
A Note on the Relation between the Definitions of

Security for Semi-Honest and Malicious Adversaries∗

Carmit Hazay† Yehuda Lindell‡

October 28, 2010

Abstract

In secure computation, a set of parties wish to jointly compute some function of their private
inputs while preserving security properties like privacy, correctness and more. The two main
adversary models that have been considered are semi-honest adversaries who follow the pre-
scribed protocol but try to glean more information than allowed from the protocol transcript,
and malicious adversaries who can run any efficient strategy in order to carry out their attack.
As such they can deviate at will from the prescribed protocol. One would naturally expect that
any protocol that is secure in the presence of malicious adversaries will automatically be secure
in the presence of semi-honest adversaries. However, due to a technicality in the definition, this
is not necessarily true. In this brief note, we explain why this is the case, and show that a slight
modification to the definition of semi-honest adversaries (specifically, allowing a semi-honest
adversary to change its received input) suffices for fixing this anomaly.

Our aim in publishing this note is to make this curious fact more known to the wider
cryptographic community.

1 Malicious Versus Semi-honest Adversaries

In order to keep this note brief, we assume that the reader is familiar with the exact definitions of
relevance. We refer to [2], [4, Chapter 7], or [5, Chapter 2] for motivation and full definitions of
secure computation in the presence of semi-honest and malicious adversaries.

At first sight, it seems that any protocol that is secure in the presence of malicious adversaries
is also secure in the presence of semi-honest adversaries. This is because a semi-honest adversary
is just a “special case” of a malicious adversary who faithfully follows the protocol specification.
Although this is what we would expect, it turns out to be false. This anomaly is due to the fact that
although a real semi-honest adversary is indeed a special case of a real malicious adversary, this
is not true of the respective adversaries in the ideal model. Specifically, the adversary in the ideal
model for malicious adversaries is allowed to change its input, whereas the adversary in the ideal
model for semi-honest adversaries is not. Thus, the adversary/simulator for the case of malicious
adversaries has more power than the adversary/simulator for the case of semi-honest adversaries.
As such, it may be possible to simulate a protocol in the malicious model, but not in the semi-honest
model. We now present two examples of protocols where this occurs.

∗We thank Yuval Ishai for first pointing out this inconsistency in the definitions to us. Most of this note is an
excerpt from [5].

†Dept. of Computer Science, Aarhus University, Denmark. carmit@cs.au.dk.
‡Dept. of Computer Science, Bar-Ilan University, Israel. lindell@cs.biu.ac.il.

1



Example 1 – secure AND. Consider the case of two parties computing the binary AND function
f(x, y) = x∧y, where only party P2 receives output. Note first that if party P2 uses input 1, then by
the output received it can fully determine party P1’s input (if the output is 0 then P1 had input 0,
and otherwise it had input 1). In contrast, if party P2 uses input 0 then it learns nothing about
P1’s input, because the output equals 0 irrespective of the value of P1’s input. The result of this
observation is that in the ideal model, an adversary corrupting P2 can always learn P1’s exact input
by sending the trusted party the input value 1. Thus, P1’s input is always revealed. In contrast,
in the ideal model with a semi-honest adversary, P1’s input is only revealed if the corrupted party
has input 1; otherwise, the adversary learns nothing whatsoever about P1’s input. We use the
above observations to construct a protocol that securely computes the binary AND function in the
presence of malicious adversaries, but is not secure in the presence of semi-honest adversaries; see
Protocol 1.

PROTOCOL 1 (A Protocol for Binary AND)

• Input: P1 has an input bit x and P2 has an input bit y.

• Output: The binary value x ∧ y for P2 only.

• The protocol:

1. P1 sends P2 its input bit x.

2. P2 outputs the bit x ∧ y.

We have the following claims:

Claim 2 Protocol 1 securely computes the binary AND function in the presence of malicious ad-
versaries.

Proof: We separately consider the case where P1 is corrupted and the case where P2 is corrupted.
If P1 is corrupted, then the simulator S (for malicious adversaries) receives from A the bit that it
sends to P2 in the protocol. This bit fully determines the input of P1 to the function and so S just
sends it to the trusted party, thereby completing the simulation. In the case where P2 is corrupted,
S sends input 1 to the trusted party and receives back an output bit b. By the observation above, b
is the input of the honest P1 in the ideal model. Thus, the simulator S just hands A the bit x = b
as the value that A expects to receive from the honest P1 in a real execution. It is immediate that
the simulation here is perfect.

We stress that the above works because P2 is the only party to receive output. If P1 also were
to receive output, then S’s simulation in the case of a corrupted P2 would not work. In order to see
this, consider an adversary who corrupts P2, uses input y = 0 and outputs its view in the protocol,
including the bit x that it receives from P1. In this case, S cannot send y = 1 to the trusted party
because P1’s output would not be correctly distributed. Thus, it must send y = 0, in which case
the view that it generates for A cannot always be correct because it does not know the input bit
x of P1.

Claim 3 Protocol 1 does not securely compute the binary AND function in the presence of semi-
honest adversaries.

2



Proof: Consider the simulator S2 (for semi-honest adversaries) that is guaranteed to exist for the
case where P2 is corrupted. Then, S2 is given y and x∧ y and must generate the view of P2 in the
computation. However, this view contains the value x that P1 sends to P2 in the protocol. Now, if
y = 0 and x is random, then there is no way that S2 can guess the value of x with probability greater
than 1/2. We conclude that the protocol is not secure in the presence of semi-honest adversaries.

We remark that in fact, the AND function for the case of semi-honest adversaries is complete,
and as such, implies the existence of oblivious transfer [1]. In contrast, as we have shown, in the
case of malicious adversaries it can be securely computed unconditionally, without any hardness
assumptions. As such it is trivial.

This leads to the following remarkable corollary:

Corollary 4 There exists a binary function (where only one party receives output) that is trivial
in the presence of malicious adversaries and complete in the presence of semi-honest adversaries.

Example 2 – set union. Another example where this arises is the problem of set union over a
large domain where only one party receives output. Specifically, consider the function f(X,Y ) =
(λ,X ∪ Y ) where X,Y ⊆ {0, 1}n are sets of the same size, and λ denotes the “empty” output.
We claim that the protocol where P1 sends its set X to P2 is secure in the presence of malicious
adversaries. This follows for the exact same reasons as above because a corrupted P2 in the malicious
model can replace its input set Y with a set Y ′ of the same size, but containing random values.
Since the sets contain values of length n, it follows that the probability that X∩Y ̸= ϕ is negligible.
Thus, the output that P2 receives completely reveals the input of P1. In contrast, if a corrupted
party cannot change its input, then when X ∩ Y ̸= ϕ the elements that are common to both sets
are hidden. Specifically, if five elements are common to both sets, then P2 knows that there are five
common elements, but does not have any idea as to which are common. Thus, for the same reasons
as above, the protocol is not secure in the presence of semi-honest adversaries. Once again, we
stress that this works when only one party receives output; in the case where both parties receive
output, securely computing this functionality is highly non-trivial.

Discussion. It is our opinion that the above phenomenon should not be viewed as an “annoying
technicality”. Rather it points to a problem in the definitions that needs to be considered. Our
position is that it would be better to define semi-honest adversaries as adversaries that are allowed
to change their input before the computation starts (e.g., by rewriting the value on their input tape),
and once the computation begins must behave in a semi-honest fashion as before. Conceptually,
this makes sense because parties are allowed to choose their own input and this is not adversarial
behavior. In addition, this model better facilitates the “compilation” of protocols that are secure
in the semi-honest model into protocols that are secure in the malicious model. Indeed, in order
to prove the security of the protocol of [3], and specifically the compilation of a protocol for
the semi-honest model into one that is secure in the presence of malicious adversaries, Goldreich
introduces the notion of augmented semi-honest behavior, which is exactly as described above; see
Definition 7.4.24 in Section 7.4.4.1 of [4]. We stress that all protocols presented in this book that are
secure in the presence of semi-honest adversaries are also secure in the presence of augmented semi-
honest adversaries. Furthermore, as stated in the following proposition, security in the malicious
model implies security in the augmented semi-honest model, as one would expect.

3



Proposition 5 Let π be a protocol that securely computes a functionality f in the presence of
malicious adversaries. Then π securely computes f in the presence of augmented semi-honest
adversaries.

Proof: Let π be a protocol that securely computes f in the presence of malicious adversaries. Let
A be an augmented semi-honest real adversary and let S be the simulator for A that is guaranteed
to exist by the security of π (for every malicious A there exists such an S, and in particular for an
augmented semi-honest A). We construct a simulator S ′ for the augmented semi-honest setting,
by simply having S ′ run S. However, in order for this to work, we have to show that S ′ can do
everything that S can do. In the malicious ideal model, S can choose whatever input it wishes for
the corrupted party; since S ′ is augmented semi-honest, it too can modify the input. In addition, S
can cause the honest party to output abort. However, S ′ cannot do this. Nevertheless, this is not a
problem because when S is the simulator for an augmented semi-honest A it can cause the honest
party to output abort with at most negligible probability. In order to see this, note that when
two honest parties run the protocol, neither outputs abort with non-negligible probability. Thus,
when an honest party runs together with an augmented semi-honest adversary, it too outputs abort
with at most negligible probability. This is due to the fact that the distribution over the messages
it receives in both cases is identical (because a semi-honest real adversary follows the protocol
instructions just like an honest party). This implies that the simulator for the malicious case,
when applied to an augmented semi-honest real adversary, causes an abort with at most negligible
probability. Thus, the augmented semi-honest simulator can run the simulator for the malicious
case, as required.

Given the above, it is our position that the definition of augmented semi-honest adversaries is
the “right way” of modeling semi-honest behavior.

References

[1] A. Beimel, T. Malkin and S. Micali. The All-or-Nothing Nature of Two-Party Secure
Computation. In Proceedings of the 19th Annual International Cryptology Conference on
Advances in Cryptology, p.80-97, August 15-19, 1999.

[2] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[3] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229, 1987. For
details see [4].

[4] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge
University Press, 2004.

[5] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols – Techniques and Construc-
tions. Springer, 2010.

4


