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Abstract. Encryption and signature schemes based on worst-case lattice problems are
promising candidates for the post-quantum era, where classic number-theoretic assump-
tions are rendered false. Although there have been many important results and break-
throughs in lattice cryptography, the questions of how to systematically evaluate their
security in practice and how to choose secure parameters are still open. This is mainly due
to the fact that most security proofs are essentially asymptotic statements. In addition, the
hardness of the underlying complexity assumption is controlled by several interdependent
parameters rather than just a simple bit length as in many classic schemes.

With our work, we close this gap by providing a framework that (1) distills a hardness esti-
mate out of a given parameter set and (2) relates the complexity of practical lattice-based
attacks to symmetric “bit security” for the first time. Our approach takes various security
levels, or attacker types, into account. Moreover, we use it to predict long-term security
in a similar fashion as the results that are collected on www.keylength.com. In contrast
to the experiments by Gama and Nguyen (Eurocrypt 2008), our estimates are based on
precisely the family of lattices that is relevant in modern lattice-based cryptography.

Our framework can be applied in two ways: Firstly, to assess the hardness of the (few)

proposed parameter sets so far and secondly, to propose secure parameters in the first place.

Our methodology is applicable to essentially all lattice-based schemes that are based on

the learning with errors problem (LWE) or the small integer solution problem (SIS) and

it allows us to compare efficiency and security across different schemes and even across

different types of cryptographic primitives.
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1. Introduction

Lattice-based cryptography has received a lot of attention in the last couple of years. Not only
because Gentry solved the long-standing problem of fully homomorphic encryption [Gen09], but
mainly because people were, for the first time, able to base security on worst-case assumptions
rather than on average-case assumptions. This was first pointed out by Ajtai [Ajt96] in a worst-
case to average-case reduction. In other words, successfully attacking a random instance of a
cryptosystem immediately implies being able to solve all instances of the underlying problem,
such as finding short vectors in all lattices.

In addition, these lattice problems are considered to withstand quantum-computer attacks,
whereas factoring or discrete-logarithm-based systems are rendered insecure by the work of
Shor [Sho97]. Another desirable trait of lattice problems is that they, unlike factoring, with-
stand subexponential-time attacks.

However, the above advantages come at a price. Usually, the bit lengths of the involved
keys are Ω(n2 log(n)), where n is the natural system parameter. Fortunately, we can use ideal
lattices, introduced by Micciancio [Mic07] as well as Peikert and Rosen [PR06], that reduce
the key size to O(n log(n)) bits. Thus, in practice, choosing n as small as possible is crucial.
To the best of our knowledge, there is no work that systematically deals with selecting secure
parameters or analyzing the hardness of the employed assumptions. Indeed, the task is more
involved than in the case of, say, RSA. Lattice cryptosystems have numerous parameters that
affect security and dealing with n alone is not sufficient.

So far, only Micciancio and Regev [MR08], Lyubashevky [Lyu09], as well as Lyubashevky
and Micciancio [LM08] have proposed parameters for their schemes. In [MR08, Lyu09], this
choice is based on an interesting observation by Gama and Nguyen [GN08b]. They consider
the Hermite Short Vector Problem HSVP with parameter δ > 0 in lattices L of dimension
d. There, the task is to find a vector v with 0 < ‖v‖2 ≤ δdD(L)1/d, where D(L) is a lattice
constant. In [GN08b], the authors analyze “random lattices” according to the Goldstein-Mayer
distribution [GM03] that are considered to provide hard instances of HSVP. Their observation
is that δ is the dominating parameter and that d only plays a minor role. They conjecture
that HSVP seems reachable for δ ≈ 1.01 and “totally out of reach” for δ < 1.005 in dimensions
d ≥ 500 if the lattice does not have a special structure.

The good news is that, given d, the hardness estimate δ could be determined from the
security proof for the cryptosystem. The bad news is that cryptographic, typically called q-
ary, lattices have a particular structure that can be exploited in attacks. E.g., Micciancio and
Regev describe this sublattice attack in [MR08]. The bottom line is that solving δ-HSVP in
q-ary lattices of dimension m is only as hard as solving δ′-HSVP in dimension d < m and
δ′ > δ. Thus, HSVP becomes strictly easier in q-ary lattices because there is a certain “slack”
in the required attack dimension.

With this knowledge, two unsatisfying options remain. The first involves Ajtai’s worst-
case to average-case reduction or its improvements [MR07, GPV08]. One could interpret the
results of Gama and Nguyen as observations about the worst-case problem. Ajtai’s worst-case
problems are in dimension n, while the typical attack against the cryptosystem needs to work
in dimension Ω(

√
n log(n)). Hence, this approach would work but it is overly conservative

and the resulting parameters would be impractical. The second possibility is using the results
of Gama and Nguyen in dimension d, while demanding that δ < 1.01 for security against
current means. Basically, this is the methodology in [MR08, Lyu09] but it only offers a yes/no
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certificate, i.e., the parameter set is either secure or insecure. In particular, it does not offer
security levels, such as 100 bits, meaning that the attack effort should be close to 2100 storage
times computation units.

With our work, we intend to provide a third option, with a focus on lattice-based encryption
[Reg09, GPV08, Pei09, SSTX09, LPR10] and signature schemes [GPV08, SSTX09, Lyu09,
LM08, CHKP10, Boy10] because they are the main building blocks of public-key cryptography.
Nevertheless, our results can be easily applied to more advanced schemes, such as identity-based
encryption [GPV08], oblivious transfer [PW08, PVW08], collision resistant hashing [LM06,
ADL+08], secret key delegation [CHKP10], and others.

We do not consider ad-hoc constructions like NTRU [HPS98] that fall outside the category
of schemes motivated by Ajtai’s work. The lattices that correspond to attacks on NTRU have
a particular structure and contain essentially one unusually short “trapdoor” vector. Random
Ajtai, or q-ary, lattices do not admit such a structure.

Apart from choosing secure parameters, we often wish to compare schemes with regard to
their security level. Say, we have scheme X and a new scheme Y , which is more efficient than
X in the sense that its public key is smaller, but at the expense of a stronger assumption. For a
fair comparison, we first need a methodology to generate parameter sets that yield comparable
security levels. Now, two things could happen: (1) the improvements in Y are still noticeable
or (2) due to the stronger assumption, Y requires, say, a larger dimension that effectively
nullifies the proposed improvement.

Our Contribution. Inspired by the works of Lenstra and Verheul [LV01] and the sub-
sequent update by Lenstra [Len05], we propose a unified methodology for estimating security
and selecting secure parameters for all modern lattice-based cryptography. To this end, we
adopt the notion of dollar-days, i.e., equipment cost in dollar times attack time in days, as
introduced in [Len05]. Our methodology also includes 3 different attacker types, ranging from
a resource-constrained “Hacker” to an all-powerful “Intelligence agency”.

We follow a modular three-tier approach: core analysis, experiments, and application.
Tier 1: At the core, there are our conjectures and observations about how the various param-
eters for LWE and SIS influence the hardness of these problems in Section 3. In addition, via
the duality of LWE and SIS we translate LWE instances into the language of SIS. Here, we
manage to distill the hardness into one single parameter.
Tier 2: Then, we establish a relation between the attack effort in practice and this single
hardness parameter by running a large number of experiments. In particular, this relation
offers a way to determine the equivalent symmetric bit-security. This is done by running prac-
tical attacks on feasible instances of SIS, followed by a conservative extrapolation in Section 3.
Like Gama and Nguyen [GN08b] did in a different context, we observe that the complexity
of lattice-based attacks is mainly governed by δ. Therefore, we propose a function T (δ) that
estimates the attack complexity in dollar-days for δ ∈ (1, 1.02] in Section 3. There, we also
demonstrate that current records in practical lattice basis reduction support our findings. The
underlying experiments can be easily replaced as soon as there are more powerful algorithms.
The other two tiers stay unchanged. Notice that new experiments are not required if the algo-
rithmic improvements are already covered by our double-Moore Law, i.e., we already anticipate
new attacks. Interestingly, our estimation shows that, today, δ = 1.009 is potentially reachable
with an effort of 40 million dollar-days. However, even a powerful intelligence agency with over
100 billion dollar-days of resources should not be able to reach δ = 1.005 before the year 2050.

3



Signature Scheme SIG

SIS(n,m, q, ν)
?

Reduction SIS ≤ SIG

Encryption Scheme ENC

LWE(n,m, q, α)
?

Reduction LWE ≤ ENC

� Proposition 4

?
Conjecture 2

Hardness estimate δ

?
Conjecture 3

Attack complexity T (δ)

?

Table 1: Attacker type A
Table 2: Map (δ,A) 7→ bit security

Bit security against given attacker

Figure 1: User’s guide to estimating the bit security of lattice-based signature and encryption
schemes.

Tier 3: The third part is the application of our framework to cryptographic schemes in Section
4. There are various potential applications. We can evaluate the security of proposed parame-
ter sets in the literature and find that some do not provide sufficient security. Similarly, we can
use our formulae in the reverse direction to output parameter sets for a given security level.

Thus, we can make absolute statements about individual cryptosystems, saying that schemes
X with parameter set P (X) is secure against a certain type of attacker until the year 2030. In
addition, we can also make relative statements across different SIS- and LWE-based schemes.
For example, saying that SIS scheme X with parameters P (X) is more, less, or as as secure
as LWE scheme Y with parameters P (Y ). This allows a fair and easy comparison, especially
when new schemes are presented, and it also allows us to match the security level of various
primitives when used in a more complex protocol. Figure 1 summarizes our analysis and
provides a user’s guide to estimating the security of a given parameter set.

As an aside, we show a couple of interesting ideal (or ring) variants, which have not been
written out explicitly before, in the Appendix. In our opinion, three findings are particularly
interesting. The first is regarding ring-LWE, due to Lyubashevsky et al. [LPR10]. Using ideal
lattices typically improves bandwidth but our multi-bit ring-LWE and dual ring-LWE schemes
demonstrate that ideal lattices make the ciphertext larger and, when using hybrid encryption,
they may waste space because the plaintext space is larger than necessary. Also, when using
ideal lattices in LWE, one requires a significantly larger modulus. The second observation is that
signature and encryption schemes that require a short trapdoor basis are rather impractical,
mainly due to their huge, often gigabyte-sized secret key. Our analysis shows that, even for
smaller but insecure parameter choices, storing the resulting keys is already impractical. The
result of Stehlé et al. [SSTX09] can improve this situation to some extent, but we believe that
new trapdoor construction principles are necessary. In addition, one needs to keep in mind
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that the signing procedure [GPV08, Pei10] for GPV, Bonsai, Ideal-GPV, and Ideal-Bonsai
is rather inefficient as it involves a Gram-Schmidt orthogonalization of the secret trapdoor
matrix in high dimensions. Finally, we would like to remark that when combining [SSTX09]
and [LPR10] to obtain an ideal version of trapdoor-LWE [GPV08], where the decision-LWE
problem is hard1, there is a caveat. The parameter relations required for [LPR10] are within
the worst-case for the trapdoor generation algorithm in [SSTX09]. As a result, one needs to
resort to a sub-optimal setup for trapdoor generation with rather large dimensions.

2. Preliminaries

We denote with log the logarithm to base e, all other logarithms are specified, e.g., log2. Vectors
and matrices are written in boldface, e.g., v and M. The norm of a matrix M is defined to be
‖M‖ = maxi ‖mi‖, with mi being the columns of m. We write ‖v‖ for the Euclidean norm.

2.1. Lattices

In this work, we only require full-dimension lattices. A (full-dimensional) lattice in Rn is a dis-
crete subgroup Λ = {

∑n
i=1 xi bi |xi ∈ Z}, typically represented by a matrix B = [b1, . . . ,bn] ∈

Zn×n of R-linearly independent vectors. The matrix B is a basis of the lattice Λ and we write
Λ = Λ(B). The number of linearly independent vectors in any such basis is the dimension
dim(Λ) of the lattice. Given any basis B of the lattice Λ, the determinant det(Λ) of the lattice is√

det(BtB). It is an invariant of the lattice. Another set of invariants is the successive minima.
The i-th successive minimum λi(Λ) is the smallest radius of a sphere that contains i linearly
independent vectors in Λ. For a lattice Λ(B) with B ∈ Rn×n define the (full-dimensional) dual
lattice as the set of all x ∈ Rn with 〈x,y〉 ∈ Z for all y ∈ Λ(B).

Problems. One of the main computational problems in lattices is the approximate shortest
vector problem (SVP). Given a basis B of Λ and an approximation factor γ ≥ 1, the task is
to find a non-zero vector v ∈ Λ with ‖v‖2 ≤ γλ1(Λ). A related problem is the approximate
shortest independent vector problem (SIVP), where given a basis B of Λ and an approximation
factor γ, one is supposed to find a set {v1, . . . ,vn} of linearly independent vectors in Λ such
that maxi ‖vi‖2 ≤ γλn. For approximation factors exponential in dim(Λ), the problem is solv-
able in polynomial time (in dim(Λ)) by the LLL algorithm [LLL82] for approximation factors
bigger than (4/3)dim(Λ). Using the block-wise algorithms of [Sch87, GHGKN06, GN08a], even
sub-exponential approximation factors are reachable in polynomial time.

For polynomial approximation factors, which are relevant for cryptography, the best known
algorithms are exponential (space and time) [AKS01, MV10]. The algorithm mostly used
in practice is the BKZ algorithm [SE94]. Unfortunately, there is no theoretical average-case
analysis of BKZ that could be used for determining its complexity.

In cryptography, we use lattices of a special form, which we call q-ary : let q ∈ N, A ∈ Zn×mq ,

we define Λ⊥q (A) = {v ∈ Zm : Av ≡ 0 (mod q)}. Its, up to scaling, dual lattice Λq(A) is

defined as {w ∈ Zn : ∃e ∈ ZmAte ≡ w (mod q)}, i.e., we have 1/q · Λ⊥q (A) = (Λq(A))∗.
For a randomly chosen A, prime q, and m > n, the determinant of the corresponding q-ary

1The trapdoor-LWE construction in [SSTX09] only offers hardness of the search-LWE problem, making it
necessary for them to use generic hardcore bits and a subexponential-time reduction.
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lattice is qn with high probability and typically, we have m = Ω(n log(n)). A second type of
cryptographic lattices are ideal lattices, which can also be represented as a q-ary lattice.

The main computational problem in a q-ary lattice Λ⊥q (A) is the “short integer solution”

problem (SIS): given n,m, q,A ∈ Zn×mq , and a norm bound 1 ≤ ν < q, find v ∈ Λ⊥q (A) with
0 < ‖v‖2 ≤ ν.2 Basically, the SIS was introduced and analyzed by Ajtai [Ajt96] but there are
numerous improvements to the analysis in, e.g., [MR07, GPV08]. For Λq(A), we consider the
“learning with errors“ problem (LWE): given (n,m, q, α), a random matrix A ∈ Zn×mq , and
m ”noisy“ inner products b = Ats + e mod q, where the components of e are chosen from a
centered, discretized normal distribution χα over Zq with standard deviation αq/

√
2π. The

task is to recover s ∈ Znq . Stated differently, given A,b, solve the bounded distance decoding
problem that is similar to finding the closest lattice vector to b because w = Ats is a lattice
vector that is close to b. Given w, one can easily recover s by linear algebra. This search
version of LWE is at least as hard as solving the decision problem, i.e., distinguish (A,b) from
uniform. The problems for ideal lattices are defined analogously.

Algorithmic View. In order to grasp lattice reduction algorithmically, the notion of
Hermite-SVP (HSVP) approximation seems more adequate than that of approximate SVP. In
practice, it is unlikely that λ1 is known, therefore it is impossible to check the SVP-condition
‖v‖2 ≤ γλ1(Λ). HSVP asks for a non-zero vector that satisfies ‖v‖2 ≤ δdim(Λ) det(Λ)1/dim(Λ)

for a given δ > 0, which can be easily verified without knowing λ1.
Concerning the hardness of this problem, the lattice dimension certainly plays a role but

Nguyen and Gama show that δ is the dominating parameter. For random Goldstein-Mayer
lattices, Gama and Nguyen argue that δ = 1.01 seems to be an approximate limit for today’s
lattice basis reduction algorithms, even in high dimensions. For significantly smaller δ, the
problem is intractable. This shows that, from a theoretical point of view, δ can be considered
to be the main parameter controlling the hardness of HSVP. However, in cryptanalysis, we do
not deal with random Goldstein-Mayer lattice bases that have very large entries of bit length
Ω(dim(Λ)), that are usually used to analyze lattice reduction algorithms. We rather have bases
with entries of bit length log2(q) = Ω(log2(n)). Here, lattice reduction is potentially easier as
we will discuss in the following.

Average-case Hardness. Both, LWE and SIS, are treated as average-case problems that
are directly related to cryptographic schemes with a randomly chosen matrix A. By a worst-
case to average-case reduction, they are provably at least as hard as all instances of SIVP in
dimension n. In Section 3.2, we discuss how LWE can be interpreted as SIS in a related lattice.

Each instance of SIS can be naturally interpreted as an instance of the Hermite-SVP. Given
SIS with (n,m, q, ν), we compute δ = m

√
ν/qn/m and ask the Hermite-SVP solver to find v

with 0 < ‖v‖2 ≤ δmqn/m. However, this direct translation is not the best possible attack. In
[MR08], Micciancio and Regev point out that one can solve the same problem in a significantly
lower lattice dimension. They assume the existence of a δ-HSVP solver for a fixed δ. Then,
they argue that the optimum dimension for solving SIS with (n,m, q) with this solver is d =
min{

√
n log(q)/ log(δ),m}. Now, one removes m − d random columns from A to obtain A′,

reduce the d-dimensional lattice bases of Λ⊥q (A′), and pad a short vector therein with zeros.

The result is a rather sparse vector of norm ≤ δdqn/d in Λ⊥q (A).
Unfortunately, this approach is not directly applicable to cryptography because in prac-

tice, when attacking a cryptosystem, the attacker will also take ν into account and employ

2We can restrict the problem to ν < q because the length-q vector (0, . . . , 0, q, 0, . . . , 0) is always in the lattice.
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Attacker class Budget Time Dollar-days

Hacker $400 1 d 400 DD
Lenstra 40M DD
Intelligence agency $300M 360 d 108B DD

Table 1: Attacker classes and corresponding budget for each attacker.

stronger and stronger HSVP solvers until a sufficiently short vector is found. Therefore, we
need a re-interpretation of the approach taken in [MR08] that involves ν instead of δ. This
re-interpretation allows us to normalize SIS(n,m, q, ν) by removing the ”slack“ in the dimen-
sion parameter m. The resulting distribution of lattices is what we will analyze by directly
applying lattice basis reduction. We defer the details to Section 3.

Notice that the bases of ideal lattices have essentially the same structure and there is no
lattice basis reduction algorithm that can take significant advantage of the ideal structure.
Therefore our analysis carries over.

Worst-case Hardness. One might argue that, since there is a worst-case to average-case
reduction, one might simply treat Goldstein-Mayer lattices as worst-case lattices, apply the
reduction, and analyze the hardness of HSVP in dimension n in Goldstein-Mayer lattices with
an appropriate δ. However, this leads to security estimates that are too conservative because
the worst-case to average-case reduction seems far from tight, with respect to the involved
lattice dimension and the approximation factor. Nevertheless, the worst-case to average-case
reduction helps in choosing sensible parameters for the analyzed cryptosystems.

2.2. Lenstra’s Heuristic

The authors of [ECR09] describe an attacker model with attacker classes according to [BDR+96];
a subset of these classes is shown in Table 1. We add an attacker called “Lenstra”, with an
amount of 40M dollar-days, which was the value for a suitable attacker proposed by Lenstra
in [Len05]. Following the work of A.K. Lenstra and Verheul in [LV01], A.K. Lenstra pro-
posed a slightly simplified framework to choose secure cryptographic parameters in [Len05].
Let k be the security parameter and assume the best attack against a given cryptosystem
takes t(k) seconds on a machine that costs d dollars. Then, the total ”cost“ of the attack
is T (k) = d · t(k)/(3600 · 24) dollar-days (DD). This notion is particularly interesting when
estimating attack cost against lattice cryptography, where attacks may be parallelized with a
time-money tradeoff.

Assume we have an estimate for the function T (k) for attacks against lattice-based cryp-
tosystems. Then, we can find the optimum k∗ such that T (k∗) ≥ T2009, where T2009 is chosen
according to the last column of Table 1. We choose 2009 as a reference date here because the
employed compute server was bought in that year.

Estimating Future Developments. First of all, we consider Moore’s Law, which states
that computing power doubles every 18 months. Secondly, we want to take cryptanalytic devel-
opments against asymmetric primitives into account. Thus, we apply a combined degradation
function 2−12/9 that Lenstra calls ”double Moore Law“. This is motivated by the algorithmic
progress in the area of integer factorization. As for lattice basis reduction, the algorithmic
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progress for practical strong algorithms, such as BKZ, is hard to judge. While, there are re-
cent results [GHGKN06, GN08a, GNR10] showing that progress is indeed possible, there are
no public implementations that beat BKZ in practice.

The above condition only yields secure parameters for the year 2009. For year y, k needs to
satisfy the inequality T (k) ≥ T2009 · 2(y−2009)·12/9 to be secure until year y.

Asymmetric primitives are often combined with symmetric ones. Hash functions are neces-
sary to sign long documents and block ciphers allow efficient hybrid encryption. We assume
that these primitives are available at any given time in the future and that they are only
affected by Moore’s Law. Unlike public-key primitives, block ciphers and hash functions can
easily be replaced if there is a new attack.

3. Analysis

Let us first restrict our analysis to signature schemes, i.e., SIS-based schmes. The best known
attacks against these schemes involve a q-ary lattice Λ = Λ⊥q (A) of dimension m = Ω(n log(n))
and a scheme-specific norm bound ν, which can be obtained by studying the security reductions.
Later on, in Section 3.2, we will see that attacking LWE-based encryption is quite naturally
done by expressing it as an SIS problem as well.

Thus, the main goal of this section is to determine the effort T2009 (in dollar-days) that is
required today for mounting attacks on SIS. From there, we can apply Lenstra’s Heuristic to
estimate parameters for the future.

In order to grasp the hardness of most of these problems, we have conducted experiments
on 10-100 random q-ary lattices per dimension m ∈ {100, 125, 150, 175, 200, 225, 250, 275, 300}
and exponent c ∈ {2, 3, 4, 5, 6, 7, 8} for the relation q ≥ nc. The number of experiments per
dimension has been chosen adaptively to focus on the interesting invervals. These parameters
also determine n if we demand that m > n log2(q). This setting covers even the hardest
instances of SIS, where we demand the solution to be binary, i.e., ν =

√
m. The existence

of such vectors can be verified with a pidgeonhole argument because the function fA(v) =
Av mod q admits a collision (v,v′) ∈ ({0, 1}m)2 if qn/2m < 1. Such a collision yields v− v′ ∈
Λ⊥q (A) with ‖v − v′‖2 ≤

√
m.

As mentioned earlier, we need to take attacks into account that do not require the full
lattice dimension m but rather work in a sub-dimension d. In Section 2, we have already
explained that we require a re-interpretation of the approach taken in [MR08]. There, the
sub-dimension d is determined by the fixed capability δ of the employed HSVP solver, namely
d =

√
n log(q)/ log(δ), without taking ν into account. We need the following approach and let

d be determined only via n, q, and ν.

Proposition 1 (Normalization of q-ary Lattices) Let n ≥ 128, q ≥ n2, and ν < q. Let S
be a δ-HSVP solver for variable δ. The optimal dimension for solving SIS(n,m, q, ν) with S is
d = min{x ∈ N : q2n/x ≤ ν}.

Proof. Notice that when removing m−d random columns from A to form a matrix A′ ∈ Zn×dq ,

the resulting q-ary lattice Λ⊥q (A′) still has determinant qn with high probability. Observe that

d > 2n as otherwise q2n/d ≥ q > ν. Let k = d−n. Then, the probability that A′ generates Znq

is
∏n−1
i=1 (1− qi−d) ≈ e−

q−k−q−d

q−1 ≈ e−
q−k

q−1 , which is already > 0.999999 for k ≥ 1.
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The solver S finds lattice vectors of norm at most δdqn/d in dimension d. Given δ, the
minimum of this function is obtained for d =

√
n log2(q)/ log2(δ) (cf. [MR08]). Equivalently,

this means that, given d, one can solve HSVP for δ = 2n log2(q)/d2 . In consequence, a sufficiently
good HSVP solver in dimension d can find vectors for length δdqn/d = 2n log2(q)/dqn/d = q2n/d.
Hence, we merely need to ensure that q2n/d ≤ ν and that the solver S works for δ ≤ d

√
ν/qn/d.

�

Note that, as mentioned in the above proof, the minimum attack dimension is d > 2n ≥ 256.
Hence, special algorithms that efficiently reach smaller δ in dimensions < 256, do not contradict
our analysis. To sum up, our analysis is based on the following conjecture.

Conjecture 2 For every n > 128, constant c ≥ 2, prime q ≥ nc, m = Ω(n log2(q)), and ν < q,
the best known approach to solve SIS with parameters (n, q,m, ν) involves solving δ-HSVP in
dimension d = min{x ∈ N : q2n/x ≤ ν} with δ = d

√
ν/qn/d.

3.1. Experimental Data

In our experiments, we have analyzed the running time of BKZ [SE94] with double floating-
point precision, a scalable HSVP-solver, as implemented in Shoup’s NTL [Sho] on a $1, 000
machine (AMD Opteron CPU, running at 2.4 GHz). We apply BKZ in the sub-dimension d
with an increasing block size parameter, i.e., with decreasing δ, until a vector of the desired
length is found. Mark that our experiments only involve block size parameters ≤ 30 in or-
der to avoid a known erratic behavior of the implementation in NTL. Also, performing the
experiments in rather small dimensions, we give quite a conservative hardness estimate. Our
first observation is that q plays a minor role if δ ∈ (1, 1.02]. To see this, compare Figures 2(a)
(q ≈ n2) and 2(c) (q ≈ n8). For δ ≤ 1.02, the graphs show the same shape. This also holds
for n2 ≤ q ≤ n8. Observe that the timings are in log-scale. The impact of the dimension m is
noticeable, but the slope of all graphs seems to be the same. The interesting part of the figures
is where δ is smaller than 1.015, i.e., the right-hand side of the graphs. Here, the impact of
the parameter δ is compelling, and much more noticeable than the impact of the dimension
m. Thus, we can consider δ to be the main security parameter.

Figure 2(b) shows the averaged samples for q ≈ n3 that were used for the interpolation.
The fitting in Figure 2(d) was used to determine the hardness of attacks against lattice-based
cryptosystems. For the interesting area where δ < 1.015, the “extrapolated attack complexity”
function nicely approximates the data samples.

To arrive at very conservative estimates, we use SIS instances with a fix m = 175 and n, q
accordingly as our reference. For similar reasons, we choose a fix relation q ≈ n3 because all
cryptosystems in Appendix A require q > n2. Thus, from now on, we can treat δ as the main
security parameter and consider the cost function in dollar-days to be T (δ) = a21/(log2(δ)b) + c,
for real constants a, b, c. We use the (averaged) data samples in Figure 2(d) to find parameters
a, b, c for the above function T (δ) by a least-squares approximation. The resulting parameter
c = 0.005 can be neglected for small δ. Now, we can draw our main conjecture, where n ≥ 128
rules out easy cases in small lattice dimensions d < 256.

Conjecture 3 Let all other parameters and relations as in Conjecture 2. For any δ ∈
(1, 1.015], solving δ-HSVP (in normalized q-ary lattices) of dimension d involves an effort
of at least T (δ) = 10−1521/(log2(δ)1.001) dollar-days.
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(b) Logarithmic running time in seconds for prime q ≈
n3 and selected 100 ≤ m ≤ 300 and 1.01 < δ ≤ 1.04.
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(c) Logarithmic running time in seconds for prime q ≈
n8 and selected 100 ≤ m ≤ 300 and 1.01 < δ ≤ 1.04.
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Figure 2: Logarithmic time complexity for solving δ-HSVP in different dimensions and for
different moduli q. The x-axis corresponds to the Hermite factor δ.

Extrapolating T for smaller δ yields Figure 3. The horizontal bars correspond to today’s
capabilities of the attacker types in Table 1. Notice that the extrapolation has moderate slope
for δ < 1.01 when compared to the actual data.

3.2. Attacking LWE

In contrast to lattice signatures that rely on (search) SIS, lattice-based encryption schemes
are usually based on the decision LWE problem. While solving the search LWE problem also
immediately solves the corresponding decision problem, the reverse direction only holds via a
polynomial-time reduction. Thus, we choose to attack the decision problem as it presents the
easier problem.

The most natural approach to distinguish (A,v) from uniform seems to be solving an in-
stance of the SIS problem. Evidence for this connection can be found in [MR08] and [SSTX09].
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Figure 3: Estimated time complexity of δ-HSVP for δ ∈ [1.003, 1.02]. The plots include hori-
zontal lines, illustrating today’s power of different attacker types.

Proposition 4 (From LWE to SIS) A successful adversary against SIS(n,m, q, 1.5
√

2π/α)
can also break LWE(n,m, q, α).

We can interpret the decision-LWE problem as an instance of SIS in the dual lattice 1/qΛ⊥q (A)

because finding a short vector w ∈ 1/qΛ⊥q (A) and checking whether 〈v,w〉 is close to Z solves
the decision problem. Note that an alternative interpretation is transforming an instance of the
“bounded-distance decoding” problem in the LWE-lattice into an instance of the approximate
shortest vector problem via a well-known embedding method [GGH97]. If v is close to Λq(A), its
inner product with w will be close to an integer. To see this, consider 〈v,w〉 =

〈
Ats + e,w

〉
=〈

Ats,w
〉

+ 〈e,w〉. Now, the first part of the sum is an integer because Aw ≡ 0 (mod q). As
for the second part, we have to consider | 〈e,w〉 |. The length of e in the direction of w is short
by design because we need to be able to decode and because it is drawn from a relatively tight
Gaussian with standard deviation αq/

√
2π in each direction. However, the attack only works

if both vectors are short. The length of w depends on how well we can cryptanalyze the lattice
1/qΛ⊥q (A). Following the reasoning in [MR08], we require ‖w‖ ≥ 1.5

√
2π/(αq) for the attack

to fail as it makes the distribution of 〈e,w〉 mod 1 essentially uniform.
In consequence, we can phrase decision-LWE in the language of SIS with with ν = 1.5

√
2π/α

and re-use the hardness estimates from Conjecture 3.

3.3. Applying Lenstra’s Heuristic

Fix an attacker type A and let δA be infeasible for A today. Assuming the Lentra Heuristic
in conjunction with the “double Moore Law”, which takes algorithmic and technological ad-
vancement into account, the inequality T (δ) ≥ T2009 · 212(y−2009)/9 for T2009 = T (δA) can be
used in both directions, i.e., compute a δ such that it is infeasible until the end of a given
year y and vice versa. Note that the inverse function is T−1(t) = 2(1/(log2(t−0.005)·1015))1/1.001 ,
where t is the amount of dollar days available. For example, let A = “Int. agency”. Com-
pared with the year 2009, it can manage t = 108 · 2124/3 billion dollar-days in 2040. Thus, we
require δ ≤ T−1(t) = 1.00548 for infeasibility until the end of 2040. Vice versa, if an attack
requires δ ≤ 1.00548, the corresponding lattice problem is at least intractable until the end of
2040. Table 2 provides an overview of hard values for δ for the different attacker types until
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year Standard (2018) 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

bit security SHA/AES 75 82 88 95 102 108 115 122 128 135

λ 160 225 246 264 285 306 324 345 366 384 405

κ 128 150 164 176 190 204 216 230 244 256 270

Hacker 1.00993 1.01177 1.00965 1.00808 1.00702 1.00621 1.00552 1.00501 1.00458 1.00419 1.00389

Lenstra 1.00803 1.00919 1.00785 1.00678 1.00602 1.00541 1.00488 1.00447 1.00413 1.00381 1.00356

Int. agency 1.00710 1.00799 1.00695 1.00610 1.00548 1.00497 1.00452 1.00417 1.00387 1.00359 1.00336

Table 2: Infeasible parameters δ for HSVP. The upper rows present recommended post-
quantum secure symmetric key size κ and hash function length λ. Each of the lower
cells contains an upper bound for the HSVP-parameter δ, such that this problem is
computationally hard for the given attacker (row) until the end of a given year (col-
umn). According to Proposition 1 solving δ-HSVP needs to be infeasible in dimensions
d ≥ 256.

2100. This table also allows a mapping between symmetric security and security parameters
for lattice cryptography. In addition, we include a column “standard” for a standard hash
function (SHA-1) and a standard block cipher (AES-128). The resulting parameter sets can
be considered secure against non-quantum adversaries until 2018.

3.4. Post-quantum Secure Hash Functions and Symmetric Key Size

Encryption schemes and hash functions are rarely used without block ciphers and collision
resistant hash functions, respectively. Since we want to propose parameters for the post-
quantum era, we also want the symmetric ciphers and hash functions to be secure in this
setting. In consequence, we need to take Grover’s search algorithm for quantum computers
into account [Gro96]. Basically, its effect is that we have to double the key length of block
ciphers that would be required in the non-quantum setting for symmetric ciphers. The output
length of hash functions has to be multiplied with 3/2. According to the recommendations
in [Len05] in conjunction with this doubling-law, we use the following formula that computes
the required key length for security until the end of a given year y. As a simplification, we
choose the symmetric parameters independently of the attacker type. A natural extension of
our work would be to let λ and κ be functions of the attacker’s resources. Here, we use the
simple Moore Law and the assumption that DES was secure in the year 1982, even against the
strongest attacker. Then, κ ≥ 2 d56 + 12(y − 1982)/18e is the proposed symmetric key length
and λ ≥ 3κ/2 is the proposed output length for hash functions. Using these formulae, we obtain
the recommendations in Table 2. Notice that some of the schemes require the hash function to
act as a random oracle. One scheme [Lyu09] even relies on “rewinding” the adversary to extract
the solution to a hard problem. Generally, this is not possible with quantum adversaries due
to the no-cloning theorem. Hence, we implicitly assume a stronger, quantum definition of the
random oracle model or restrict the adversary to classical random oracle queries.

This concludes the analysis. Table 2 and Conjecture 3 provide all the necessary tools for
estimating the security of all SIS and LWE-based cryptosystems. It also shows the equivalent
level of symmetric security, sometimes referred to as “bit security”. In the next section, we
analyze the security of parameter sets proposed in literature. In Appendix A, we apply our
framework to propose secure parameter sets for essentially all modern lattice-based signature
and encryption schemes.
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3.5. Comparison with Known Records in Lattice Reduction

There are currently two “lattice challenges” available online. The SVP challenge3 corresponds
to Goldstein-Mayer lattices that are well-suited to benchmark strong (non approximate) SVP
solvers in rather small dimensions < 200. The best participants found a vector of `2-norm 2781
in dimension d = 112, which corresponds to δ = 1.009. However, a success in this challenge
does not have any immediate implication in our context, as it applies to a different type of
lattice and the dimensions involved are smaller than 256.

The Ajtai challenge4 corresponds to lattices that are very similar to the ones we are studying
here and there are challenges up to dimension 2000. More precisely, the Ajtai challenge asks
to solve SIS(n,m, q, ν) in a simplified setup where q = n, m ≈ 2n log(n), and ν < q. For
the same n, this setup yields slightly easier instances than the setup in this paper. Here, the
best participants found a vector of length ≈ 107 in dimension m = 750. This corresponds
to δ = 1.0103 and an optimal attack dimension of d = 229 (cf. Proposition 1). Even though
this result is still outside the relevant range for our analysis, it confirms our estimates, saying
that today, a “Hacker” should be able to solve the problem for δ ≈ 1.011 and the adversary
“Lenstra” might even solve it for δ ≈ 1.009 in 2010 (cf. Table 2).

4. Applying the Framework

There are essentially two “directions” for applying our analytic framework. In the “forward”
direction, we can take a cryptographic parameter set and an attacker type as input and output
an equivalent security level or even a prediction of how long this parameter set can be considered
secure.

When working in the “reverse” direction, we analyze a given schemes parameters and their
relations as well as the corresponding worst-case to average-case reduction and, on input a
year and an attacker type, output a set of concrete parameters that can be considered secure
against the given attacker type until the given year (cf. Appendix A).

As mentioned before, we can easily make relative statements as well: Given SIS scheme X
with parameters (n, q,m, ν) and LWE scheme Y with parameters (n, q,m, α), we can compute
their hardness parameters δX and δY . If δX < (>)δY , the instance of X is more (less) secure
than the instance of Y .

In this section, we will only apply our framework in the first sense, i.e., to analyze the (few)
parameter sets that have been proposed in literature so far, regarding their exact security level.
More concretely, we estimate the security of the parameters presented for LWE encryption in
[MR08], to Lyubashevsky’s Fiat-Shamir signature scheme in [Lyu09] (cf. Table 3), and to the
one-time signature scheme due to Lyubashevsky and Micciancio [LM08]. Mark that neither
of these authors make claims about the exact security of there proposals because, prior to this
work, there was no way of telling.

For SIS-based schemes [LM08, Lyu09], we analyze the corresponding security proof to de-
termine the relevant SIS instances. For LWE [MR08], we compute the corresponding SIS-
parameters as outlined in Section 3.2.

Since the parameter sets given in [MR08] (see Table 3) were specifically chosen to be secure
against attackers that can solve HSVP for δ ≥ 1.01, they do not provide sufficient security

3http://www.latticechallenge.org/svp-challenge
4http://www.latticechallenge.org
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n 136 166 192 214 233 233
q 2003 4093 8191 16381 32749 32749
α 0.0065 0.0024 0.0009959 0.00045 0.000217 0.000217
ν 5.8e2 1.6e3 3.8e3 8.4e3 1.7e4 1.7e4

d 326 376 421 460 497 497

δ 1.0098 1.0098 1.0099 1.0099 1.0099 1.0099

year 2006 2006 2005 2005 2005 2005

bit 72 72 72 72 72 72

n 512 512 512 1024
q 231.727 259.748 295.747 295.872

m 4 5 8 8
ν 5.6e8 1.3e10 2.6e10 6.4e10

d 1118 1823 2835 5471

δ 1.0091 1.0064 1.0042 1.0023

year 2010 2035 2077 2180

bit 75 92 120 188

Table 3: Parameters given in [MR08] (left) and [Lyu09] (right), optimal attack dimension d,
and hardness estimate δ. “year” denotes the expiration year of the parameter set and
“bit” denotes the corresponding “bit security”.

against the medium adversary “Lenstra” and even the “Hacker” should be able to break them
by 2020. See Appendix A for various secure LWE parameter sets that take the appropriate
message length for hybrid encryption into account.

For the Fiat-Shamir-type signature scheme in [Lyu09], we compute the SIS norm parameter
ν = 2

√
mnnmdsdc, where ds is the norm bound for signing keys and dc controls the hashed

message length. The values differ from the ones in [Lyu09] because we express it in `2-norm,
whereas they are given in `∞-norm in [Lyu09]. Note that the

√
mn factor corresponds to

the dimension of ideal lattices, which is typically denoted with nm as opposed to m in q-ary
lattices.

The parameters in [Lyu09] are based on an assumed hash length of 160 bit, therefore the
underlying hash functions would only be secure until year 2018 (without taking quantum
adversaries into account). However, the lattice parameters are quite reasonable as shown in
Table 3. All but the first parameter set provide some security margin and with our framework,
we can actually estimate how large it is.

The authors of [LM08] propose an exemplary parameter set for their one-time signature
scheme. They let n = 512, q ≈ 227, and m = 9. This leads to ν = 20q1/mn log2(n)

√
mn ≈

2.2 · 108. Using this parameter set, the attack dimension would be d = 999 and the hardness
estimate is δ = 1.0097. Hence, it would be insecure against the attacker “Lenstra” and the
“Hacker” is expected to break it by the year 2020. Secure parameters can be found in the
appendix.

5. Conclusions

With our framework to analyze the SIS and LWE problems, we have established a connection
between lattice problems and symmetric “bit security” for the first time. While our analysis
reveals certain weaknesses in the way parameters for lattice-based cryptosystems are currently
proposed, it also provides the tools to systematically do so for various levels of security.

We propose that the presented methodology should be used whenever a new cryptographic
primitive is presented to ensure that, concerning efficiency and security, it actually presents an
improvement over known work. Furthermore, our work can be used to compare the security
levels of parameter sets for entirely different cryptographic primitives, e.g., encryption and
signature schemes. This is important when both are used in a more complex protocol, where
all components should provide approximately the same level of security.

An additional application of our work is the proposition of parameters for lattice-based
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signature and encryption schemes for which there were no known concrete parameter sets.
Doing so has revealed that all schemes that require trapdoor matrices (short bases) are far
from practical and seem to require an enormous effort to become so. On the other hand,
we have also seen that there are quite competitive signature and encryption schemes already,
especially those working in ideal lattices. Refer to Appendix A.3 for details.

To conclude, with our work we would like to draw renewed interest to the development of
practical, strong lattice basis reduction algorithms for large dimensions as well as to further op-
timizing the parameter constraints for known lattice-based cryptosystems, which have mainly
been of theoretic interest so far.
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[Bab86] László Babai. On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1–13, 1986.

[BDR+96] Matt Blaze, Whitfield Diffie, Ronald L. Rivest, Bruce Schneier, Tsutomu Shimo-
mura, Eric Thompson, and Michael Wiener. Minimal key lengths for symmetric
ciphers to provide adequate commercial security. A Report by an Ad Hoc Group
of Cryptographers and Computer Scientists, 1996.

[Boy10] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully
secure short signatures and more. In Phong Q. Nguyen and David Pointcheval,
editors, Public Key Cryptography, volume 6056 of Lecture Notes in Computer
Science, pages 499–517. Springer, 2010.

15



[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or
how to delegate a lattice basis. In Gilbert [Gil10], pages 523–552.

[Dwo08] Cynthia Dwork, editor. Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008.
ACM, 2008.

[ECR09] ECRYPT2. Yearly report on algorithms and keysizes — report D.SPA.7, 2009.
available at http://www.ecrypt.eu.org/documents/D.SPA.7.pdf.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Mitzen-
macher [Mit09], pages 169–178.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems
from lattice reduction problems. In Burton S. Kaliski Jr., editor, CRYPTO,
volume 1294 of LNCS, pages 112–131. Springer, 1997.

[GHGKN06] Nicolas Gama, Nick Howgrave-Graham, Henrik Koy, and Phong Q. Nguyen.
Rankin’s constant and blockwise lattice reduction. In CRYPTO, volume 4117 of
LNCS, pages 112–130. Springer, 2006.

[Gil10] Henri Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010, 29th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of
Lecture Notes in Computer Science. Springer, 2010.

[GM03] Daniel Goldstein and Andrew Mayer. On the equidistribution of Hecke points.
Forum Mathematicum 2003, 15:2, pages 165–189, 2003.

[GN08a] Nicolas Gama and Phong Q. Nguyen. Finding short lattice vectors within
mordell’s inequality. In Dwork [Dwo08], pages 207–216.

[GN08b] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P.
Smart, editor, EUROCRYPT, volume 4965 of LNCS, pages 31–51. Springer, 2008.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using
extreme pruning. In Gilbert [Gil10], pages 257–278.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Dwork [Dwo08], pages 197–206.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
STOC, pages 212–219. ACM, 1996.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM J. Comput., 28(4):1364–
1396, 1999.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based public
key cryptosystem. In Joe Buhler, editor, ANTS, volume 1423 of LNCS, pages
267–288. Springer, 1998.

16



[KTX07] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Multi-bit cryptosystems
based on lattice problems. In Tatsuaki Okamoto and Xiaoyun Wang, editors,
Public Key Cryptography, volume 4450 of Lecture Notes in Computer Science,
pages 315–329. Springer, 2007.

[Len05] Arjen Lenstra. The Handbook of Information Security, chapter 114 — Key
Lengths. Wiley, 2005. available at http://www.keylength.com/biblio/

Handbook_of_Information_Security_-_Keylength.pdf.

[LLL82] Arjen Lenstra, Hendrik Lenstra, and László Lovász. Factoring polynomials with
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A. Selecting Secure Parameters

In the following, we apply our framework in the “reverse” direction, i.e., we generate secure
parameter sets for various schemes out of their original description, such that they require a
small enough δ when attacked with an HSVP solver. The resulting parameters are exemplary
because most schemes allow various trade-offs.

We cover essentially every published lattice-based signature and encryption scheme and also
some unpublished variants. Moreover, due to our modular three-tier approach, it is easy to
include new schemes, that use LWE or SIS as their security assumption. For each scheme,
one needs to figure out the exact (not asymptotic) parameter relations and constraints as
functions of the main security parameter n. In addition, we let the worst-case to average-case
reduction be a guiding principle for choosing the modulus q. In conjunction with the average-
case reduction from SIS (signatures) or LWE (encryption), these parameter relations specify the
type of lattice that needs to be “attacked” in order to break the scheme. For signature schemes,
the resulting instance of SIS immediately yields the hardness estimate δ via Conjecture 2. As
for encryption schemes, we need to exploit the duality of SIS and LWE before making such a
statement. Once we have the hardness estimate δ = δ(n), we can easily determine the least
n, such that it provides sufficient hardness against various attacker types and for the desired
period of time via Conjecture 3. All parameter sets correspond to security against the attacker
type “Lenstra” but the analysis easily extends to any other type.

We will conclude this section with a set of remarks about our findings.
For some of the schemes, we require ideal lattices and some additional notation. We define

ideal lattices over the ring R = Zq[x]/〈f〉 for an irreducible polynomial f of degree n. The
description A in q-ary lattices is replaced by a small number of degree-n polynomials, denoted
with â = (a1, . . . ,am) ∈ Rm. Since Rm ∼= Zmnq , the parameter m is in Ω(log(n)) for ideal
lattices. The resulting lattices dimension, however, is mn = Ω(n log(n)). In addition, in ideal
lattices, the matrix-vector product Av is replaced with the product â~v̂ :=

∑m
i=1 aivi (modulo

f and q).

A.1. Signature Schemes

All modern lattice-based signature schemes are based on the hardness of the SIS problem. In
other words, for each scheme, we can easily describe an equivalent instance of SIS in terms of
the parameters n,m, q, ν that also fully determine the hardness estimate δ for HSVP. For our
choices of n,m, and q, by the following worst-case to average-case reduction, the SIS instances
in dimension m are provably at least as hard as all instances of the shortest vector problem in
dimension n.

Proposition 5 (Worst-case to Average-case [GPV08]) For any m ≤ poly(n), ν ≤ poly(n),
and for any prime q ≥ νω(

√
n log(n)), the average-case problem SIS(n,m, q, ν) is as hard as

approximating the SIVP in the worst case within certain γ = νÕ(
√
n) factors.
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Using the attacker dimension d of Proposition 1, we can compute δ = d
√
ν/qn/d. We let q

be governed by a constraint in the worst-case to average-case reduction. As this constraint
introduces a circular dependency, we typically choose a fixed relation q ≥ nt, for t ∈ N, before
the other parameters to resolve this issue. Having these relations at hand, we can also fix a δ
and find suitable n,m, q, ν such that they are valid parameters that guarantee security until
the desired year. Combined with the infeasible values for δ for each year and attacker type
(Table 2) we generate tables that present suitable parameters for each signature scheme. We
propose exemplary parameters for GPV [GPV08], Lyubashevsky’s treeless signature scheme
[Lyu09], the ideal lattice variant of GPV, the Bonsai tree scheme [CHKP10], its ideal lattice
variant, and the Lyubashevsky-Micciancio one-time signature scheme [LM08].

GPV Signatures. The GPV signature scheme [GPV08] is due to Gentry, Peikert, and Vaikun-
tanathan. It benefits from the improved trapdoor generation algorithm in [AP09], which de-
mands m1 ≥ (1 + ϕ)n log2(q), m2 ≥ (4 + 2ϕ)n log2(q), m = m1 +m2, and odd prime q ≥ 3 (q
has to satisfy q ≥ νω(

√
n log n), for the worst-case to average-case reduction). For our choices

of n (n ≥ 100), m (m ≥ 1000), and q (q ≥ n3), ϕ = 0.1 is a suitable choice. For ϕ = 0.1, the
statistical distance from uniformity, m2 · q−ϕn/2 in [AP09], is smaller than 2−80.

The most recent sampling algorithm [Pei10] improves the efficiency of the signature genera-
tion process in GPV and in all derived schemes. However, it does not change the parameters.

The GPV scheme is strongly unforgeable in the random oracle model as long as the respective
instance of SIS with norm bound ν = 2s

√
m is hard, for a Gaussian parameter s ≥ (1+20

√
m1)·

ω
(√

log(n)
)

. Choosing log(n) for ω
(√

log(n)
)

we get ν = 2(1 + 20
√
m1) log(n)

√
m.5

We choose m1 = d(1 + 0.1)n log2(q)e and m2 = d(4 + 0.2)n log2(q)e. For q we choose the
smallest prime bigger than nt for the smallest t such that q ≥ 2ν

√
n log2(n) (worst-case to

average-case reduction). In our case, we could choose a prime q ≥ n4. Messages are mapped
to Znq via a full-domain hash. This set is always bigger than 2λ.

Here we describe the structure of the scheme, in order to compute the key and signature
sizes. The parameters for GPV are presented in Table 4.

Secret Key: S ∈ Zm×m with ‖S‖ ≤ 20n log(q). A close look at the trapdoor construction
allows to store the key in 2m1m2 +m1 log2(q)) bits, without storing the orthogonalized
basis. This implies that generating signatures gets a bit more expensive, as it requires
computation of the QR decomposition of the trapdoor basis.

Public Key: A ∈ Zn×mq , i.e, nm log2(q) bits.

Signature: σ ∈ Zm with ‖σ‖2 ≤ s
√
m, i.e., m log2(s

√
m) bits.

5This choice is suitable for all dimensions m ≥ 83; for those m, the smoothing parameter index ε (see [MR07,
Pei07, GPV08] for more details) is smaller than 2−79. This renders the statistical distance between a
uniform distribution and the “blurred” lattice negligible (i.e., 2−80). This is due to the fact that log(m) ≥√

log(2m(1 + 1/ε))/π for m ≥ 83 and λ∞1 (Z∗) = 1 (a lattice constant) in [GPV08, Lemma 4.3], using [Pei07,
Lemma 3.5].
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year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Lenstra n
q
m1

m
|sk|
|pk|
|σ|

330
1.19e+10
12148
58531
137613
78904
154

289
6.98e+09
10396
50087
100780
57779
130

338
1.31e+10
12494
60198
145562
83462
158

391
2.34e+10
14815
71380
204654
117348
190

440
3.75e+10
17001
81913
269498
154538
221

489
5.72e+10
19222
92615
344507
197556
252

542
8.63e+10
21660
104359
437415
250834
286

592
1.23e+11
23989
115583
536545
307694
320

641
1.69e+11
26298
126709
644799
369782
353

695
2.33e+11
28871
139103
777112
445659
390

Table 4: Recommended parameters for GPV signatures. The rows correspond to attacker types
and the columns correspond to security until a given year. Sizes are in kilobytes (kB).

Ideal GPV. In [SSTX09], the authors explain how to create an ideal-lattice variant of the
GPV signature, in order to reduce the key sizes of the secret and public key. This variant comes
with Õ(n) verification time and signature length. Here we apply their idea and instantiate the
GPV scheme with ideal lattices.

Choose k > 0 and n = 2k for the smallest possible k, σ = 1 and ρ = d1 + log3(q)e. The
ring R is R = Zq[x]/(xn + 1). Choose the norm bound d = s

√
mn. No bound on L̃ is known,

but it is always possible to assume L̃ ≤ L =
√

2n(9ρ+ σ). The dimension has to satisfy
m ≥ (dlog2(q)e+ 1)(σ+ρ), we choose m equal to that bound. Choose the Gaussian parameter
as s = L̃ log(n) =

√
2n(9ρ+ σ) · log(n). The modulus q is chosen to be the smallest prime

bigger than or equal to n7 satisfying q ≡ 3 (mod 8), as in that case m > log2(q)/ log2(2d) and
q > 4dmn

√
n log2(n) hold. With ‖σ‖2 ≤ d we have ν(2) = 2d (in the Euclidean norm). We

can use the same bound 2d in the maximum norm, i.e., ν = 2d.
The parameters for Ideal-GPV are presented in Table 5.
Here we describe the structure of the scheme, in order to compute the key and signature sizes.

Instead of storing the trapdoor basis, which implies the necessity to calculate orthogonalizations
on the fly, it would also we possible to store the Gram-Schmidt orthogonalized basis.

Secret Key: Trapdoor S ∈ Zmn×mn such that âŝi ≡ 0 mod q for every column ŝ in S (in-
terpreted as an element of Rm). The basis length is ‖S‖ ≤

√
2n(9ρ+ σ). When look-

ing closely at the construction, we find that the trapdoor can be reconstructed from
σ(m− σ)n

√
σn+ ρ(m− ρ)n log2(3) bits.

Public Key: â ∈ Rm determining the ideal lattice, i.e., mn log2(q) bits.

Signature: σ ∈ Rm with ‖σ‖2 ≤ d, i.e., mn log2(d) bits.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Lenstra n
q
m
|sk|
|pk|
|σ|

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

Table 5: Recommended parameters for Ideal-GPV signatures. The rows correspond to attacker
types and the columns correspond to security until a given year. Sizes are in kilobytes
(kB).
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Bonsai Trees. Here we describe the original Bonsai tree scheme by Cash, Hofheinz, Kiltz,
and Peikert [CHKP10]. It does not require random oracles for the security proof of existential
unforgeability. A modified version by Rückert [Rüc10] with essentially the same efficiency
supports strong unforgeability. The Bonsai tree scheme makes use of the [AP09] trapdoor,
which was used in the GPV case as well.

The parameters are: m1 = d(1 + ϕ)n log2(q)e ,m2 = d(4 + 2ϕ)n log2(q)e, hashed message
length λ, total dimension m = m1 + (λ + 1)m2.6 Again, we can use ϕ = 0.1. We choose the
Gaussian parameter s = (1 + 20

√
m1) log(n) and let q ≥ n5. If there exists a PPT attack

against unforgeability on the signature scheme, then there is a PPT algorithm attacking SIS
for ν = 2s

√
m. For the overview of the parameters, refer to Table 6.

Here we describe the keys and the signature of the scheme, in order to derive the key and
signature sizes.

Secret Key: S ∈ Z(m1+m2)×(m1+m2) with ‖S‖ ≤ 20n log(q). A close look at the trapdoor
construction allows to store the key in 2m1m2 + m1 log2(q)) bits, without storing the
orthogonalized basis. This implies that generating signatures gets a bit more expensive,
as it requires computation of the QR decomposition of the trapdoor basis.

Public Key: A0 ∈ Zn×(m1+m2)
q ,A

(k)
j ∈ Zn×m2

q , 2λ many, i.e., n(m1 + m2) log2(q) + 2λ ·
nm2 log2(q) bits.

Signature: σ ∈ Zm with ‖σ‖2 ≤ s
√
m, i.e., m log2(s

√
m) bits.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Lenstra n
q
m1

m2

m
|sk|
|pk|
|σ|

360
6.05e+12
16814
64199
10352853
263622
38483319
32290

322
3.46e+12
14755
56334
12746239
203006
41622485
39799

377
7.62e+12
17746
67758
16753972
293655
65819290
53067

436
1.58e+13
21027
80282
21295757
412243
99143682
68312

491
2.85e+13
24142
92177
26386764
543426
141070584
85551

547
4.90e+13
27364
104479
32102417
698141
194564698
105088

607
8.24e+13
30867
117854
38333417
888308
262099312
126602

663
1.28e+14
34179
130499
45186833
1089142
342149385
150405

718
1.91e+14
37468
143058
52539754
1308834
436157286
176114

779
2.87e+14
41155
157137
60538900
1579092
552063776
204315

Table 6: Recommended parameters for Bonsai signature scheme. The rows correspond to at-
tacker types and the columns correspond to security until a given year. Sizes are in
kilobytes (kB).

Note that there is an improvement due to Boyen [Boy10] that reduces the dimension of the
generated signatures at the expense of a stronger assumption. Unfortunately, this improvement
does not seem to yield practical parameters either.

Ideal Bonsai. Here we describe how to instantiate the Bonsai tree scheme of [CHKP10] with
ideal lattices. As the security reduction to a worst case problem is stated in the infinity norm
(and this norm is more natural for ideal lattices and ring elements) we describe the scheme
using the infinity norm. Following [SSTX09], the parameters are: n which is a power of 2,
f = xn+1, prime q ≡ 3 (mod 8), σ = 1, ρ = dlog3(q) + 1e. The output length of a secure hash
function is denoted by λ. We choose L̃ =

√
2n(9ρ+ σ) as bound for the length of the trapdoor.

R is again the ring Zq[x]/〈f〉. We use a Gaussian parameter s = L̃ log(n) and d = s
√
mn.

6We apply the original construction due to Peikert, as mentioned in a footnote in [CHKP10].
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It is required that m1 + m2 ≥ (dlog(q)e + 1)(σ + r). We can choose m1 = σ = 1 and
m2 = dlog (q) + 1e (σ+ ρ)− 1. Let m = m1 + (λ+ 1)m2. Following the worst-case to average-
case reduction for ideal lattices, we choose a prime q ≥ n8 such that m > log2(q)/ log2(2d)
and q > 4dmn

√
n log2(n). The corresponding approximation factor for SIS is ν = 2d. The

overview of the parameters for the Ideal Bonsai scheme are presented in Table 7.
Here we describe the keys and the signature of the scheme, in order to derive the key

and signature sizes. Instead of storing the trapdoor basis, which implies the necessity to
calculate orthogonalizations on the fly, it would also we possible to store the Gram-Schmidt
orthogonalized basis.

Secret Key: Trapdoor S ∈ Zmn×mn such that âŝi ≡ 0 mod q for every column ŝ in S (in-
terpreted as an element of Rm). The basis length is ‖S‖ ≤

√
2n(9ρ+ σ). When look-

ing closely at the construction, we find that the trapdoor can be reconstructed from
σ(m− σ)n

√
σn+ ρ(m− ρ)n log2(3) bits.

Public Key: â0 ∈ Rm1+m2 , b̂
(k)
i for k ∈ {0, 1} and i ∈ {1, . . . , λ}, random elements in Rm2 ,

i.e., n log2(q) · (m1 +m2 + 2λm2) Bits

Signature: σ ∈ Rm with ‖σ‖2 ≤ s
√
mn, i.e., mn log2(s

√
mn) bits.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Lenstra n
q
m1

m2

m
|sk|
|pk|
|σ|

512
4.72e+21
1
2447
393968
14639
1772856
635248

512
4.72e+21
1
2447
553023
14639
2488603
900169

1024
1.21e+24
1
3020
745941
42667
7459410
2562702

1024
1.21e+24
1
3020
800301
42667
8003010
2754533

1024
1.21e+24
1
3020
863721
42667
8637210
2978756

1024
1.21e+24
1
3020
927141
42667
9271410
3203399

1024
1.21e+24
1
3020
981501
42667
9815010
3396263

1024
1.21e+24
1
3020
1044921
42667
10449210
3621613

1024
1.21e+24
1
3020
1108341
42667
11083410
3847310

2048
3.09e+26
1
3595
1384076
120603
30449672
10080821

Table 7: Recommended parameters for Ideal Bonsai signature scheme. The rows correspond
to attacker types and the columns correspond to security until a given year. Sizes are
in kilobytes (kB).

It is noticeable that for the ideal Bonsai signature scheme, we need to choose a bigger
modulus q than for the original Bonsai tree scheme.

LM-OTS. The one-time signature scheme of [LM08] does not require random oracles, and it
is asymptotically optimal (almost linear in the security parameter n) in concerns of key size
and signature/verification time. It is equipped with a security proof of worst-case complexity
assumptions. Using a tree construction it can be transformed into a regular signature scheme,
with logarithmic overhead [Mer89]. The LM-OTS scheme is based on the collision resistant
hash function of [LM06, Mic07, PR06]: H ∈ HR,m = {Hâ : â ∈ Rm} that maps elements from
Rm to R. For a λ-bit message signing and verification take time Õ(λ) + Õ(n), signature size
is Õ(n).

We fix the ring defining polynomial and operate in R = Zq[x]/〈xn + 1〉. We choose a prime
q ≥ n3 and m = dlog(n)e, as proposed in the original work [LM08]. The main parameter n is
chosen to be a power of 2. Messages are encoded in {−1, 0, 1}n, but |{−1, 0, 1}n| ≥ 2λ does
not introduce an additional constraint here.
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An attacker that, after seeing a signature/message pair, can output a valid signature of
another message, can use a polynomial-time algorithm to find a collision in the underlying
hash function and from this we derive ν = 20q1/mn log2(n)

√
mn for SIS. See Table 8 for the

proposed LM-OTS parameters.

Secret Key: k̂ ∈ Rm, l̂ ∈ Rm with
∥∥∥k̂∥∥∥

∞
≤ 5 blog2(n)c q1/m,

∥∥∥̂l∥∥∥
∞
≤ 5n blog2(n)c q1/m, i.e,

mn log2(5 blog2(n)c q1/m) +mn log2(5n blog2(n)c q1/m) bits.

Public Key: H ∈ HR,m,H(k̂),H(̂l), i.e., mn log2(q) + 2 · n log2(q) bits. H is shared among all
users and generated from a trusted source of random bits, e.g., from the random bits of
π.

Signature: σ ∈ Rm with ‖σ‖∞ ≤ 10q1/mn log2(n), i.e., mn log2(10q1/mn log2(n)) bits.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Lenstra n
q
m
|sk|
|pk|
|σ|

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

2048
8.59e+09
8
19.83
82.5
48.62

2048
8.59e+09
8
19.83
82.5
48.62

2048
8.59e+09
8
19.83
82.5
48.62

2048
8.59e+09
8
19.83
82.5
48.62

Table 8: Recommended parameters for LM-OTS signature scheme. The rows correspond to
attacker types and the columns correspond to security until a given year. Sizes are in
kilobytes (kB).

Lyubashevsky Treeless Signatures. In [Lyu09] Lyubashevsky presents a signature scheme
secure in the random oracle model with key generation, signing, and verification time Õ (n).
Its security is based on the hardness of approximating the shortest, non-zero vector to within
a factor of Õ

(
n2
)

in lattices corresponding to ideals in R = Z[x]/〈xn + 1〉.
The parameters involved are: n, a power of 2, an integer m, an integer dc such that 2dc

(
n
dc

)
≥

2λ (for encoding messages), and a prime integer q ≥ (2ds + 1)m · 2−128/n.
If the scheme is not strongly unforgeable, then there exists a polynomial time algorithm that

solves SIS in every lattice corresponding to ideals in R for ν = 2
√
mn · nmdsdc.

We choose m = dlog2(n)e and compute the smallest dc such that 2dc
(
n
dc

)
≥ 2λ holds.

Further, for ds we choose the smallest value such that q ≥ 4m2n2.5dsdc log(n) and m >
log(q)/ log(2mndsdc) hold because of the worst-case to average-case reduction. This choice
of parameters implies that finding collisions in the underlying hash function is hard. Notice
that the scheme allows various trade-offs. For example, a larger ds increases the key size but
allows for smaller m, as demonstrated in [Lyu09]. The scheme has the following structure. See
[Lyu09] for a full description of the numerous parameters. Our proposed parameter sets are in
Table 9.

Secret Key: ŝ ∈ Rm with ‖ŝ‖∞ ≤ ds, i.e, mn log2(2ds + 1) bits for a typically small ds.

Public Key: H ∈ HR,m,H(ŝ) ∈ R, i.e., n log2(q) bits. H is again global.

Signature: σ ∈ Rm with ‖σ‖∞ ≤ mndsdc, i.e., mn log2(2mndsdc + 1) bits.
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year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Lenstra n
q
m
dc
ds
|sk|
|pk|
|σ|

512
3.81e+12
9
23
13
2.67
2.61
12.03

512
7.25e+12
9
37
14
2.73
2.67
12.48

512
7.25e+12
9
41
14
2.73
2.67
12.56

512
1.32e+13
9
45
15
2.79
2.72
12.69

1024
4.77e+13
10
40
12
5.8
5.68
29.04

1024
1.03e+14
10
44
13
5.94
5.82
29.35

1024
1.03e+14
10
48
13
5.94
5.82
29.51

1024
1.03e+14
10
52
13
5.94
5.82
29.65

1024
1.03e+14
10
56
13
5.94
5.82
29.79

1024
1.03e+14
10
59
13
5.94
5.82
29.88

Table 9: Recommended parameters for treeless signatures. The rows correspond to attacker
types and the columns correspond to security until a given year. Sizes are in kilobytes
(kB).

Our parameters for the year 2020 lead to comparable sizes for keys and signatures as the
parameters in the weakest sample instantiation of [Lyu09].

A.2. Encryption Schemes

We discuss the parameter choice for the multi-bit variant of Regev’s cryptosystem [Reg09,
KTX07, PVW08, MR08], the dual-LWE cryptosystem [GPV08, Pei09], and the trapdoor-LWE
scheme [RS09, Pei09]. For each scheme, we also present a “ring” version that uses an ideal
lattice version of LWE [LPR10]. After briefly recalling the LWE assumption, we describe its
modification for rings and deal with decryption errors.

The LWE Assumption. Let n ∈ N, m ≤ poly(n), q ≤ poly(n), and α > 0. Furthermore,

let A
$← Zn×mq , s

$← Znq , and e
$← χmα with χα being a discretized Gaussian distribution with

standard deviation αq/
√

2π and mean zero. A theorem in [Reg09] states that v ← Ats + e
is indistinguishable from uniform if α >

√
n/q by a worst-case to average-case reduction, i.e.,

solving decision LWE implies solving several worst-case lattice problems in dimension n with
approximation factors in Õ(n/α). Thus, choosing a large α ensures worst-case hardness but it
increases the probability of a decryption error. We let this reduction govern the choice of α but
there are further restrictions, coming from the individual cryptosystems. Regev’s reduction
relies on quantum computation but it was “dequantized” by Peikert in [Pei09]. Although
Peikert requires q = 2O(n) for the dequantization to work, we stick to q = poly(n). It is more
practical and, similar to SIS, the worst-case to average-case reduction should not be more
than a guideline for choosing actual parameters. Since there is a circular dependency in the
parameters, we will make a sensible choice for q before choosing the remaining parameters.
Having chosen a complete set of parameters, we verify that all constraints are satisfied.

The assumption that (A,v) is close to uniform helps in proving CPA security of all sub-
sequent constructions. In Regev’s LWE construction it is used to show indistinguishability of
the public key from uniform, while dual-LWE and trapdoor-LWE rely on this assumption for
proving the same for the ciphertexts. The uniform distribution of ciphertexts (Regev) and keys
(dual, trapdoor) is ensured by the particular choice of m by the leftover-hash lemma [HILL99].
To get 2−κ-uniformity, we essentially require that

√
qn/ |D|m ≤ 2−κ, where D ⊂ Z is the set

from which we choose our randomness.
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Ring-LWE. Although the ring (or ideal) analogue of LWE in [LPR10] extends to arbitrary
cyclotomic number fields, we will work over a special ring for efficiency reasons and for ease
of exposition. Our particular ring R = Zq[x]/ 〈xn + 1〉 requires that n is a power of two and
that q ≡ 1 (mod 2n). Hence, instead of working over matrices, we now work over the ring R,
over the subsets Dr = (Z∩{−br/2c , . . . , dr/2e})[x]/ 〈xn + 1〉 for r ≥ 1, as well as over the R-
module Rm. Notice that D1 = (Z∩{0, 1})[x]/ 〈xn + 1〉. Elements from the R-module Rm are
denoted with a hat, x̂. There are two multiplications in Rm. The first is the usual component-
wise x̂y = (x1y, . . . ,xmy) ∈ Rm and the second is a convolution ~ : Rm × Rm → R,
(x̂, ŷ) 7→

∑m
i=1 xiyi. Notice that, here, m is not Ω(n log(n)) but only Ω(log(n)). The total

“dimension”, however, is again Ω(n log(n)) because R ∼= Znq .
Also, the error distribution is different for ring-LWE. The proofs in [LPR10] require an axis-

aligned ellipsoidal Gaussian distribution over R, which we will denote with χR,α. The per-axis
Gaussian parameters are bounded by α and the exact shape is inconsequential for our analysis.
Hence, we omit the details.

The corresponding decision problem becomes: Given â
$← Rm and either r̂

$← Rm or

âs + ê ∈ Rm for s
$← R and ê ← χmR,α with certain per-axis parameters, the task is to

distinguish the two cases. As with LWE, ring-LWE offers a search-decision equivalence.
The worst-case to average-case reduction for ring-LWE is slightly more demanding than in

(ordinary) LWE. Roughly speaking, it states that distinguishing the ring-LWE distribution
from uniform for α >

√
n log(n)/q is equivalent to solving several ideal lattice problems with

approximation factors in Õ(n
√
n/α).

Again, the decision ring-LWE assumption is used to establish indistinguishability of keys
(Regev) and ciphertexts (dual, trapdoor) and the uniform distribution of ciphertexts (Regev)
and keys (dual, trapdoor) is now guaranteed by a ring-version of the leftover-hash lemma. The
first ring-version due to Micciancio [Mic07] essentially requires m = Ω̃(n), whereas m/n = Õ(1)
is sufficient for regular LWE for a negligible statistical distance from uniform. Otherwise, the
statistical distance would not be small enough for small, practical values of n. This is because
of the complete splitting of xn + 1 is within the worst case for regularity.

There is a second ring-version of the leftover-hash lemma that has been communicated to
us by Regev [Reg10]. It studies regularity of the convolution â~ x̂, where the ai are invertible
in R, i.e., all coefficients of ai are non-zero. We defer the details and work with the “normal”
leftover hash lemma by replacing m with nm for now.

As will become obvious below, ring-LWE helps reduce the public key size at the expense of
having a larger ciphertext and modulus. In addition, ring-LWE can improve the computational
efficiency due to fast FFT-multiplications in the employed polynomial rings.

Decryption Errors. For the decryption process to work, we need to bound the errors
that are induced during encryption. In each cryptosystem, the error comes from two sources.
Firstly, a rounding error of magnitude 1/(2q) that can be bounded with certainty by choosing
a q that is sufficiently large. We will assume q > 6, i.e., a rounding error of < 1/12. Secondly,
there is an error x that follows a normal distribution with parameter s. Thus, in principle,
the error can be arbitrarily large. However, there is a tail bound for Prob[ |x| ≥ ts], t ≥ 1. It
states that e−πt

2
is a very good approximation (see, e.g., [Pei07]). We want the decryption-

error probability to be less than 2−80 in all ` components of the ciphertext. Thus, we need
1− (1− e−πt2)` < 2−80.

26



For all relevant parameters, setting t = 5 is sufficient. In order for the relative total error to
be less than 1/4 (to be able to decrypt), we require that ts < 1/6. Consequently, we need to
ensure that the error is distributed with s = 1/30.

Hybrid Encryption. We assume that one uses hybrid encryption in practice. The em-
ployed block cipher has key length κ and we want it to remain secure in the presence of
quantum computers (see Table 2).

Multi-bit LWE. The multi-bit version of Regev’s LWE cryptosystem [Reg09] looks as follows.

Secret Key: S
$← Zn×κq , i.e, nκ log2(q) bits.

Public Key: A
$← Zn×mq , P = AtS + E ∈ Zm×κq for E ← χm×κα . The matrix A can be the

same for all users, e.g., generated from the random bits of π. Using the HNF technique
of [Mic01], the key is reduced to (m− n)κ log2(q) bits.

Plaintext: k ∈ Zκ2 .

Ciphertext: u = Aa ∈ Znq , c = Pta + k q−1
2 , where a

$← {−br/2c , . . . , dr/2e}m, r ≥ 1. The
ciphertext has (n+ κ) log2(q) bits.

Decryption: c− Stu ≈ k q−1
2 .

We need to set α = 1/(30
√
m dr/2e) to eliminate decryption errors because then the accumu-

lated error in c is distributed as a Gaussian with parameter s = 1/30, which limits it to at
most 1/6 per component with high probability. For simplicity, we choose r = 2. Notice that
other trade offs, e.g., choosing a different (non-binary) alphabet or choosing a larger r, are
possible and easy to implement.

We let q = q(n) be the smallest prime between 2n2 and 4n2 to resolve a circular dependency.
Then, we set m = m(n) = d((n+ κ) log2(q) + 2κ)/ log2(r + 1)e to tie the probability of being
able to distinguish ciphertexts from uniform to the symmetric security level, i.e., the probability
is at most

√
qn+κ/(r + 1)m ≤

√
qn+κ/(qn+κ22κ) = 2−κ. After taking all this into account,

we propose various parameter sets in Table 10. Our parameters differ from the proposed
sets of parameters in [MR08] as they are chosen via a completely different methodology. In
addition, our parameters do not yield decryption errors but with negligible probability, whereas
in [MR08] the error probability is only guaranteed to be ≤ 1/100 without an additional error
correcting code.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Lenstra n
q
α
m
|sk|
|pk|
|C|

214
91621
5.47e-04
3719
55.1
54.8
0.7

191
72973
5.51e-04
3665
56.5
63.6
0.7

221
97687
5.12e-04
4234
73.3
80.3
0.8

253
128021
4.80e-04
4815
92.2
98
0.9

283
160183
4.54e-04
5400
113.5
118.7
1

314
197203
4.30e-04
6006
137.5
141.7
1.1

346
239441
4.10e-04
6609
163
165.1
1.2

376
282767
3.92e-04
7215
191.2
192
1.3

405
328051
3.77e-04
7811
221
220.6
1.5

438
383693
3.63e-04
8446
253.9
250.3
1.6

Table 10: Recommended parameters for multi-bit LWE. The rows correspond to attacker types
and the columns correspond to security until a given year. C is the ciphertext sizes
and all sizes are in kilobytes (kB).
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Dual Ring-LWE. Gentry, Peikert, and Vaikuntanathan proposed a dual version of Regev’s
cryptosystem in [GPV08]. It is “dual” in the sense that public keys and ciphertexts are
essentially exchanged. Therefore, the LWE assumption ensures that ciphertexts are indistin-
guishable from random. The keys are unconditionally random for the proposed parameters.
When adapted to the ring setting, the dual cryptosystem looks as follows.

Secret Key: r̂
$← Dm

r , i.e, mn log2(r + 1) bits.

Public Key: â
$← Rm, u = â~ r̂ ∈ R. Again, â is global and the key requires n log2(q) bits.

Plaintext: k ∈ D1, i.e., κ ≤ n.

Ciphertext: ĉ1 = âs + x̂1 ∈ Rm, c2 = us + x2 + k q−1
2 ∈ R, where x̂1 ← χmR,α, x2 ← χR,α and

s
$← R. The ciphertext has (m+ 1)n log2(q) bits.

Decryption: c2 − r̂~ ĉ1 ≈ k q−1
2 .

We need to set m = d(log2(q) + 2κ/n)/ log2(r + 1)e to achieve unconditional (2−κ) uniformity
of u and we choose q > n2.5. We use a binary secret key, which makes the ciphertext somewhat
larger. Full “duality” with multi-bit LWE is established with a ternary secret key (r = 2). When
analyzing the Gaussian error, we need to be more careful as it comes from two sources, r̂~ x̂1

and x2 in the dual construction. The errors accumulate in a different way because of the
convolution ~. Here, we have that r̂ ~ x̂1 + x̂2 is distributed like a Gaussian with parameter
(
√
mn dr/2e + 1)α. Hence, setting α = 1/(30(

√
mn dr/2e + 1)) Our proposed parameter sets

are in Table 11.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Lenstra n
q
α
m
|sk|
|pk|
|C|

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

Table 11: Recommended parameters for dual ring-LWE. The rows correspond to attacker types
and the columns correspond to security until a given year. C is the ciphertext sizes
and all sizes are in kilobytes (kB).

Multi-bit Ring-LWE. The ring version of multi-bit ring-LWE can be defined as follows using
the sets R,Dr from above.

Secret Key: s
$← R, i.e, n log2(q) bits.

Public Key: â
$← Rm, p̂ = âs + ê ∈ Rm for ê← χmR,α. The element â can be the same for all

users. The public-key size is mn log2(q) bits.

Plaintext: k ∈ D1, i.e., κ ≤ n.

Ciphertext: u = â ~ r̂ ∈ R, c = p̂ ~ r̂ + k q−1
2 ∈ R, where r̂

$← Dm
r . The ciphertext has

2n log2(q) bits.

Decryption: c− su ≈ k q−1
2 .
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Notice that we actually encrypt more than κ bits because it is always less than the plaintext
size n. This slack can be used to simultaneously encapsulate more than one key. See above for
the general setup for ring-LWE. In order to be able to decrypt, we require that the accumulated
error term ê~ r̂ has a small max-norm of at most q/4. The accumulated error is now generated
differently, namely as a sum of m products of polynomials, where one polynomial is the error
term and the second is always a polynomial in Dr. Thus, the resulting error is a Gaussian
with parameter ≤

√
mn dr/2eα and we can set α = 1/(30

√
mn dr/2e) to eliminate decryption

errors because then the error is distributed as a Gaussian with parameter s = 1/30 and very
likely to be less than 1/6 per component. For simplicity, we let r = 2 as in multi-bit LWE. We
let q = q(n) be the least prime > n2.5 according to the requirements of our specific ring R that
are discussed above.

Then, we set m = m(n) = d(2κ/n+ log2(q))/ log2(r + 1)e to make u 2−κ-uniform by Mic-
ciancio’s ring version of the leftover hash lemma. Again, we only show one option of choosing
the parameters. For example, a bigger r allows smaller m and therefore smaller key sizes, but
bigger errors. We propose various parameter sets in Table 12.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Lenstra n
q
α
m
|sk|
|pk|
|C|

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

512
5941249
3.80e-04
15
1.4
21.1
2.8

512
5941249
3.80e-04
15
1.4
21.1
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

Table 12: Recommended parameters for multi-bit ring-LWE. The rows correspond to attacker
types and the columns correspond to security until a given year. C is the ciphertext
sizes and all sizes are in kilobytes (kB).

Dual-LWE. Gentry, Peikert, and Vaikuntanathan proposed a dual version of Regev’s cryp-
tosystem in [GPV08]. It is “dual” in the sense that public keys and ciphertexts are essentially
exchanged. Therefore, the LWE assumption ensures that ciphertexts are indistinguishable from
random. The keys are unconditionally random for the proposed parameters. We use a variant
of the scheme in [Pei09].

Secret Key: X
$← {−br/2c , . . . , dr/2e}m×κ2 for r ≥ 1, i.e, mκ log2(r + 1) bits.

Public Key: A
$← Zn×mq , U = AX ∈ Zn×κq . Again, A is global. The key requires nκ log2(q)

bits.

Plaintext: k ∈ Zκ2 .

Ciphertext: c1 = Ats + x1 ∈ Zmq , c2 = Uts + x2 + k q−1
2 ∈ Zκq , where x1 ← χmα , x2 ← χκα and

s
$← Znq . The ciphertext has (m+ κ) log2(q) bits.

Decryption: c2 −Xtc1 ≈ k q−1
2

We do not explicitly consider the dequantization of LWE in [Pei09] as it requires q = 2O(n),
which dramatically increases the public-key size. Moreover, by choosing q ≤ poly(n), the
encryption process is slightly simpler. Here, we let q = q(n) be the smallest prime between 2n2
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and 4n2 to resolve a circular dependency. As for the secret key, we choose r = 1 to demonstrate
how small the secret key can be, but choosing X from a larger set has the advantage of a
smaller ciphertext (but bigger accumulted errors). The desired trade off depends on the target
application. To ensure that the public key is within distance 2−κ from uniform, we set m =
d(n log2(q) + 2κ)/ log2(r + 1)e. Then, the statistical distance is at most

√
qnκ/(r + 1)mκ ≤√

qnκ/(qnκ22κ) = 2−κ. As for α, we need to ensure that the induced errors, distributed
according to a Gaussian with parameter at most α(

√
m dr/2e + 1), are less than 1/6. Thus,

setting α = 1/(30(
√
m dr/2e + 1)) is sufficient. Given these relations among the parameters,

we propose secure parameter sets in Table 13.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Lenstra n
q
α
m
|sk|
|pk|
|C|

215
92459
5.32e-04
3803
59.4
55.4
7.9

190
72211
5.65e-04
3367
61.7
56.2
6.9

220
96821
5.21e-04
3972
79.5
72.9
8.4

253
128021
4.82e-04
4645
99.8
92.2
10

284
161323
4.52e-04
5294
122.8
114
11.6

314
197203
4.27e-04
5932
147.7
137.5
13.2

347
240829
4.04e-04
6636
175
163.6
15

377
284261
3.86e-04
7291
204.7
191.8
16.6

407
331301
3.70e-04
7952
236.9
222.3
18.3

440
387203
3.54e-04
8680
271.3
255.2
20.2

Table 13: Recommended parameters for dual-LWE. The rows correspond to attacker types and
the columns correspond to security until a given year. C is the ciphertext sizes and
all sizes are in kilobytes (kB).

Trapdoor Ring-LWE. In this section, we show how to combine the result in [LPR10] with an
earlier work on an ideal version of LWE [SSTX09]. There, the authors show how to generate
a trapdoor for LWE as in trapdoor-LWE (similar to the construction in [AP09]). However,
their result does not guarantee the hardness of the LWE decision problem, which is why they
rely on generic hardcore bits and a subexponential-time reduction. To eliminate this need, we
demonstrate that their trapdoor generation algorithm also works in the setting of [LPR10]. We
focus on the “rounding-off” version of trapdoor ring-LWE because the construction in [SSTX09]
does not bound the length L̃ of the orthogonalized trapdoor. It only guarantees that the basis
itself has length at most L. Neverthelesse, our approach generalizes to the “nearest-plane”
version (see trapdoor-LWE for the details). The scheme works as follows.

Public Key: â ∈ Rm, u
$← R. Notice that â cannot be global here as it contains a trapdoor.

Fortunately, u can be the same for all users. Thus, |pk| = mn log2(q) bits.

Secret Key: T ∈ Zmn×mn such that ât̂i ≡ 0 mod q for every column t̂ in T (interpreted as an
element of Rm). The basis length is ‖T‖ ≤ L =

√
2n(9ρ+ σ). When looking closely at

the construction, we find that the trapdoor can be reconstructed from σ(m− σ)n
√
σn+

ρ(m− ρ)n log2(3) bits.

Plaintext: k ∈ D1, i.e., κ ≤ n.

Ciphertext: ĉ1 = âs + x̂1 ∈ Rm, c2 = us + x2 + k bq/2c ∈ R, where x̂1 ← χmR,α, x2 ← χR,α

and s
$← R. The ciphertext has (mn+ n) log2(q) bits.

The parameters σ and ρ control the success probability of the trapdoor generator and the uni-
formity of â, respectively. Furthermore, the influence the total lattice dimension mn, namely,
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m = (dlog2(q) + σe)(σ+ρ). Unfortunately, the setting required in [LPR10] is within the worst-
case for the trapdoor generation algorithm in [SSTX09]. Particularly, the fact that xn+1 splits
completely into n degree-1 polynomials over Zq makes it necessary to increase the overall lat-
tice dimension. In particular, we require ρ = Ω(κ + log(q)) instead of just ρ = O(log(q)) (as
in ideal GPV) to ensure a well-distributed â.

We fix σ = 1, resulting in a slightly skewed (≤ 1− (1− 1/q)n distance) distribution, where
a1 is always invertible in R and a success probability ≥ (1 − 1/q)n that converges to 1 as n
increases. This does not harm security. However, we require that the remaining ai, i > 1, are
within 2−κ distance from uniform. To this end, it is sufficient to set ρ = (y + log2(q))/ log2(3)
for y = 1/2

√
8κ+ 16 log log2(q) + 1 + 1 + 2κ + 4 log log2(q). Alternatively, we can re-run the

algorithm until we obtain â with only non-zero coefficients. Then, the modified regularity
lemma holds and we can use ρ = ρ(n) ≥ d(2κ/n+ log2(q))/ log2(3)e.

The induced error is a rounding error ≤ 1/4 if q ≥ 2L
√
m and a Gaussian with parameter

≤ αL. The Gaussian error needs to be < 1/4, i.e., setting α = 1/(L20) is sufficient. An
admissible q is the smallest prime ≥ 2n2.5 with q ≡ 1 (mod 2n). Table 14 shows the resulting
parameter sets.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Lenstra n
q
α
m
|sk|
|pk|
|C|

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

Table 14: Recommended parameters for trapdoor ring-LWE with “rounding-off”. The rows
correspond to attacker types and the columns correspond to security until a given
year. C is the ciphertext sizes and all sizes are in kilobytes (kB).

Trapdoor-LWE. The trapdoor-LWE cryptosystem [GPV08, Pei09] is similar to dual-LWE. The
main difference is that the secret key is a trapdoor T for the lattice Λ⊥q (A), i.e., a short basis
thereof. It is generated via [AP09]. The secret key X in dual-LWE disappears and we cannot
share the matrix A among all users. The scheme comes in two flavours. The first uses what is
called “rounding-off” for decryption and the second involves Babai’s nearest plane algorithm
[Bab86]. The advantage of Babai’s algorithm is that we can correct bigger errors compared to
rounding-off. However, rounding-off is more efficient. We describe both in the following.

Obviously, trapdoor-LWE has numerous caveats when compared to its “trapdoor-less” coun-
terparts. It should not be used for plain CPA encryption but it is, e.g., necessary for con-
structing chosen-ciphertext (CCA) secure encryption [PW08, RS09, Pei09] based on LWE by
essentially applying Θ(n) independent trapdoors to the same input.

Let L = ‖T‖ = maxi(‖ti‖2) be the basis length, where the ti are the columns of T. Similarly,
we denote the basis length of the Gram-Schmidt orthogonalization T̃ of T with L̃.

Public Key: A ∈ Zn×mq , U
$← Zn×κq . Notice that A cannot be global here as it contains a

trapdoor. Fortunately, U can be the same for all users. Thus, |pk| = nm log2(q) bits.
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Secret Key: T ∈ Zm×m such that AT ≡ 0 mod q. By looking closely at the construction in
[AP09], we find that it can be restored from just 2m1m2 +m1 log2(q) bits for “rounding-
off” and 2m1m2 +m1 log2(q) + 64 ∗ (m1 +m2)m1 for “nearest-plane” because one needs
the Gram-Schmidt orthogonalization. Here, we assume a IEEE 754 double precision data
type is sufficient. The length is L̃ ≤ 1 + 20

√
m1 for “rounding-off” and L ≤ 20n log(q)

for “nearest-plane”.

Plaintext: k ∈ Zκt .

Ciphertext: c1 = Ats + x1 ∈ Zmq , c2 = Uts + x2 + k q−1
2 ∈ Zκq , where x1 ← χmα , x2 ← χκα and

s
$← Znq . The ciphertext has (m+ κ) log2(q) bits.

Decryption: Recover s from c1, using the trapdoor. Then, c2 −Uts ≈ k q−1
2 .

The parameters m = m1 + m2 is determined by the trapdoor algorithm in [AP09]. The
algorithm requires m1 = d(1 + ϕ)n log2(q)e and m2 = d(4 + 2ϕ)n log2(q)e, where q depends
on the decryption method as we will see below and ϕ is chosen 0.1 as explained in the GPV
signature case.

In both variants, decryption recovers s from c1 and then k from c2. The induced error is
a rounding error ≤ 1/4 if q ≥ 2L

√
m (q ≥ 2L̃

√
m) and a Gaussian with parameter ≤ αL

(rounding-off) or ≤ αL̃ (Nearest plane). The Gaussian error needs to be < 1/4, i.e., setting
α = 1/(L20) or α = 1/(L̃20) is sufficient. The advantage of the “nearest plane” approach
becomes obvious as we can have a bigger α and with that a harder worst-case problem. This
also affects q because we require q >

√
n/α in the worst-case to average-case reduction. An

admissible q is the smallest prime between n4 and 2n4 (rounding-off), or between n3 and 2n3

(nearest plane). Table 15 shows the resulting parameter sets for “nearest plane”.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Lenstra n
q
α
m
|sk|
|pk|
|C|

259
17373989
3.02e-05
33015
1811121
25104
97

229
12008999
3.25e-05
28545
1354059
18766
82

264
18399749
2.98e-05
33768
1894872
26262
100

302
27543611
2.76e-05
39560
2600580
36044
120

338
38614483
2.58e-05
45149
3387284
46948
139

373
51895141
2.44e-05
50667
4265727
59126
159

410
68921003
2.31e-05
56583
5320089
73739
181

445
88121141
2.20e-05
62249
6438898
89246
201

480
1.11e+08
2.10e-05
67978
7678583
106431
223

517
1.38e+08
2.02e-05
74099
9123402
126460
245

Table 15: Recommended parameters for trapdoor-LWE with “nearest-plane”. The rows corre-
spond to attacker types and the columns correspond to security until a given year.
C is the ciphertext sizes and all sizes are in kilobytes (kB).

A.3. Remarks

When looking at how modestly the parameters need to grow with increasing security demands,
we clearly see one of the advantages of lattice-based cryptography. The downside is that all
schemes that require an actual trapdoor are quite impractical. Here, our secret key sizes
reflect the least number of bits that are necessary to reconstruct the trapdoor. This introduces
a significant computational overhead as the Gram-Schmidt orthogonalization of the trapdoor
is often required. Storing the orthogonalization of the matrix, however, results in a secret key
that is bigger by magnitudes.
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A general observation regarding ideal lattices over the ring Zq[x]/ 〈xn + 1〉 is that it is de-
sirable for efficient implementations but it does not allow a fine-grained parameter selection
because n needs to be a power of 2. In consequence, some of the proposed parameter sets
provide more security than required.

Signatures. All signature schemes using a trapdoor come with large key, in the order of
megabytes or even gigabytes, and signature sizes. The most practical scheme is the Treeless
signature scheme (requiring random oracles). The LM-OTS scheme has small keys and signa-
tures, but it is only “one-time”. The GPV and Bonsai schemes, even when instantiated with
ideal lattices, are far from being practical.

Encryption. Regarding lattice-based encryption schemes, there is no perfect choice. The
most suitable scheme depends on the exact application scenario. However, there is a simple
classification: multi-bit (ring-)LWE offers the smallest ciphertexts, dual (ring-)LWE has the
smallest public keys, and trapdoor (ring-)LWE gives rise to CCA secure encryption. For plain
CPA encryption, using trapdoor-LWE is discouraged because it is rather impractical due to its
huge secret key. The effect of using the respective “ring” variants is a significant improvement of
the public-key size and of the computational efficiency. Furthermore, it improves the secret-key
size. The caveat is that the modulus q increases, and with it the ciphertext size. Regarding the
ring-version trapdoor-LWE, we conclude that it helps reduce both, the secret- and public-key
sizes at the expense of a rather large ciphertext.
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