
KIST: A new encryption algorithm based on splay

R. Wei and Z. Zeng

Department of Computer Science

Lakehead University

Thunder Bay, Ontario P7B 5E1, Canada

{rwei,zzeng}@lakeheadu.ca

Abstract

In this paper, we proposed a new encryption algorithm called KIST. This algorithm
uses an asynchronous key sequence and a splay tree. It is very efficient in the usage of
both space and time. Some elementary security tests have been done.

Key words asynchronous key sequence, splay tree, symmetric key encryption

1 Introduction

In this paper, we propose a new encryption algorithm called KIST (key insertion and splay
tree encryption). Some of the characteristics and advantages are as follows.

• An asynchronous key sequence is used, which depends on an initial key and plaintext
encrypted.

• A splay tree is used so that the substitution is dynamic.

• The encryption is fast and uses small space.

• Cipher texts are compressed in most cases.

• The block size of the plain text and key size are flexible.

• It is good for massage integrity.

Splay trees were first described in 1983 by Sleator and Tarjan in [7] and the details were
presented in [8] in 1985. Splay trees were originally intended as self-balancing binary search
trees with the property that recently accessed nodes are quick to access again. This property
was applied to data compression by Jones in [3]. The difference between a compression splay
tree and a search splay tree is that the compression tree does not require a lexicographic
ordering of the nodes, that simplifies the algorithm. An algorithm called semi-rotations
was defined and used in [3] for data compression to eliminate the need of treating the zig-
zag cases and thus simplified the algorithms. [1] proved that on an n-node splay tree, the
amortized cost of an access at distance d from the preceding access is O(log(d + 1)). In
addition, there is an O(n) initialization cost. The accesses include searches, insertions, and
deletions. More information about splay compression can be found in [2].

The author of [3] noticed that the compression algorithm has a property that the loss
of one bit from the stream of compressed data is catastrophic and thus suggested the use

1

of such compression in encryption. In [4], some brief discussion about the security of the
splay tree based encryption was given. [4] also indicated that some ideas of that were used
by Lotus in their product Ami Pro.

In general, the method suggested in [4] is not secure. Using splay trees, the more
frequent used bytes will be encoded into shorter codes. So the ciphertext definitely will
give some information to the attacker. However, the method using splay tree for encryption
has some attractive characteristics. It is efficient in regarding both time and space. The
splay tree compression operation needs only 2 KB to 4 KB memory. Also the cipher text is
compressed under this method.

In this paper, we will propose a new encryption algorithm which applies some techniques
of splay trees. We first give a brief review of splay trees.

1.1 Splay trees

In a splay tree for binary search proposed in [8], the tree is splayed when a node is accessed.
The idea is that the accessed node becomes the root, and all nodes to the left of it form a
new left subtree while all the other nodes form a new right subtree. To reduce the amount
of restructuring during the splaying, a method called semi-splay was proposed in [8]. Using
semi-splay, only some of the edges along an access path are rotated. That will improve the
operations in zig-zag cases.

In [3], splay trees are applied for data compression. To do the data compression, prefix-
free codes are used. There are some difference between the binary search trees and data
compression trees. As a binary search tree, a lexicographic ordering is kept, that is not
necessary for the data compression tree. On the other hand, in a prefix-free code based tree
(used for compression), only the leaves can be accessed while all nodes (inner nodes and
leaves) in a search tree can be accessed. Considering these differences, Jones in [3] proposed
an operation called semi-rotation. Since this method will be used later, we give a little more
details in the following.

In a semi-rotation, only two links in the tree are exchanged to move the accessed node
up. We will use the following example in [3] to explain the idea. In the example, we use
numbers to denote the inner nodes and use alphabetic characters to denote leaves. Only
leaves will be accessed. In Figure 1, the node C in the left tree was accessed. So there are
two semi-rotations between node C and root 1. First semi-rotation exchanges the links of
C and B and the second semi-rotation exchanges the links of nodes E and 3. The resulting
tree is shown as at the right of Figure 1. In general, the splay will be performed from
the accessed leave up to the root along the path. Every two links are exchanged from the
bottom up recursively. When the number of nodes on the path is odd, the last node (the
root) is skipped. In the above example, the nodes between C up to the root are 4, 3, 2, 1.
First we go up through 4 and 3, and do a semi-rotation. Then go up through 2 and 1, and
do the second semi-rotation. This is an even case.

Following the convention of prefix-free encoding tree, encoding of a leaf is followed the
path from the root to the leaf. A left edge is encoded by a bit 0 and a right edge is encoded
by a bit 1. In above example, the original code of C is 0110. After splaying, the code is
changed to 10. So next time C will be transmitted to a shorter code. Note that each node
accessed after splaying will be encoded as a code of half size. This property is good for data
compression because more frequency characters will encoded into shorter codes. However,
it is not good for security if we use splaying for encryption.

[3] suggested to use a secret initial state of the tree as a encryption key. Then the splay

2

2

3A

B

C

E

1

4

1

2 3

A E C

B D

4

D

Figure 1: Semi-rotations splay

algorithm is used to encode (encrypt) the inputs. Since the initial state is kept in secret,
the attacker will be difficult to find out the original text. This method is not secure. [4]
discussed several security weakness of that encryption. Basically, a chosen plain attack
(actually, the known plain text attack can also reveal some information) is able to reform
the shape of the tree and thus break the encryption. For example, when a string aaaaaaaa
or a string abababababababab is encoded, then the position of node a or a, b is forced to form.
(As an example, we will use a tree of 8 layers for the byte encodes in this paper). In this
way, one can change the tree in his wish. One method for possible solutions suggested in
[4] is using random insertions. The idea is to insert random bytes to the inputs. Since the
random bytes are secret, the attacker will be more difficult to figure out the shape of the
tree. Another method suggested in [4] is using run-length encoding. Instead of inserting the
random bytes at intervals with fixed length, the bytes are inserted at intervals with pseudo
random lengths. We will see later that these methods are not good enough to secure the
encryption.

The rest of this paper is organized as follows. In Section 2, we analysis the security
of the previous splay tree based encryption and indicated its weakness. Section 3 gives
the details of our proposed algorithm. Section 4 gives some experimental results of our
algorithms. Section 5 gives a brief conclusion.

2 Security considerations

To understand the splay trees, let us look at a small example which contains 8 leaves. We set
the original tree as a complete binary tree shown in the top of the Figure 2. Starting from
that tree, we encode four letters. Try three times to encode abcd, beef, adch respectively.
The resulting three trees are displayed in the Figure 2.

These trees look differently, but they have some common characters. For example, the
number of leaves in first two layers are two and the number of leaves in first four layers are
at least four. All the encoded letters are at the top four layers. This is not strange, because
the tree splay has the following properties:

• A new accessed leaf will move up half way.

• Any leaf will not move down more than two layers after a splay.

Therefore, in general, there are always leaves at the first four layers in a splay tree after
some time. And most frequent letters will be set at higher level. This property will give

3

1

2 4

3 b 5

6 7 a c

d

e f g h

c d

5a

b4

2

g h

7

1

3e

f6

1

2 h

4 a

5 c

3 b

d 7

g 6

e f

a b c d e f g h

1

2 3

4 5 6 7

a b c d e f g h

1

2 3

4 5 6 7

Figure 2: Small examples of splay

attackers information about the plain text. The random insertion to the input will not solve
that problem, because it will not change the probability distribution of the plain text. For
a secure encryption, we should keep the shape of the tree secret. In other words, we should
keep the shape of the tree in random. Note that the tree is dynamic. It will change all the
time during the encoding. We need to keep these changes in secret. In next subsection, we
introduce our main idea about how to keep the tree in random and the changes in secret.

2.1 Moving inner nodes

From the above discussion we know that to insert random bytes to the inputs is not a very
good idea. Because it will not change the fact that the tree is not balance (not random):
one subtree of the root is vary small. We propose the following method called key injection

for the encryption. Instead of insert random bytes (keys) into inputs, we will try to change
the link of inner nodes using the keys. The main idea is as below.

1. Select an inner node n of the tree by using a key ki = f(K,Pi), where K is an initial
symmetric key, Pi is the plain texts encrypted up to current block and f is some
function.

2. Find out the node m in layer one, which is at the subtree of the root other than what
is the node n at.

3. Exchange the link of n and m.

Here the node m could be an inner node or a leaf. For example, if the inner node 5 is
chosen, then three trees at Figure 2 will be changed to trees at Figure 3.

4

5

a c 2

3 b

6 7

e f g h e

c d

5

h c

1

4

d

a

b4

2

g h

7

1

3

f6

1

2

4 a

5

3 b

d 7

g 6

e f

Figure 3: Small examples of key injection

In these examples, the leaves at the layer 1 disappeared after the key injection. The key
injection increases the randomness of the tree. Of course, the key injection will increase the
size of the cipher text. Therefore there is a trad-off between the security and compression
in this algorithm. If we inject more keys, then the tree will be more random and the
compression will be worse. To consider this, we will set some parameters and discuss these
parameters later.

3 Encryption algorithm

Now we propose our encryption algorithm. Our method consists of tree parts which can be
described as following three algorithms:

1. Key generation algorithm.

2. Encryption algorithm.

3. Key injection algorithm.

For simplicity, we will not describe the general algorithm. The following is an example
of our encryption. But it is straightforward to give the general algorithm from our example.

Our encryption is based on bytes that enables it to be implemented easily in a 8-bit
CPU. We will use a binary tree of 256 leaves for the 256 different bytes. So we need 255 inner
nodes in the tree. We use three arrays left, right, up to store the nodes’ information.
Two arrays are of length 255 which records the left and right children of inner nodes. Other
array is of length 511 which records the parents of nodes. In this tree, the inner nodes are
named 0, 1, 2, . . . , 254 and the leaves are named 255, 256, . . . , 510. So the index of arrays
are the names of the nodes. In the initial stage, the tree is a complete binary tree. So the
values of these arrays are initialized as follows:

left[i] = 2 ∗ i + 1; for i = 0, . . . , 254.

right[i] = 2 ∗ i + 2; for i = 0, . . . , 254.

up[i] = (i− 1)/2; for i = 1, . . . , 510, and up[0] is some special symbol.

5

3.1 Key injection algorithm

As we described before, the key injection means to use a key to move inner nodes. On the
other hand, we also want the cipher text compressed a little. After doing some tests, we
found that the random injection might cause the algorithm losing the compression property.
Actually, in many cases of our test, the cipher text is even larger than the plain text. To
avoid that problem, we will only move the inner nodes which are above layer N , where N
is some parameter. Since more frequent accessed bytes are usually at higher layers, this
method will keep some compression of the cipher text. As we indicated previously, the
compression of cipher text means some information about the plain text. But we can let
the value of N large enough to eliminate the compression property of the cipher text if that
is desired. Our method is as follows. After a key generated, the algorithm will check the
layer of the according inner node. If an inner node is below layer N , then we will ignore
that key. Using this method, some of the keys will be discarded in random. Therefore the
injection is of some randomness, which will increase the security of the algorithm. In the
following algorithms, we will use the parameter N .

In our method, we exchange the links of two nodes. So the injection is more efficient
than splay. The discarding procedure gives a dynamic length of intervals and it is much
more efficient than the run-length encoding mentioned in [4].

The algorithm of injection function injection(byte i, integer N) is as follows.
In our algorithms, a byte is expressed as an integer between 0 and 255.

Algorithm 3.1: Injection(i,N)

comment: i is a byte from input

j ← i
if (i = 0)

then quit
s← 1
N ← n
while (up[j] 6= 0)
j ← up[j], s← s + 1
if (s < N)

then

if (j = right[0])
then t← left[0]
else t← right[0]

exchange links of i and t (swap up[i] and up[t])
else quit

The injection function will be called at the beginning of the encryption. In that time,
16 bytes will be injected to the initial tree. After that, the injection function will be called
for every byte of plain text encrypted. Note that in our algorithm, we use a byte as a block
of plain text. In general, we can injection a key for each block. Since the initial tree is a
complete binary tree, most of the first 16 bytes will be injected if we set N ≥ 7. To avoid
discarding any key in the beginning, we can set the threshold N after injecting the 16 keys.
After encrypting some bytes, the keys will be discarded in random.

6

3.2 Encryption algorithm

Now we give our encryption algorithm which is essentially the splay tree algorithm of [3]
plus key injection algorithm. First we need to define splay function. The algorithm of Splay

function Splay(byte i) is as follows.

Algorithm 3.2: Splay(i)

comment: i is a byte from input

i← i + 255
j ← up[i]
while (j 6= 0 and up[j] 6= 0)

s← up[j]
if (j = left[s])
then t← right[s]
else t← left[s]

exchange links of i and t
i← up[i]
j ← up[i]

The encode is proceeded byte by byte. Since encoding is done by following a path from
a leaf to the root of the tree, the code bits are produced in the reverse order from the order
in which they should be transmitted. Therefore a local stack is used to temporarily store
the bits. The algorithm of encode function encode(byte i) is as follows.

Algorithm 3.3: Encode(i)

comment: i is a byte from input

j ← i
i← i + 255
while (i 6= 0)

if (i = left[up[i]])
then push bit 0 to stack
else push bit 1 to stack

i← up[i]
while (stack is not empty) pop a bit and output it
Splay(j)

The algorithm first encode the byte. Then the accessed node is splayed.
To do encryption, we need a key sequence created by the key generation algorithm.

Assume the key sequence is (K1,K2, . . . ,Ki, . . .), where 0 ≤ Ki ≤ 255 for each i. The
initial key is K = (K1,K2, . . . ,K16)

The algorithm of encryption is as follows. Suppose the plain text are bytes P =
(p1, p2, . . . , pm).

7

Algorithm 3.4: Encryption(P,K)

comment: P is plain text and K is key sequence

for i = 1 to 16
do injection(Ki, N)

key ← 17
for j = 1 to m

do

encode(pj)
injection(Kkey, N)
key ← key + 1

3.3 Decryption algorithm

In decryption algorithms, the parameter N is same as that in encryption used. Suppose the
cipher text is a bitstring C = (c1, c2, . . . , cs). The decode is proceeded bit by bit following
a path from the root to a leaf. A bit will be deleted from the bitstring after it is proceeded.
The output of the function is a byte. The algorithm of decode function decode(bitstring

C) is as follows.

Algorithm 3.5: Decode(C)

comment: C is a bitstring from input

node← 0
c← first bit of C
while (node ≤ 254)

if (c = 0)
then node← left[node]
else node← right[node]

C = C \ {c}
c← first bit of C

output (node− 255)
Splay(node− 255)

The algorithm of decryption is as follows. Suppose the cipher text is a bitstring C and
key sequence is generated by K. The algorithm first injects 16 keys just as the encryption.
Then the decode function is called. The key injection is also called for every decoding.

Algorithm 3.6: Decryption(C,K)

comment: C is a bitstring and K is key sequence

for i = 1 to 16
do injection(Ki, N)

key ← 17
j ← 0

while (C 6= ∅)

decode(C)
j ← j + 1
injection(Kkey ,N)
key ← key + 1

8

3.4 Key generation algorithm

Now we consider the key generation algorithm. The key sequence is generated from initial
key and plain text.

In the following, we suppose the symmetric key we used is 16 bytes. It is easy to use
different lengths of keys in our algorithm.

We will use a “cyclic” array key with length 16 (or the length of the key). Here cyclic
means that key[j] = key[j− 16] for j ≥ 16. These keys are stored in array key. Next, when
a byte is encrypted, its parent is Xored to the current key and then used for injection. The
key generation algorithm is as follows.

Algorithm 3.7: KeyGeneration(P,K)

comment: P is plain text and K is initial key

for i = 1 to 16
do key(i)← Ki

c← 17
for j = 1 to m

do

key(c) = key(c) ⊕ up[pj + 255]
output (key(c))
c← c + 1

The ith key is generated from the initial key and Pj , where Pj contains first j bytes of
plain text. Note that because of the splay, the parent of the pj is not fixed and depends
on previous plain text and the initial key. Since one inner node may have two leaves as
children, the key change is not determined by a unique plaintext byte.

4 Applications

We implemented the KIST as an Eclipse plug-in application (see [9]). The following methods
are used.

• The hash function MD5 is used for the initial key so that a user can use a pass phrase
as a key instead of a random key.

• Since ASCII codes used for Java source file only uses 127 nodes (bytes), we use an
correspondence table for some frequent Java key words or phrases and the unused
bytes. In this way, the Java source file can be compressed better.

• A user can choose options for encryption or compression only.

We also suggest to use KIST for wireless sensor networks (WSN) and other mobile
devices, where space limitation is an important issue. A sensor typically has 8 - 120 KB of
code memory and 512 - 4096 bytes of data memory (see [5]). KIST needs only 2 - 4 KB
memory and the cipher text is compressed, that is good for the space limitation of nodes
in WSN. By the same reason, the KIST is also suitable for small mobile devices.

9

5 Conclusion

In this paper, we introduce an encryption system KIST which is based on splay trees. An
asynchronous key sequence is used to change the tree dynamically and secretly. Since a tree
can be viewed as a substitution, the main encryption uses dynamic substitutions. The main
operations of the encryption are byte xor and bytes swap. To decide some parameters, we
did some tests and suggested better settings. This system has several advantages as listed
in Section 1.

Some limitations of the system are:

• It has a bad error propagation. Even a bit error will cause catastrophic results.
Although this is good for message integrity, it can not used in a noisy channel.

• The key sequence dose not have a resynchronizing method.

To handle above problems, we suggest that the tree refreshes after certain number of
bytes has been encrypted and applies the initial key again.

We note that since this encryption is different from most existing stream ciphers and
block ciphers, more new kind of security analysis should be developed for it. Although we
did some chosen ciphertext attack to the algorithm, more serious security analysis should
be done in the future. However, we think it is a good idea to publish this algorithm so that
researchers may do more analysis and further improvements.

References

[1] R. Cole, On the Dynamic Finger Conjecture for Splay Trees. Part II: The Proof, SIAM
Journal on Computing, 30(2000), 44-85.

[2] D. Grinberg, S. Rajagopalan, R. Venkatesan and V.K. Wei, Splay trees for data com-
pression, Proc. 6th annual ACM-SIAM sympsium on Discrete algorithms (1995), 522-
530.

[3] D.W. Jones, Application of splay trees to data compression, Communications of the
ACM, 31(1998), 996-1007.

[4] D.W. Jone, Data compression and encryption algorithms,
http://www.cs.uiowa.edu/∼jones/compress/.

[5] Y.W. Law, J. Doumen and P. Hartel, Survey and benchmark of block ciphers for
wireless sensor networks, ACM Transactions on Sensor Networks, 2(2006), 65-93.

[6] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of Applied Cryptog-
raphy, CRC Press, 1997.

[7] D.D. Sleator and R.E. Tarjan, Self-adjusting binary trees, Proc. ACM SIGACT Sym-
posium on Theory of Computing, ACM New York (1983) 235-245.

[8] R.E. Tarjan and D.D. Sleator, Self-adjusting binary search trees, Journal of the ACM,
32(1985), 652-686.

[9] http://peace.lakeheadu.ca/kist.html

10

Appendix

Experimental results

Since our algorithm does not use iterations, the normal difference attack may not be suitable
security analysis for it. In this paper, we just show some elementary analysis for the
algorithm. We will do more security analysis in the future.

Parameter N

In the previous subsections we have given general algorithms of encryption and decryption
which have a parameter N . To determine the value of N , we did some tests and the selected
results are listed in Table 1.

FileType N size of P size of C compression rate # of keys used key rate

.java 7 1321 1093 82.74 226 17.11

.java 8 1321 1161 87.89 313 23.69

.java 9 1321 1291 97.73 467 35.35

.java 10 1321 1458 110.37 613 46.40

.java 8 9265 8365 90.29 2147 23.17

.java 9 9265 9470 102.21 3208 34.62
.tex 7 14636 11920 81.44 2185 14.93
.tex 8 14636 13113 89.59 3333 22.77
.tex 8 15744 14042 89.19 3714 23.59
.tex 9 15744 15343 97.45 5028 31.94

.doc 8 54784 26938 49.17 10963 20.01

.doc 9 54784 30643 55.93 14951 27.29

.doc 10 54784 34506 62.99 19466 35.53

.doc 11 54784 38041 69.44 24167 44.11

.doc 12 54784 40867 74.60 28279 51.62

.doc 8 55296 43949 79.48 13938 25.21

.doc 9 55296 47586 86.06 18580 33.60

.doc 10 55296 51025 92.28 23351 42.23

.tif 8 124644 58399 46.85 23724 19.03

.tif 9 124644 66142 53.06 32217 25.85

.tif 10 124644 73635 59.08 41779 33.52

.tif 11 124644 81121 65.08 51730 41.50

.tif 12 124644 87678 70.34 60896 48.86

.tif 13 124644 93087 74.68 69126 55.46

.tif 8 124644 50980 40.90 11464 9.20

.tif 9 124644 56805 45.57 16450 13.20

Table 1: Parameter test

In our tests, we tried to encrypt several text files such as java source codes, latex source
codes. We then encrypted some Microsoft words files. We also tried some picture with .tif
format. In Table 1, we listed some results for these different types of files. For different
values of N , we listed the sizes of plain texts and cipher texts (in bytes). The column
“compression rate” is the percentage value of (size of cipher text) /(size of plain text), the

11

column “key rate” is the percentage value of (number of keys injected) /(size of plain text).
We want the compression rate smaller so that the cipher text is compressed. We also do
not want the key rate too small so that too many keys are discarded.

For the security reason, the key rate cannot be too small. We want the key rate bigger
than 0.20. In this way, in average a key will be injected for each 5 bytes of plain text. So
we first look at the key rate, then consider the value of compression rate. By our tests, for
the text files (.java and .tex) N = 8 is always better. The cipher text will be compressed
about 10%.

For the word files, N = 8 is still fine for the key rate while the compression is better.
Using N = 9 will inject more keys and the cipher text can still be compressed about
10% − 40%.

For the .tif file, we can use N = 9 and the cipher text can be compressed 40% − 50%,
although using N = 8 is still having the key rate around 20%.

In summery, we suggest to use N = 8 in general. But we can leave N as a parameter
of the scheme. So if we want the scheme more secure then we can use bigger N and if
compression is more important, then we can use smaller N .

We should indicate that this algorithm will not compress for some kind of files, such
as .gif files, MP3 files etc. For these files, the cipher text is always larger than plain
text. Basically, if a file is not good for splay tree compression, then it is not good for this
encryption in a view of the size of the cipher text.

Randomness of cipher test

We did some randomness tests for the various cipher texts of the proposed encryption. Some
basic statistical tests of FIPS 140-1 (see [6]) are done. The results are as follows.

All the cipher texts passed the frequency test (monobit test) and the Porker test. All
of the cipher texts passed the runs test and the long run test.

Randomness of key sequence

For testing the key generation algorithm, we recorded the key sequences when we encrypt
several plain texts. We use integers from 0 to 255 to denote the bytes. In the following
records, a : b means byte a appears b times in the key sequence.

0:4 1:4 2:4 3:2 4:5 5:8 6:7 7:7 8:5 9:3 10:3 11:7 12:0 13:3 14:1 15:6 16:5 17:8 18:1 19:5
20:3 21:6 22:4 23:8 24:4 25:8 26:9 27:3 28:8 29:5 30:5 31:5 32:1 33:5 34:2 35:2 36:6 37:4 38:4
39:4 40:7 41:5 42:4 43:2 44:3 45:7 46:4 47:12 48:3 49:3 50:6 51:7 52:3 53:5 54:5 55:6 56:7
57:5 58:6 59:3 60:7 61:5 62:7 63:4 64:6 65:7 66:9 67:2 68:5 69:6 70:6 71:5 72:5 73:3 74:4 75:4
76:2 77:7 78:2 79:7 80:5 81:5 82:4 83:8 84:8 85:4 86:5 87:7 88:5 89:5 90:3 91:6 92:2 93:6 94:6
95:2 96:7 97:11 98:4 99:9 100:11 101:9 102:3 103:3 104:7 105:7 106:7 107:3 108:7 109:5 110:8
111:2 112:3 113:5 114:3 115:5 116:7 117:5 118:2 119:6 120:3 121:4 122:3 123:7 124:5 125:7
126:8 127:4 128:4 129:2 130:8 131:2 132:5 133:4 134:3 135:6 136:2 137:5 138:1 139:5 140:8
141:6 142:2 143:2 144:7 145:4 146:4 147:6 148:5 149:8 150:8 151:8 152:4 153:9 154:6 155:4
156:3 157:3 158:10 159:5 160:4 161:4 162:7 163:4 164:4 165:8 166:4 167:3 168:5 169:4 170:5
171:7 172:6 173:10 174:4 175:4 176:3 177:6 178:3 179:4 180:3 181:4 182:5 183:9 184:7 185:5
186:6 187:4 188:6 189:2 190:5 191:6 192:4 193:8 194:5 195:8 196:2 197:6 198:7 199:11 200:6
201:1 202:5 203:5 204:6 205:5 206:6 207:4 208:6 209:2 210:1 211:6 212:5 213:5 214:1 215:5
216:4 217:6 218:3 219:3 220:5 221:4 222:4 223:5 224:6 225:9 226:4 227:8 228:8 229:7 230:7

12

231:6 232:4 233:7 234:7 235:5 236:7 237:6 238:8 239:5 240:5 241:9 242:4 243:6 244:8 245:5
246:9 247:6 248:6 249:4 250:5 251:6 252:5 253:2 254:4 255:8

This key sequence is of 1321 keys. Only one byte (12) appears 0 times. one bytes appear
12 times, 2 bytes appear 10 times, 3 bytes appears 11 times. Others appear 1 to 9 times.
The average is 1321

256
= 5.16

Another example of key sequence is of 54784 keys displayed below.

0:330 1:228 2:182 3:136 4:489 5:209 6:162 7:221 8:302 9:167 10:211 11:193 12:180 13:640
14:176 15:135 16:188 17:188 18:176 19:280 20:151 21:496 22:209 23:164 24:125 25:168 26:193
27:541 28:160 29:180 30:174 31:142 32:400 33:187 34:261 35:215 36:165 37:260 38:404 39:221
40:395 41:117 42:171 43:162 44:188 45:121 46:166 47:189 48:224 49:187 50:219 51:181 52:173
53:172 54:154 55:134 56:175 57:198 58:202 59:158 60:215 61:168 62:195 63:222 64:180 65:154
66:178 67:185 68:217 69:143 70:200 71:170 72:191 73:148 74:195 75:222 76:198 77:197 78:158
79:318 80:189 81:158 82:192 83:260 84:326 85:191 86:129 87:425 88:263 89:161 90:158 91:186
92:158 93:201 94:174 95:225 96:169 97:170 98:214 99:182 100:194 101:193 102:198 103:158
104:174 105:180 106:439 107:394 108:192 109:157 110:155 111:257 112:222 113:154 114:124
115:158 116:218 117:171 118:143 119:178 120:190 121:161 122:239 123:170 124:176 125:170
126:178 127:174 128:149 129:214 130:164 131:178 132:272 133:223 134:173 135:181 136:167
137:214 138:380 139:162 140:187 141:243 142:216 143:270 144:202 145:147 146:132 147:208
148:178 149:169 150:219 151:430 152:167 153:225 154:186 155:192 156:147 157:202 158:239
159:202 160:178 161:207 162:172 163:176 164:426 165:200 166:174 167:191 168:204 169:258
170:210 171:393 172:235 173:153 174:172 175:159 176:291 177:166 178:449 179:131 180:399
181:292 182:182 183:173 184:158 185:202 186:220 187:644 188:185 189:231 190:245 191:184
192:271 193:510 194:139 195:227 196:303 197:200 198:173 199:183 200:409 201:162 202:285
203:148 204:144 205:159 206:187 207:181 208:148 209:518 210:243 211:174 212:177 213:198
214:188 215:229 216:419 217:149 218:385 219:156 220:457 221:181 222:147 223:176 224:193
225:181 226:197 227:195 228:189 229:214 230:165 231:168 232:200 233:199 234:205 235:181
236:137 237:211 238:180 239:200 240:160 241:260 242:143 243:162 244:203 245:188 246:172
247:155 248:204 249:181 250:333 251:184 252:188 253:177 254:168 255:170

When we use different keys for the same file, the key sequences are different. But their
distributions are similar. One example of the same plain text but different keys is as follows.

The same plain text (54789 bytes) using different 16 keys. The key sequence is

0:278 1:173 2:178 3:230 4:178 5:158 6:180 7:183 8:168 9:238 10:180 11:221 12:192 13:661
14:156 15:197 16:177 17:158 18:277 19:190 20:263 21:276 22:188 23:189 24:205 25:437 26:186
27:269 28:202 29:209 30:253 31:213 32:435 33:280 34:149 35:217 36:152 37:157 38:166 39:194
40:159 41:420 42:160 43:253 44:150 45:404 46:429 47:262 48:156 49:190 50:180 51:197 52:169
53:200 54:203 55:144 56:211 57:251 58:199 59:185 60:185 61:205 62:193 63:166 64:339 65:190
66:171 67:169 68:228 69:195 70:437 71:432 72:179 73:188 74:175 75:206 76:147 77:138 78:417
79:145 80:159 81:203 82:292 83:159 84:197 85:166 86:661 87:238 88:167 89:225 90:166 91:131
92:147 93:203 94:195 95:156 96:180 97:313 98:255 99:436 100:216 101:215 102:168 103:186
104:199 105:256 106:235 107:210 108:158 109:219 110:161 111:329 112:189 113:206 114:220
115:236 116:268 117:181 118:188 119:170 120:176 121:173 122:236 123:133 124:173 125:207
126:241 127:303 128:239 129:187 130:164 131:145 132:129 133:167 134:180 135:204 136:153
137:212 138:155 139:216 140:166 141:233 142:176 143:231 144:223 145:133 146:201 147:154
148:181 149:189 150:148 151:174 152:164 153:179 154:352 155:291 156:176 157:205 158:225
159:178 160:295 161:157 162:246 163:133 164:143 165:156 166:432 167:229 168:211 169:195

13

170:157 171:207 172:193 173:172 174:214 175:198 176:181 177:171 178:181 179:135 180:138
181:196 182:426 183:161 184:164 185:196 186:394 187:170 188:216 189:174 190:187 191:145
192:181 193:177 194:205 195:183 196:368 197:369 198:151 199:203 200:201 201:181 202:152
203:206 204:150 205:155 206:163 207:165 208:121 209:199 210:162 211:262 212:145 213:166
214:153 215:140 216:202 217:168 218:140 219:164 220:259 221:178 222:219 223:171 224:142
225:167 226:315 227:178 228:416 229:180 230:196 231:412 232:142 233:305 234:282 235:169
236:173 237:175 238:258 239:187 240:200 241:166 242:377 243:384 244:149 245:154 246:179
247:243 248:157 249:157 250:413 251:223 252:392 253:267 254:168 255:155

Key discarding

We also tested the behavior of the key discarding. We define the key discarding sequence as
follows. A number 0 means a key is injected. The positive integers in the sequence denotes
the number of successive keys discarded. The sequence {0 1 0 0 3 . . .} means that after first
key injected, one key is discarded. Then two keys are injected and 3 keys are discarded,
etc.

We give two examples below using N = 8. One example is for a Java source file (1321
bytes). Part of the sequence is:

0 3 0 2 0 4 0 1 0 0 1 0 3 0 5 0 5 0 1 0 2 0 2 0 14 0 0 1 0 4 0 6 0 0 3 0 2 0 2 0 1 0 0 4 0 13 0
4 0 2 0 1 0 5 0 7 0 2 0 11 0 1 0 0 2 0 0 6 0 0 3 0 1 0 1 0 0 4 0 1 0 0 12 0 11 0 3 0 0 6 0 6 0 4
0 0 15 0 2 0 3 0 4 0 0 4 0 0 0 11 0 0 0 1 0 4 0 2 0 7 0 1 0 2 0 3 0 1 0 2 0 4 0 2 0 3 0 7 0 0 2
0 0 5 0 3 0 7 0 4 0 6 0 0 0 7 0 1 0 1 0 2 0 1 0 5 0 4 0 0 0 4 0 0 11 0 1 0 0 3 0 0 0 1 0 4 0 4 0
0 0 8 0 6 0 0 3 0 3 0 3 0 3 0 0 0 5 0 0 2 0 5 0 7 0 1 0 1 0 3 0 0 0 2 0 1 0 2 0 4 0 2 0 5 0 0 1 0
2 0 0 12 0 6 0 0 2 0 14 0 0 1 0 11 0 1 0 6 0 6 0 9 0 7 0 1 0 0 10 0 2 0 1 0 0 1 0 5 0 2 0 3 0 4
0 1 0 10 0 0 3 0 3 0 1 0 4 0 4 0 6 0 8 0 11 0 0 0 1 0 7 0 1 0 1 0 5 0 4 0 1 0 3 0 4 0 8 0 2 0 13
0 2 0 7 0 6 0 2 0 2 0 5 0 4 0 4 0 0 2 0 6 0 6 0 3 0 6 0 5 0 1 0 1 0 0 4 0 0 9 0 8 0 0 2 0 2 0 8 0
0 5 0 1 0 3 0 2 0 2 0 0 4 0 1 0 9 0 5 0 2 0 18 0 1 0 5 0 9 0 1 0 15 0 2 0 4 0 3 0 2 0 1 0 4 0 2
0 15 0 3 0 3 0 0 3 0 10 0 2 0 1 0 1 0

The maximum number of successive 0’s in the file is 3. If we use a : b to denote that
number of occurrence of a is b, then we have:

1:53 2:43 3:32 4:33 5:23 6:16 7:12 8:7 9:4 10:3 11:6 12:3 13:2 14:2 15:3 17:1 18:1

Another example is for a Microsoft word file (54784 bytes) displayed below.

Part of the sequence is:

0 0 1 0 2 0 6 0 0 6 0 14 0 1 0 4 0 0 1 0 2 0 2 0 4 0 0 0 0 3 0 0 3 0 0 5 0 2 0 0 4 0 2 0 11 0 15
0 11 0 13 0 1 0 12 0 1 0 0 5 0 11 0 0 9 0 5 0 0 7 0 5 0 12 0 4 0 6 0 1 0 8 0 7 0 40 0 22 0 8 0
0 0 0 0 0 6 0 0 0 11 0 0 1 0 3 0 8 0 2 0 0 2 0 0 0 4 0 28 0 10 0 0 13 0 11 0 0 3 0 0 15 0 2 0
19 0 3 0 0 4 0 9 0 1 0 2 0 0 0 2 0 15 0 3 0 1 0 2 0 0 1 0 7 0 7 0 3 0 1 0 1 0 2 0 0 0 0 3 0 1 0
3 0 1 0 4 0 3 0 8 0 2 0 6 0 4 0 6 0 1 0 1 0 6 0 0 1 0 4 0 0 4 0 2 0 0 0 0 5 0 4 0 11 0 3 0 12 0
6 0 2 0 7 0 1 0 1 0 2 0 3 0 10 0 5 0 3 0 1 0 8 0 3 0 4 0 0 1 0 4 0 3 0 0 2 0 1 0 2 0 1 0 3 0 3 0
8 0 1 0 0 3 0 2 0 6 0 0 2 0 10 0 15 0 0 3 0 1 0 2 0 1 0 7 0 0 2 0 10 0 3 0 4 0 4 0 4 0 1 0 0 1 0
5 0 10 0 4 0 5 0 0 2 0 2 0 21 0 0 0 4 0 0 2 0 0 5 0 7 0 4 0 0 26 0 0 3 0 3 0 0 3 0 0 0 4 0 7 0 6
0 2 0 1 0 2 0 1 0 11 0 0 0 0 0 3 0 0 1 0 1 0 4 0 0 3 0 7 0 7 0 3 0 1 0 5 0 0 1 0 7 0 3 0 3 0 10
0 0 2

The maximum number of successive 0’s in the sequence is 7. And we have:

14

1:1818 2:1345 3:1065 4:802 5:562 6:543 7:395 8:339 9:256 10:198 11:150 12:123 13:111
14:107 15:73 16:63 17:52 18:56 19:31 20:36 21:31 22:22 23:25 24:20 25:11 26:14 27:8 28:11
29:7 30:3 31:6 32:12 33:5 34:4 35:4 36:1 37:7 38:3 39:2 40:2 41:2 42:1 43:3 44:1 46:1 48:1 49:1
50:1 53:1 54:1 55:1 58:1

The tests have shown some randomness of the key discarding. The key discarding
depends on the value of N , key sequence and the plain text. We need to do more testing
on this direction in the future.

Chosen Plaintext Attacks

We did some tests for simple chosen plaintext attacks. We give three examples when N = 4
using the same key.

Plaintext Output stream

aaaa 38 94 80
aaaaa 3c 4a 40
aaaaaaaaaaaaaaaaaaaa 3f ff f8 94 80

The output steams are totally different. We note that if N were not introduced, these
output streams will be similar except the last couple of bits.

In another test, we let the plaintext consists of “bbbb· · ·”. Two different keys are used
and the first 20 bytes of ciphertext are as follows:

e1 d9 41 c7 21 f9 7f 94 0b 80 98 26 02 60 98 09 82 60 26 09

51 8a e0 ff 87 47 ff 65 a0 01 35 c0 05 d7 00 17 5c 00 5d 70

15

