

SHA-512/256

Shay Gueron
1, 2

, Simon Johnson
3
, Jesse Walker

4

1
 Department of Mathematics, University of Haifa, Israel

2
 Mobility Group, Intel Corporation, Israel Development Center, Haifa, Israel

3
 Intel Architecture Group, Intel Corporation, USA

4
 Security Research Lab, Intel Labs, Intel Corporation, USA

Abstract
With the emergence of pervasive 64 bit computing we

observe that it is more cost effective to compute a SHA-

512 than it is to compute a SHA-256 over a given size of

data. We propose a standard way to use SHA-512 and

truncate its output to 256 bits. For 64 bit architectures,

this would yield a more efficient 256 bit hashing

algorithm, than the current SHA-256. We call this method

SHA-512/256. We also provide a method for reducing the

size of the SHA-512 constants table that an

implementation will need to store.

Key Words: hash algorithms, SHA-512.

1. Introduction

Robust and fast security functionality is basic tenant

for secure computer transactions. Hashing algorithms

have long been the poor-man of the community, with their

security receiving less attention than standard encryption

algorithms and with little attention paid to their speed.

The attacks against SHA-1 reversed this situation and

there are many new proposals being evaluated in response

to the NIST SHA-3 competition. In the aftermath of the

SHA-1 attacks the advice NIST produced was to move to

SHA-256 [1]. As a result, many standards and products

have started to move towards larger hash sizes, although

this may be a somewhat protracted process as the SHA-3

competition now adds additional dimensions to feature

selection and future supportability issues. This movement

does not come without its costs as SHA-256 is about 2.2

times slower than SHA-1.

The reason why SHA-512 is faster than SHA-256 on

64-bit machines is that has 37.5% less rounds per byte (80

rounds operating on 128 byte blocks) compared to SHA-

256 (64 rounds operating on 64 byte blocks), where the

operations use 64-bit integer arithmetic. The adoption

across the breadth of our product range of 64 bit ALU’s

make it possible to achieve better security using SHA-512

in less time than it takes to compute a SHA-256 hash.

However storing a SHA-512 bit hash is expensive,

especially in a constrained hardware environment, such as

a state-of-the-art processor. SHA-384 does reduce this

storage requirement somewhat by truncating the final

result of a SHA-512 to 384 bits. But by truncating the

result of SHA-512 operation to 256bits it is possible to

balance the cost of providing the necessary additional

security/storage against the performance cost of

calculating the hash.

We believe that adding SHA-512/256 to the SHA

portfolio would provide implementers with

performance/cost characteristics hitherto unavailable to

them.

2. Performance of SHA-512 and SHA-256

The performance of SHA-256 and SHA-512 depends

on the length of the hashed message. Here we provide a

summary.

Generally, SHA-256 and SHA-512 can be viewed as a

single invocation of an _init() function (that initializes the

eight 64bit variable h0, h1, h2, h3, h4, h5, h6, h7),

followed by a sequence of invocations of an _update()

function, and an invocation a _finalize() function.

The _finalize() function itself consists of one or two

invocations of _update(), depending on the message’s

length. In addition, there are some operations to create a

formatted “last block(s)” (also called “padding”).

The _update() functions for SHA-256 and SHA-512

are different and, even more importantly, operate on

different block sizes: 64 bytes for SHA-256 and 128 bytes

for SHA-512.

From a performance standpoint the contribution of the

_init() function and the last block padding are negligible.

Therefore, the performance of SHA-256 and SHA-512

can be quite accurately approximated from the

performance of their respective _update() functions, and

the number of invocations.

The number invocations of the _update() function

depends on the message length as follows.

SHA-256:

Let M be a message of x bytes, x = 64n + r, 0≤m<64.

If r ≤ 55, the number of calls to _update() is (n+1)

If r > 55, the number of calls to _update() is (n+2)

Denote n = floor (x/64), r = x mod 64, and the cost (in

CPU cycles) of one SHA-256 _update() function by

UPDATE256. The number of cycles for computing the

SHA-256 of M is approximated by

UPDATE256 ∙ (n + 1 + floor (r/55)) (1)

SHA-512:

Let M be a message of y bytes, y = 128m + s,

0≤s<128.

If s ≤ 111, the number of calls to _update() is (m+1)

If s > 111, the number of calls to _update() is (m+2)

Denote m = floor (x/64), s = y mod 64, and the cost (in

CPU cycles) of one SHA-512 _update() function by

UPDATE512. The number of cycles for computing the

SHA-512 of M is approximated by

UPDATE512 ∙ (m + 1 + floor (s/111)) (2)

As an example, Figure 1 shows the SHA-512 flow of

such a message, and it also illustrates why the overheads

beyond the _update() invocations are negligible with

respect to performance.

Input: a pointer to the hash string (8 *

64bit long words), a pointer to the message

whose byte length is a multiple of 128.

Output: The hash string holding the SHA-512

digest of the message.

Prototype:

void SHA-512_128byte_blocks(uint64_t

hash[8], uint8_t msg[256], int byte_length)

Flow:

SHA-512Init(hash)

last_block = zero_string

last_block[byte 0] = 0x80

last_block[qword 15] =

big_endian(byte_length*8)

append(msg, last_block)

for i=0 to byte_length/128

 SHA-512Update(hash, msg)

 msg = msg+128

end for

Output: The hash now holds the digest of

the message

Figure 1: SHA-512 of a message whose length is a
multiple of 128 bytes (pseudo code)

For comparison purposes we show the performance, in

total cycles per block and in CPU cycles per byte, of the

_update() functions for both SHA-256 and SHA-512,

measured on the latest Intel architecture (micro-

architecture codenamed “Westmere”), Xeon X5670

processor. We also show the total number of CPU cycles

required for hashing a 1024 bytes message. The reported

measurements were carried out on an Intel Xeon X5670

processor running at 2.67 GHz. The operating system was

Linux (OpenSuse 11.1 64 bits). To isolate the

performance of the functions that we measured, we

disabled Intel® Turbo Boost Technology, Intel® Hyper-

Threading Technology, and Enhanced Intel Speedstep®

Technology. No X server and no network daemon were

running. This data is shown in Tables 1 and 2.

As an example for optimized code (unrolled

assembler), we used OpenSSL version 1.0.0a [3]. For

“compact” code, we used home brewed straightforward C

code.

Table 1: SHA-256 Performance
 Cycles

Total
Per

Byte

SHA-256 Update

(Compact C code)
1,863 29.11

SHA-256 Update

(OpenSSL unrolled asm

code)

1,166 18.22

SHA-256 of a 1024 bytes

message

(Compact C code)

33,757 32.97

SHA-256 of a 1024 bytes

message

(OpenSSL unrolled asm

code)

19,769 19.30

Table 2: SHA-512 Performance
 Cycles

Total
Per

Byte

SHA-512 Update

(Compact C code)
2,473 19.32

SHA-512 Update

(OpenSSL unrolled asm

code)

1,483 11.58

SHA-512 on 1024 bytes

message

(Compact C code)

20,928 20.43

SHA-512 on 1024 bytes

message

(OpenSSL unrolled asm

code)

13,392 13.07

In both examples we see that unrolling the code to

carefully take advantage of the parallelism in the CPU

micro-architecture, results in a performance improvement

of ~37% (for SHA-256) and 37-40% (for SHA-512).

To illustrate the accuracy of the performance

approximations, apply Equation (2) to a 1024 byte

message (m=8, s=0), with UPDATE512 = 1483 (Table 2,

unrolled code). The approximated cycles count for SHA-

512 is 13,347 cycles, which indeed closely approximates

the actually measured 13,392 cycles. The small

differences can be attributed to the overheads.

When comparing apples-to-apples implementations,

SHA-512 performs ~50% more efficiently SHA-256.

Even when comparing “best” against “worst”

implementations, the SHA-512 performance is within

~6% of SHA-256 implementation.

3. The SHA-512/256 Truncation

In this section we will show how to truncate SHA-512

to 256 bits. The result of this process we refer to as SHA-

512/256.

SHA-384 [2] already provides an existing example for

truncation of SHA-512 to a shorter digest size. The

computations of SHA-384 are exactly the same as SHA-

512, and in order to signify that a hash was performed by

a truncated form of SHA-512, the initial hash values are

set to different constants. In other words, the only

difference between SHA-512 and SHA-384 is in the

_init() function, and of course the truncation itself.

We propose to apply the same technique to the

truncation of SHA-512 to 256 bits digest.

In SHA-512 the init() function sets the initial state to

the first 64 bits of the fractional parts of the square roots

of the first 8 prime numbers. In SHA-384 these constants

are replaced with the fractional parts of the square roots of

the ninth through sixteenth prime numbers.

By analogy, we propose that the initialization constants

for SHA-512/256 would be the fractional parts of the

seventeenth through twenty-fourth prime numbers. These

values are shown in Table 3. When the hashing has been

completed, and a 512 bit result is obtained, the truncated

digest would be defined the lower 256 bits of that result.

Table 3: SHA-512/256 Proposed Initial Constants

Prime

Number

Prime

Value

The first 64bits of

the fractional part

of the square roots

of the primes

h0 17 59 ae5f9156e7b6d99b

h1 18 61 cf6c85d39d1a1e15

h2 19 67 2f73477d6a4563ca

h3 20 71 6d1826cafd82e1ed

h4 21 73 8b43d4570a51b936

h5 22 79 e360b596dc380c3f

h6 23 83 1c456002ce13e9f8

h7 24 89 6f19633143a0af0e

Figure 2 provides a test vector example.

The 256 bytes message (represented as

a sequence of bytes; byte 0 is first,

byte 255 is last):

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f

30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f

40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f

50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f

60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f

70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f

80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f

90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff

The SHA-512/256 hash value (before

truncation):

h0 = 4ff7ecb3e7c23b55

h1 = 9974eba17a3d1a62

h2 = 0504f18be2e472ea

h3 = c5c5cbf75b3b7550

h4 = 27a8af7dc7dc9845

h5 = 8cfc76997dc50cfd

h6 = f4f500cc1830f561

h7 = bf2abd3732fdf66a

The SHA512/256 hash value (256 bits):

h0 = 4ff7ecb3e7c23b55

h1 = 9974eba17a3d1a62

h2 = 0504f18be2e472ea

h3 = c5c5cbf75b3b7550

For comparison, the SHA-512 hash value

of the same message is:

h0 = 1e7b80bc8edc552c

h1 = 8feeb2780e111477

h2 = e5bc70465fac1a77

h3 = b29b35980c3f0ce4

h4 = a036a6c946203682

h5 = 4bd56801e62af7e9

h6 = feba5c22ed8a5af8

h7 = 77bf7de117dcac6d

(note that completely different values

are obtained)

Figure 2: A SHA-512/256 example.

4. Calculating the SHA-512 constants with a

smaller lookup table

The downside of implementing SHA-512 is that it

requires a table of eighty 64 bit constants (a 640 bytes

lookup table). For comparison, SHA-256 requires only

sixty four 32 bit constant (a 256 bytes lookup table).

In some implementations the cost of storing data for

the lookup table can be exceptionally high. In such cases,

the storage requirement of SHA-512, namely for 384

more bytes than SHA-256, would be considered as a

disadvantage.

For SHA-256, there is a way to reduce the storage

requirement by computing the sixty four constants which

are defined to be the first 32 bits of the fractional parts of

the cube roots of the first sixty four prime numbers. One

way to compute these cube roots is to use Newton-

Raphson iterations, which, on 64 bit architectures, quickly

converge to provide the first 32 bits of the result.

Unfortunately, this is not the case for SHA-512,

because the SHA-512 constants are defined to be the first

64 bits of the fractional part of the cube roots of the first

eighty primes. Performing simple numerical iterations on

64 bit architecture does not give the required precision.

We propose the following method for obtaining the

SHA-512 constants. They can be approximated, using the

Newton-Raphson Algorithm, up to the last two bytes (in

no more than 14 iterations of the algorithm). Therefore, it

is sufficient to store, for each constant, only the two bytes

(pre-computed) difference between the result of the

Newton-Raphson iterations and the exact constant. To

avoid storing the first eighty primes, it is enough to store

only the difference from the previous prime number. For

example, the difference from the first prime is (2) is 0, the

difference of the next prime (3) from the previous one (2)

is 1, the next difference is 5-3=2 and so on. Since up to

the first eighty primes, the largest difference is 24, it

follows that all differences can be represented by 4 bits,

so that pairs of differences can be stored in a single byte.

 Altogether, this method uses only 2.5 bytes for each

constant (instead of 8 bytes if the constants are stored),

therefore, reducing the table size from 640 bytes to only

200 bytes. This method trades a reduced table size with

the small cost of additional code and computations. The

implementation and the associated constants are detailed

in Figure 3 below.

Input: Pointers to three arrays.

Array 1 holds the differences between the

first 80 primes (two differences per byte).

Array 2 holds the difference between the

result of the Newton-Raphson iterations and

the desired constant.

Array 3 a place to store the computed 80

SHA-512 constants.

Output: The SHA-512 constants

Prototype:

void calculate_SHA-512_constants (uint16_t

deltas[80], uint8_t offsets[40], uint64_t

K[80])

Constants:

offsets =

0x01, 0x22, 0x42, 0x42, 0x46, 0x26, 0x42,

0x46, 0x62, 0x64, 0x26, 0x46, 0x84, 0x24,

0x24, 0xe4, 0x62, 0xa2, 0x66, 0x46, 0x62,

0xa2, 0x42, 0xcc, 0x42, 0x46, 0x2a, 0x66,

0x62, 0x64, 0x2a, 0xe4, 0x24, 0xe6, 0xa2,

0x46, 0x86, 0x64, 0x68, 0x48

Deltas =

0xfe22, 0x05cd, 0xfb2f, 0xfbbc, 0xf538,

0xf019, 0xef9b, 0x0118, 0x0242, 0x0fbe,

0xf28c, 0xf4e2, 0x096f, 0xf6b1, 0xf235,

0x0694, 0x0ad2, 0x05e3, 0x15b5, 0x1c65,

0x0275, 0xe483, 0xfbd4, 0x13b5, 0xdfab,

0xf210, 0xe13f, 0x0ee4, 0x0fc2, 0xe725,

0x026f, 0xee70, 0xeffc, 0x0926, 0xeaed,

0xf3df, 0xe3de, 0xf2a8, 0xeee6, 0xf53b,

0x0364, 0xf001, 0x1791, 0xfe30, 0x1218,

0x2910, 0xe02a, 0xd1b8, 0x10c8, 0xeb53,

0xeb99, 0x08a8, 0x1a63, 0x0acb, 0xe373,

0xf8a3, 0xf2fc, 0xef60, 0x2b72, 0xf9ec,

0x1e28, 0xfde9, 0xf915, 0x132b, 0xe19c,

0x0207, 0xeb1e, 0x1178, 0xefba, 0x18a6,

0x0dae, 0x071b, 0xfd84, 0x2493, 0xfebc,

0x0d4c, 0x02b6, 0xfe2a, 0xfaec, 0x1817

Flow:

double p = 2 //the first prime

for i=0 to 79

 if (i%2 = 1)

 //offset is in the second nibble

 p = p + (offsets[i/2] & 0x0f)

 else

 //offset in the first nibble

 p = p + (offsets[i/2] >> 4)

 end if

 double n = p/3

 for j=0 to 13

 n = n - (n
3
-p)/3n

2

 // correction to 64 bits accuracy

 K[i] = fraction(n) * 2
64

+ deltas[i]

end for

Output:

The constants are now in the K array

Figure 3: Computing the SHA-512 constants.

5. SHA-512/t – Truncation to Other Output

Lengths

It is conceivable that supporting digests of other

lengths, less than 512, would be useful. A straightforward

way to standardize such truncations would be to use

another distinct set of eight primes, as SHA-384 and the

proposed SHA-512/256 do. Such an approach does not

scale gracefully because the initialization constants are

not naturally related to the desired digest length. To avoid

this situation we suggest another truncation method.

Let t be an integer satisfying 0 < t < 512, t  256, t 

384. Encode l as a Big-Endian 1024 bit integer T.

For the truncation of SHA-512 to t bits, namely SHA-

512/t, we define the initial state (initialization constants)

as follows:

IV512/t = SHA-512 (T) (3)

In other words, IV512/t is the output of the SHA-512

compression function (C512 hereafter) operating on the

encoded number T.

As above, SHA-512/t would use the initialization

constants as in Equation (3), with all the remaining

computations remaining the same as SHA-the standard

512. When the hashing has been completed, and a 512 bit

result is obtained, the truncated digest would be defined

the lower t bits of that result.

The initialization constants for SHA512/t for t=256 are

shown in Table 4, and a test vector example is provided in

Figure 4.

Table 4: SHA-512/t (t=256) Initial Constants

Length 256

Length T, encoded as

a 1024 bit (Big-

Endian) number.

Here, T=256.

(byte 0 is first, byte

127 is the last)

000100000000000000000000

000000000000000000000000

000000000000000000000000

000000000000000000000000

000000000000000000000000

000000000000000000000000

000000000000000000000000

000000000000000000000000

000000000000000000000000

000000000000000000000000

0000000000000000

The initial constants

IV512/t (t=256)

(= SHA-512 (T))

h0 = 2b2b0a74439fba29

h1 = b0395e75cf517538

h2 = 2d56e63211d68a9a

h3 = cd2e4f0e7f903a4b

h4 = 1fa53c41cf466fe4

h5 = 60119e4c4bc5e6c6

h6 = b895a38bba334ca3

h7 = 68b7beb95a22e694

The 256 bytes message (represented as

a sequence of bytes; byte 0 is first,

byte 255 is last):

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f

30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f

40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f

50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f

60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f

70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f

80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f

90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff

The SHA-512/256 hash value (before

truncation):

h0 = 50a201a0449a0617

h1 = 43e22f5c48eff125

h2 = 3ef8380002ae5655

h3 = 2b8c57b60cce2f2e

h4 = 4e2280f2ad1c4d8a

h5 = 688eb8b073694f88

h6 = ad4d5b4cbe93c8f4

h7 = 442d3a450787b415

The SHA512/256 hash value (256 bits):

h0 = 50a201a0449a0617

h1 = 43e22f5c48eff125

h2 = 3ef8380002ae5655

h3 = 2b8c57b60cce2f2e

SHA-512 of the same message:

h0 = 1e7b80bc8edc552c

h1 = 8feeb2780e111477

h2 = e5bc70465fac1a77

h3 = b29b35980c3f0ce4

h4 = a036a6c946203682

h5 = 4bd56801e62af7e9

h6 = feba5c22ed8a5af8

h7 = 77bf7de117dcac6d

(different values are obtained)

Figure 4: A SHA-512/t for t=256; Example.

This construction is different the method used by NIST

for the SHA-384 truncation (and therefore different from

the truncation we proposed in Section 3). On the other

hand, this construction enjoys the following properties:

1. SHA-512/t (M) = SHA-512 (T || M), where T is as

above, “||” denotes string concatenation, and M is

any bit string (message) whose length in bits does

not exceed 2
64

 – 1024.

2. In particular, all of the values IV512-t are distinct if

C512 is collision resistant.

3. If t and t are two distinct positive integers less

than 512, then SHA-512/t (M)  SHA-512/t (M)

for any message M, since by SHA-512’s collision

resistant they are unequal before truncation.

4. SHA-512/t is collision resistant, pre-image

resistant, and second pre-image resistant if SHA-

512 also has these properties.

6. Conclusion

From our performance analysis, and experimentation

on 64 bit Intel Architecture, we have shown that the cost

of implementing a SHA-512 algorithm delivers a 50%

performance improvement over similar implementations

of SHA-256. We also showed that the storage costs for

implementing SHA-512 can be reduced by adding a small

amount of one-off computation to compute the SHA-512

constants - which we believe will be useful for

constrained implementation environment.

In order for users to be able to distinguish between a

SHA-512 digest which has been truncated and a

SHA512/256 digest, we also offer new initialization

constants, analogous to those used in SHA-384. We also

follow the standard truncation method in the SHA

standard [2] which can be extended to truncations to other

lengths by choosing the next set of 8 primes.

When the NSA designed the SHA family of algorithms

their design rationale was never published (this is one of

the two major motivations for the SHA-3 competition; the

other one being Wang’s attack on SHA-1). To the best of

our knowledge, from observing the SHA standard, and in

particular, the method used for defining SHA-384, the

actual values of the initialization constants are immaterial.

They only need to be unique per hash function, and this is

what we used for our SHA-512/256 truncation.

So, in addition, we propose an alternative method to

define SHA-512/t, a truncation of SHA-512 to t bits long

digests (for any positive t not equal to 256 or 384). This

construction is very similar to the mechanism used in the

Skein proposal for SHA-3 [4].

In either case, given SHA-512’s performance on 64 bit

architectures, we believe that SHA-512/256 removes a

performance obstacle for the adoption of wider hash

values, and that a truncated version of SHA-512 to 256

bits is a viable alternative to SHA-256, for 64 bit

architectures.

6. References

[1] NIST, “NIST Brief Comments on Recent Cryptanalytic

Attacks on Secure Hashing Functions and Continued

Security Provided by SHA-1”, 25th August 2004,

http://csrc.nist.gov/groups/ST/toolkit/documents/shs/hash_s

tandards_comments.pdf

[2] Federal Information Processing Standards Publication 180-

3, “SECURE HASH STANDARD”, October 2008,

http://csrc.nist.gov/publications/fips/fips180-3/fips180-

3_final.pdf

[3] OpenSSL Source Code, http://www.openssl.org/source

[4] N. Ferguson et al, “The Skein Hash Function Family”,

Version 1.3, 1st October 2010,

http://www.schneier.com/skein1.3.pdf

http://csrc.nist.gov/groups/ST/toolkit/documents/shs/hash_standards_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/shs/hash_standards_comments.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://www.openssl.org/source
http://www.schneier.com/skein1.3.pdf

