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Abstract. At Eurocrypt 2001, Biryukov and Shamir investigated the security of AES-like ciphers
where the substitutions and affine transformations are all key-dependent and successfully crypt-
analysed two and a half rounds. This paper considers PRESENT-like ciphers in a similar manner.
We focus on the settings where the S-boxes are key dependent, and repeated for every round. We
break one particular variant which was proposed in 2009 with practical complexity in a chosen
plaintext/chosen ciphertext scenario. Extrapolating these results suggests that up to 28 rounds of
such ciphers can be broken. Furthermore, we outline how our attack strategy can be applied to an
extreme case where the S-boxes are chosen uniformly at random for each round and where the bit
permutation is secret as well.
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1 Introduction

Small computing devices are becoming more and more popular and establish a part of the
pervasive communication infrastructure. One example of these tiny computing devices are RFID
systems which are used e.g., for identifying and tracking animals or on toll roads. A prediction for
the future is that RFID tags will replace bar codes. But this extensive deployment of computing
devices is not only useful and convenient, it also carries a wide range of security risks. At the
same time we are talking about extremely resource constrained environments. Therefore, the
demand for lightweight encryption algorithms increases. The block cipher PRESENT [1] is an
important example of a lightweight cipher. It consists of alternate layers of substitutions and
permutations.

Important design principles of lightweight ciphers are an efficient hardware implementation,
a good performance and a moderate security level. Usually there is a trade-off between the
performance and the security level. In order to speed up the algorithm we want as few rounds of
encryption as possible but there is a minimum number of rounds required to assure the security
level.

PRESENT is a 64-bit iterated block cipher that comes in two variants, one with an 80-bit
key and one with a 128-bit key. Both run in 31 rounds, each round has three layers, a substitution
layer consisting of 16 parallel applications of the same 4-bit S-box, a permutation layer consisting
of a bit-wise permutation of 64 bits, and a key addition layer, where a subkey is exclusive-ored
to the text. PRESENT was designed to allow fast and compact implementation in hardware.
The best known cryptanalytic attack on PRESENT is a linear attack on 26 of the 31 rounds [2].
The attack requires all possible 264 texts and has a running time of 272. Although this attack
is hardly practical, it illustrates that the number of rounds used should not be dramatically
reduced.

An idea of how to strengthen the cipher in a way that enables one to reduce the number of
rounds has been presented by two researchers from Princeton University. The cipher Maya [3]
is a 16-round SP-network similar to PRESENT. The main difference is that the substitution
layer of Maya consists of 16 different S-boxes which are key dependent and therefore kept secret.
The bit permutation between the S-box layers is fixed and public. In each round a round key is



xored to the text. It is argued that this cipher can be implemented efficiently in practice and
also that “differential cryptanalysis is infeasible”. In this paper we will investigate the question
if such a cipher would be stronger than the original, and if so, how much stronger.

The Maya design is one particular way of designing a PRESENT-like cipher with secret
components. In an extreme case one could choose 16 S-boxes uniformly at random and inde-
pendently for every round. Furthermore one could also make the bit permutation part of the
key and chosen uniformly at random from the set of all such permutations and used repeatedly
or as another extreme, a bit permutation is chosen for each round uniformly at random and
independently for every round.

The idea of having ciphers where the substitutions are not publicly known and part of the secret
key is not new. Notable examples are Khufu [4] and the Khufu variation Blowfish [5] as well as
other proposals [6, 7].

Our results. In this paper we focus on the Maya case. We present a novel differential-style
attack which enables us to find the S-boxes in the first round one by one.

The attack was implemented and successfully recovered the secret key in versions up to
16 rounds. The complexity of the attack on the 16-round version is approximately 238 using a
similar number of chosen plaintexts/chosen ciphertexts. In particular, the proposed cipher Maya
can be broken with practical complexity. In our experiments the correct key was usually found
in less than one week on a standard PC.

To better understand the running time of the attack, we establish a simplified, mathematical
model for the complexity of this attack and verify by numerous experiments that the model fits
the real world. Extrapolation of the experimental data, backed up by our model, indicate that
the attack has the potential to break up to 24 rounds with a chosen plaintext complexity less
than 264.

Furthermore, we outline how even the extreme case of PRESENT-like ciphers with secret
components, that is the case where all components in all rounds are chosen uniformly and
independent at random can be attacked.

Related work. Biryukov and Shamir investigated the security of iterated ciphers where the
substitutions and permutations are all key-dependent [8]. In particular they analysed an AES-
like cipher with 128-bit blocks using eight-bit S-boxes. An attack was presented on five layers
(SASAS, where S stands for substitution and A stands for affine mapping) of this construction
which finds all secret components (up to an equivalence) using 216 chosen plaintexts and with a
time complexity of 228. Using the terminology of “rounds” as in the AES, this version consists
of two and a half rounds.

The extreme case of our cipher, where the S-boxes and the bit-permutation are chosen at
random for each round, is a special instance of the SASAS cipher [8]. In fact the attack of
Biryukov and Shamir applies to three rounds of this variant and has a running time of 216 using
28 chosen texts. However the complexity of the attack for more than three rounds is unclear,
but seems to grow very quickly [8]. The SASAS attack is a multiset attack whereas we use a
differential-style attack to recover the S-boxes. Also, the technique to recover the bit permutation
is different.

There have been other attempts to cryptanalyse ciphers with secret S-boxes. Gilbert and
Chauvaud presented a differential attack on the cipher Khufu [9]. Khufu is an unbalanced Feis-
tel cipher and the attack exploits the relatively slow diffusion in the cipher and bears some
resemblance with our work. Also, Vaudenay provided cryptanalysis of reduced-round variants of
Blowfish [10]. Moreover, the cipher C2, which has a secret S-box, was cryptanalysed by Borghoff
et al. [11].

Organisation. The paper is organised as follows. In Section 2 the cipher is presented. Section 3
explains the approach for recovering the secret S-boxes. In Section 4, practical issues of the attack



are discussed. In Section 5 we give experimental results for the attack when applied to the Maya
cipher [3]. Section 6 describes our model to back up the extrapolations of the experimental data.
We outline the more general case and further improvements in Section 7. Section 8 holds the
conclusion.

2 The Cipher

We focus on a PRESENT-like cipher where the secret consists of one round key for each round
and 16 secret S-boxes. We assume that the round keys and the S-boxes are randomly chosen. In
practice these secret components might be derived from a master key using a key schedule which
generates key dependent round keys and S-boxes. These 16 randomly chosen S-boxes form the
substitution layer which is used repeatedly throughout all the rounds. The permutation layer
consists of a bit permutation which is fixed and publicly known.

One round of encryption works as follows (cf. Algorithm 1). The current text is divided into
nibbles of 4 bits which are processed by the 16 S-boxes in parallel. Then the bit permutation
is applied to the concatenation of the output of the S-boxes and the output is xored with the
round-key.

Require: X is a 64-bit plaintext
Ensure: C = EK(X) where EK means the encryption function with key K
1: Derive 16 S-boxes Si and N round keys Ki from K
2: STATE← X
3: for i = 1 to N do
4: Parse STATE as STATE0‖ · · · ‖STATE15, where each STATEj is a four-bit nibble
5: for j = 0 to 15 do {Substitution layer}
6: STATEj ← Sj(STATEj)
7: end for
8: Reassemble STATE
9: Apply bit permutation to STATE

10: Add round key Ki to STATE
11: end for
12: C ← STATE

Algorithm 1: Pseudo-code of a PRESENT-like cipher with secret S-boxes. The number of rounds
is N .

The cipher Maya, proposed by Gomathisankaran and Lee [3], is an instance of the cipher
described in Algorithm 1 with N = 16. The authors claim that it is efficient in a hardware
implementation.

We attack this cipher by recovering all 16 S-boxes. However, in the general case, we do not
know the last-round key, and therefore what we recover is in fact the 16 S-boxes xored with
the last round key. Once this is done, we can peel off the first and last layers of encryption,
and attack the cipher with two rounds less; this time, the S-boxes are known and a standard
differential or linear attack can be mounted to extract the round keys. What we obtain in the
end is an equivalent description of the cipher, but not necessarily the key. Still, the equivalent
description of the cipher will allow us to encrypt or decrypt any text of our choice.

Furthermore, we shall outline how our attack can be applied to a generalization. Here, the
S-boxes are chosen uniformly at random for each round. Additionally, the bit permutation can
be chosen randomly for each round and kept secret as part of the key. In this case, the addition
of the round keys is not necessary because it can be seen as part of the S-boxes. Furthermore
the permutation is omitted in the last round. This extreme variant can be compared with an



instance of SASAS [8]. Note that in this variant nothing but the block size and the number of
rounds is known. The pseudo-code of this variant is described as Algorithm 2.

Require: X is a 64-bit plaintext
Ensure: C = EK(X) where EK means the encryption function with key K
1: Derive 16 ·N S-boxes Si,j , 1 ≤ i ≤ N , 0 ≤ j ≤ 15 and N − 1 bit permutations Pi from K
2: STATE← X
3: for i = 1 to N do
4: Parse STATE as STATE0‖ · · · ‖STATE15, where each STATEj is a four-bit nibble
5: for j = 0 to 15 do {Substitution layer}
6: STATEj ← Si,j(STATEj)
7: end for
8: Reassemble STATE
9: if i < N then

10: Apply bit permutation Pi to STATE
11: end if
12: end for
13: C ← STATE

Algorithm 2: Pseudo-code of a PRESENT-like cipher with secret S-boxes and secret bit per-
mutations, all unique for each of the N rounds.

3 Principle of the Attack

In this section, we explain the idea of our approach to recover the S-boxes in the basic variant of
a PRESENT-like cipher with secret S-boxes. It is a differential-style attack and the complexity
is analysed in Section 6.

Recall that in the basic variant of the cipher (cf. Algorithm 1), there are 16 secret S-boxes
which are applied in all rounds. We denote these 16 S-boxes Si, 0 ≤ i < 16, and we note that
all Si are bijective mappings with the signature F4

2 → F4
2.

For convenience, we introduce the following notation.

Definition 1. Given the S-box S and e ∈ F4
2, we denote the set of all pairs {x, y} such that

S(x)⊕S(y) = e by De. Here, we consider the pairs {x, y} and {y, x} to be identical. A pair {x, y}
belonging to a set De where e has Hamming weight 1 is called a slender pair. A set consisting
of slender pairs is called a slender set.

Without loss of generality, we explain how to recover the leftmost S-box S0. In order to
obtain information about S0, we encrypt a certain number t of structures Pri of plaintexts of
the form

Pri = {(x‖ri) | x ∈ F4
2}

where each ri ∈ F60
2 for 0 ≤ i < t is chosen uniformly at random. Two different plaintexts

(x‖ri), (y‖ri) in Pri have an input difference of the form

(x‖ri)⊕ (y‖ri) = (?‖060),

where 0n denotes the bit string consisting of n zeros.
We shall be looking at the corresponding ciphertexts in order to see if there is an input pair

for which only one S-box is active in the ciphertext. For now, let p({x, y}) denote the probability
that only one S-box is active in the ciphertext pair when the plaintext pair is {x‖r, y‖r}, taken
over all the different choices of r ∈ F60

2 . The attack is based on some assumptions. The first
assumption is a standard one in differential cryptanalysis:



Assumption 1 The probability p({x, y}) depends only on the value of S(x)⊕ S(y), not specif-
ically on the pair {x, y}. Hence, given e = S(x)⊕ S(y), we can denote this probability pe.

We shall be particularly interested in identifying slender pairs. In order to do this, we need the
following assumption, which has been experimentally verified to hold in most cases.

Assumption 2 The probability pe is higher when e has Hamming weight 1, than when e has
Hamming weight greater than 1.

Learning all the probabilities pe would require encryptions of all 264 possible plaintexts, but
we can estimate the probabilities by introducing counters

C({x, y}) =
∣∣{ri |∃j : E(x‖ri)⊕ E(y‖ri) = (04j‖?‖060−4j)}

∣∣
for all pairs {x, y}, x, y ∈ F4

2. Hence, the counter C({x, y}) counts how often only one S-box is
active in the ciphertext pair when the input pair to S-box S0 is {x, y}.

Assumption 1 says that pairs belonging to the same set De should also have similar counter
values when sufficiently many plaintexts have been encrypted. Assumption 2 says that the
highest counter values will (usually) correspond to slender pairs. In the attack we are going
to try to identify the slender sets, and this will be relatively easy if the probabilities pe and pe′ ,
e 6= e′, are sufficiently different. Experiments show that this condition is often satisfied.

The counter C consists of 120 values since there are
(
16
2

)
= 120 different pairs {x, y}. After

encrypting sufficiently many structures we may sort C in descending order, and thereby hopefully
obtain a partitioning of the 120 pairs into a number of sets corresponding to De for different
values of e. We shall return to this partitioning method in a moment. Our final goal will be to
learn all four slender sets De.

Generalizing to all S-boxes and their inverses. In a practical attack we do not only
want to eventually recover the S-box S0, but all S-boxes. The above observations can clearly be
generalized to all S-boxes by introducing additional types of structures and additional counters.

Moreover, the symmetry between encryption and decryption in the cipher we are considering
here means that one may obtain the same type of information about the inverse S-boxes as one
obtains about the S-boxes themselves. This can even be done in a chosen-plaintext setting,
although it may require more texts than in a chosen-ciphertext setting.

Assume now that we have identified u slender sets for some S-box S, and v slender sets for
its inverse S−1. The following table shows the average number of S-boxes that would give rise
to the same u+ v sets; these averages are based on 100,000 randomly generated S-boxes.

u\v 1 2 3 4

1 207 3.52 1.44 1.19

2 3.52 1.16 1.03 1.01

3 1.44 1.03 1.01 1.01

4 1.19 1.01 1.01 1.01

Evidently, if u + v ≥ 6, the S-box is usually uniquely determined from the u + v sets, and in
many cases, fewer sets are sufficient. However, there exist S-boxes S which are not uniquely
determined even if all four slender sets are known for both S and S−1.

On a side note: if De and De′ are known for some S-box S, then De⊕e′ does not give any new
information about S, since De⊕e′ can be derived from De and De′ . Clearly, if {x, y} ∈ De and
{x, z} ∈ De′ , then {y, z} ∈ De⊕e′ . This observation generalizes to more than two sets. In general,
given sets Dei one can construct all sets De where e can be written as a linear combination of



the vectors ei, see Lemma 1 in Appendix B. Therefore, we shall generally only be interested in
the four slender sets, since all other sets give no additional information about the S-box.

We now describe a number of ways to partition the pairs into sets and to check that this
partitioning is correct.

Partitioning pairs into sets. Assume again that we are trying to recover S-box S0. Our
starting point for partitioning pairs (in particular the slender pairs) into sets is the counter C.

The straightforward partitioning method simply sorts C in descending order, and takes the
first eight pairs as the first set, the next eight pairs as a second set, etc. Using this method
obviously means that we shall often make the wrong partitioning into sets, but the partitioning
can be checked using the very strong filtering methods described in the following subsection.

Filtering methods. Given u sets for some S-box S and v sets for its inverse S−1, the most
indicative method to check whether these sets may be correct is to see how many S-boxes would
give rise to the same sets. If no S-box gives rise to these sets, then clearly the sets must be wrong.
However, counting the number of S-boxes that give rise to these sets is somewhat inefficient (see,
however, Section 4), and as we have seen, if we only know a few sets, there are usually several
S-boxes that give rise to the same sets, and so the probability of a false positive is high in this
case. We call this filter the existence filter.

A much more efficient method is based on the trivial observation that for any valid set De,
we have that {x, y : {x, y} ∈ De} = F4

2. In other words, a valid set “covers” all values in F4
2.

Hence, if we have identified a candidate set D containing two pairs {x, y} and {x, z}, then D
cannot be a valid set. Although this method is very simple, it is in fact a very strong filter; the
probability that eight randomly chosen pairs among the 120 pairs cover all values in F4

2 is only

7∏
i=1

(
2i
2

)(
16
2

)
− i
≈ 2−18.7,

and therefore in practice, many wrong candidate sets are discovered by this method. We call
this filter the cover filter.

It should be noted that one can prove that the cover filter is not only necessary, but also
sufficient; see Appendix B.

The final filtering method that we describe here is based on the observation that if {x1, y1}
and {x2, y2} belong to the same set De, then {x1, y2} and {x2, y1} will also belong to the same
set De′ for some e′ 6= e, and likewise, {x1, x2} and {y1, y2} will belong to the same set De′′ for
some e′′ 6∈ {e, e′}. To see this, note that if {x1, y1} and {x2, y2} belong to the same set De, then
(by definition) S(x1)⊕S(y1) = S(x2)⊕S(y2) = e, and therefore S(x1)⊕S(y2) = S(x2)⊕S(y1) =
e⊕S(y1)⊕S(y2) 6= e, etc. Hence, assume that we know two sets D′ and D′′ (both already known
to cover F4

2), and that {a, b} ∈ D′ and {a, c} ∈ D′′. Now, if {c, d} ∈ D′, then for these two sets
to both be valid, it must hold that {b, d} ∈ D′′. We call this filter the bowtie filter; if one follows
the “partner” b of a in the set D′ and jumps to the next set D′′ to find the partner d of b there
and so forth, then one should come back to the pair {a, b} in D′ after two jumps back and forth
between the two sets, hence forming a bowtie-shaped cycle:

D′ = {

D′′ = {

,

,

{a,b} {c,d} . . .

{a,c} {b,d} . . .



3.1 Relaxed truncated differentials

The method considered so far increments a counter only when there is a single active S-box in
the ciphertext pair. The probability of this event is relatively low, so many plaintext pairs are
needed before it is possible to partition pairs into sets.

It is much more likely that the weight one difference spreads moderately through the cipher
resulting in a few active S-boxes in the ciphertext. Hence, we might find slender pair candidates
more efficiently by looking at ciphertext pairs with more than one active S-box. The more active
S-boxes we allow, the more noise we will get, and so there is a tradeoff between the signal-to-noise
ratio, and the strength of the signal.

It turns out that allowing even a relatively large number of active S-boxes does not introduce
too much noise. This can be used to make the attack more efficient. For each input S-box Si and
for each pair {x, y} we introduce counters Ci,j({x, y}). We increment the counter Ci,j({x, y})
every time the input pair {x, y} to S-box Si (with a random but fixed input to the other S-
boxes) leads to exactly j S-boxes being active, where j ranges from 1 to 15. When we have
done a number of encryptions we may sort the counters Ci,j for some pair i, j. If the cover filter
identifies sets based on this sorting, we assume that these are correct slender sets. When we have
several sets, we use the bowtie filter to check the validity of the sets. We do this for increasing
j from 1 to 15. Since the cover filter is a very strong filter, the risk of errors is low, both in the
cases where the signal is weak (small values of j), and also in the cases where there is a lot of
noise (large values of j).

4 The Attack in Practice

We now describe how the attack is carried out in practice. The attack consists of a data collection
phase followed by an S-box recovery phase, and those two phases are repeated until all or almost
all S-boxes have been recovered.

4.1 Data Collection Phase

In the data collecting phase we simply encrypt structures and increment counters when applica-
ble. Each structure consists of 16 plaintexts differing in only a single input S-box. Which S-box
is active is a random choice among the S-boxes that have not already been recovered.

After encryption, we check all 120 pairs of ciphertexts to see if any of them are active in less
than 16 S-boxes. If so, we increment the corresponding counter for the input pair to the S-box
that was active in the plaintext.

We also carry out decryptions in order to obtain information about the inverse S-boxes.

4.2 S-box Recovery Phase

Every once in a while, we stop collecting data and try identifying sets for each S-box. This is
done by first sorting the counters for each number of active output S-boxes. We start with the
lowest number of active output S-boxes. We check if the top eight counter values in the sorted
list passes the cover filter. If so, we consider these eight pairs a slender set and add it to a
collection of identified sets, unless the set is already present in the collection. When there are
multiple sets in the collection, we check that they pass the bowtie filter. We then look at the next
eight pairs and so forth. We stop adding sets when we have identified four sets, or we run into
an inconsistency such as a failing bowtie test or non-disjoint sets. In case of an inconsistency,
we give up identifying sets for this S-box.



The bowtie filter can also be used to filter out candidate sets that can be derived from
existing sets. Consider as an example a situation where the following two candidate sets De and
De′ (passing the bowtie test) have been identified:

De = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, {a, b}, {c, d}, {e, f}}
De′ = {{0, 2}, {1, 3}, {4, 6}, {5, 7}, {8, a}, {9, b}, {c, e}, {d, f}}.

From these two sets we can derive the set De⊕e′ directly as

De⊕e′ = {{0, 3}, {1, 2}, {4, 7}, {5, 6}, {8,b}, {9, a}, {c, f}, {d, e}}

As an example, S(0)⊕S(3) = (S(0)⊕S(1))⊕ (S(1)⊕S(3)) = e⊕ e′. Hence, if we identify a set
which can be derived from two sets already identified, then we should not add the third set to
our collection (on the assumption that the first two sets are slender, which means the third is
not).

We note that if one swaps two “bowtie pairs” in two valid sets (e.g., the pairs {0, 1} and
{2, 3} could be swapped with {0, 2} and {1, 3} in De and De′ above), then the resulting sets
will still pass both the cover and the bowtie test. This is a potential cause for errors; if two sets
have roughly the same probability of causing a single active S-box in the ciphertext, and the
distribution of the probabilities for each output S-box is similar for the two sets, then we are
likely to generate wrong sets that pass both the cover and the bowtie test. This error may be
caught by the existence filter (cf. the following), but if not, then we’ll be recovering the wrong
S-box. This does happen in practice, although it is rather rare.

We repeat the above method of identifying sets for the inverse S-boxes as well, maintaining
separate counters for these.

Once we have identified as many sets as possible using this method (for both the S-box
and its inverse), we can apply the existence filter to check if these sets can possibly be valid;
if there is no S-box generating these sets, then the sets are obviously not valid. As mentioned
in Section 3, applying the existence filter is not terribly efficient; on the other hand, it is not
terribly slow either. A reasonably efficient way to implement it is by making guesses for values
of S(0) and the exact values e for the identified sets De until one runs into an inconsistency with
the candidate sets. Note that once these guesses have been made, we may find the “partner” of
0 in all candidate sets. For instance, if the two sets De and De′ in the example above are our
candidate sets, and we guess that S(0) = 0, then we would know that S(1) = 2i and S(2) = 2j

for some (guessed) i, j, i 6= j and 0 ≤ i, j < 4. We would obtain similar information about
the inverse S-box from the candidate sets for the inverse S-box. This method is able to find all
candidate S-boxes in a fraction of a second given at least one set for the S-box and one set for
its inverse.

If an S-box (or a candidate for it) has been recovered, we stop considering this S-box both
in the data collection and the S-box recovery phase. If not all S-boxes have been recovered, we
continue the data collection phase. In some cases, we have to give up recovering one or more
S-boxes because we are unable to identify sufficiently many sets, or because we consistently get
no candidates for the S-box based on the identified sets. In the latter case, there is obviously an
error in the partitioning into sets. If we consistently obtain multiple candidates for an S-box, we
may also accept this and consider the S-box recovered, keeping a record of all candidates.

5 Case study: the block cipher Maya

Maya is a block cipher proposed at WCC 2009 [3]. It is a PRESENT-like cipher with key
dependent S-boxes (repeated in every round) and a fixed, known bit permutation (see Fig. 1).
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Fig. 1. The Maya bit permutation.

Each round also contains an addition of a round key. The round keys and the S-boxes are derived
from the 1024-bit master key.

Since the S-boxes are the same in every round, using the differential-style attack described
above, we are able to get information on the S-boxes and their inverses. We get information
on both directions for every encrypted pair and can choose to also do decryptions to obtain
information about the inverse of a specific S-box. In this way we often recover at least two sets
in each direction, which usually means all the S-boxes can be determined uniquely. The key
addition, however, means that we only obtain the correct S-boxes up to an xor by the last round
key, which is unknown. However, this still enables us to peel off the first and the last round of
encryption, after which the attack can be repeated on this reduced cipher. Moreover, we expect
that once the S-boxes are known, a dedicated differential or linear attack is more efficient than
our general attack. In the end, we obtain a description of an equivalent cipher.

The standard number of rounds in Maya is 16 and below the log of the complexity to recover
the secret S-boxes for a number of different randomly chosen example keys is given. Complexities
in italics are extrapolated values from running the attack on fewer rounds.

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Complexity 45.5 36.0 35.9 36.9 35.7 39.3 37.4 37.1 40.6 38.5 39.4 39.5 36.0 36.7 38.3 37.4

Moreover, Table 1 (Appendix A) shows the log of the complexity (number of texts) as a
function of the number of rounds for the same example keys. See Fig. 2 for a graphical repre-
sentation. The complexities refer to obtaining all 16 S-boxes (whenever possible, see discussion
below), so that the first and the last round can be peeled off, and the cipher with two round less
can then be attacked.

In this implementation of the attack, an S-box was considered correctly recovered if only
one S-box gave rise to the given partitioning into sets (or the given top 32 pairs). However, if a
substantial amount of time had been spent on an S-box, the conditions were relaxed such that
even if there were more than one candidate S-box, work on this S-box was still discontinued and
all candidates were printed. In extreme cases, where there were no candidate S-boxes after a lot
of time had been spent trying to recover the S-box, that S-box was given up. The choice of when
to accept multiple candidates, or when to give up an S-box, obviously affects the complexity of
the attack. A more sophisticated implementation might adapt better to these situations. As an
example, if the program consistently gives rise to the same partitioning into sets, and there are
no candidates for this partitioning, one might try swapping elements between sets in such a way
that the bowtie condition still holds.
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Fig. 2. A graphical representation of the data in Table 1. The thick line represents the median
computed for each number of rounds.

The error rate of the attack is very low. If we consider the highest number of rounds broken
in each of the 16 test cases, then the total number of S-boxes that had to be recovered was
16 · 16 = 256. Of these, 245 were correctly recovered with only a single S-box candidate. For
seven S-boxes, there were multiple candidates, and the correct S-box was always one of these.
The number of candidates ranged from two to four. Three out of 256 S-boxes were incorrectly
recovered with only a single S-box candidate. One S-box was given up due to too much time
spent trying to recover it.

In a real attack, the fact that some S-boxes were incorrectly recovered would be discovered
after attempting to break the cipher reduced by the first and the last rounds. By making sure
that a large amount of information about the identified sets and the counter values is recorded,
it is likely that one would be able to locate the S-box causing the problem. For instance, there
may be 16 counters that are all similar, meaning that it is likely that two sets have been mixed
up.

6 Model for the Complexity of Recovering Sets De

For a small number of rounds the attack to recover one or more sets De has small complexity
and it is possible to get sufficient experimental data. However, to be able to extrapolate the
attack complexity we describe a theoretical model below.

In the attack we are faced with the problem to group 120 counters C({x, y}), each belonging
to an input pair to an S-box of the first round, into 15 distinct groups. All pairs within a group
should yield the same output difference, i.e., belong to a set De for some e.

Interpreting the counters C({x, y}) as random variables, a counter C({x, y}), with S(x) ⊕
S(y) = e is binomially distributed with parameters n and pe . Here pe is the probability that the



difference (e||060) after the first layer of S-boxes yields to only one active S-box in the output
and n is the number of text pairs.

Assumption 2 states that counters C({x, y}) such that S(x) ⊕ S(y) has a weight greater
than one are significantly smaller than others and we therefore focus only on the 32 counters
corresponding to slender pairs. Thus, we consider 8 counters distributed with parameters (n, p1),
8 distributed with parameters (n, p2), 8 distributed with parameters (n, p4) and finally 8 counters
distributed with parameters (n, p8) (here we identified e = (0, 0, 0, 1) with 1, e = (0, 0, 1, 0) with
2 etc.). Without loss of generality we assume p1 ≥ p2 ≥ p4 ≥ p8 and that holds p1 6= p2. The
attack works by looking at the 8 highest counters and is successful if those counters correspond
to the same output difference, e.g., e = 1, of the S-box. The attack fails whenever there exists
a pair {x1, y1} with output difference ’1’ and a pair {x2, y2} with S(x2) ⊕ S(y2) 6= 1 such that
C({x1, y1}) ≤ C({x2, y2}). In the following we estimate this failure probability depending on
the number of samples n.

To simplify the problem for now, we consider only two pairs {x1, y1} and {x2, y2} and their
corresponding counters where C({x1, y1}) is distributed with parameters (n, q) and C({x2, y2})
is distributed with parameters (n, p) for q > p. The attack fails if C({x1, y1}) ≤ C({x2, y2}) and
thus we denote Z = C({x2, y2})− C({x1, y1}) and

err = Pr(C({x1, y1}) ≤ C({x2, y2})) = Pr(Z ≥ 0).

To investigate this error further consider the usual approximation of the binomial distribution
by the normal distribution, C({x1, y1}) ∼ N(nq, nq(1− q)) and C({x2, y2}) ∼ N(np, np(1− p)).
With this approximation, the distribution of Z can be approximated by Z ∼ N(µ, σ2), where
µ = n(p− q) and σ = n(p(1− p) + q(1− q)).

The density function for the normal distribution with mean µ and variance σ2 is given by

the following formula: f(x) = 1√
2πσ

e−
(x−µ)2

2σ2 . The integral of the normal density function is the

normal distribution function

N(t) =
1√
2π

∫ t

−∞
e−

1
2
x2dx.

The error we make is thus described by

err ≈ 1− 1√
2πσ

∫ 0

−∞
e−

(x−µ)2

2σ2 = 1− 1√
2π

∫ −µ
σ

−∞
e−

x2

2 = 1−N
(
−µ
σ

)
.

The following lemma gives an estimate of the ‘tail’ 1−N(x) which is useful to approximate the
error.

Lemma 1 ( [12]) As x→∞
1−N(x) ≈ x−1φ(x)

where φ(x) = 1√
2π
e−

x2

2 .

Using the approximation of Lemma 1 yields

err ≈ 1−N(−µ
σ

) ≈ −σ
µ

1√
2π
e−

1
2
(µ
σ
)2 . (1)

From (1) it follows that for a given failure probability err the sample must be of size

n >
−c(p2 − p+ q2 − q)

(p− q)2
, (2)



where c = LambertW
(

1
2 err2 π

)
[13] is a small constant depending on the error.

After having estimated the failure probability for 2 counters, assuming independence, the
total error probability errt, that is, the probability of the event that one of the 8 counters with pa-
rameter (n, p1) being smaller than one of the 24 counters with parameters (n, p2), (n, p4), (n, p8)
can be bounded as

errt ≤ 1− (1− err)8·24.

If we allow an error probability of errt ≤ 0.5, which in light of the strong cover filter is clearly
sufficient, we need err ≤ 1− 0.51/(8·24) ≈ 0.0036. For this c = 8 is sufficient.

The next step is to find a way to estimate the probabilities pe. Assuming the cipher is a
Markov cipher we can model the propagation of differences through the cipher as a matrix
multiplication of the difference distribution matrices and the permutation matrices. Considering
the difference distribution table for the whole layer of S-boxes would yield a 264 × 264 matrix.
Therefore we determine the difference distribution matrix which contains only the probabilities
for 1 to 1 bit differences, which as it turns out when comparing to experimental data, is a good
approximation. This matrix is of size only 64×64. This enables us to simulate the propagation of
1 to 1 bit differences through a number of rounds using matrix multiplications. For the resulting
matrix an entry (i, j) contains the probability that given the single, active input bit i after the
first layer of S-boxes, a single output bit j in the second last round will be active. This matrix
can therefore be used to get an estimate for the parameters of the counters. We determine
the probability that given a fixed 1 bit difference after the first round exactly one S-box is
active in the last round (analogously for the inverse). This can be done by summing over the
corresponding matrix entries. Then we use formula (2) to calculate the number of plaintexts
needed to recover at least two sets De in each direction. Note that in the original attack we do
not restrict ourselves to having a single active S-box in the last round but a limited number of
active S-boxes. Furthermore, we can expect that a single active S-box will on average not lead
to 16 active S-box after two rounds of encryption. Thus we believe that in practice we can break
at least two more rounds of encryption with the sample size determined by the model, meaning
the model yields an upper bound for the complexity.

The comparison between the experimental data and the modeled data support this assump-
tion.

To justify the introduced model we implemented the attack for a small number of rounds
(see Section 5). For each number of rounds we sampled 1000 ciphers in our model to determine
the sample size needed to distinguish between the two distributions. Fig. 3 gives a comparison
of the experimental data with that of the model for the case that we want to recover at least
four set De for all 16 S-boxes. The black line shows the experimental data and the red line shows
the model for an error of around 0.3% which corresponds to c = 8. The complexity denotes the
logarithm of the number of plaintexts used. As seen, the model seems to give an upper bound
on the complexity of the attack. In some rare cases the difference between p and q is close to
zero, which leads to a very high attack complexity. These rare cases have a strong influence on
the average complexity, hence we considered the median instead of the mean to estimate the
complexity of the attack.

The modeled data suggest that we are able to break up to 28 rounds before we reach the
bound of 264 available plaintexts.

7 Extensions

In this section we outline some possible extensions of our attack. This includes some further
improvements (cf. Section 7.1) as well as attacks on the more general variant of the cipher where
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Fig. 3. Comparison between the medians of the experimental data and the model for recovering
two sets De in each direction. The black line shows the experimental data while the red (gray)
line shows the data from the model. The complexity unit is one plaintext.

all components in all rounds are chosen independently and uniformly at random (cf. Section
7.2).

7.1 Linear cryptanalysis

In the differential-style attack one hypothesis is that the probability of a characteristic with a
single-bit difference at the output of the S-box layer in the first round is correlated to a single-bit
difference at the input to the S-box layer in the last round or to the number of active S-boxes
in the last round. Using a similar hypothesis for linear characteristics one can mount a linear
attack to extract information about the secret S-boxes. In the differential-style attack one tries
to identify sets of eight pairs of values related to a certain differential. In a linear-style attack one
tries to identify pairs of eight values related to a certain linear characteristic. It was confirmed
in a small number of experiments on ciphers with a small number of rounds that this approach
can be used to derive information about the S-boxes. One natural future direction of research is
to combine the differential-style attack outline in this paper with a similar linear-style attack.

7.2 Fully random PRESENT-like ciphers

In this section we consider PRESENT-like ciphers where the S-boxes and the bit permutations of
all rounds are chosen independently and uniformly at random, that is ciphers given by Algorithm
2.

For such a cipher one would not get information about the inverse S-boxes like in the case of
Maya. Moreover, the S-boxes are not uniquely determined, cf. Appendix B for more details. One
needs to recover all four spender sets De for each S-boxes. We implemented a series of attacks
on such ciphers and the results show that recovering four sets is indeed possible, but not for all



S-boxes. The following table shows the results of our tests to fully recover one S-box in the first
round. The complexity is the number of chosen plaintexts needed and is given as the median of
500 tests.

Rounds Complexity Probability

4 212.5 73%
5 215.5 82%
8 224.5 81%

In each test the computation was stopped if not all 4 slender sets where obtained with 230

structures. The tests are very time-consuming which is why results for 6 and 7 rounds were not
implemented.

Summing up, the attack does not seem to be able to fully recover all S-boxes of the first (or
last) round, merely about 80%. However in the remaining cases, the attack identifies one, two
or three sets Se, which means that only a limited number of choices for these S-boxes remain.
Depending on exactly how many choices of the S-boxes are left, one possible way to proceed is
to simply make a guess, and repeat the attack on a reduced number of rounds. If S-boxes in
other rounds cannot be successfully recovered, the guess might have been wrong. This is a topic
for further research.

Recovering the Bit Permutations. Once the first S-box layer has been recovered, one can
start recovering the first bit permutation layer. Here we outline the technique.

The idea is similar to the method of recovering S-boxes; one encrypts plaintext pairs differing
in (e.g.) two bit positions. Whenever the output difference is small (e.g., one active S-box), one
increments a counter for the pair of positions differing in the plaintext. This is repeated a
number of times for all pairs of bit positions. One may now assume that the highest counter
values correspond to pairs of bit positions that are mapped to the same S-box input.

This leads to information about which bit positions are mapped to the same S-box input in
the next round. One can also vary three or four bit positions in order to obtain more information.
The complexity of this method has not been thoroughly investigated, but preliminary results
indicate that it is similar to (if not lower than) the complexity of recovering S-boxes.

8 Conclusion

In this paper a novel differential-style attack was presented and applied to several 64-bit PRESENT-
like ciphers with secret components. A variant with 16 secret S-boxes can be attacked for up
to 28 rounds with a data complexity of less than 264. It is interesting to note that the best
known attack on PRESENT, a linear attack, can be used to cryptanalyse up to 26 rounds of
PRESENT (which has publicly known S-boxes and bit permutation).

Also, the variant where the S-boxes and bit permutations are chosen at random for every
round can also be attacked with a data complexity of less than 264 for up to 16 rounds.

It is clear that our attacks exploit that there are weak differential properties for some ran-
domly chosen four-bit S-boxes, and they do not apply to ciphers where the S-boxes are chosen as
in PRESENT. However, the number of such strong (w.r.t. differential attacks), non-equivalent
S-boxes is very small, so this restriction would not allow for a huge key.
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A Example complexities for Maya

Table 1. The log of the complexity (number of texts encrypted or decrypted) of 16 test runs of
the attack on Maya as a function of the number of rounds. The complexities in italics are ex-
trapolations based on the assumption of a linear relationship between the number of rounds and
the log complexity. The median was computed on the assumption that non-existent complexities
are infinite.

Rounds
Case 6 7 8 9 10 11 12 13 14 15 16

1 14.4 16.2 18.6 21.0 24.3 28.5 31.6 35.5 45.5
2 14.1 15.6 17.3 19.7 22.0 23.7 26.9 29.1 32.0 33.8 36.0
3 14.3 16.3 17.4 19.5 22.2 24.7 27.4 29.7 31.3 33.6 35.9
4 14.8 16.1 17.6 19.8 22.3 25.3 27.9 30.1 32.1 34.8 36.9
5 14.6 15.7 17.4 19.4 21.4 23.5 26.0 27.6 30.0 31.4 35.7
6 15.0 16.1 18.3 20.2 22.7 25.6 28.7 31.8 34.2 36.3 39.3
7 14.2 15.6 17.7 19.7 22.4 25.4 27.4 29.9 32.6 35.4 37.4
8 14.5 15.7 17.5 19.4 21.5 24.4 26.9 29.6 31.9 35.5 37.1
9 15.2 16.8 19.1 21.1 23.6 26.5 28.7 31.5 36.3 40.6
10 14.9 16.5 18.1 20.2 23.0 24.5 27.6 29.8 34.7 38.5
11 14.4 15.6 17.5 19.8 22.1 25.1 27.5 30.5 33.4 37.7 39.4
12 15.0 15.7 17.5 19.9 22.4 25.3 29.1 31.5 34.2 36.1 39.5
13 14.9 15.9 17.1 19.6 21.7 24.4 27.9 29.3 31.8 35.8 36.0
14 14.4 15.6 17.5 19.3 21.9 24.3 27.7 30.3 32.1 35.4 36.7
15 14.4 15.6 17.2 19.5 22.3 24.0 26.6 29.9 33.0 36.5 38.3
16 14.2 15.7 17.4 19.7 22.4 24.9 27.6 30.4 32.9 34.9 37.4

Median 14.4 15.7 17.5 19.7 22.3 24.8 27.6 30.2 32.5 35.6 37.4

B What we learn about the S-boxes from the sets

In this section, we discuss in detail how much we actually learned about an S-box after recovering
one or more sets De. Here we focus on sets for the S-box itself and not on sets for its inverse.
Before doing so, we remark that it is not possible to recover the S-boxes uniquely when no set
for the inverse S-box is given. In particular, when two S-boxes S and S′ differ by a permutation
of the output bits and by adding a constant after the S-box, in other words, there exists a bit
permutation P and a constant c such that

S′(x) = P (S(x)) + c,

then those S-boxes cannot be distinguished. We therefore call two S-boxes fulfilling the above
relation equivalent.

Lemma 1. Given r sets De1 , . . . , Der for 1 ≤ r ≤ 4, and ei ∈ F4
2 we can construct all sets Dy

where y ∈ span(e1, . . . , er).

Proof. If y ∈ span(e1, . . . , er) then there exists a (not unique) chain of values

y0 = ej0 , y1, . . . , ys = y

such that yi ⊕ yi+1 = eji for ji ∈ {1, . . . , r}. We can inductively construct the sets Dyi . First
note that we already know the set Dy0 = Dej0

and we can construct Dyi+1 using the set Dyi

and Deji
given that

{a, b} ∈ Dyi⊕eji ⇔ ∃c ∈ F4
2 such that {a, c} ∈ Dyi and {c, b} ∈ Deji



ut

Having this technical lemma in place, we can prove the following theorem.

Theorem 3. Let S : F4
2 → F4

2 be a (bijective) S-box and for e ∈ F4
2 with wt(e) = 1,

De = {{x, y} | S(x)⊕ S(y) = e}.

Given r sets De1 , . . . , Der for 1 ≤ r ≤ 4, up to equivalence, there are

24−r−1∏
i=1

24 − i2r

possibilities for S. More concretely,

1. given 4 sets the S-box is determined uniquely,
2. given 3 sets there are 8 possible S-boxes,
3. given 2 sets there are 384 possible S-boxes, and
4. given 1 set there are 645120 possible S-boxes.

Proof. Assume we are given r sets De1 , . . . , Der . First, up to equivalence, we can assume that
S(0) = 0 and furthermore e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0) and so on. We claim that given this
information, S is fixed on the set

{x | S(x) ∈ span(e1, . . . , er)}.

For this, let y ∈ span(e1, . . . , er) be given. From Lemma 1 we know that we can construct the
set Dy. As Dy passes the cover filter, there exists a pair {0, x} ∈ Dy for some x ∈ F4

2. It follows
that we found an x ∈ F4

2 such that

S(0) + S(x) = S(x) = y.

More generally, the same argument shows that, given De1 , . . . , Der , fixing S(x′) = y′ the
values of S are fixed for all x such that S(x) is in the coset y′ ⊕ span(e1, . . . , er). Noting there
are 24−r cosets of span(e1, . . . , er) and taking into account the bijectivity of the S-box, the
theorem follows. ut

In particular, the proof of Theorem 3 implies the following.

Corollary 1. The cover filter is necessary and sufficient. That is to say that given a number of
sets De where e runs through a subspace of F4

2, there exists an S-box corresponding to these sets
if and only if each of the sets De passes the cover filter.
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