcipher in the standard setting. It has
survived many years of cryptanalysis and a practical break of this cipher would have a significant impact
on the cryptographic landscape. Nonetheless, our choice for AES will not be without detractors as a
consequence of recent related-key attacks on AES [14,15]. The theoretical ramifications of a related-
key attack to hash-function security are still unclear. Any serious related-key attack undermines the
assumption that the blockcipher behaves ‘ideally’, but this need not lead to any deviant behaviour of
the hash function itself (especially if its proof uses the weaker unforgeable-cipher model). Of course, in
practice a related-key attack is often underpinned by some other (well-defined) weakness and exploiting
this weakness directly (ignoring the derived related-key attack) might be more fruitful when attacking the
hash function. For instance, Khovratovich [34, Corollary 2] states unambiguously that “AES-256 in the
Davies–Meyer hashing mode leads to an insecure hash function” but later provides solace by remarking
that it is not known how the techniques used against AES-256 Davies–Meyer can be modified to attack
double-block-length constructions (the focus of this paper).

As a final remark, the timings we obtain evidently depend strongly on the number of rounds used
by AES. While one can argue that the number of rounds used should be fine-tuned for each of the hash
functions (increasing or decreasing, depending on the perceived security margin), we believe that using
AES as is will give the cleanest comparison (and any changes might be considered contentious).

2 Building Blocks

2.1 The Advanced Encryption Standard (AES)

The Blockciphers AES-128, AES-256 and RIJNDAEL-256. AES is a member of the RIJNDAEL block-
cipher suite [20,53]. It was standardized by the US National Institute of Standards and Technology
(NIST) after a public competition similar to the one currently ongoing for SHA-3 [55]. AES operates
on an internal state of 128 bits while supporting 128-, 192-, and 256-bit keys. The internal state is orga-
nized in a 4 × 4 array of 16 bytes, which is transformed by a round function Nr times. The number of
rounds is Nr = 10 for the 128-bit key, Nr = 12 for the 192-bit key, and Nr = 14 for the 256-bit key
variants. In order to encrypt, the internal state is initialized, then the first 128-bits of the key are xored
into the state, after which the state is modified Nr − 1 times according to the round function, followed
by a slightly different final round. The round function consists of four steps: SubBytes, ShiftRows,
MixColumns and AddRoundKey (the final round omits the MixColumns step), each of which oper-
ates on the 128-bit state (for the exact details see the AES specification [20,53]). The larger state variant

3



of AES, RIJNDAEL-256, operates almost in the same way except for the ShiftRows operation, a state
size of 256 bits, a 256-bit key and Nr = 14 rounds.

Nine years after becoming the symmetric encryption standard, the only theoretical attack on the
full AES is restricted to the related key scenario and even then applies only to the 192-bit [14] and
256-bit key versions [14,15]. So far no theoretical attacks on all rounds of AES-128 are known. More
cryptanalytic success has been achieved by using the characteristics from the actual implementation of
AES, for instance cache attacks [57,5] can recover an AES key in only 65 milliseconds (Tromer et al. [76]
give a more detailed survey of side-channel attacks against AES). However, side-channel analysis is far
less of a concern for hash functions (except for MACs based on hash functions, such as HMAC) and we
will blithely ignore the issue in this paper.

The AES Instruction Set (AES-NI). Designing fast implementations of AES, which overcome the var-
ious software side channel attacks, has been an active research area in recent years. The latest examples
are bitsliced implementations for Intel core i7 architectures [10,33] and implementations which target a
variety of common CPU architectures [29,7]. In the latter an overview of the state-of-the-art fast AES
implementations is given. The fastest AES implementations targeting microcontrollers are described
in [56].

In the last decade, use of the single instruction, multiple data (SIMD) paradigm has become a general
trend in computer architecture design. It enhances the speed of software implementations by offloading
the computational work to special units which operate on larger data types, improving overall through-
put. In 1999, Intel introduced the streaming SIMD extensions (SSE), a SIMD instruction set extension
to the x86 architecture. One of the latest additions to these extensions is the AES instruction set [26,27]
available in the 2010 Intel Core processor family based on the 32nm Intel micro-architecture named
Westmere. This instruction set will also be supported by AMD in their next-generation CPU “Bull-
dozer”. (Note that previously several instruction set extensions have been suggested towards improving
the performance of AES [74,73,8,75].) AES-NI does not only increase the performance of AES (as well
as any version of RIJNDAEL) but also runs in data-independent time and by avoiding the use of any
table lookups the aforementioned cache attacks are avoided. This instruction set consists of six new in-
structions. At the same time, a new instruction for performing carry-less multiplication is released in the
CLMUL instruction set extension. We can summarize the new instructions as follows [26,27,28]:

• AESENC and AESDEC perform a single round of encryption, resp. decryption.
• AESENCLAST and AESDECLAST perform the last round of encryption resp. decryption.
• AESKEYGENASSIST is used for generating the round keys used for encryption.
• AESIMC is used for converting the encryption round keys to a form usable for decryption using the

Equivalent Inverse Cipher.
• PCLMULQDQ performs carry-less multiplication of two 64-bit operands to an 128-bit output.

Throughput Considerations. Many of the constructions targeted in this paper require the computation
of more than one call to a blockcipher (with or without fixed-key). If these two or more calls can be
run concurrently (while possibly sharing the key expansion), a performance gain can be expected as
AES round instructions are pipelined and can be dispatched theoretically every 1-2 CPU clock cycles,
provided that all data is available on time and there is no dependency between such subsequent calls [26].
Since the latency of a single round instruction is 5 cycles [25], running multiple independent blockciphers
increases the overall throughput. The same reasoning holds when implementing a single RIJNDAEL-256
component. This sibling of AES works on an internal state of 256 bits and it is implemented using two
data-independent calls to AESENC.

In the context of encryption, several performance results of AES exploiting AES-NI have been pre-
sented [27,28,49]. These works show that using AES-NI tends to give very fast implementations when
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Table 2. Our experimental results on the encryption and key expansion routines for AES-128, AES-256
and RIJNDAEL-256. The entries show the results in cycles per operation and cycles per byte together with
the compiler, icc (i) or gcc (g), resulting in the fastest code. In the table K and E denote the key expansion
and the encryption respectively. The upper part of the table shows the results of several independent key
expansions and encryption operations that are called in parallel. In the lower part, xKyE denotes x
independent key schedules followed by y independent encryptions. If x = 1 all encryptions use the same
expanded key, if x = y all encryptions use a different expanded key. For comparison, the performance
details of the Intel AES-NI sample library on our platform are stated as well.

Algorithm Operation
1K 2K 3K 4K 1E 2E 3E 4E

AES-128 97.7 6.1 (g) 126.1 3.9 (g) 163.4 3.4 (g) 226.7 3.5 (i) 60.2 3.8 (i) 60.6 1.9 (i) 67.7 1.4 (i) 84.7 1.3 (i)
AES-256 125.5 3.9 (g) 147.2 2.3 (g) 202.6 2.1 (i) 287.2 2.2 (i) 82.0 5.1 (i) 83.0 2.6 (i) 93.6 1.9 (i) 113.9 1.8 (i)
RIJNDAEL-256 291.6 9.1 (g) 316.6 5.0 (g) 412.6 4.3 (g) 570.3 4.5 (i) 182.9 5.7 (i) 219.2 3.4 (g) 281.4 2.9 (i) 352.6 2.8 (g)

1K1E 2K2E 3K3E 4K4E 1K2E 1K3E 1K4E
AES-128 107.4 3.4 (g) 149.2 2.3 (g) 200.0 2.1 (g) 269.9 2.1 (g) 120.1 2.5 (g) 135.3 2.1 (g) 137.8 1.7 (g)
AES-256 152.8 3.2 (g) 178.1 1.9 (g) 249.7 1.7 (g) 337.9 1.8 (g) 154.0 2.4 (g) 158.4 2.0 (g) 164.9 1.7 (g)
RIJNDAEL-256 285.3 4.5 (i) 407.5 3.2 (i) 620.5 3.2 (i) 867.3 3.4 (i) 312.0 3.6 (g) 373.3 2.9 (i) 463.7 2.9 (g)

Intel AES-NI Sample Library
Algorithm 1K 1E 4E Algorithm 1K 1E 4E
AES-128 99.0 6.2 4.0 1.3 AES-256 124.5 7.8 5.4 1.7

multiple blockcipher calls can be made in parallel (incidentally, they also show that the optimal way
to interleave the instructions is hard to pin down). However, they are of limited use to predict the run-
times of AES-based hash functions as rekeying tends to be far more frequent in the hashing scenario
than in the encryption one. Indeed, for blockcipher-based compression functions considered in this pa-
per, the key-scheduling needs to be performed for every compression function evaluation and that results
in a significant overhead. For this reason, we start with a detailed performance overview of AES and
RIJNDAEL-256 that takes rekeying into account. Table 2 contains performance details when running
multiple key expansions, encryptions or a combination of the two. In order to conduct these experiments
we created a code generator which, when given a number of x key expansions and y encryptions, tries
different strategies to implement these functionalities. The performance numbers presented in Table 2
are an average over millions of data-dependent runs. For comparison, we also included timings from
Gueron’s hand-crafted assembly code [27,28] as used in the Intel AES-NI sample library. (Note that,
roughly speaking, our measure 1E coincides with AES run in a chaining mode such as CBC or CFB,
whereas AES run in a parallel mode such as CTR or ECB is closer to the best time we get for xE, see
Table 2 for the performance details).

2.2 Finite Field Arithmetic (F2m Full/Scalar Multiplication)

Some of the compression function designs we consider require finite field multiplication, in particular in
F2128 and F2256 . There is some freedom in how to represent the fields—the security proofs for the hash
functions are independent of this choice—so we opt for the usual representation of elements in F2m as
polynomials over F2 reduced modulo an irreducible polynomial of degree m. We use x128 + x7 + x2 +
x+ 1 as irreducible polynomial for m = 128 and x256 + x10 + x5 + x2 + 1 for m = 256.

Multiplication in F2128 is implemented using the code examples as described in [28] in the setting
of implementing the Galois counter mode. This is realized by using the new instruction PCLMULQDQ
to implement the multiplication; this instruction calculates the carry-less product of the two 64-bit input
to an 128-bit output. Note that this instruction has a latency of 12 cycles and can be dispatched every
8 cycles [25]. Hence, compared to other SSE instructions, some of which can be dispatched in pairs
of three every clock cycle, this instruction might not always be the optimal choice from a performance
perspective.

5



An example where the usage of the PCLMULQDQ instruction might not lead to a speedup is in the
case of polynomial multiplication by x. This can be computed by shifting the input one position to the left
(the multiplication by x) and performing a conditional XOR with the reduction polynomial (depending
on the bit shifted out). Unfortunately, the SSE instruction set has no bit shift operation shifting the full
128-bit vector. Shifting the two 64-bit, four 32-bit or eight 16-bit in SIMD fashion is possible but the
bits shifted out locally are lost. We outline a novel approach (with the SSE instruction in parentheses) to
obtain the desired result in the setting of F2128 where we exploit the fact that the second largest exponent
of the reduction polynomial is < 32 (which also holds in the setting of F2256). Given an input A we

1. swap the two 64 bit halves of A to t (PSHUFD),
2. create a mask m (either all ones or zeros in each 64-bit half) depending if bits 63 and 127 of t are set

(PCMPGTQ),
3. use m to extract the correct 64-bit parts of a precomputed constant [1, R] in t (PAND),
4. shift both 64-bit parts of A left by one bit and store this in s (PSLLQ),
5. perform the actual reduction plus restoring the local carry bit by combining s and t (PXOR).

Here R denotes the hexadecimal representation of the reduction polynomial, excluding the term with the
highest exponent, stored in a 64-bit word. Note that this computation might be sped up, depending on
the setting, in the following way. Replace step 1 by a byte shuffle (PSHUFD) which moves bits 63 and
127 to bit position 95 and 31 respectively and set the other 14 bytes to zero. The resulting vector, viewed
as four 32-bit signed integers, contains two 32-bit words where only the sign bit may be set. Now step
2 can be replaced by using an arithmetic right shift of 31 positions (PSRAD) creating the mask by using
the fact that this instruction shifts in the sign bit.

In order to overcome this instruction set limitation (no 128-bit single-bit shift instruction) we tried
if polynomial multiplication by x8 is faster. Now the input needs to be shifted eight bits, which can be
performed using a single byte-shuffle instruction. The reduction, a subtraction by i·R, where 0 ≤ i < 28,
depends on the eight bits shifted out. Since the reduction polynomial is constant we can precompute the
256 multiples and use the shifted-out byte as in index for this look-up table. We found that, using our
implementation of both approaches, the performance of both polynomial multiplications, by x and x8,
are comparable with a slight advantage when multiplying by x.

2.3 AES-Inspired SHA-3 Candidates

Prompted by recent developments in the cryptanalysis of well-known hash functions MD5 [78] and SHA-
1 [77,11], a public competition has been announced by the NIST [55] to develop a new cryptographic
hash algorithm intended to replace the current standard SHA-2 [54].

The competition officially started in late 2008 with several submissions from all over the world. As a
result, 64 proposals were received, of which 51 met the minimum submission requirements and became
the first round candidates. In summer 2009, the number of candidates for the second round was further
cut down to a more manageable size of 14 by eliminating the ones having major security or performance
flaws. Recently, NIST has announced five finalists, namely BLAKE, GRØSTL, JH, KECCAK and SKEIN;
the winner will be announced in 2012.

Among all SHA-3 candidates there exist several algorithms that can potentially benefit from AES-
NI [4]: ten out of 51 initial candidates have components which are RIJNDAEL-based and eight out of
these algorithms can benefit from AES-NI [4]. Yet, major performance improvement is achieved for
only four candidates—ECHO [3], LANE [31], SHAVITE-3 [13] and VORTEX [37]—that use the AES
round in its entirety (see [4] for the implementation and performance details). Note that none of these
candidates are in the final phase of the competition.
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Table 3. The achieved speeds (in cycles per byte) using the AES-NI for the designs considered in this
work. Also mentioned are the number of b bytes which are absorbed per compression function call, the
primitive employed and how many unique key scheduling calls are made. Predicted speed estimates are
based on the results from Table 2. The last column provides additional references.

Algorithm b Primitive Building
Block

Key
Scheduling

Predicted
Speed Range

Achieved
Speed

Security
Reference

ABREAST-DM [39] 16 Blockcipher AES-256 two 11.1 + ε 11.21 [24,40,44]
DM [51] 32 Blockcipher RIJNDAEL-256 one [6.8, 10.2] 8.69 [62,16,71,17]
HIROSE-DBL [30] 16 Blockcipher AES-256 one, shared 9.6 9.82 [30,38]
KNUDSEN–PRENEEL [36] 32 Blockcipher AES-256 four 10.6 10.58 [58,60]
LANE? (Sec. 3) 64 Permutation RIJNDAEL-256 fixed 11.7 11.71 [31]
LP231 [66,67] 32 Permutation RIJNDAEL-256 fixed 12.6 + ε 13.04 [66,67,41]
LP362 [66,67] 16 Permutation AES-128 fixed 11.8 + ε 12.09 [66,67,42]
LUFFA? (Sec. 3) 32 Permutation RIJNDAEL-256 fixed 8.8 + ε 10.22 [22]
MDC-2 [19] 16 Blockcipher AES-128 two [9.3, 11.7] + ε 10.00 [72,35]
MJH [43] 16 Blockcipher AES-128 one, shared 6.6 + ε 7.45 [43]
MJH-DOUBLE [43] 32 Blockcipher AES-256 one, shared 4.1 + ε 4.82 [43]
QPB-DBL [70] 16 Blockcipher AES-256 one 9.5 + ε 14.12 [70]
PEYRIN ET AL.(I) [61] 16 Blockcipher AES-128 three, shared [12.5, 16.3] 15.09 [68]
PEYRIN ET AL.(II) [61] 32 Blockcipher AES-256 three, shared [7.8, 10.7] 8.75 [68]
SHRIMPTON–STAM [69] 32 Permutation RIJNDAEL-256 fixed 12.6 12.39 [69]

3 Implementations of the Target Algorithms

Table 3 contains an overview of the benchmarks we obtained. The measurements have been carried out
analogously to [27]; i.e. with the help of the time stamp counter which is read using the RDTSC instruc-
tion. The presented performance results are an average over thousands of times compressing a random
4KB message. In the sequel, we provide separate treatments for constructions based on a (variable-key)
blockcipher versus a permutation (in which case we fix the key of the blockcipher).

Two of the designs considered are based on past SHA-3 candidates. For those, we instantiate the
underlying permutation by (fixed-key) RIJNDAEL-256, rather than the originally submitted permutation.
For compression functions supporting more than 256-bit output (e.g. KNUDSEN–PRENEEL and LUFFA?)
an output transformation (after MD-iteration) can be used to reduce the final output to 256-bit, however
we neither implemented nor timed this.

3.1 Blockcipher-Based Constructions

Davies–Meyer (DM). Davies–Meyer (DM) [51] is a single-block-length compression function design.
It is one of the most popular ways of creating a secure hash function using a blockcipher: many crypto-
graphic hash functions, including MD5 [64] (for n = 128, k = 512) and SHA-256 [54] (for n = 256,
k = 512), follow the DM design philosophy.

The first extensive security analysis of DM was performed by Preneel, Govaerts and Vandewalle [62]
whose main approach was to attack a class of single-block-length hash/compression functions. The class
included DM (for n = k), which turned out to successfully resist their efforts. The first security proof
for DM, on the other hand, was given by Black, Rogaway and Shrimpton [16] (whose technique is
later simplified by Stam [71] and jointly published in [17]) who showed that DM indeed enjoys optimal
preimage and collision resistance.1

DM is one of the most efficient PGV-type compression functions as it allows to run several key
schedules independently in the MD-iteration. In our implementations, we exploit this feature; yet we also

1 We remark that 11 similar compression functions were also proved to be optimally collision and preimage resistant; yet we
refrain ourselves from re-implementing all of these variants and focus only on one famous representative.
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study other possible optimizations. Namely, these are the three flavors of DM that we have considered
in our benchmark:

1. Standard iterative approach: compression function calls are made sequentially for each step in the
MD-iteration. The compression function evaluation starts with the key schedule and continues with
the encryption call. This is illustrated in Fig. 1. Independent key schedule and encryption rounds are
interleaved to get more efficient results.

2. Partially pipelined: the encryption call of the current round and the key schedule of the next round
are being processed concurrently (see Fig. 2).

3. Fully pipelined: j key schedules are called in parallel for some (integer) j > 1 followed by j iterative
encryption calls (see Fig. 3). Several experiments were run for varying j and the best result is obtained
for j = 4. Note that this approach allows to interleave the first encryption round calls with the key
scheduling stage to hide latencies and obtain faster results.

Among the three approaches the fully pipelined version gives the best result and is the one reported in Ta-
ble 3. We included a prediction of the performance of DM based on the vanilla timings of RIJNDAEL-256
provided in Section 2.1. Here the timing for 4K4E serves as a lower bound, as it makes the encryption
calls in parallel. The timing for 4K plus four times 1E serves as an upper bound for DM because the first
encryption can be scheduled during the four key scheduling stages hiding the instruction dependencies
in the encryption improving the overall throughput. (Similar strategies are used for the constructions dis-
cussed subsequently. If the predictions in Table 3 include an ε, this indicates that certain computations,
for instance finite field multiplications, are not considered in the prediction.)

ABREAST-DM. ABREAST-DM and its sister design TANDEM-DM, both proposed in the early 90s [39],
are two of the classical examples of double-block-length compression/hash function designs. We only
consider ABREAST-DM (see Fig. 8) instantiated with AES-256 for our benchmark. We expect that
TANDEM-DM has a slightly worse performance compared to ABREAST-DM due to its sequential struc-
ture. In our implementations, we make extensive use of the parallelism inside the ABREAST-DM com-
pression function by calling two key schedules in parallel followed by two concurrent encryption calls
(where the ‘follow’ is on a fine-grained per AES-round basis). Besides this standard approach, there
is an opportunity where one creates an asymmetry in the MD-iteration: start with the key schedule for
both rows followed by the encryption for either the top or bottom. In all subsequent iterations one can
interleave one key schedule and one encryption (from possible different iterations). In our experiments
the asymmetric approach did not result in a faster realization over the standard approach. Hence, the
prediction for ABREAST-DM is based on the performance numbers for AES-256 in the 2K2E setting.

HIROSE-DBL. ABREAST-DM suffers from a performance drawback that, although run in parallel, the
underlying blockciphers require separate key schedule routines. Hirose’s construction [30] overcomes
this problem by sharing the key scheduling for the two blockcipher calls (see Fig. 6). Even nicer, the de-
sign also enjoys almost optimal collision resistance (recently, it has been proved that the construction has
preimage resistance Ω(22n) [45]). We note that a similar compression function without feed-forward is
shown to be almost as collision resistant as HIROSE-DBL [59]. Although we expect a higher efficiency
in terms of hardware cost (i.e. area) for the construction without feed-forward, we believe it achieves
almost the same speed as HIROSE-DBL in software. In our implementations, we apply the same ap-
proach as for ABREAST-DM to HIROSE-DBL (a standard and an asymmetric implementation for the
iteration). Again, the standard approach is faster and in accordance with the predicted speed based on
the 1K2E setting for AES-256. Our timings also demonstrate that Hirose’s scheme is indeed faster than
ABREAST-DM.

MDC-2. MDC-2 [19] is one of the oldest double-block-length hash functions available and it has been
specified in the ANSI X9.31 and ISO/IEC 10118-2 standards [1,32]. Although originally designed for
use with DES, we consider the obvious generalization (see Fig. 5) where one can use two calls to a
single-key blockcipher (where k = n with AES-128).
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The compression function of MDC-2 is relatively weak, as collisions and preimages can be found
with Θ(2n/2) and Θ(2n) queries, respectively. Notwithstanding its early appearance in the literature, the
first security proof for MDC-2 (as iterated hash function) is remarkably recent: Steinberger [72] has
shown that any collision-finding adversary asking 23n/5−ε (for any ε > 0) queries to the underlying
blockcipher has a negligible chance of completing a collision. This lower bound then was complemented
by the attacks of Knudsen et al. [35], who showed collision and preimage attacks requiring time com-
plexities of O(2n/n) and O(2n), respectively. (Reducing the gap between the query complexity lower
bound and the time complexity upper bound is still an open problem.)

Since MDC-2 is based on MMO, it is difficult to pipeline multiple MDC-2 compression function
calls in the MD-iteration (as we did for DM). Yet, one can benefit from the parallelism naturally present
within a single compression function evaluation by making the two blockcipher calls concurrently (cor-
responding to 2K2E). This is indeed how we have achieved our best result, matching the predicted speed.

MJH. Recently, an alternative construction called MJH (see Fig. 7) was proposed by Lee and Stam [43].
It is inspired by the compression function of JH [79] (one of the SHA-3 finalists). The main design
rationale behind MJH is to reduce the number of key-schedules required in a single compression function
evaluation—as in HIROSE-DBL—and call several key schedules in parallel in multiple iterations—as in
DM. Obviously, this results in an efficient design. As in the case of MDC-2, the compression function
itself does not provide security beyond what a single-length compression function can offer; yet Lee and
Stam showed that it enjoys a collision resistance bound ofO(22n/3−logn) in the MD-iteration. Preimages
can be found with 2n queries and in as much time. More interestingly, the security of the construction
still holds once the message block (size) to the compression function is doubled (this is what we call
the MJH-DOUBLE). This leads to a significantly more efficient scheme, although the cost of key set-up
increases. We investigate the performance of MJH in accordance with our optimizations on DM and
HIROSE-DBL. Based on our results, we note that MJH-DOUBLE has achieved the best cycle count
in our benchmark. We implemented different strategies when interleaving 1 ≤ i ≤ 8 iterations of the
compression function, the best results are obtained with i = 2. Hence, the predictions are based on the
setting 2K2E+2E, ignoring the cost of the polynomial multiplications.

KNUDSEN–PRENEEL. The goal for almost all (multi-block-length) constructions in the 90s has been
optimal collision-resistance: a target output size is fixed and the compression function is designed to be
collision resistant up to the birthday bound for that digest size. Contrary to this, Knudsen and Preneel [36]
adopted a different approach by a priori fixing a particular security target and letting the output size
(and number of blockcipher calls) vary in order to guarantee a security level without imposing optimal
security. To this end, they proposed several constructions with multiple blockcipher calls in parallel using
the generator matrices of various linear error correcting codes. Although it was shown [58,60] that the
compression functions do not deliver the security level they were designed for, still there exist some
constructions satisfying a desirable level of security (when used in wide-pipe mode along with Merkle-
Damgård iteration). We consider one of their proposals, which is based on a [4, 2, 3] linear code over
F23 , to show its performance capabilities with AES-NI. We note however that the compression function
was not defined explicitly in [36]; we derive the generator matrix based on the works [36,58]. One of the
nice features of this construction is that one can call four independent key schedules followed by four
independent encryptions where one can interleave the rounds of both operations to hide latencies. This
makes it much easier to give an accurate performance estimate since this scenario is exactly the 4K4E
case for AES-256 (cf. Sec. 2.1).

PEYRIN ET AL.-DBL. All the designs considered so far follow a very similar approach: there exist lin-
ear pre- and post-processing functions that operate on the blocks of data, interacting with the underlying
primitives. The pre-processing function takes the input to the compression function, parses it as blocks
and determines (block-wise linearly) the input of the underlying primitives. Similarly, the post-processing
function takes the outputs of the underlying primitives, together with the input to the compression func-
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tion in case there is a feed-forward, and outputs the digest (that is again based on a linear transformation).
Based on this general model, Peyrin et al. [61] determined, under a very general attack-based approach
(i.e. only considering time-complexity upper bounds), necessary conditions to have a secure compression
function (where they used smaller ideal 2n → n and 3n → n bits compression functions as underlying
primitives which are replaced by single-key, resp. double-key, blockciphers in DM mode in our frame-
work). In a later work Peyrin and Seurin [68] followed a more proof-centric approach and derived query-
complexity lower and upper bounds for their proposals. They concluded that one needs at least five calls
to the (single- or double-key) blockciphers in order to thwart some generic attacks and they proposed
some constructions satisfying their criteria. For our purposes, we consider two of their proposals (see
Fig. 12) to investigate the performance using AES-NI. In our implementations, we make use of the high
parallelism inside a single compression function evaluation by calling several shared key-schedules. In
both scenarios the predicted time corresponds to 3K5E, since among the five encryptions two keys are
used twice. This case is not considered in Table 2 and we estimate the performance by considering the
performance interval [3K3E, 3K3E+2E] for AES-128 and AES-256 instead.

QPB-DBL. We finish this section with the interesting scenario of constructing a 2n-bit digest while
making only a single call to the blockcipher (theoretically, this would provide optimal efficiency). Lucks [48]
provided the first construction of this type, although it is secure only in the iteration (see [59] for a detailed
discussion of the security of Lucks’ construction). The main practical overhead in Lucks’ construction are
the costly finite field multiplications that are bound to be performed sequentially. Later, Stam [70] gave
another, more practical, construction in the public random function model using a quadratic-polynomial
based design (hence the name QPB-DBL). He suggested to use a linear preprocessing function together
with a nonlinear post-processing function that uses a quadratic polynomial to evaluate the digest. This
construction was generalized [71,46] to the ideal cipher model by replacing the random function by a
double-length-key blockcipher running in DM mode (see Fig. 4). Note that we use a slightly different
compression function here: in Fig. 4 we assign (V1,M, V2) as the input of the compression function
whereas (V2, V1,M) is suggested in [46]. This change does not violate the security proof, but it has
the advantage of allowing increased parallelism in the iteration. As already argued, in the QPB-DBL
compression function the main overhead consists of costly finite field multiplications (which we try to
minimize by using the features of the new PCLMULQDQ instruction). Our tweak allows us to interleave
the key-scheduling of round i+1 with the two (sequential) finite field multiplications of round i. The pre-
dicted performance of QPB-DBL is based on the 1K1E setting for AES-256 and ignores the relatively
high cost of the two finite field multiplications.

3.2 Permutation-Based Constructions

Rogaway and Steinberger’s LP and SHRIMPTON–STAM. The Rogaway–Steinberger construction is
a class of linearly-determined, permutation-based compression functions {0, 1}mn → {0, 1}rn making
k calls to the different2 permutations πi for i ∈ {1, . . . , k} (hence the notation LPmkr throughout). Let
(xi, yi) denote the input-output pair corresponding to the permutation πi. The main ingredient of Rog-
away and Steinberger’s LP design is a (k+ r)× (k+m) matrix A over F2n (satisfying an independence
criterion [66,67]). This matrix determines the block-wise interaction between the inputs to the compres-
sion function (V,M), (xi, yi) pairs and the output Z of the compression function in the following way:
for the row vector ai (of A), the inputs to the underlying permutations are determined by the scalar
product xi = ai · (V1, . . . , Vr,M1, . . . ,Mm−r, y1, . . . , yi−1) whereas the output Z (which is treated as a
concatenation of r n-bit blocks Zi) is computed by Zi = ak+i ·(V1, . . . , Vr,M1, . . . ,Mm−r, y1, . . . , yk).
Shrimpton and Stam [69] gave a compression function (SS) that can be regarded as an LP231 scheme,
although their matrix does not satisfy the independence criterion imposed by Rogaway and Steinberger.

2 Note that LP framework can be defined for identical permutations as well; yet the corresponding security results are not
guaranteed to carry over.
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We remark here that the compression function of Shrimpton and Stam also enjoys almost optimal col-
lision resistance (yet suboptimal preimage resistance). In our benchmark, we include two of the LP
schemes (LP231 and LP362) as well as SS. For LP231 and SS (see Figs. 13 and 14, respectively),
we use the matrices A′ and Ã (both over F2256 , see Section 2.2) to define the compression function (the
former is the one suggested in [41]). For LP362 we use the matrix A′′ (over F2128) given in [42] :

A′ =


1 0 0 0 0
0 1 0 0 0
1 2 1 1 0
1 1 2 4 2

 , Ã =


1 0 0 0 0
0 1 0 0 0
1 1 1 1 0
1 0 1 0 1

 and A′′ =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 1
1 2 4 1 2 4 0 1 0


.

There are multiple ways how one can implement these constructions in practice. We choose to im-
plement LP231 as displayed in Fig. 13, i.e. in three stages where we first run two permutations and a
polynomial multiplication by x in parallel, followed by one permutation and polynomial multiplication
by x and x2 and finally the remaining multiplication by x2. This corresponds to the setting 2E+1E + ε
for RIJNDAEL-256 on which we base our performance prediction. After experimenting with different
strategies we settled on the following regarding LP362. Again three stages are used where we do three,
two and one permutation in parallel in every stage. The multiplications are calculated in the last two
stages in order to hide the relatively high latencies of especially the single permutation. Hence, the pre-
dicted performance is based on the 3E+2E+1E + ε setting for AES-128. The implementation of SS is
straightforward and is as outlined in Fig. 14. This corresponds to the setting 2E+1E for RIJNDAEL-256,
note that this is the only case where the actual construction (slightly) outperforms the predicted speed
This anomaly might be explained by the fact that SS has to load (store) the input (output) only once for
both operations while in the performance benchmark setting this has to be done twice.

LANE?. LANE [31] is a permutation-based hash function design (see Fig. 10) submitted to the SHA-
3 competition by Indesteege (supported by the COSIC research group). Although some weaknesses
have been exploited [50] for the original proposal, the generic compression function of LANE is worth
reconsidering due to its capabilities for high parallelism and its suitability for AES-NI. For our purposes,
we consider its compression function with 256-bit digest size which is instantiated by eight calls to the
fixed-key RIJNDAEL-256 and denoted by LANE?.

For this version, it is not immediate that the known attacks carry over to LANE?. Note that the round
function in the original proposal is very similar to the round function of RIJNDAEL-256, yet the overall
permutation calls the round function only 6 times (whereas RIJNDAEL-256 is 14 rounds). Nevertheless,
the security of the LANE? is known to be sub-optimal: a yield-based adversary can be shown to find
collisions and preimages with O(2n/6) and O(2n/3) queries respectively for an n-bit digest. However,
there is still no known algorithm to find collisions and preimages with time complexity less than the
generic attacks.

In our implementations, we exploit the high parallelism inside a single compression function evalu-
ation by running several permutation calls in parallel. Although possible, we did not investigate further
pipelining options along the MD-iteration due to a sufficient number of independent permutation calls
in a single compression function evaluation. The predicted speed for LANE? is based on the setting of
6E+2E for RIJNDAEL-256. Note that the original version of LANE, performs significantly faster (4.3
cycles per byte) on our platform due to the relatively light permutations given in the submitted version.

LUFFA?. LUFFA [22] is a second round SHA-3 candidate designed by De Cannière and Watanabe. We
consider the LUFFA compression function as another permutation-based function that might possibly
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benefit from AES-NI once its underlying permutations are modified accordingly (see Fig. 9). To this end,
we instantiate the three underlying permutations of LUFFA with fixed-key RIJNDAEL-256 and denote
this version by LUFFA?. The security analysis of LUFFA borrows characteristics from the sponge frame-
work [9,2] assuming that the underlying permutations are ideal. We note that the compression function
of LUFFA is not ideal and the hash function is claimed to be secure only in the iteration. Moreover, the
compression function of LUFFA? outputs 768 bits and one requires an output transformation to reduce
the digest to 256-bit.

The implementation of LUFFA? is as outlined in Fig. 9. First the multiplications required in the
message injection step are computed (see [22] for a description of how to implement these efficiently),
followed by the computation of the three independent permutations. The predicted performance results
(3E + ε using RIJNDAEL-256) is too optimistic, the ε incorporates the cost of the multiple polynomial
multiplications. Note that our implementation is slightly faster then the original version of LUFFA (which
runs at 10.49 cycles per byte) using the fastest implementation (called SSSE3-PS-2) submitted to
eBASH.

4 Discussion and Conclusion

In this work, we presented the first comprehensive performance comparison of many multi-block-length
hash functions (old and new alike) in software on a modern architecture supporting AES-NI. Our results
are summarized in Table 3 in conjunction with speed predictions based on the vanilla AES timings from
Table 2. Based on these results, we can draw the following conclusions:

1. Our major conclusion is that, when assuming that the underlying primitives behave ideally, one can
obtain fast and provably secure blockcipher based hash functions on soon to be mainstream architec-
tures supporting AES-NI. Indeed, the algorithms studied provide reasonable collision and preimage
resistance and require between 4 and 15 cycles per byte on our target platform, so in this sense
almost all of them outperform SHA-256 while several of them are faster than SHA-512.3 As dis-
cussed in the introductions, our results are obtained with the original number of rounds for AES
and RIJNDAEL-256. Relative performance results follow by increasing or decreasing the number of
rounds, depending on the security margin.

2. Among the blockcipher-based compression functions, DM is the fastest algorithm when optimal
security (in terms of proven collision resistance lower bound) is desired. For practical security lev-
els, MJH-DOUBLE significantly outperforms the others (including the permutation-based designs).
Note that both constructions require only one key schedule call inside a single compression function
evaluation.

3. In the permutation-based setting, the LUFFA? compression function is the fastest, but it is being
outperformed by many blockcipher-based constructions. This is partly due to the higher number of
primitive calls, but one can argue that our methodology (use AES as is) results in a relatively more
conservative security margin for fixed-key constructions. Among the provably secure constructions
LP362 performs the best, showing the possibility of achieving higher speed despite the increased
number of primitive calls.

Finally, we remark that all the constructions we consider are generic in the sense that they can be instanti-
ated with any secure blockcipher (or permutation, where relevant). Hence, it is well possible that one can
achieve better performance with different blockciphers or permutations. In particular, any AES-inspired
yet more efficient primitive, for instance a round-reduced version or a tweaked version with more se-
cure and efficient key-scheduling, would result in a faster scheme on our target platform. We believe
that our benchmark provides a valuable toolbox to see the relative performance figures for a majority of
blockcipher- and permutation-based compression and hash functions.

3 Compared SHA-256 and SHA-512 speeds (13.90 and 10.47 respectively) are based on the fastest publicly available imple-
mentation on eBACS [6] run on Intel Core i5 M 520 (2.4 GHz with AES-NI).
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A Security Considerations

There exist multiple security notions for a cryptographic hash function to satisfy; we only consider the
collision-and preimage-resistance and the relevant adversarial models. A preimage-finding adversary is
an algorithm with access to one or more oracles and whose goal is to find a preimage of some specified
compression/hash function output.4 Similarly, a collision-finding adversary is an algorithm whose goal
is to find collisions in some specified compression or hash function.

To get a better picture, we consider adversaries in two scenarios: the information- and the complexity-
theoretic. For the former, the only resource of interest is the number of queries made to their oracles,
the so called query-complexity, where the adversaries are considered computationally unbounded. For
the latter, on the other hand, we consider the actual runtime of the adversarial algorithm (with respect
to a reasonable computational model). By convention, we assume that for optimally secure construc-
tions the only valid attacks are the generic attacks which require Θ(2s/2) and Θ(2s) queries/time to

4 Note that there exist several definitions of preimage resistance formalized in [65].
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find collisions and preimages for a hash/compression function of s-bit digest respectively. From an
information-theoretic point of view, the compression functions we consider are not always optimal. Yet,
in the complexity-theoretic setting, almost all of them are considered to be optimally secure in the sense
that there exist no known algorithm to find collisions and preimages faster than the generic methods.

In the literature, known security results contain both models. Most of the security lower bounds—
for either security notions—are given in the information-theoretic setting whereas the upper bounds
are obtained by concrete attacks either in the information- or complexity-theoretic model. The designs
considered in this work provide at least 75-bit security in the information-theoretic setting for collision
resistance (the security margin increases up to 120-bit for the case of preimage resistance). For some
of the constructions that is the best one can (currently) prove, but for most of the constructions the
best practical attack (in the complexity-theoretic setting) is in fact a generic birthday attack (even when
instantiated with AES). We summarize the known security results (for 256-bit digest) for our target
algorithms in Table 4 along with the currently available results against SHA-256, SHA-512 and SHA-3
finalists.

Note that for the security of the mode of operation, we assume that the Merkle–Damgård itera-
tion is taking place for most of the compression function designs and the respective security preser-
vations [52,21,65] hold. For the designs proposed along with different mode of operations, we simply
assume that the original mode is taking place and the corresponding security reductions follow [9,12].

B Illustrations of Related Compression Functions

KS. . . E

Vi

Mi

Vi+1 . . .

k

n

Fig. 1. The DM compression function,
n = k = 256.The underlying blockci-
pher is RIJNDAEL-256. KS shows the
key scheduling algorithm; KS and E are
called iteratively, they are interleaved in
round function level.

KS. . .

E

Mi

. . . E

KS

Mi+1

. . .
Vi−1 Vi Vi+1

k

n

k

Fig. 2. The DM compression function, with n = k = 256, is
illustrated inside MD-iteration. The underlying blockcipher is
RIJNDAEL-256.KS shows the key scheduling algorithm; here
the key schedule for the next round is computed concurrently
with the blockcipher call of the current round. Note that the
two are completely independent.
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E

Vi

Vi+1

Vi+2

Vi+j

Vi+j+1 . . .
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k
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k

n

n

n

Fig. 3. The DM compression function, with n = k = 256, is
illustrated inside MD-iteration (for j + 1 iterations). The un-
derlying blockcipher is RIJNDAEL-256. Here KS shows the
key scheduling algorithm and the j + 1 of those are running in
parallel; whereas the encryption calls are made sequentially.

E Z1
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M Z2

V2

F

n

n

n

n

n

Fig. 4. The QPB-DBL compression
function, n = 128. The underly-
ing blockcipher is AES-256 and
Z2 = Z1(V1Z1 +M) + V2.
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n

n

nn
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n

n

Fig. 5. The MDC-2 compression function, n = 128.
The underlying blockcipher is AES-128.

V1 E Z1

V2
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c E Z2

n

n

n

n

n

n

Fig. 6. The HIROSE-DBL compression function,
n = 128. The underlying blockcipher is AES-256
and c ∈ {0, 1}n \ {0}n.

σ E θ Z1

M

V1 E Z2

V2

n

k

Fig. 7. The MJH and MJH-DOUBLE compression functions
for n = 128. In the former, k = n = 128 whereas in the latter
k = 2n = 256. The underlying blockciphers are AES-128 and
AES-256 respectively, σ is an involution (e.g. an addition with
a non-zero constant) and θ is a multiplication with a constant
c ∈ F2128 and c 6∈ F2.
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V2 E Z2◦

n

n

n

n

n

Fig. 8. The ABREAST-DM compression
function, n = 128. The underlying block-
cipher is AES-256 and ◦ denotes the bit-
wise complementation.
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M

V1 π1 Z1

V2 MI π2 Z2

V3 π3 Z3

X1

X2

X3

Fig. 9. The LUFFA-256 compression function, the
horizontal lines carry 256 bits. The underly-
ing permutations are obtained from the fixed-key
RIJNDAEL-256 with varying keys. The message in-
jection step MI is defined as follows:
Xi = Vi ⊕ (0x02 · (V1 ⊕ V2 ⊕ V3)) ⊕ 0x02i ·M ,
for i ≤ 1 ≤ 3. Note that the hash function outputs
256 bits by performing an output transformation. We
refer to [22] for all details, especially how the mul-
tiplication by 0x02 is defined.

π1

π2 π7

π3

Z

M ME π4

V π5 π8

π6

Fig. 10. The LANE-256 compression function with
M ∈ {0, 1}512 and V,Z ∈ {0, 1}256. Horizon-
tal lines carry 256 bits. The underlying permuta-
tions are obtained from the fixed-key RIJNDAEL-
256 with varying keys. Here ME denotes the so
called message expansion algorithm.
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...
...

M x4 E Z4
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n
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2n

n
y4

2n

n

n

4n

2n

Fig. 11. The KNUDSEN–PRENEEL com-
pression function, n = 128. The un-
derlying blockcipher is AES-256. For
V = V1|| . . . ||V4 ∈ {0, 1}512, M =
M1||M2 ∈ {0, 1}256 and different con-
stants ci ∈ {0, 1}128, we define:
(x1, k1) = (V1 ⊕ c1, V2||V3),
(x2, k2) = (V4 ⊕ c2,M1||M2),
(x3, k3) = (V3 ⊕ M1 ⊕ c3, V1 ⊕ V2 ⊕
M2||V2 ⊕ V3 ⊕ V4 ⊕M1),
(x4, k4) = (V1⊕V3⊕M1⊕M2⊕c4, V1⊕
V4 ⊕M1 ⊕M2||V2 ⊕ V4 ⊕M2).
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x4 ⊕ y4
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Fig. 12. The PEYRIN ET AL. compression function
H : {0, 1}2n+m → {0, 1}2n. The underlying five block-
ciphers operate on n bits and they support k-bit keys each. We
consider two scenarios (for different constants ci ∈ {0, 1}128):
(i) m = k = n = 128 (using AES-128), for V = V1||V2 set
(x1, k1) = (V1 ⊕ c1, V2), (x2, k2) = (V2 ⊕ c2,M),
(x3, k3) = (M ⊕ c3, V1 ⊕ V2), (x4, k4) = (V1 ⊕ c4,M),
(x5, k5) = (V1 ⊕ c5, V2).
(ii) m = k = 2n = 256 (using AES-256), for V = V1||V2,
M =M1||M2 set
(x1, k1) = (V1 ⊕ c1, V2||M1), (x2, k2) = (V1 ⊕ c2, V2||M2),
(x3, k3) = (V1 ⊕ c3,M1||M2), (x4, k4) = (V1 ⊕ c4, V2||M1),
(x5, k5) = (V2 ⊕ c5,M1||M2).
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Fig. 13. The ROGAWAY–STEINBERGER’s LP231 compression
function is illustrated, all lines carry 256 bits. The underlying
fixed-key permutations π1, π2, π3 are derived from fixed-key
RIJNDAEL-256. Here � 1 and � 2 denote the polynomial
multiplication with x and x2 respectively.
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V

π1

π2 π3 Z

Fig. 14. The SHRIMPTON–STAM com-
pression function is illustrated, all lines
carry 256 bits. The underlying fixed-key
permutations π1, π2, π3 are derived from
fixed-key RIJNDAEL-256.
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