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Abstract 
With the emergence of pervasive 64 bit computing we 

observe that it is more cost effective to compute a SHA-

512 than it is to compute a SHA-256 over a given size of 

data. We propose a standard way to use SHA-512 and 

truncate its output to 256 bits. For 64 bit architectures, 

this would yield a more efficient 256 bit hashing 

algorithm, than the current SHA-256. We call this method 

SHA-512/256. We also provide a method for reducing the 

size of the SHA-512 constants table that an 

implementation will need to store. 
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1. Introduction 
 

Robust and fast security functionality is basic tenant 

for secure computer transactions. Hashing algorithms 

have long been the poor-man of the community, with their 

security receiving less attention than standard encryption 

algorithms and with little attention paid to their speed. 

The attacks against SHA-1 reversed this situation and 

there are many new proposals being evaluated in response 

to the NIST SHA-3 competition. In the aftermath of the 

SHA-1 attacks the advice NIST produced was to move to 

SHA-256 [1]. As a result, many standards and products 

have started to move towards larger hash sizes, although 

this may be a somewhat protracted process as the SHA-3 

competition now adds additional dimensions to feature 

selection and future supportability issues. This movement 

does not come without its costs as SHA-256 is about 2.2 

times slower than SHA-1. 

The reason why SHA-512 is faster than SHA-256 on 

64-bit machines is that has 37.5% less rounds per byte (80 

rounds operating on 128 byte blocks) compared to SHA-

256 (64 rounds operating on 64 byte blocks), where the 

operations use 64-bit integer arithmetic. The adoption 

across the breadth of our product range of 64 bit ALU’s 

make it possible to achieve better security using SHA-512 

in less time than it takes to compute a SHA-256 hash. 

However storing a SHA-512 bit hash is expensive, 

especially in a constrained hardware environment, such as 

a state-of-the-art processor. SHA-384 does reduce this 

storage requirement somewhat by truncating the final 

result of a SHA-512 to 384 bits. But by truncating the 

result of SHA-512 operation to 256bits it is possible to 

balance the cost of providing the necessary additional 

security/storage against the performance cost of 

calculating the hash.  

We believe that adding SHA-512/256 to the SHA 

portfolio would provide implementers with 

performance/cost characteristics hitherto unavailable to 

them. 

 

2. Performance of SHA-512 and SHA-256 
 

The performance of SHA-256 and SHA-512 depends 

on the length of the hashed message. Here we provide a 

summary.  

Generally, SHA-256 and SHA-512 can be viewed as a 

single invocation of an _init() function (that initializes the 

eight 64bit variable h0, h1, h2, h3, h4, h5, h6, h7), 

followed by a sequence of invocations of an _update() 

function, and an invocation a _finalize() function.  

The _finalize() function itself consists of one or two 

invocations of _update(), depending on the message’s 

length. In addition, there are some operations to create a 

formatted “last block(s)” (also called “padding”).  

The _update() functions for SHA-256 and SHA-512 

are different and, even more importantly, operate on 

different block sizes: 64 bytes for SHA-256 and 128 bytes 

for SHA-512. 

From a performance standpoint the contribution of the 

_init() function and the last block padding are negligible. 

Therefore, the performance of SHA-256 and SHA-512 

can be quite accurately approximated from the 

performance of their respective _update() functions, and 

the number of invocations.  

The number invocations of the _update() function 

depends on the message length as follows. 

 

 



SHA-256:  

Let M be a message of x bytes, x = 64n + r, 0≤m<64.  

If r ≤ 55, the number of calls to _update()  is (n+1) 

If r > 55, the number of calls to _update()  is (n+2) 

 

Denote n = floor (x/64), r = x mod 64, and the cost (in 

CPU cycles) of one SHA-256 _update() function by 

UPDATE256. The number of cycles for computing the 

SHA-256 of M is approximated by  

 

UPDATE256 ∙ (n + 1 + floor (r/55))                        (1) 

 

SHA-512:  

Let M be a message of y bytes, y = 128m + s, 

0≤s<128.  

If s ≤ 111, the number of calls to _update()  is (m+1) 

If s > 111, the number of calls to _update()  is (m+2) 

 

Denote m = floor (x/64), s = y mod 64, and the cost (in 

CPU cycles) of one SHA-512 _update() function by 

UPDATE512. The number of cycles for computing the 

SHA-512 of M is approximated by  

 

UPDATE512 ∙ (m + 1 + floor (s/111))                      (2) 

 

As an example, Figure 1 shows the SHA-512 flow of 

such a message, and it also illustrates why the overheads 

beyond the _update() invocations are negligible with 

respect to performance. 

 
Input: a pointer to the hash string (8 * 

64bit long words), a pointer to the message 

whose byte length is a multiple of 128.  

Output: The hash string holding the SHA-512 

digest of the message. 

Prototype: 

void SHA-512_128byte_blocks(uint64_t 

hash[8], uint8_t msg[256], int byte_length) 

Flow: 

SHA-512Init(hash) 

last_block = zero_string 

last_block[byte 0] = 0x80 

last_block[qword 15] = 

big_endian(byte_length*8) 

append(msg, last_block) 

for i=0 to byte_length/128 

    SHA-512Update(hash, msg) 

    msg = msg+128 

end for 

Output: The hash now  holds the digest of 

the message 

Figure 1: SHA-512 of a message whose length is a 
multiple of 128 bytes (pseudo code) 

 
For comparison purposes we show the performance, in 

total cycles per block and in CPU cycles per byte, of the 

_update() functions for both SHA-256 and SHA-512, 

measured on the latest Intel architecture (micro-

architecture codenamed “Westmere”), Xeon X5670 

processor. We also show the total number of CPU cycles 

required for hashing a 1024 bytes message. The reported 

measurements were carried out on an Intel Xeon X5670 

processor running at 2.67 GHz. The operating system was 

Linux (OpenSuse 11.1 64 bits). To isolate the 

performance of the functions that we measured, we 

disabled Intel® Turbo Boost Technology, Intel® Hyper-

Threading Technology, and Enhanced Intel Speedstep® 

Technology. No X server and no network daemon were 

running. This data is shown in Tables 1 and 2. 

As an example for optimized code (unrolled 

assembler), we used OpenSSL version 1.0.0a [3]. For 

“compact” code, we used home brewed straightforward C 

code. 

 

Table 1: SHA-256 Performance 
 Cycles 

Total 
Per 

Byte 

SHA-256 Update  

(Compact C code) 
1,863 29.11 

SHA-256 Update  

(OpenSSL unrolled asm 

code) 

1,166 18.22 

SHA-256 of a 1024 bytes 

message 

(Compact C code) 

33,757 32.97 

SHA-256 of a 1024 bytes 

message  

(OpenSSL unrolled asm 

code) 

19,769 19.30 

 

Table 2: SHA-512 Performance 
 Cycles 

Total 
Per 

Byte 

SHA-512 Update  

(Compact C code) 
2,473 19.32 

SHA-512 Update  

(OpenSSL unrolled asm 

code) 

1,483 11.58 

SHA-512 on 1024 bytes 

message 

(Compact  C code) 

20,928 20.43 

SHA-512 on 1024 bytes 

message 

(OpenSSL unrolled asm 

code) 

13,392 13.07 

 

In both examples we see that unrolling the code to 

carefully take advantage of the parallelism in the CPU 

micro-architecture, results in a performance improvement 

of ~37% (for SHA-256) and 37-40% (for SHA-512).  

To illustrate the accuracy of the performance 

approximations, apply Equation (2) to a 1024 byte 



message (m=8, s=0), with UPDATE512 = 1483 (Table 2, 

unrolled code). The approximated cycles count for SHA-

512 is 13,347 cycles, which indeed closely approximates 

the actually measured 13,392 cycles. The small 

differences can be attributed to the overheads.  

When comparing apples-to-apples implementations, 

SHA-512 performs ~50% more efficiently SHA-256. 

Even when comparing “best” against “worst” 

implementations, the SHA-512 performance is within 

~6% of SHA-256 implementation. 

 

3. The SHA-512/256 Truncation  
 

In this section we will show how to truncate SHA-512 

to 256 bits. The result of this process we refer to as SHA-

512/256. 

SHA-384 [2] already provides an existing example for 

truncation of SHA-512 to a shorter digest size. The 

computations of SHA-384 are exactly the same as SHA-

512, and in order to signify that a hash was performed by 

a truncated form of SHA-512, the initial hash values are 

set to different constants. In other words, the only 

difference between SHA-512 and SHA-384 is in the 

_init() function, and of course the truncation itself.  

We propose to apply the same technique to the 

truncation of SHA-512 to 256 bits digest.  

In SHA-512 the init() function sets the initial state to 

the first 64 bits of the fractional parts of the square roots 

of the first 8 prime numbers. In SHA-384 these constants 

are replaced with the fractional parts of the square roots of 

the ninth through sixteenth prime numbers.  

By analogy, we propose that the initialization constants 

for SHA-512/256 would be the fractional parts of the 

seventeenth through twenty-fourth prime numbers. These 

values are shown in Table 3. When the hashing has been 

completed, and a 512 bit result is obtained, the truncated 

digest would be defined the lower 256 bits of that result. 

 

Table 3: SHA-512/256 Proposed Initial Constants 
 

Prime 

Number 

Prime 

Value 

The first 64bits of 

the fractional part 

of the square roots 

of the primes 

h0 17 59 ae5f9156e7b6d99b 

h1 18 61 cf6c85d39d1a1e15 

h2 19 67 2f73477d6a4563ca 

h3 20 71 6d1826cafd82e1ed 

h4 21 73 8b43d4570a51b936 

h5 22 79 e360b596dc380c3f 

h6 23 83 1c456002ce13e9f8 

h7 24 89 6f19633143a0af0e 

 

Figure 2 provides a test vector example. 

 

 

 

The 256 bytes message (represented as 

a sequence of bytes; byte 0 is first, 

byte 255 is last): 

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f  

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f  

20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f  

30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f  

40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f  

50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f  

60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f  

70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f  

80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f  

90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f  

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af  

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf  

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf  

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df  

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef  

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff 

 

The SHA-512/256 hash value (before 

truncation):  

h0 = 4ff7ecb3e7c23b55  

h1 = 9974eba17a3d1a62 

h2 = 0504f18be2e472ea 

h3 = c5c5cbf75b3b7550 

h4 = 27a8af7dc7dc9845 

h5 = 8cfc76997dc50cfd  

h6 = f4f500cc1830f561 

h7 = bf2abd3732fdf66a  

 

The SHA512/256 hash value (256 bits): 

h0 = 4ff7ecb3e7c23b55 

h1 = 9974eba17a3d1a62  

h2 = 0504f18be2e472ea 

h3 = c5c5cbf75b3b7550  

 

For comparison, the SHA-512 hash value 

of the same message is: 

h0 = 1e7b80bc8edc552c 

h1 = 8feeb2780e111477 

h2 = e5bc70465fac1a77 

h3 = b29b35980c3f0ce4 

h4 = a036a6c946203682 

h5 = 4bd56801e62af7e9  

h6 = feba5c22ed8a5af8 

h7 = 77bf7de117dcac6d 

(note that completely different values 

are obtained) 

Figure 2: A SHA-512/256 example. 



 

4. Calculating the SHA-512 constants with a 

smaller lookup table 
 

The downside of implementing SHA-512 is that it 

requires a table of eighty 64 bit constants (a 640 bytes 

lookup table). For comparison, SHA-256 requires only 

sixty four 32 bit constant (a 256 bytes lookup table). 

In some implementations the cost of storing data for 

the lookup table can be exceptionally high. In such cases, 

the storage requirement of SHA-512, namely for 384 

more bytes than SHA-256, would be considered as a 

disadvantage.  

For SHA-256, there is a way to reduce the storage 

requirement by computing the sixty four constants which 

are defined to be the first 32 bits of the fractional parts of 

the cube roots of the first sixty four prime numbers. One 

way to compute these cube roots is to use Newton-

Raphson iterations, which, on 64 bit architectures, quickly 

converge to provide the first 32 bits of the result. 

Unfortunately, this is not the case for SHA-512, 

because the SHA-512 constants are defined to be the first 

64 bits of the fractional part of the cube roots of the first 

eighty primes. Performing simple numerical iterations on 

64 bit architecture does not give the required precision.  

We propose the following method for obtaining the 

SHA-512 constants. They can be approximated, using the 

Newton-Raphson Algorithm, up to the last two bytes (in 

no more than 14 iterations of the algorithm). Therefore, it 

is sufficient to store, for each constant, only the two bytes 

(pre-computed) difference between the result of the 

Newton-Raphson iterations and the exact constant. To 

avoid storing the first eighty primes, it is enough to store 

only the difference from the previous prime number. For 

example, the difference from the first prime is (2) is 0, the 

difference of the next prime (3) from the previous one (2) 

is 1, the next difference is 5-3=2 and so on. Since up to 

the first eighty primes, the largest difference is 24, it 

follows that all differences can be represented by 4 bits, 

so that pairs of differences can be stored in a single byte.  

 Altogether, this method uses only 2.5 bytes for each 

constant (instead of 8 bytes if the constants are stored), 

therefore, reducing the table size from 640 bytes to only 

200 bytes. This method trades a reduced table size with 

the small cost of additional code and computations. The 

implementation and the associated constants are detailed 

in Figure 3 below.  

 
Input: Pointers to three arrays.  

Array 1 holds the differences between the 

first 80 primes (two differences per byte).  

Array 2 holds the difference between the 

result of the Newton-Raphson iterations and 

the desired constant. 

Array 3 a place to store the computed 80 

SHA-512 constants. 

Output: The SHA-512 constants 

Prototype: 

void calculate_SHA-512_constants (uint16_t 

deltas[80], uint8_t offsets[40],  uint64_t 

K[80]) 

Constants: 

offsets =  

0x01, 0x22, 0x42, 0x42, 0x46, 0x26, 0x42, 

0x46, 0x62, 0x64, 0x26, 0x46, 0x84, 0x24,  

0x24, 0xe4, 0x62, 0xa2, 0x66, 0x46, 0x62, 

0xa2, 0x42, 0xcc, 0x42, 0x46, 0x2a, 0x66,  

0x62, 0x64, 0x2a, 0xe4, 0x24, 0xe6, 0xa2, 

0x46, 0x86, 0x64, 0x68, 0x48 

 

Deltas =  

0xfe22, 0x05cd, 0xfb2f, 0xfbbc, 0xf538,  

0xf019, 0xef9b, 0x0118, 0x0242, 0x0fbe,  

0xf28c, 0xf4e2, 0x096f, 0xf6b1, 0xf235,  

0x0694, 0x0ad2, 0x05e3, 0x15b5, 0x1c65,  

0x0275, 0xe483, 0xfbd4, 0x13b5, 0xdfab,  

0xf210, 0xe13f, 0x0ee4, 0x0fc2, 0xe725,  

0x026f, 0xee70, 0xeffc, 0x0926, 0xeaed,  

0xf3df, 0xe3de, 0xf2a8, 0xeee6, 0xf53b,  

0x0364, 0xf001, 0x1791, 0xfe30, 0x1218,  

0x2910, 0xe02a, 0xd1b8, 0x10c8, 0xeb53,  

0xeb99, 0x08a8, 0x1a63, 0x0acb, 0xe373,  

0xf8a3, 0xf2fc, 0xef60, 0x2b72, 0xf9ec,  

0x1e28, 0xfde9, 0xf915, 0x132b, 0xe19c,  

0x0207, 0xeb1e, 0x1178, 0xefba, 0x18a6,  

0x0dae, 0x071b, 0xfd84, 0x2493, 0xfebc,  

0x0d4c, 0x02b6, 0xfe2a, 0xfaec, 0x1817 

Flow: 

double p = 2   //the first prime 

for i=0 to 79 

    if (i%2 = 1)  

        //offset is in the second nibble 

        p = p + (offsets[i/2] & 0x0f) 

    else 

        //offset in the first nibble 

        p = p + (offsets[i/2] >> 4)    

    end if 

    double n = p/3 

    for j=0 to 13 

        n = n - (n
3
-p)/3n

2 

    // correction to 64 bits accuracy 

    K[i] = fraction(n) * 2
64 

+ deltas[i]  

end for  

Output: 

The constants are now in the K array 

Figure 3: Computing the SHA-512 constants. 
 

 



 

5. SHA-512/t – Truncation to Other Output 

Lengths 
 

It is conceivable that supporting digests of other 

lengths, less than 512, would be useful. A straightforward 

way to standardize such truncations would be to use 

another distinct set of eight primes, as SHA-384 and the 

proposed SHA-512/256 do. Such an approach does not 

scale gracefully because the initialization constants are 

not naturally related to the desired digest length. To avoid 

this situation we suggest another truncation method.  

Let t be an integer satisfying 0 < t < 512, t  256, t  

384. Encode l as a Big-Endian 1024 bit integer T.  

For the truncation of SHA-512 to t bits, namely SHA-

512/t, we define the initial state (initialization constants) 

as follows:  

 

IV512/t = SHA-512 (T)                                            (3) 

 

In other words, IV512/t is the output of the SHA-512 

compression function (C512 hereafter) operating on the 

encoded number T.  

As above, SHA-512/t would use the initialization 

constants as in Equation (3), with all the remaining 

computations remaining the same as SHA-the standard 

512. When the hashing has been completed, and a 512 bit 

result is obtained, the truncated digest would be defined 

the lower t bits of that result.  

The initialization constants for SHA512/t for t=256 are 

shown in Table 4, and a test vector example is provided in 

Figure 4.  

 

Table 4: SHA-512/t (t=256) Initial Constants  

Length 256 

Length T, encoded as 

a 1024 bit (Big-

Endian) number. 

Here, T=256.  

(byte 0 is first, byte 

127 is the last) 

000100000000000000000000

000000000000000000000000

000000000000000000000000

000000000000000000000000

000000000000000000000000

000000000000000000000000

000000000000000000000000

000000000000000000000000

000000000000000000000000

000000000000000000000000

0000000000000000 

The initial constants 

IV512/t  (t=256) 

(= SHA-512 (T)) 

 

h0 = 2b2b0a74439fba29 

h1 = b0395e75cf517538 

h2 = 2d56e63211d68a9a  

h3 = cd2e4f0e7f903a4b  

h4 = 1fa53c41cf466fe4  

h5 = 60119e4c4bc5e6c6  

h6 = b895a38bba334ca3  

h7 = 68b7beb95a22e694 

 

 

 

The 256 bytes message (represented as 

a sequence of bytes; byte 0 is first, 

byte 255 is last): 

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f  

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f  

20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f  

30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f  

40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f  

50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f  

60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f  

70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f  

80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f  

90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f  

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af  

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf  

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf  

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df  

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef  

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff 

 

The SHA-512/256 hash value (before 

truncation):  

h0 = 50a201a0449a0617  

h1 = 43e22f5c48eff125  

h2 = 3ef8380002ae5655  

h3 = 2b8c57b60cce2f2e  

h4 = 4e2280f2ad1c4d8a  

h5 = 688eb8b073694f88  

h6 = ad4d5b4cbe93c8f4  

h7 = 442d3a450787b415 

 

The SHA512/256 hash value (256 bits): 

h0 = 50a201a0449a0617  

h1 = 43e22f5c48eff125  

h2 = 3ef8380002ae5655  

h3 = 2b8c57b60cce2f2e   

 

SHA-512 of the same message: 

h0 = 1e7b80bc8edc552c 

h1 = 8feeb2780e111477 

h2 = e5bc70465fac1a77 

h3 = b29b35980c3f0ce4 

h4 = a036a6c946203682 

h5 = 4bd56801e62af7e9  

h6 = feba5c22ed8a5af8 

h7 = 77bf7de117dcac6d 

(different values are obtained) 

Figure 4: A SHA-512/t for t=256; Example. 
 



This construction is different the method used by NIST 

for the SHA-384 truncation (and therefore different from 

the truncation we proposed in Section 3). On the other 

hand, this construction enjoys the following properties:  

 

1. SHA-512/t (M) = SHA-512 (T || M), where T is as 

above, “||” denotes string concatenation, and M is 

any bit string (message) whose length in bits does 

not exceed 2
64

 – 1024. 

2. In particular, all of the values IV512-t are distinct if 

C512 is collision resistant. 

3. If t and t are two distinct positive integers less 

than 512, then SHA-512/t (M)  SHA-512/t (M) 

for any message M, since by SHA-512’s collision 

resistant they are unequal before truncation. 

4. SHA-512/t is collision resistant, pre-image 

resistant, and second pre-image resistant if SHA-

512 also has these properties. 

 

6. Conclusion 
 

From our performance analysis, and experimentation 

on 64 bit Intel Architecture, we have shown that the cost 

of implementing a SHA-512 algorithm delivers a 50% 

performance improvement over similar implementations 

of SHA-256. We also showed that the storage costs for 

implementing SHA-512 can be reduced by adding a small 

amount of one-off computation to compute the SHA-512 

constants - which we believe will be useful for 

constrained implementation environment.   

In order for users to be able to distinguish between a 

SHA-512 digest which has been truncated and a 

SHA512/256 digest, we also offer new initialization 

constants, analogous to those used in SHA-384. We also 

follow the standard truncation method in the SHA 

standard [2] which can be extended to truncations to other 

lengths by choosing the next set of 8 primes. 

When the NSA designed the SHA family of algorithms 

their design rationale was never published (this is one of 

the two major motivations for the SHA-3 competition; the 

other one being Wang’s attack on SHA-1). To the best of 

our knowledge, from observing the SHA standard, and in 

particular, the method used for defining SHA-384, the 

actual values of the initialization constants are immaterial. 

They only need to be unique per hash function, and this is 

what we used for our SHA-512/256 truncation.  

So, in addition, we propose an alternative method to 

define SHA-512/t, a truncation of SHA-512 to t bits long 

digests (for any positive t not equal to 256 or 384). This 

construction is very similar to the mechanism used in the 

Skein proposal for SHA-3 [4].  

In either case, given SHA-512’s performance on 64 bit 

architectures, we believe that SHA-512/256 removes a 

performance obstacle for the adoption of wider hash 

values, and that a truncated version of SHA-512 to 256 

bits is a viable alternative to SHA-256, for 64 bit 

architectures.  
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