
CCA-Secure PRE Scheme without Random Oracles

Jun Shao1, Zhenfu Cao2, and Peng Liu1

1 College of Information Sciences and Technology
Pennsylvania State University

2 Department of Computer Science and Engineering
Shanghai Jiao Tong University

chn.junshao@gmail.com, zfcao@cs.sjtu.edu.cn, pliu@ist.psu.edu

Abstract. In a proxy re-encryption scheme, a semi-trusted proxy can transform a ciphertext under Alice’s
public key into another ciphertext that Bob can decrypt. However, the proxy cannot access the plaintext. Due
to its transformation property, proxy re-encryption can be used in many applications, such as encrypted email
forwarding. In this paper, by using the techniques of Canetti-Hohenberger and Kurosawa-Desmedt, we propose
a new single-use unidirectional proxy re-encryption scheme. Our proposal is secure against chosen ciphertext
attack (CCA) and collusion attack in the standard model.

Keywords: CCA Security, Collusion Resistance, Unidirectional Proxy Re-encryption, Standard Model

1 Introduction

Proxy re-encryption (PRE), introduced by Blaze, Bleumer and Strauss at EUROCRYPT 1998 [4], allows a semi-
trusted proxy, with some additional information (a.k.a., re-encryption key), to transform a ciphertext under Alice’s
public key into a new ciphertext under Bob’s public key on the same message. However, the proxy cannot learn
any information about the messages encrypted under the public key of either Alice or Bob.

Generally speaking, there are two main methods to classify PRE schemes. One method is according to the
direction of transformation. If the re-encryption key allows the proxy to transform from Alice to Bob, and vice
versa, the PRE scheme is bidirectional ; otherwise, it is unidirectional. The other method is according to the times
of transformation. If the ciphertext can be transformed from Alice to Bob, and then from Bob to Charlie, and so
on, the PRE scheme is multi-use; otherwise, it is single-use.

Due to its specific transformation property, PRE can be used in many applications, including simplification
of key distribution [4], key escrow [16], distributed file systems [2,3], security in publish/subscribe systems [19],
multicast [10], secure certified email mailing lists [20,18], interoperable architecture of DRM [25], access control
[26], and privacy for public transportation [15]. We refer the reader to [1] for the full list.

Since the concept of PRE was proposed, many PRE schemes have been presented. The first (bidirectional) PRE
scheme is proposed by Blaze et al. [4] based on ElGamal public key encryption [12]. However, their scheme suffers
from collusion attacks, i.e., Alice (Bob) can collude with the proxy to reveal Bob’s (Alice’s) secret key. Furthermore,
no unidirectional PRE scheme was proposed in [4]. Later, Jakobsson [17], and Zhou et al. [30] gave a partial solution
to collusion resistance by proposing a quorum-based protocol where the proxy is divided into sub-components.

Based on the key sharing technique, Ivan and Dodis [16] proposed a generic construction for unidirectional
PRE, where the delegator’s (Alice’s) secret key is divided into two parts, one is sent to the proxy, and the other is
sent to the delegatee (Bob). Although this generic construction gives a method to construct unidirectional PRE,
it has two disadvantages. (1) Besides his own secret key, the delegatee (Bob) has to store an additional secret
to decrypt re-encrypted ciphertext for every delegator. (2) Though the delegator (Alice) cannot collude with the
proxy to reveal the delegatee’s (Bob’s) secret key, the delegatee (Bob) can collude with the proxy to reveal the
delegator’s (Alice’s) secret key. To remove the above two disadvantages, Ateniese et al. [2,3] proposed several new
PRE schemes based on pairings.

Nevertheless, the above PRE schemes achieve at most chosen plaintext attack (CPA) security [9,23]. The first
CCA-secure (bidirectional) PRE scheme in the standard model was proposed by Canetti and Hohenberger [9].
Their result is very nice. To achieve CCA security, Canetti and Hohenberger applied the Canetti, Halevi and
Katz paradigm [8] (which is for transforming any selective-identity, CPA-secure ID-based encryption scheme into
a CCA-secure encryption scheme) with a little modification. However, like previous bidirectional PRE schemes,

their scheme suffers from collusion attacks. Furthermore, they didn’t propose any CCA-secure unidirectional PRE
scheme in the standard model, but left it as an open problem1. Note that unidirectional PRE is more powerful
than bidirectional one, since a bidirectional scheme can always be implemented by a unidirectional one. Based on
Canetti-Hohenberger technique [9], Libert and Vergnaud [22] proposed a new unidirectional PRE scheme which
is replayable chosen ciphertext attack (RCCA) secure and collusion resistant in the standard model. Note that
RCCA security is weaker than CCA security, since it disallows the adversary to query the decryption oracle with
the ciphertext whose corresponding message is one of the challenge messages in the RCCA security model [22],
while only the derivatives2 of the challenge ciphertext are disallowed in the CCA security model [9]. See the details
in Remark 2 (Section 2).

Recently, Shao and Cao [23] proposed the first CCA-secure and collusion resistant unidirectional PRE scheme by
using public key encryption with double trapdoors [7] and Fijisaki-Okamoto technique [13]. Weng et al. [28] proposed
a more efficient CCA-secure and collusion resistant unidirectional PRE scheme without pairings. However, these
two schemes are only proven secure in the random oracle model. Shao et al. [24] proposed a generic construction
of CCA-secure and collusion resistant unidirectional PRE based on CCA-secure ID-based threshold encryption.
However, they worked in a weaker security model than our security model in Section 2.3. In their CCA security
model, the adversary cannot get the re-encryption keys from uncorrupted users (not the challenge one) to corrupted
users.

1.1 Intuition behind Our Construction

In this paper, by using the techniques of Canetti-Hohenberger [9] and Kurosawa-Desmedt [21], we propose a new
single-use unidirectional PRE scheme, which is CCA-secure and collusion resistant in the standard model.

There are several methods of the re-encryption key’s generation to obtain the collusion resistance, including the
AFGH method [2,3] (gy/x, where x and y are the private keys of the delegator and the delegatee, respectively),
double trapdoor encryption [23], identity-based encryption [27,29,24]. In this paper, we adopt the AFGH method
to obtain the collusion resistance.

Compared to the collusion resistance, we need more techniques and more sophisticated design to obtain the
CCA security. The key of designing a CCA-secure, single-use, unidirectional PRE scheme is to provide validity
check for original ciphertexts and re-encrypted ciphertexts [9,22,23].

The validity check for original ciphertexts guarantees that the original ciphertexts are indeed computed by the
encryptor. In this paper, we use the technique of Canetti-Hohenberger [9] to provide public verifiability of the
original ciphertext. Actually, the encryption algorithm of our proposal is almost the same as that in [22], except
that we use the technique of Kurosawa-Desmedt [21]. However, this modification helps us to improve the security
from the RCCA security up to the CCA security, in particular, it provides us the validity check for re-encrypted
ciphertexts.

The validity check for re-encrypted ciphertexts guarantees that re-encrypted ciphertexts are not modified after
the proxy sends them out. At the first glance, this verifiability should be done by the proxy, since the re-encrypted
ciphertext is different from the original ciphertext. However, it is very difficult to use the re-encryption key gy/x

to obtain the verifiability (at least with the current techniques). We observed that if the values computed by the
proxy in the re-encryption algorithm have some “fixed” relationships with the original ciphertext, then we can
check the validity of the re-encrypted ciphertexts via checking the validity of the corresponding message. “Fixed”
means that for a re-encryption key and an original ciphertext pair, some parts of the re-encrypted ciphertext are
constant, no matter what the random value used during the re-encryption is. In this paper, we use the technique of
Kurosawa-Desmedt [21] to provide the “fixed” relationships. In particular, the obtained message in the decryption
algorithm can be verified by the Kurosawa-Desmedt technique.

However, by only using the techniques of Canetti-Hohenberger and Kurosawa-Desmedt, we still cannot obtain
the CCA security. Note that the Canetti-Hohenberger technique can only be used to answer decryption queries for
the original ciphertext, and the Kurosawa-Desmedt cannot be used to answer decryption queries. To simulate the
decryption oracle correctly, the re-encrypted ciphertext should contain the plaintext ciphertext. Nevertheless, the
re-encrypted ciphertext cannot explicitly contain the original ciphertext according to the CCA security. To solve
1 Canetti and Hohenberger [9] proposed four open problems on proxy re-encryption, such that building (1) unidirectional

CCA-secure schemes in the standard model, (2) multi-hop, unidirectional schemes, (3) unidirectional or CCA-secure
scheme without bilinear groups, (4) secure obfuscations of CCA-secure re-encryption or other key translation schemes.

2 See the definition in Section 2.3.

2

this conflict, we let every user have two public keys but only one secret key, i.e., pk(1) = (gx, g) and pk(2) = (gx, g′).
For example, Alice has the public key (gx, g, g′). (gx, g) is used by the encryptor to compute the original ciphertexts
of Alice, and (gx, g′) is used by the proxy to encrypt the original ciphertexts of Alice’s delegator.

Combining the above ideas, we obtain a new single-use unidirectional PRE scheme, which is CCA-secure and
collusion resistant in the standard model.

In the rest of this paper, we first review the definitions related to our proposal, including the definitions for
one-time signature, one-time symmetric key encryption, single-use unidirectional PRE, bilinear maps, and the
underlying assumptions. After that, we present our proposal and give the security proof in the standard model.
Finally, the conclusion is given.

2 Preliminaries

In this section, we review some basic knowledge we use in this paper.

2.1 One-Time Symmetric-Key Encryption [11,21]

Definition 1. A one-time symmetric-key encryption scheme SKE contains three algorithms SKE.KeyGen, SKE.Enc
and SKE.Dec.

– SKE.KeyGen(1λ) → k. On input the security parameter λ, the key generation algorithm SKE.KeyGen outputs a
key k.

– SKE.Enc(k, m) → C: On input a key k and a message m, the encryption algorithm SKE.Enc outputs a ciphertext
C.

– SKE.Dec(k, C) → m: On input a key k and a ciphertext C, the decryption algorithm SKE.Dec outputs a message
m or the special symbol ⊥.

Correctness. The correctness property is that for any message m in the message space and any key k ←
SKE.KeyGen(1λ), the following condition must hold: SKE.Dec(k, SKE.Enc(k, m)) = m.

Chosen Ciphertext Security for One-Time Symmetric-Key Encryption. The CCA security for SKE is
defined by the following chosen-ciphertext attack game played between a challenger C and an adversary A.

Setup: C setups the system parameters.
Oenc : A outputs two equal length plaintexts m0, m1 from the message space. C generates a random key k along

with a random bit b, and encrypts the message mb using the key k to get a ciphertext C∗. At last, C sends C∗

to A as the challenge ciphertext. This oracle can be queried only once.
Odec : A outputs a ciphertext C 6= C∗, and C returns the corresponding message under k to A. This oracle can be

queried for any number of times.
Guess: Finally, A outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

The advantage AdvCCA-A
SKE (λ) is defined as |Pr[b = b′]− 1/2|. The scheme SKE is said to be secure against chosen-

ciphertext attacks if for all efficient adversaries A, the advantage AdvCCA-A
SKE (λ) is negligible.

2.2 One-Time Signature Scheme [8]

Definition 2. A one-time signature scheme SIG contains three algorithms SIG.G, SIG.S and SIG.V.

– SIG.G(1k) → (svk, ssk). On input the security parameter k, the key generation algorithm SIG.G outputs a key
pair (svk, ssk).

– SIG.S(ssk, m) → S: On input a signing key ssk and a message m, the signing algorithm SIG.S outputs a
signature S on m.

– SIG.V(svk,m, S) → 1 or 0: On input a verifying key svk, a message m and a signature S, the verification
algorithm SIG.V outputs 1 if S is a signature of m under svk; otherwise, it outputs 0.

3

Correctness. The correctness property is that for any message m 6= m′ in the message space and any key pair
(svk, ssk) ← SIG.G(1k), the following conditions must hold:

SIG.V(svk, m, SIG.S(ssk, m)) = 1, and SIG.V(svk,m, SIG.S(ssk, m′)) = 0,

Strong Unforgeability for One-Time Signature Scheme. The strong unforgeability security for SIG is defined
by the following chosen-message attack game played between a challenger C and an adversary A.

Setup: C setups the system parameters.
Osig : A outputs a m from the message space. C generates a random key pair (svk, ssk), and signs the message m

using the singing key ssk to get a signature S∗. At last, C returns (svk, S∗) to A. This oracle can be queried
only once.

Forge: Finally, A outputs a signature S′ of a message m′ under svk. If any of following conditions holds, A wins
the game.

– m 6= m′ and SIG.V(svk, m′, S′) = 1.
– m = m′, S 6= S′, and SIG.V(svk,m′, S′) = 1.

The advantage AdvSU-A
SIG (k) is defined as Pr[A wins]. The scheme SIG is said to be strongly unforgeable under

chosen-message attacks if for all efficient adversaries A, the advantage AdvSU-A
SIG (k) is negligible.

2.3 Definitions for Single-Use Unidirectional PRE

The similar definitions can be found in [2,3,14,9,23].

Definition 3 (Single-Use Unidirectional PRE). A single-use unidirectional proxy re-encryption scheme PRE is
a tuple of PPT algorithms (PRE.KeyGen, PRE.ReKeyGen, PRE.Enc, PRE.ReEnc, PRE.Dec):

– PRE.KeyGen(1k) → (pk, sk). On input the security parameter 1k, the key generation algorithm PRE.KeyGen

outputs a public key pk and a secret key sk.
– PRE.ReKeyGen(sk1, pk2) → rk1,2. On input a secret key sk1 and a public key pk2, the re-encryption key gener-

ation algorithm PRE.ReKeyGen outputs a unidirectional re-encryption key rk1,2.
– PRE.Enc(pk, m) → C. On input a public key pk and a message m in the message space, the encryption algorithm

PRE.Enc outputs a ciphertext C.
– PRE.ReEnc(rk1,2, C1) → C2. On input a re-encryption key rk1,2 and a ciphertext C1, the re-encryption algorithm

PRE.ReEnc outputs a re-encrypted ciphertext C2 or a special symbol ⊥.
– PRE.Dec(sk, C) → m. On input a secret key sk and a ciphertext C, the decryption algorithm PRE.Dec outputs

a message m in the message space or a special symbol ⊥.

Correctness. The correctness property has two requirements. For any message m in the message space and any
key pairs (pk, sk), (pk′, sk′) ← PRE.KeyGen(1k). Then the following two conditions must hold:

PRE.Dec(sk, PRE.Enc(pk, m)) = m,
PRE.Dec(sk′, PRE.ReEnc(PRE.ReKeyGen(sk, pk′), C)) = m,

where C is the ciphertext for message m under pk from algorithm PRE.Enc.

Remark 1 (Two types of ciphertexts). In all existing single-use unidirectional proxy re-encryption schemes, there are
two types of ciphertexts. One is the first-level ciphertext, which could be generated from PRE.ReEnc (or PRE.Enc);
the other is the second-level ciphertext, which is generated only from PRE.Enc.

4

Chosen Ciphertext Security for Single-Use Unidirectional Proxy Re-Encryption. We say that a single-
use unidirectional proxy re-encryption scheme PRE is semantically secure against an adaptive chosen ciphertext
attack if no polynomial bounded adversary A has a non-negligible advantage against the challenger in the following
Uni-PRE-CCA game. Note that we work in the static corruption model, where the adversary should decide the
corrupted users before the game starts. Since there are two types of ciphertexts, we have two situations in some of
the following oralces.

Setup: The challenger sets up the system parameters.

Phase 1: The adversary A issues queries q1, · · · , qn1 where query qi is one of:

– Public key generation oracle Opk: On input an index i,3 the challenger takes a security parameter k, and
responds by running algorithm PRE.KeyGen(1k) to generate a key pair (pki, ski), gives pki to A and records
(pki, ski) in the table TK .

– Secret key generation oracle Osk: On input pki by A, where pki is from Opk, if pki is corrupted, the challenger
searches pki in the table TK and returns ski; otherwise, the challenger returns ⊥.

– Re-encryption key generation oracle Ork: On input (pki, pkj) by A, where pki, pkj are from Opk, the challenger
returns the re-encryption key rki,j = PRE.ReKeyGen(ski, pkj), where ski is the secret key corresponding to pki.

– Re-encryption oracle Ore: On input (pki, pkj , C) by A, where pki, pkj are from Opk, the challenger returns the
re-encrypted ciphertext C ′ = PRE.ReEnc(PRE.ReKeyGen(ski, pkj), C), where sk is the secret key corresponding
to pk.

– Decryption oracle Odec: On input (pki, Ci), where pki is from Opk, the challenger returns PRE.Dec(ski, Ci),
where ski is the secret key corresponding to pki.

These queries may be asked adaptively, that is, each query qi may depend on the replies to q1, · · · , qi−1.

Challenge: There are two cases, and the adversary can perform only one case for only once in this phase.

– the first-level challenge ciphertext : Once the adversary A decides that Phase 1 is over, it outputs two equal
length plaintexts m0, m1 from the message space, and two public key pk, pk∗ on which it wishes to challenge.
There are two constraints on the public key pk∗: (i) it is from Opk; (ii) it is uncorrupted. The challenger picks
a random bit b ∈ {0, 1} and sets C∗ = PRE.ReEnc(rk, PRE.Enc(pk, mb)), where rk is a re-encryption key from
pk to pk∗. It sends C∗ as the challenge to A.

– the second-level challenge ciphertext : Once the adversary A decides that Phase 1 is over, it outputs two equal
length plaintexts m0, m1 from the message space, and a public key pk∗ on which it wishes to challenge. There
are three constraints on the public key pk∗, (i) it is from Opk; (ii) it is uncorrupted; (iii) if (pk∗,F) did
appear in any query to Ork, then F is uncorrupted. The challenger picks a random bit b ∈ {0, 1} and sets
C∗ = PRE.Enc(pk∗,mb). It sends C∗ as the challenge to A.

Phase 2: The adversary A issues more queries qn1+1, · · · , qn where query qi is one of:

– Opk, Osk: The challenger responds as in Phase 1.
– Ork:

• the first-level ciphertext security : it is the same as that in Phase 1.
• the second-level ciphertext security : if the following requirements are all satisfied, the challenger responds

as in Phase 1; otherwise, the challenger outputs ⊥.
∗ pki and pkj are from Opk;
∗ if pki = pk∗, then pkj is uncorrupted.

– Ore: On input (pki, pkj , Ci) by A, if the following requirements are all satisfied, the challenger responds as in
Phase 1; otherwise, the challenger outputs ⊥.
• pki and pkj are from Opk;
• if (pki, Ci) is a derivative of (pk∗, C∗), then pk′ is uncorrupted.

– Odec: On input (pki, Ci), if the following requirements are all satisfied, the challenger responds the same as in
Phase 1; otherwise, the challenger outputs ⊥.
• pki is from Opk;

3 This index is just used to distinguish the different public keys.

5

• (pki, Ci) is not a derivative of (pk∗, C∗).

These queries may be also asked adaptively.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

We refer to such an adversary A as a Uni-PRE-CCA adversary. We define adversary A’s advantage in attacking
PRE as the following function of the security parameter k:

AdvCCA-A
PRE (k) = |Pr[b = b′]− 1/2|.

Using the Uni-PRE-CCA game, we can define chosen ciphertext security for unidirectional proxy re-encryption
schemes.

Remark 2. Derivatives of (pk∗, C∗) for the CCA security are defined as follows [9]:

1. (pk∗, C∗) is a derivative of itself.
2. If (pk, C) is a derivative of (pk∗, C∗) and (pk′, C ′) is a derivative of (pk, C), then (pk′, C ′) is a derivative of

(pk∗, C∗).
3. If A has queried Ore on input (pk, pk′, C) and obtained (pk′, C ′), then (pk′, C ′) is a derivative of (pk, C).
4. If A has queried Ork on input (pk, pk′), and C ′ = PRE.ReEnc(Ore(pk, pk′), C), then (pk′, C ′) is a derivative of

(pk, C).

From the above, we know that if a re-encrypted ciphertext is not obtained directly by PRE.ReEnc or Ore, then
this ciphertext cannot be a derivative of any ciphertext. Hence, if C ′′ = F (C ′), where F is a transformation function
which makes C ′′ 6= C ′ and Dec(C ′′, pk) = Dec(C ′, pk), and C ′ = Ore(pk∗, pk′, C∗), then C ′′ is not a derivative of
(pk∗, C∗).

However, according to the definition of the derivative of (pk∗, C∗) for the RCCA security [22], the above C ′′ is
a derivative of (pk∗, C∗). Because the derivative of (pk∗, C∗) in [22] is defined as: if the message of a re-encrypted
ciphertext is one of the challenge messages, then this re-encrypted ciphertext is a derivative of (pk∗, C∗).

Definition 4 (Uni-PRE-CCA security). We say that the unidirectional proxy re-encryption scheme PRE is se-
mantically secure against an adaptive chosen ciphertext attack if for any polynomial time Uni-PRE-CCA adversary
A the function AdvCCA-A

PRE (k) is negligible. As shorthand, we say that PRE is Uni-PRE-CCA-secure.

Collusion Resistance for Single-Use Unidirectional Proxy Re-Encryption. We say that a unidirectional
proxy re-encryption scheme PRE is collusion resistant under an adaptive chosen ciphertext attack if no polynomial
bounded adversary A has a non-negligible advantage against the challenger in the following Uni-PRE-CR game.
Here, we also work in the static corruption model.

Setup: The challenger sets up the system parameters.
Find: Almost the same as Phase 1 in Uni-PRE-CCA game, except that there is no re-encryption oracle in this

game, since the adversary can get every re-encryption key.
Output: Finally, the adversary A outputs private key sk, and wins the game if the corresponding public key pk is

uncorrupted.

We refer to such an adversary A as a Uni-PRE-CR adversary. We define adversary A’s advantage in attacking
PRE as the following function of the security parameter k:

AdvCR-A
PRE (k) = Pr[A wins]

Using the Uni-PRE-CR game, we can define collusion resistance under chosen ciphertext attack for single-use
unidirectional proxy re-encryption schemes.

Definition 5 (Uni-PRE-CR security). We say that the single-use unidirectional proxy re-encryption scheme
PRE is collusion resistant under an adaptive chosen ciphertext attack if for any polynomial time Uni-PRE-CR
adversary A the function AdvCR-APRE (k) is negligible. As shorthand, we say that PRE is Uni-PRE-CR secure.

Remark 3. As mentioned in [22], the security of collusion resistance is implied by the first-level ciphertext security.

6

2.4 Bilinear Groups

In this subsection, we briefly review the definitions about bilinear maps and bilinear map groups, which follow
those in [5,6].

1. G and GT are two (multiplicative) cyclic groups of prime order q;
2. g is a generator of G;
3. e is a bilinear map e : G×G→ GT .

Let G and GT be two groups as above. An admissible bilinear map is a map e : G × G → GT with the following
properties:

1. Bilinearity : For all P, Q, R ∈ G, e(P ·Q,R) = e(P, R) · e(Q,R) and e(P, Q ·R) = e(P, Q) · e(P, R).
2. Non-degeneracy : If e(P, Q) = 1 for all Q ∈ G, then P = O, where O is a point at infinity.

We say that G is a bilinear group if the group action in G can be computed efficiently and there exists a group
GT and an efficiently computable bilinear map as above. We denote BSetup as an algorithm that, on input the
security parameter 1k, outputs the parameters for a bilinear map as (q, g,G,GT , e), where q ∈ Θ(2k).

2.5 Complexity Assumptions

The security of the schemes proposed in this paper are based on the 3-Quotient Decision Bilinear Diffie-Hellman
assumption (3-QDBDH), the extended 3-Quotient Decision Bilinear Diffie-Hellman assumption (e3-QDBDH), and
the Extended Discrete Logarithm assumption (EDL).

3-QDBDH Problem. Let (q, g,G,GT , e) ←BSetup(1k). The 3-QDBDH problem is as follows: Given (g, ga, ga2
, ga3

,
gb, Q) for some a, b ∈ Zq and Q ∈ GT , decide whether Q = e(g, g)b/a. An algorithm A has advantage ε in solving
3-QDBDH problem if

|Pr[A(g, ga, ga2
, ga3

, gb, e(g, g)b/a) = 0]− Pr[A(g, ga, ga2
, ga3

, gb, Q) = 0]| ≤ ε

where the probability is over the random choice of a, b in Zq, the random choice of Q in GT , the random choice of
g ∈ G∗, and the random bits of A.

Definition 6 (3-QDBDH Assumption). We say that the ε-3-QDBDH assumption holds if no PPT algorithm
has advantage at least ε in solving the 3-QDBDH problem.

The 3-QDBDH assumption is used in [22] to build a RCCA-secure and collusion-resistant PRE scheme.

e3-QDBDH Problem. Let (q, g,G,GT , e) ←BSetup(1k). The e3-QDBDH problem is as follows: Given (g, g1/a, ga,

ga2
, ga3

, gb, gc, Q) for some a, b, c ∈ Zq and Q ∈ GT , decide whether Q = e(g, g)bc/a. An algorithm A has advantage
ε in solving 3-QDBDH problem if

|Pr[A(g, g1/a, ga, ga2
, ga3

, gb, gc, e(g, g)bc/a) = 0]− Pr[A(g, g1/a, ga, ga2
, ga3

, gb, gc, Q) = 0]| ≤ ε

where the probability is over the random choice of a, b in Zq, the random choice of Q in GT , the random choice of
g ∈ G∗, and the random bits of A.

Definition 7 (e3-QDBDH Assumption). We say that the ε-e3-QDBDH assumption holds if no PPT algorithm
has advantage at least ε in solving the e3-QDBDH problem.

7

EDL Problem. Let 〈g〉 = G is a finite cyclic group with prime order q, and g is one of its generator. The EDL
problem is as follows: Given (g, ga, g1/a) for some a ∈ Zq, compute a. An algorithm A has advantage ε in solving
EDL problem if

Pr[A(g, ga, g1/a) = a] ≤ ε

where the probability is over the random choice of a in Zq, the random choice of g ∈ G∗, and the random bits of
A.

Definition 8 (EDL Assumption). We say that the ε-EDL assumption holds if no PPT algorithm has advantage
at least ε in solving the EDL problem.

It is easy to see that the EDL problem is easier than the Discrete Logarithm problem (DL), and is equal to
2-DL problem4, which is used in [2,3] to build a collusion resistant PRE scheme.

3 CCA-Secure, Collusion-Resistant, Single-Use, Unidirectional PRE

Notations and Configuration. Let 1k be the security parameter and (q, g,G,GT , e) ← BSetup(1k), g′ and h be
random numbers in G, SIG be a strongly unforgeable one-time signature scheme, and SKE be CCA-secure one-time
symmetric key encryption. Let F (y)

def
= gy

2 · g3,5 and H : GT → {0, 1}k1 , where g2 and g3 are random elements in
G, k1 is the bit-length of the underlying one-time symmetric encryption’s key, and we require that H is uniformly
distributed over {0, 1}k1 if the input is uniformly distributed over GT . We can use any concrete hash function, such
as SHA-1 [21]. Define the algorithm Check on input a ciphertext tuple (A,B, C, D, E, S) and a key pk as follows:

1. Run SIG.V(A, (B,C, D,E), S) to verify signature S on message (C,D, E) with respect to key A.
2. Check that e(F (A), B) = e(C, pk).
3. Check that e(F (A), D) = e(C, h).
4. If any of these checks fails, output 0; else output 1.

The system parameters of our proposal are (q, g, g′, h,G,GT , e, SIG, SKE, F, H). The algorithms are as follows.

PRE.KeyGen: On input 1k, select random x ∈ Zq. Set pk = gx and sk = x.
PRE.ReKeyGen: On input a public key pkY and a secret key skX = x, output the unidirectional re-encryption key

rkX,Y = (rk(1)
X,Y , rk

(2)
X,Y , rk

(3)
X,Y) = ((pkY)1/x, pkX , pkY) = (gy/x, gx, gy).

PRE.Enc: On input pk and a message m ∈ {0, 1}n, do:
1. Select a one-time signature key pair as SIG.G(1k) → (svk, ssk). Set A = svk.
2. Select a random number r ∈ Zq and compute

B = pkr, C = F (A)r, D = hr, v = e(g, g)r, k = H(v).

3. Run the encrypting algorithm SKE.Enc(k, m), where the plaintext is m, and denote the ciphertext E.
4. Run the signing algorithm SIG.S(ssk, (B,C, D,E)), where the message to sign is the tuple (B,C, D,E),

and denote the signature S.
5. Output the ciphertext (A,B, C, D, E, S).

PRE.ReEnc: On input a re-encryption key rkX,Y and a ciphertext K = (A,B, C, D, E, S) under key pkX , if
Check(K, pkX) = 0, output ⊥ and terminate; otherwise, re-encrypt the ciphertext to be under key pkY as:
1. Compute B′ = e(B, rk

(1)
X,Y) = e(g, g)yr.

2. Select a one-time signature key pair as SIG.G(1k) → (¯svk, ¯ssk). Set Ā = ¯svk.
3. Select a random number r̄ ∈ Zq and compute

B̄ = (rk(3)
X,Y)r̄, C̄ = F (Ā)r̄, D̄ = hr̄, v̄ = e(g′, g)r̄, k̄ = H(v̄).

4. Run the encrypting algorithm SKE.Enc(k̄, B′||rk(2)
X,Y ||A||B||C||D||E||S), where the plaintext is B′||rk(2)

X,Y ||A||
B||C||D||E||S, and denote the ciphertext Ē.

4 The 2-DL problem is: given (g, ga, ga2
) as input, to compute a.

5 In fact, as mentioned in [9], we use y instead of ỹ for simplicity, where ỹ is a fixed one-to-one representation of y in Zq.
This one-to-one mapping from y to ỹ can be implemented by an additional hash function.

8

5. Run the signing algorithm SIG.S(¯ssk, (B̄||C̄||D̄||Ē)), where the message to sign is the tuple (B̄, C̄, D̄, Ē),
and denote the signature S̄.

6. Output the new ciphertext (Ā, B̄, C̄, D̄, Ē, S̄).
PRE.Dec: On input a secret key sk and any ciphertext K, parse K,

Case K = (A,B, C, D, E, S): If Check(K, gsk) = 0, output⊥ and terminate; otherwise, compute v = e(B, g)1/sk,
k = H(v).

Case K = (Ā, B̄, C̄, D̄, Ē, S̄): If Check(K, gsk) = 0, output⊥ and terminate; otherwise, compute v̄ = e(B̄, g′)1/sk,
k̄ = H(v), decrypt Ē under k̄ using SKE.Dec to get B′||rk(2)

X,Y ||A||B||C||D||E||S. If Check((A,B, C, D, E, S),

rk
(2)
X,Y) = 0, output ⊥ and terminate; otherwise, compute v = B′1/sk, k = H(v).

Then decrypt E under k using SKE.Dec to get m (m may be ⊥).

Correctness. The correctness property can be obtained from the following equations.

Case K = (A,B, C, D, E, S): We have

e(B, g)1/sk = e(pkr, g)1/sk = e(g, g)r = v.

Case K = (Ā, B̄, C̄, D̄, Ē, S̄): We have

e(B̄, g′)1/sk = e(pkr̄, g′)1/sk = e(g′, g)r̄ = v̄,

and
B′1/sk = e(B, rk

(1)
X,Y)1/sk = (e(g, g)sk·r)1/sk = e(g, g)r = v.

Remark 4. We have no explicit test for checking the validity of B′. However, if it is malformed, the decrypted
session key H(B′1/sk) will be uniformly random and independent of the true key. Hence, the final decrypted output
will be either correct or indistinguishable from random.

It seems that (rk(2)
X,Y , A, B, C,D, S) is useless, since we can compute m from (B′, E) and the validity of m can

be guaranteed by SKE. However, we cannot removed them from the re-encrypted ciphertext. Because we cannot
answer the decryption oracle when we don’t have (rk(2)

X,Y , A, B, C,D, S). See the details in the security proof.

3.1 Security Analysis

For convenience, we will prove security under equivalent formulations of 3-QDBDH assumption and e3-QDBDH
assumption as that in [22].

Lemma 1. The 3-QDBDH problem is equivalent to decide whether Q equals e(g, g)b or a random value, given
(g, g1/a, ga, ga2

, ga2·b) as input.

Proof. Given (g, g1/a, ga, ga2
, ga2·b), we can build a 3-QDBDH instance by setting (y = g1/a, yA = g, yA2

=
ga, yA3

= ga2
, yB = ga2·b), which implicitly define A = a and B = a3·b. Then, we have e(y, y)B/A = e(g1/a, g1/a)(a

3·b)/a =
e(g, g)b. The converse implication is easily established and demonstrates the equivalence between both problems.¥

Similarly, we get the following.

Lemma 2. The 3-QDBDH problem is equivalent to decide whether Q equals e(g, g)bc or a random value, given
(g, g1/a2

, g1/a, ga, ga2
, ga2·b, gc) as input.

Theorem 1 (Uni-PRE-CCA security). Our proposal is Uni-PRE-CCA-secure in the standard model under
assumptions that the 3-QDBDH problem and the e3-QDBDH problem are hard, that SKE is CCA-secure, and that
SIG is strongly unforgeable. In particular, we have

AdvCCA-A
PRE (k) ≤

{
qpk · (εe3-QDBDH + εSIG + qr+d · δ + εCCASKE), first-level;
qpk · (ε3-QDBDH + εSIG + qr+d · δ + εCCASKE), second-level.

where qpk is the amount of queries to the public key generation oracle for uncorrupted public keys, qr+d is the amount
of queries to the re-encryption oracle and the decryption oracle, εe3-QDBDH is the probability that the adversary solves
the e3-QDBDH problem, ε3-QDBDH is the probability that the adversary solves the 3-QDBDH problem, εSIG is the
probability that the adversary breaks the strong unforgeability security of SIG, δ is the probability that any given
verification key is output by SIG.G, and εCCASKE is the probability that the adversary breaks the CCA security of SKE.

9

Proof. We incrementally define a sequence of games starting at the real attack (Game G0), and ending up at Game
G5, which clearly shows that the adversary cannot break the system. We define Ei to be the event that b = b′ in
Game Gi, where b is the bit involved in the challenge phase, and b′ is the output of A in the Guess phase.

Game G0. This game corresponds to the real attack. By definition,

|Pr[E0]− 1/2| = AdvCCA-A
PRE (k) (1)

Game G1. In this game, we modify the public key oracle and challenge phase as follows.

– Opk: On input an index i, if it is an uncorrupted public key, the challenger decides whether it is the challenge
public key pk∗. If yes, the challenger marks the public key as pk. The other performances in this oracle are the
same as those in Game G0.

– Challenge: if the challenge public key pk∗ 6= pk, the challenger reports “failure” and aborts; otherwise, the
challenger does the same performances as those in Game G0.

It is easy to see that only if the challenger guessed the correct challenge public key, Game G1 and Game G0

are indistinguishable. The probability that the challenger guesses the correct challenge public key is 1/qpk at least.
Hence, we have

|Pr[E1]− 1/2| ≥ 1
qpk

· |Pr[E0]− 1/2| (2)

Game G2. In this game, we use the modified e3-QDBDH input and modified 3-QDBDH input to modify the Setup
and Challenge phase.

– Setup:
• the first-level ciphertext security: given a modified e3-QDBDH input (g, g1/a2

, g1/a, ga, ga2
, ga2·b, gc, Q), the

challenger sets up the global parameters for A as follows: the description of the groups 〈g〉 = G,GT , their
prime order q, and the mapping e : G×G→ GT , (svk∗, ssk∗) ← SIG.G(1k), g2 = gα1 , g3 = ga2·α2−α1·svk∗ ,
h = (ga2

)w, g′ = gc, where α1, α2, and w are random numbers from Zq. The system parameters are
(q, g, g′, g2, g3,G,GT , e, F,H, SIG, SKE).

• the second-level ciphertext security : given a modified 3-QDBDH input (g, g1/a, ga, ga2
, ga2·b, Q), the chal-

lenger sets up the global parameters for A as follows: the description of the groups 〈g〉 = G,GT , their
prime order q, and the mapping e : G×G→ GT , (svk∗, ssk∗) ← SIG.G(1k), g2 = gα1 , g3 = ga2·α2−α1·svk∗ ,
h = (ga2

)w, g′ = gu where α1, α2, w and u are four random numbers from Zq. The system parameters are
(q, g, g′, g2, g3,G,GT , e, F,H, SIG, SKE).

– Challenge: The challenger sets A∗ = svk∗, and computes S by using ssk∗. Other performances are the same
as those in Game G1.

Since (g, g1/a2
, g1/a, ga, ga2

, ga2·b, gc, Q, α1, α2, w, u) are random, the above setup phase and challenge phase are
indistinguishable from those in Game G1. Hence, we have

Pr[E2] = Pr[E1] (3)

Game G3. In this game, we modify the public key generation oracle, re-encryption oracle, and decryption oracle.

– Phase 1.

• Opk: the challenger picks a random xi ∈ Zq. If it is a corrupted public key, compute pki = gxi . Otherwise,
decide whether it is the challenge public key. If it is, compute pki = (ga2

)xi ; otherwise, compute pki = (ga)xi .
At last, the challenger records the tuple (pki, xi) in TK , and responds A with pki.

• Osk: On input pki, the challenger checks whether pki exists in TK , if not, the challenger aborts. Otherwise,
if pki is a corrupted public key, the challenger outputs xi; otherwise, the challenger outputs ⊥.

10

• Ork: On input (pki, pkj), the challenger checks whether pki and pkj both exist in TK , if not, the challenger
aborts. Otherwise, the challenger does the following performances.
∗ If pki and pkj are both corrupted, the challenger responds A with gxj/xi .
∗ If pki and pkj are both uncorrupted and neither of them is the guessed challenge public key, the

challenger responds A with gxj/xi .
∗ If pki is corrupted, and pkj is uncorrupted but not the guessed challenge public key, the challenger

responds A with (g1/a)xj/xi .
∗ If pki is corrupted, and pkj is the guessed challenge public key, the challenger responds A with (ga)xj/xi .
∗ If pki is uncorrupted but not the guessed challenge public key, and pkj is the guessed challenge public

key, the challenger responds A with (ga)xj/xi .
∗ If pki is uncorrupted but not the guessed challenge public key, and pkj is corrupted, the challenger

responds A with (ga)xj/xi .
∗ If pki is the guessed challenge public key, and pkj is uncorrupted but not the guessed challenge public

key, the challenger responds A with (g1/a)xj/xi .
∗ (only for the first-level ciphertext security) If pki is the guessed challenge public key, and pkj is corrupted,

the challenger responds A with (g1/a2
)xj/xi .

• Ore: On input (pki, pkj ,K), the challenger checks whether pki and pkj both exist in the table TK , if not, the
challenger aborts. Otherwise, if Check(K, pk

(1)
i) = 0, then the ciphertext is not well-formed, the challenger

outputs ⊥ and aborts; otherwise, the challenger parses K = (A,B, C, D, E, S), and does the following
performances.
∗ the first-level ciphertext security: Return PRE.ReEnc(Ork(pki, pkj),K).
∗ the second-level ciphertext security:

· If pki is the guessed challenge public key, and pkj is a corrupted public key, the challenger computes:

t =
C

Dα2/w
, λ =

1
α1(A−A∗)

.

Then the challenger gets B′ = e((tλ)xj , g), and compute (Ā, B̄, C̄, D̄, Ē, S̄) as the real execution.
At last, the challenger responds (Ā, B̄, C̄, D̄, Ē, S̄).
Note that when A 6= A∗, then the challenger can solve for tλ = gr since:

t = F (A)r

(hr)α2/w = gr·A
2 gr

3

ga2·r·α2
= (gα1)r·A(ga2·α2−α1·A∗)r

gr·a2·α2

= grα1(A−A∗)+r·a2·α2

gr·a2·α2
= gr·α1(A−A∗).

· Otherwise, Return PRE.ReEnc(Ork(pki, pkj),K).
• Odec: On input (pki,K), the challenger checks whether pki exists in table TK , if not, the challenger outputs
⊥. Otherwise, the challenger does the following performances.
∗ If pki is corrupted, the challenger responds A with PRE.Dec(xi,K).
∗ If pki is uncorrupted, the challenger parses K,

Case K = (A,B, C, D, E, S): If Check(K, pki) = 0, the challenger outputs ⊥ and terminates; other-
wise, the challenger solves for gr as it does in Ore, and computes v = e(gr, g), k = H(v). Then
decrypt E under k using SKE.Dec to get m (m may be ⊥).

Case K = (Ā, B̄, C̄, D̄, Ē, S̄): If Check(K, pki) = 0, the challenger outputs ⊥ and terminates; oth-
erwise, the challenger solves for gr̄ as it does in Ore, and computes v̄ = e(gr̄, g′), k̄ = H(v̄).
Then decrypt Ē under k̄ using SKE.Dec to get B′||rk(2)

X,i||A||B||C||D||E||S (m may be ⊥). the

challenger searches pkX = rk
(2)
X,i in TK , and calls Ork with (pkX , pki) to get the corresponding

re-encryption key rkX,i, and checks e(B, rk
(1)
X,i)

?= B′. If it holds, the challenger calls Odec with
(pkX , (A,B, C, D, E, S)) to get the message m and outputs it; otherwise, the challenger outputs ⊥.
Note that in the real execution, according to the correctness of SKE, iff B′ = e(B, rk

(1)
X,i), PRE.Dec

outputs a message m not ⊥ when the input is a re-encrypted ciphertext. Hence, the above check
process (e(B, rk

(1)
X,i)

?= B′) does not affect but guarantees the distinguishability between the simulation
and the real execution.

11

– Phase 2: Almost the same as Phase 1, but with the restrictions in Uni-PRE-CCA game.

The keys responses in Game G3 are indistinguishable from those in Game G2. The decryption oracle and
re-encryption oracle are also indistinguishable from those in Game G2, except that the challenger cannot always
answer them when A = svk∗. On the one hand, before the challenge ciphertext is given, the adversary could query
with a ciphertext where A = svk∗ with probability qr+d · δ. On the other hand, after the challenge is given, the
adversary could query with a well-formed ciphertext where A = svk∗ and yet the ciphertext is not the challenge
ciphertext is εSIG. Note that B = gr, E = SKE.Enc(H(e(g, g)r),m) uniquely fix m. If A = svk∗ then the ciphertext
must not be identical to the challenge ciphertext. If the ciphertext is well-formed, then S is a valid forgery against
SIG.

As a result, we have
|Pr[E3]− Pr[E2]| ≤ εSIG + qr+d · δ (4)

Game G4. In this game, we modify Challenge Phase.

– Challenge:

• the first-level challenge ciphertext : the challenger first runs PRE.Enc(pki,mb) (pki 6= pk∗) to get (A,B, C,
D, E, S), and queriesOrk with (pki, pk∗) to get re-encryption key. Then the challenger uses the re-encryption
key to get B′, and computes

A∗ = svk∗, B∗ = (ga2·b)x∗ = (pk∗)b,

C∗ = (ga2·b)α2 = ((gα1)A∗ · ga2·α2−α1·A∗)b = (gA∗
2 · g3)b = F (A∗)b,

D∗ = (ga2·b)w = hb, v∗ = Q, k∗ = H(v∗),

E∗ = SKE.Enc(k∗, B′||pk
(1)
i ||A||B||C||D||E||S),

S∗ = SIG.S(ssk∗, (B∗, C∗, D∗, E∗)),

• the second-level challenge ciphertext :

A∗ = svk∗, B∗ = (ga2·b)x∗ = (pk∗)b,

C∗ = (ga2·b)α2 = ((gα1)A∗ · ga2·α2−α1·A∗)b = (gA∗
2 · g3)b = F (A∗)b,

D∗ = (ga2·b)w = hb, v∗ = Q, k∗ = H(v∗),

E∗ = SKE.Enc(k∗,mb), S∗ = SIG.S(ssk∗, (B∗, C∗, D∗, E∗)),

where x∗ is in the same item with pk∗ in the table TK . the challenger returns K∗ = (A∗, B∗, C∗, D∗, E∗, S∗)
to A.

It is easy to see that when the challenger receives an e3-QDBDH instance (for the first-level challenge ciphertext)
and a 3-QDBDH instance (for the second-level challenge ciphertext) as input, its challenge ciphertext is a perfectly
distributed, proper encryption of message mb. Hence, we have

|Pr[E4]− Pr[E3]| ≤
{

εe3-QDBDH, first-level;
ε3-QDBDH, second-level. (5)

Game G5. In this game, we continue to modify the challenge phase, such that k∗ is chosen randomly from {0, 1}k1 .
Since Q is uniformly distributed, H(v∗) is uniformly distributed over {0, 1}k1 . Hence, we have

Pr[E5] = Pr[E4] (6)

In this game,

– the second-level ciphertext security : only E∗ = SKE.Enc(k∗,mb) uniquely fixes mb no matter in the original
challenge ciphertext or the re-encrypted ciphertexts of the challenge ciphertext.

12

– the first-level ciphertext security : only B′, E uniquely fixes mb no matter in the challenge ciphertext, and E∗

uniquely fixes B′, E no matter in the challenge ciphertext.

Hence, we have that
Pr[E5] = εCCASKE + 1/2 (7)

Combining the equations (1)—(7), we get the result as required. ¥

As mentioned before, the IE-CCA security (the first-level ciphertext security) implies the CR-CCA security,
however, we still give the following theorem of CR-CCA security for the completeness.

Theorem 2. Our proposal is Uni-PRE-CR secure in the standard model under the EDL assumption in G. In
particular, we have

AdvCR-A
PRE (k) ≤ εEDL,

where εEDL is the probability that the adversary solves the EDL problem in G.

Proof. Assume that there is an adversary A that can break the collusion resistance of our proposal, then we can
build an algorithm B that solves the EDL problem by using A. On input (g, g1/a, ga), B aims to output a. At first,
B set g′ = gu, where u is a random number from Zq.

– Find:
• Opk: B chooses random numbers xi from Zq,

∗ if it is a corrupted public key, set pki = gxi .
∗ if it is an uncorrupted public key, set pki = (ga)xi .

At last, B records (pki, xi) into the table Tk.
• Osk: On input pki by the adversary, if it is a corrupted public key, B searches tuple (pki, xi) in the table

Tk, and returns the corresponding xi to the adversary; otherwise, B outputs ⊥.
• Ork: On input (pki, pkj), where pki and pkj are both from Opk, B first searches the tuples corresponding

to pki and pkj in the table Tk, and gets the values of xi and xj .
∗ If pki and pkj are both corrupted or both uncorrupted, B computes rki,j = gxj/xi .
∗ If pki is corrupted, and pkj is uncorrupted, B computes rki,j = (ga)xj/xi .
∗ If pki is uncorrupted, and pkj is corrupted, B computes rki,j = (g1/a)xj/xi .

• Odec: On input (pki,K), the challenger checks whether pki exists in table TK , if not, the challenger outputs
⊥. Otherwise, the challenger does the following performances.
∗ If pki is corrupted, the challenger responds A with PRE.Dec(xi,K).
∗ If pki is uncorrupted, the challenger parses K,

Case K = (A,B, C, D, E, S): If Check(K, pki) = 0, the challenger outputs ⊥ and terminates; other-
wise, the challenger computes e(B, g1/a)1/xi = e(g, g)r, and then uses e(g, g)r to get m as the real
execution.

Case K = (Ā, B̄, C̄, D̄, Ē, S̄): If Check(K, pki) = 0, the challenger outputs ⊥ and terminates; other-
wise, the challenger outputs ⊥ and terminates; otherwise, the challenger computes e(B, g1/a)u/xi =
e(g, g′)r̄, and then uses e(g, g′)r̄ to get B′||rk(2)

X,i||A||B||C||D||E||S (may be ⊥). the challenger

searches pkX = rk
(2)
X,i in TK , and callsOrk with (pkX , pki) to get the corresponding re-encryption key

rkX,i, and checks e(B, rkX,i)
?= B′. If it holds, the challenger callsOdec with (pkX , (A,B, C, D, E, S))

to get the message m and outputs it; otherwise, the challenger outputs ⊥.
Note that in the real execution, according to the correctness of SKE, iff B′ = e(B, rk

(1)
X,i), PRE.Dec

outputs a message m not ⊥ when the input is a re-encrypted ciphertext. Hence, the above check
process (e(B, rk

(1)
X,i)

?= B′) does not affect but guarantees the distinguishability between the simulation
and the real execution.

– Output: The adversary outputs ski corresponding to an uncorrupted public key pki, and B outputs ski/xi as
the solution of the 3-EDL problem, where xi is the corresponding value to pki in the table TK .

The above simulation always succeeds, hence we have

AdvCR-CCA-A
PRE (k) ≤ εEDL.

ut

13

4 Conclusions

By using the techniques of Kurosawa-Desmedt and Canetti-Hohenberger, we propose a new single-use unidirectional
proxy re-encryption scheme, which is CCA-secure and collusion resistant in the standard model.

References

1. http://tdt.sjtu.edu.cn/~jshao/prcbib.htm.
2. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved Proxy Re-encryption Schemes with Applications to Secure

Distributed Storage. In Internet Society (ISOC): NDSS 2005, pages 29–43, 2005.
3. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved Proxy Re-encryption Schemes with Applications to Secure

Distributed Storage. ACM Transactions on Information and System Security (TISSEC), 9(1):1–30, 2006.
4. M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptography. In EUROCRYPT 1998,

volume 1403 of LNCS, pages 127–144, 1998.
5. D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In CRYPTO 2001, volume 2139 of LNCS,

pages 231–229, 2001.
6. D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. SIAM Journal of Computing, 32(3):586–615,

2003.
7. E. Bresson, D. Catalano, and D. Pointcheval. A simple public-key cryptosystem with a double trapdoor decryption

mechanism and its applications. In ASIACRYPT 2003, volume 2894 of LNCS, pages 37–54, 2003.
8. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. In EUROCRYPT 2004,

volume 3027 of LNCS, pages 207–222, 2004.
9. R. Canetti and S. Hohenberger. Chosen-Ciphertext Secure Proxy Re-Encryption. In ACM CCS 2007, 2007. Full version:

Cryptology ePrint Archieve: Report 2007/171.
10. Y-P. Chiu, C-L. Lei, and C-Y. Huang. Secure multicast using proxy encryption. In ICICS 2005, volume 3783 of LNCS,

pages 280–290, 2005.
11. R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against adaptive chosen

ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003.
12. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on

Information Theory, 31(4):469–472, 1985.
13. E. Fujisaki and T. Okamoto. How to enhance the security of public-key encryption at minimum cost. In PKC 1999,

volume 1560 of LNCS, pages 53–68, 1999.
14. M. Green and G. Ateniese. Identity-Based Proxy Re-encryption. In ACNS 2007, volume 4521 of LNCS, pages 288–306,

2007. Full version: Cryptology ePrint Archieve: Report 2006/473.
15. T.S. Heydt-Benjamin, H. Chae, B. Defend, and K. Fu. Privacy for public transportation. In PET 2006, volume 4258 of

LNCS, pages 1–19, 2005.
16. A. Ivan and Y. Dodis. Proxy Cryptography Revisited. In Internet Society (ISOC): NDSS 2003, 2003.
17. M. Jakobsson. On Quorum Controlled Asymmetric Proxy Re-encryption. In PKC 1999, volume 1560 of LNCS, pages

112–121, 1999.
18. H. Khurana and H-S. Hahm. Certified mailing lists. In ASIACCS 2006, pages 46–58, 2006.
19. H. Khurana and R. Koleva. Scalable security and accounting services for content-based publish subscribe systems.

International Journal of E-Business Research, 2(3), 2006.
20. H. Khurana, A. Slagell, and R. Bonilla. Sels: A secure e-mail list service. In ACM SAC 2005, pages 306–313, 2005.
21. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. In CRYPTO 2004, volume 3152 of LNCS,

pages 426–442, 2004.
22. B. Libert and D. Vergnaud. Unidirectional Chosen-Ciphertext Secure Proxy Re-Encryption. In PKC 2008, volume 4939

of LNCS, pages 360–379, 2008.
23. J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings. In PKC 2009, volume 5443 of LNCS, pages

357–376, 2009.
24. J. Shao, Z. Cao, and P. Liu. Sccr: a generic approach to simultaneously achieve cca security and collusion-resistance in

proxy re-encryption. SECURITY AND COMMUNICATION NETWORKS, 2009.
25. G. Taban, A.A. Cárdenas, and V.D. Gligor. Towards a secure and interoperable drm architecture. In ACM DRM 2006,

pages 69–78, 2006.
26. A. Talmy and O. Dobzinski. Abuse freedom in access control schemes. In AINA 2006, pages 77–86, 2006.
27. Q. Tang. Type-based proxy re-encryption and its construction. In INDOCRYPT 2008, volume 5365 of LNCS, pages

130–144, 2008.
28. J. Weng, S.S.M. Chow, Y. Yang, and R.H. Deng. Efficient Unidirectional Proxy Re-Encryption.

http://eprint.iacr.org/2009/189.

14

29. J. Weng, R. H. Deng, C. Chu, X. Ding, and J. Lai. Conditional proxy re-encryption secure against chosen-ciphertext
attack. In ACM ASIACCS 2009, pages 322–332, 2009.

30. L. Zhou, M.A. Marsh, F.B. Schneider, and A. Redz. Distributed Blinding for Distributed ElGamal Re-encryption. In
Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICDCS’05), pages 824–834,
2005.

15

