
On zero practical significance of “Key recovery attack on

full GOST block cipher with zero time and memory”

Vladimir Rudskoy†

†Lomonosov Moscow State University,

Faculty of Computational Mathematics and Cybernetics.

rudskoy vladimir@mail.ru

Abstract

In this paper we show that the related key boomerang attack by E. Fleischmann et

al. from the paper mentioned in the title does not allow to recover the master key of the

GOST block cipher with complexity less than the complexity of the exhaustive search.

Next we present modified attacks. Finally we argue that these attacks and the related

key approach itself are of extremely limited practical applications and do not represent

a fundamental obstacle to practical usage of the block ciphers such as GOST, AES and

Kasumi.

1 Introduction

Recently there was a host of papers devoted to methods of cryptanalysis,

which make use of related keys. In particular, related-key attacks were devel-

oped for block ciphers GOST [3], AES [1] and Kasumi [2]. These methods have

complexity essentially smaller than the exhaustive search. At the same time,

they use very strong assumption of possibilities of the attacker. For practical im-

plementations of the ciphers one can consider such an assumption as extremely

improbable.

In [3] the related-key key recovery attack on full GOST block cipher was

2

presented. The authors claim their algorithm allows to recover 8 bits of a master

key of the cipher, other bits are recovered by the exhaustive search.

In the present work we investigate in detail the attack from [3]. We show that

this attack does not allow to recover the master key of the key of the GOST

block cipher with complexity less than the complexity of the exhaustive search.

More precisely, we prove it is equivalent to the exhaustive search. Moreover, in

[3] the fixed set of S-boxes is considered, and the attack is applicable not to

all sets of S-boxes. At the same time, we show how to change the algorithm

from [3] in such a way that it will recover 31 bits of a master key regardless

of a choice of S-boxes. Then the generalised algorithm will be presented, which

allows to recover more bits of a key, and in certain cases fully recover master

key, with complexity essentially smaller than the exhaustive search, provided

that there are enough related keys.

2 Notations and the description of the GOST block ci-

pher

In this paper the following notations are used. For a natural t a set of bit

words of length t is denoted by Vt. ⊕ denotes bitwise XOR of words. Bits are

numbered 0 through t− 1 from right to left: X = (xt−1, ..., x0) ∈ Vt, xi ∈ {0, 1},
i = 0, t− 1. High order bits have greater numbers.

Let X[i ∼ j] denote a word consisting of bits of X in positions from i-th to

j-th.

Each word in V32 corresponds to a natural number

X = (x31, ..., x0) 7→
31∑
i=0

xi2
i.

� denotes addition modulo 232 of two words considered as natural numbers.

L : V32 7→ V32 denotes bit rotation of x ∈ V32 by 11 positions to the left.

L(x) = L((x31, ..., x0)) = (x20, x19, ..., x0, x31, ..., x22, x21).

3

Nonlinear transformation Π : V32 7→ V32 consists of 8 parallel 4-bit wide

bijective S-boxes Π = (π0, ...π7), πk : V4 7→ V4, k = 0, 7. The first S-box (π0) is

applied to the most significant bits, the last S-box (π7) is applied to the least

significant bits:

Π(x) = (π0(x31, x30, x29, x28), ..., π7(x3, x2, x1, x0))

In GOST 28147-89 S-boxes are not specified and may be used as a long-term

key.

GOST is a block 32-round Feistel cipher. It uses a 64-bit information block

and a 256-bit master key. Plaintext block is divided into 32-bit left and right

parts P0 = L0||R0. The corresponding ciphertext P32 = L32||R32. Round func-

tion is computed according to Li = Ri−1

Ri = Li−1 ⊕ L(Π(Ri−1 � ki))

for i = 1, 31 and  R32 = R31

L32 = L31 ⊕ L(Π(R31 � k32)),

where ki denotes the i-th round subkey. Master key K is divided into 32-bit

subkeys K = (K1, ..., K8). The key schedule produces round keys as follows: ki = K(i−1) mod 8+1, i ∈ 1, 24;

ki = K32−i+1, i ∈ 25, 32.

for encryption and  ki = Ki, i ∈ 1, 8;

ki = K(32−i) mod 8+1, i ∈ 9, 32.

for decryption.

E(P0, K) denotes an encryption of P0 under key K, E−1(P32, K) denotes a

decryption.

4

3 The related-key boomerang attack

The boomerang attack was first published in [4]. The attack is an extension to

differential cryptanalysis that uses adaptive chosen plaintexts and ciphertexts.

To describe this attack we need some definitions.

Let F : Vn → Vn denote some non-linear transformation of Vn.

Definition 1 α → β, α, β ∈ Vn is called a differential for F if there exist

an input pair (P, P ′) with difference α: P⊕P ′ = α, such that β is the output

difference,i.e. F (P)⊕F (P ′) = β. The probability pFα,β is related to a differential,

pFα,β = P{F (x)⊕F (x⊕α) = β}, assuming x being randomly and independently

distributed over Vn.

Definition 2 A pair (P, P ′ = P⊕α) is called a correct pair for the differential

α→ β, if it satisfies F (P)⊕F (P ′) = β and is called a wrong pair otherwise.

We will also need the following proposition [4].

Proposition 3 Let F be a bijective transformation, and let α→ β be a differ-

ential for F with probability p. Then, for the inverse transformation F−1 the

differential β → α also has probability p.

Consider a block cipher E(X,K) = Y, where X ∈ Vn is a plain text, Y ∈ Vn
is a ciphertext, K ∈ Vk is a secret key. With fixed key, the encryption function

is a bijective transformation over Vn, therefore statement 3 holds for it.

Suppose E may be represented as a composition of two subciphers E0 and

E1, E = E0 ◦ E1.

Let α → β be a differential for E0 with probability p and γ → δ be a

differential for E1 with probability q. According to statment 3, the backward

differentials β → α for E−1
0 and γ → δ for E−1

1 have the same probabilities p

and q respectively.

The boomerang attack consists of two steps: the distinguisher step and the

key recovery step. During the distinguisher step, an attacker tries to find correct

plain text pairs for the differentials E0 and E1. These correct pairs are used

5

Figure 1: The boomerang attack

afterwards in key recovery step, where one tries to exploit known relations

between input and output differences and values of found correct pairs in order

to recover some key bits.

The boomerang distinguisher step works as follows (see fig. 1).

• Choose P a
0 and P b

0 = P a
0 ⊕ α.

• Encrypt the texts: P a
n = E(P a

0 , K) and P b
n = E(P b

0 , K).

• Compute the new ciphertexts P c
n = P a

n ⊕ δ, P d
n = P b

n ⊕ δ.

• Decrypt the new ciphertexts P c
0 = E−1(P c

n, K), P d
0 = E−1(P d

n , K).

• If P c
0 ⊕ P d

0 = α store the quartet (P a
0 , P

b
0 , P

c
0 , P

d
0) in set Θ. We will call

these “boomerang quartets”.

Here and in the rest of the paper in notation P i
j the lower index denotes

an intermediate output after j-th round, 0 denotes plaintext and n denotes

6

ciphertext.

The boomerang key recovery step works as follows. For each found

boomerang quartet we suppose that

• (P a
0 , P

b
0) is a correct pair for the differential α→ β,

• (P c
0 , P

d
0) is a correct pair for the differential α→ β,

• (P a
n , P

c
n) is a correct pair for the differential δ → γ,

• (P b
n, P

d
n) is a correct pair for the differential δ → γ,

and then exploit these assumptions to recover some bits of the master key.

Note that one (or more) pair may not be correct but the quartet still satisfies

the condition P c
0 ⊕ P d

0 = α. We will call this a false boomerang quartet. Note

also that the probability of finding a correct quartet is (pq)2 and the probability

Pfalse of finding a false quartet can be estimated considering the encryption

algorithm as a random substitution. With well-chosen differentials for E0 and

E1 one can obtain the probability of finding a correct quartet being much greater

than of finding a false one.

In the related-key boomerang attack we suppose that the attacker can en-

crypt and decrypt each P i
j , i ∈ {a, b, c, d} under the corresponding key K i,

where all the keys K i are unknown to the attacker and related with fixed differ-

ences, i.e. K i⊕Kj = ∆K i,j where the differences ∆K i,j are set by the attacker

(or are known).

Formally, in order to mount a boomerang attack under such assumptions we

have to consider the bijective transformation F ∗ : Vn × Vk 7→ Vn × Vk, defined

as F ∗(X,K) = (E(X,K), K). Here and further, saying “related-key differential

α → β under related keys K1 and K2 = K1 ⊕∆K” we mean the differential

(α,∆K)→ (β,∆K) for F ∗. Fig. 2 represents the related-key boomerang attack.

7

Figure 2: The related-key boomerang attack

4 Known results on related-key boomerang attack on

the GOST block cipher.

A related-key boomerang attack on the full GOST block cipher was presented

in [3]. Here we describe this attack.

GOST block cipher is treated as a composition of two subciphers E0 and

E1, E = E0 ◦ E1, where E0 represents the first 24 rounds and E1 — the last 8

rounds.

Consider four related keys K i ∈ V256, K
i = (ki1, . . . , k

i
8), k

i
j ∈ V32, i ∈

{a, b, c, d}, j ∈ 1, 8, such that

∆K∗ = Ka ⊕Kb = Kc ⊕Kd = (e31, 0, e31, 0, e31, 0, e31, 0),

∆K ′ = Ka ⊕Kc = Kb ⊕Kd = (e31, 0, 0, 0, 0, 0, 0, 0).

Here ei ∈ V32 denotes a word with all bits excepting i-th are zeroes.

Consider a related-key differential α → β = (0, e31) → (0, e31) for E0 and

a related-key differential γ → δ = (0, 0) → (e7, 0) for E1. Now we can mount

8

the related-key boomerang distinguisher for GOST according to the description

given above:

• Choose a plaintext pair P a
0 and P b

0 = P a
0 ⊕ α.

• Encrypt P a
0 and P b

0 under related keys Ka and Kb respectively and obtain

ciphertexts P a
32 = E(P a

0 , K
a) and P b

32 = E(P b
0 , K

b).

• Compute new ciphertexts P c
32 = P a

32 ⊕ δ, P d
32 = P b

32 ⊕ δ

• Decrypt P c
32 and P d

32 under respective related keys Kc and Kd.

• Obtain plaintexts P c
0 = E−1(P c

32, K
c), P d

0 = E−1(P d
32, K

d).

• Check if P c
0 ⊕P d

0 = α. If true, (P a
0 , P

b
0 , P

c
0 , P

d
0) is said to form a related-key

boomerang quartet.

For each related-key boomerang quartet one can make an assumption:

Assumption 4

• (P a
0 , P

b
0) is a correct pair for the related-key differential α→ β of E0.

• (P c
0 , P

d
0) is a correct pair for the related-key differential α→ β of E0.

• (P a
32, P

c
32) is a correct pair for the related-key differential δ → γ of E−1

1

• (P b
32, P

d
32) is a correct pair for the related-key differential δ → γ of E−1

1

Just as for the boomerang attack, we can find a false related-key boomerang

quartet, which passes the distinguisher filtering condition, but the assumptions

above are false.

Note that the paper [3] considers only one set of S-boxes, a so-called

“set of Central Bank of Russian Federation”, which is equal to the set of S-

boxes from the test case for Russian standard for cryptographic hash function

(GOST R 34.11-94). For other sets of S-boxes this attack cannot be applied

directly (in some cases). Later we will show that the attack may be applied to

any set with a modification depending on S-boxes.

Now we present an algorithm from [3].

9

Algorithm 1

1. Choose 25.5 plaintext pairs P a
0 P b

0 = P a
0 ⊕ (0, e31).

2. With a chosen plaintext attack scenario, encrypt the plaintexts under re-

lated keys and obtain the ciphertexts P a
32 = E(P a

0 , K
a), P b

32 = E(P b
0 , K

b).

3. Compute the new ciphertexts P c
32 = P a

32 ⊕ (e7, 0), P d
32 = P b

32 ⊕ (e7, 0)

4. With a chosen ciphertext attack scenario, decrypt the new ciphertext under

respective related keys P c
0 = E−1(P c

32, K
c), P d

0 = E−1(P d
32, K

d)

5. If P c
0 ⊕ P d

0 = (0, e31). then store (P a
0 , P

b
0 , P

c
0 , P

d
0) in Θ.

6. Guess subkey ka1 at the bit positions 12 to 19. Set the corresponding related

subkeys kc1 = ka1 ⊕ e31, kb1 = ka1, kd1 = kb1 ⊕ e31. Initialize a counter for each

bit combination with zero.

(a) For each quartet in Θ partially decrypt P
a
31, P

b
31, P

c
31, P

d
31.

(b) Check if P
a
31 ⊕ P

c
31 = (0, 0) and P

b
31 ⊕ P

d
31 = (0, 0).

(c) If true increase the counter for the used key bits by 1.

7. Record the round keys ka1 , k
b
1, k

c
1, k

d
1 with the largest counter value.

8. For a suggested ka1 do the exhaustive search for the remaining 256−8 = 248.

If the true 256-bit master key is suggested, output the master key. Otherwise

restart the exhaustive search with another ka1.

5 Analysis of the Attack

First of all we have to determine the probabilities p and q of the related key

differentials. Now we will show that the probability of the differential α→ β =

(0, e31)→ (0, e31) for E0 is 1.

10

Indeed, consider the first two rounds of GOST when encrypting a pair P a
0 =

(La0, R
a
0) and P b

0 = (Lb0, R
b
0), P

a
0 ⊕ P b

0 = (0, e31) under related keys: ∆L1 = ∆R0 = e31

∆R1 = LΠ(Ra
0 � ka1)⊕ LΠ((Ra

0 ⊕ e31) � (ka1 ⊕ e31)) = 0 ∆L2 = ∆R1 = 0

∆R2 = ∆L1 ⊕ LΠ(Ra
1 � ka2)⊕ LΠ(Ra

1 � ka2) = e31

Figure 3: Related-key differential for E0

Fig. 3 explains the related-key differential for E0. Here rectangles represent

corresponding data blocks step-by-step. Filled regions mark bit positions with

non-zero differences.

Thus, the probability of the related-key differential (0, e31)→ (0, e31) for two

rounds of GOST is 1. Obviously, the probability of this differential remains the

same for 8 rounds and consequently for 24 rounds.

Now we move on to related-key differential (e7, 0)→ (0, 0) for E−1
1 . In [3] it

is stated that the probability of this differential is 2−2 which is not true to the

fact.

11

In [3] the mentioned differential is supposed to take place in the first round

of E−1
1 passing the zero output difference through the remaining 7 rounds. With

a correct input pair we have

La32 ⊕ LΠ(Ra
32 � ka1) = Lc32 ⊕ LΠ(Rc

32 � kc1).

Taking into account that Lc32 = La32 ⊕ e7, R
a
32 = Rc

32, k
c
1 = ka1 ⊕ e31 this is

equivalent to

LΠ(Ra
32 � ka1)⊕ LΠ(Ra

32 � (ka1 ⊕ e31)) = La32 ⊕ La32 = e7,

or, just the same

Π(Ra
32 � ka1)⊕ Π((Ra

32 � ka1)⊕ e31) = e28.

Let π : V4 → V4 denotes the S-box on high order bits, X denotes high or-

der 4-bit subword of X, Using this notation the last equation is equivalent

to π(Ra
32 � ka1) ⊕ π((Ra

32 � ka1) ⊕ e3) = e0, so, in other words, the differential

e3 → e0 for π is considered. Hence the probability of the related-key differential

(e7, 0)→ (0, 0) for E−1
1 equals the probability of the differential e3 → e0 for the

S-box π.

Figure 4: Related-key differential for E−11

Fig. 4 explains the related-key differential for E−1
1 . As before, rectangles

represent corresponding data blocks step-by-step. Regions filled black mark bit

12

positions with non-zero differences, and regions filled grey mark bit positions

with possibly non-zero differences.

First we note that, in contradiction to [3], the probability of the differential

for the S-box is not 2−2 but 2−3.

Secondly, the attack described above depends on S-boxes. In cases when

different S-box set is used, the probability may vary. Moreover, it can be equal

to zero or one, and in this case the attack is not applicable.

In the former case there aren’t any true boomerang quartets. For some S-

boxes this problem can be solved. In order to do this, we have to explore the

probabilities of differentials of a sort e3 → ω and choose one with non-zero (and

not equal to one) probability among them. After that we should consider the

related-key differential (L[ω, 0, ..., 0], 0)→ (0, 0) for E−1
1 .

The latter case is the worst one: the input difference e3 always produces

the same output difference and hence all key bit combinations will pass the

filtering conditions. Therefore the attack will be equivalent to exhaustive key

search. However such S-boxes have bad cryptographic properties, making the

whole cipher vulnerable to differential and linear attacks and hence such S-boxes

are unlikely to be used in practice.

In the rest of the paper we consider the same S-box set as in [3] for simplicity

sake. For other S-box sets the attack can be easily adjusted (if possible), using

the previous discussion, and will have the same complexity.

So, the probability of finding a boomerang quartet is (pq)2 = (1 ·2−3)2 = 2−6,

the probability of finding a false quartet is supposed to be severely less.

Now we move to the analysis of the algorithm.

If the term “partial description” (the step 6(a)) means computing several

bits (where possible), then the step 7 does not reject any false bit combination.

Now we compute value of P i
31 in bit positions where it is possible ,i.e. where

we possess all the necessary information. Obviously, Li31 = Ri
32. Next, we are

able to compute (ki1�R
i
32)[12 ∼ 19], discarding possibly non-zero incoming carry

bit, and consequently compute Ri
31[23 ∼ 30]. It is easy to check that ki1[12 ∼

13

19] = kj1[12 ∼ 19] and Ri
32[12 ∼ 19] = Rj

32[12 ∼ 19] for all i, j ∈ {a, b, c, d}.
Hence, the condition of the step 6(b) holds for all guessed bit combinations.

So in step 7 we choose all bit combinations and in step 8 we find the master

key by full 256 bit exhaustive search. Fig. 5 explains the discussion above. As

Figure 5: Partial decryption

before, regions filled black mark bit positions with non-zero differences and

regions filled grey mark bit positions with possibly non-zero differences. Dash

patterned regions mark bits which values we are able to compute by partial

encryption.

6 Subkey recovery related-key boomerang attack on the

GOST block cipher

In the previous section we have shown that the “attack” presented by [3] in

fact is equivalent to the exhaustive search. Still, with proper modifications the

introduced related-key differentials are worth being concerned. In this section

we introduce a related-key boomerang attack on GOST, which exploits these

related-key differentials and recovers up to 31 bits of a master key.

Let ki1 denote a true subkey and k̂i1 denote a false subkey. Consider false

14

subkey filtering conditions: P a
31 ⊕ P c

31

?
=(0, 0) and P b

31 ⊕ P d
31

?
=(0, 0). Obviously,

both equations hold for the true subkey (simply by a boomerang quartet con-

struction). A non-zero difference can appear only if two inputs of the high order

S-box form a wrong pair for the differential e3 → e0, i.e.

π((P a
32 � ka1)[28 ∼ 31])⊕ π((P a

32 � ka1)[28 ∼ 31]⊕ e3) = e0, (1)

but

π((P a
32 � k̂a1)[28 ∼ 31])⊕ π((P a

32 � k̂a1)[28 ∼ 31]⊕ e3) 6= e0. (2)

In other words, the last condition means that the high order 4-bit subword

of the sum of the ciphertext and the true key differs from that of the sum of the

ciphertext and the false key. It is possible if 4 high order bits of the true and

false keys differ and also when the carry bits upcoming to the 28-th position of

the sum differ for the true and false keys. Hence, the partial encryption must

be performed on high order bits.

Note, that the keys k and k⊕e31 cannot be distinguished by this condition.

The next algorithm, which is actually a modification of algorithm 1, recovers

3 bits of ka1 .

Algorithm 2

1. Choose 210 plaintext pairs P a
0 and P b

0 = P a
0 ⊕ (0, e31).

2. Encrypt under related keys and obtain the ciphertexts P a
32 = E(P a

0 , K
a),

P b
32 = E(P b

0 , K
b).

3. Compute the new ciphertexts P c
32 = P a

32 ⊕ (e7, 0), P d
32 = P b

32 ⊕ (e7, 0)

4. Decrypt under related keys P c
0 = E−1(P c

32, K
c), P d

0 = E−1(P d
32, K

d)

5. If P c
0 ⊕ P d

0 = (0, e31) store the quartet (P a
0 , P

b
0 , P

c
0 , P

d
0) in Θ.

6. Guess subkey ka1 at positions 28 to 31. For each guessed bit combination

initialize a counter with zero. Compute related subkeys kc1 = ka1 ⊕ e31, kb1 =

ka1, kd1 = kb1 ⊕ e31 at the same positions

15

(a) For each quartet in Θ compute P
a
31, P

b
31, P

c
31, P

d
31 at corresponding bit

positions

(b) Check if P
a
31 ⊕ P

c
31

?
=(0, 0) and P

b
31 ⊕ P

d
31

?
=(0, 0).

(c) If true, increase the counter by 1.

7. Record bit combinations ka1 with the highest counter.

Remark 5 For each recorded ka1 recover the remaining 256 − 4 = 252 bits by

the exhaustive search or using any other attack. If the right key is found then

stop. Otherwise choose another ka1 and repeat the exhaustive search or attack.

Remark 6 The algorithm discards all but two bit combinations, since the sub-

keys k and k⊕e31 are indistinguishable by conditions (1) and (2).

Remark 7 The number of plaintext pairs to be chosen (210) is dictated by the

tendency to provide the high rate of success. See section 8 for details.

The attack can be improved to recover 31 bits of ka1 . Indeed, suppose that

for some m ≤ 27 we have ki1[m+ 1 ∼ 31] = k̂i1[m+ 1 ∼ 31] and ki1[m] 6= k̂i1[m].

If there exists such a related-key boomerang quartet that the plaintext P a
32 =

(La32, R
a
32,m) with an arbitrary La32 and

Ra
32,m[j] =


{0, 1}R, j = 28, 31;

ka1 [j]⊕1, j = m+ 1, 27;

1, j = m;

0, j = 0,m− 1;

then 4 high order bits of the sum of ka1 and k̂a1 with this plaintext are differ-

ent. Here {0, 1}R denotes a random element of {0, 1}, so there are 24 possible

different values of Ra
32,m.

It follows from the previous statement that we have to, informally speaking,

“throw a boomerang” backwards, starting not with chosen plaintexts, but with

chosen ciphertexts (see fig. 6).

The next algorithm recovers 31 key bits of GOST.

16

Figure 6: The inverse related-key boomerang attack.

Algorithm 3

1. Recover ka1 [28 ∼ 30], using algorithm 2. Set ka1 [31] = 0.

2. Initialize a counter ξ with 27.

3. Choose 210 ciphertext pairs P a
32 P c

32 = P a
32 ⊕ (e7, 0), with all 24 possible

values of Ra
32 of a kind Ra

32,ξ, defined above, and La32 takes 26 different

arbitrary values.

4. Decrypt under related keys to obtain P a
0 = E−1(P a

32, K
a), P c

0 =

E−1(P c
32, K

c).

5. Compute the new plaintexts P b
0 = P a

0 ⊕ (0, e31), P d
0 = P c

0 ⊕ (0, e31).

6. Encrypt under related keys to obtain P b
32 = E(P b

0 , K
b), P d

32 = E(P d
0 , K

d).

7. Check if P b
32 ⊕ P d

32

?
= (e7, 0). If true, store the quartet (P a

32, P
b
32, P

c
32, P

d
32) in

Θ.

17

8. Consider two subkeys k
a,(0)
1 , k

a,(1)
1

k
a,(l)
1 [j] =


ka1 [j], j = ξ + 1, 31;

l, j = ξ;

0, j = 0, ξ − 1;

.

9. Compute the related keys k
c,(l)
1 = k

a,(l)
1 ⊕ e31.

10. For each subkey k
a,(l)
1 initialize a counter with zero and

(a) For each quartet in Θ decrypt P a
31, P

b
31.

(b) If P a
31 ⊕ P c

31

?
= (0, 0) increase the counter by 1.

11. Choose one of the k
a,(0)
1 , k

a,(1)
1 with the largest counter value.

12. Set ka1 [ξ] = k
a,(l)
1 [ξ], for the chosen l.

13. If ξ = 0, then the subkey is recovered. Otherwise decrease counter ξ by 1

and go to step 3.

Remark 8 With found ka1 recover the remaining 256 − 32 = 224 bits by the

exhaustive search or any other attack. If the right key is recovered output the

master key. Otherwise set ka1 = ka1 ⊕ e31 and recover the remaining bits.

Remark 9 As before, the number of plaintext pairs to be chosen (210) is dic-

tated by the tendency to provide the high rate of success. See section 8 for

details.

7 Generalization of the attack

Now we present a generalized attack. Once the subkey ka1 is recovered, GOST

is reduced to 30 rounds, since we are able to perform transformations of the first

and the last round using the recovered subkey. In order to recover subsequent

subkeys we will use different quartet of related keys, namely, to recover kat+1

assuming the subkeys ka1 , ..., k
a
t are known, we use the following quartet:

∆K∗ = Ka ⊕Kb = Kc ⊕Kd = (e31, 0, e31, 0, e31, 0, e31, 0),

18

∆K ′ = Ka ⊕Kc = Kb ⊕Kd = (0, ..., e31
t+1
, 0, ..., 0) (3)

(In (3) all the 32-bit subwords of ∆K ′ are zero except (t + 1)-th that is equal

to e31).

Using these subkeys we set up attacks similar to the algorithms 2 and 3:

Algorithm 4

1. Choose 210 plaintext pairs P a
0 and P b

0 = P a
0 ⊕ (0, e31).

2. Encrypt under related keys and obtain the ciphertexts P a
32 = E(P a

0 , K
a),

P b
32 = E(P b

0 , K
b).

3. With known kji , j ∈ {a, b, c, d}, i ∈ 1, t compute P a
32−t, P

b
32−t

4. Compute the new intermediate texts P c
32−t = P a

32−t⊕(e7, 0), P d
32−t = P b

32−t⊕
(e7, 0)

5. With known kji , j ∈ {a, b, c, d}, i ∈ 1, t compute P c
32, P

d
32

6. Decrypt under related keys: P c
0 = E−1(P c

32, K
c), P d

0 = E−1(P d
32, K

d)

7. If P c
0 ⊕ P d

0 = (0, e31) store the quartet (P a
0 , P

b
0 , P

c
0 , P

d
0) in Θ.

8. Guess subkey kat+1 at positions 28 to 31. For each guessed bit combination

initialize a counter with zero. Compute related subkeys kct+1 = kat+1 ⊕ e31,

kbt+1 = kat+1, kdt+1 = kbt+1 ⊕ e31 at the same positions.

(a) For each quartet in Θ using kji , j ∈ {a, b, c, d}, i ∈ 1, t compute

P a
32−t, P

b
32−t

(b) Compute P
a
32−t−1, P

b
32−t−1, P

c
32−t−1, P

d
32−t−1 at corresponding positions

(c) Check if P
a
32−t−1 ⊕ P

c
32−t−1

?
=(0, 0) and P

b
32−t−1 ⊕ P

d
32−t−1

?
=(0, 0).

(d) If true, increase the counter by 1.

9. Record bit combinations kat+1 with the largest counter value.

19

Define Ra
32−t,m as

Ra
32−t,m[j] =


{0, 1}R, j = 28, 31;

kat+1[j]⊕1, j = m+ 1, 27;

1, j = m;

0, j = 0,m− 1;

Algorithm 5

1. Recover kat+1[28 ∼ 31] using algorithm 4. Set kat+1[31] = 0.

2. Initialize a counter ξ with 27.

3. Choose 210 intermediate text pairs P a
32−t P c

32−t = P a
32−t ⊕ (e7, 0), with all

24 possible values of Ra
32−t of a kind Ra

32−t,ξ, and La32−t takes 26 different

arbitrary values.

4. Using kji , j ∈ {a, b, c, d}, i ∈ 1, t compute P a
32, P

c
32

5. Decrypt under related keys to obtain P a
0 = E−1(P a

32, K
a), P c

0 =

E−1(P c
32, K

c).

6. Compute the new plaintexts P b
0 = P a

0 ⊕ (0, e31), P d
0 = P c

0 ⊕ (0, e31).

7. Encrypt under related keys to obtain P b
32 = E(P b

0 , K
b), P d

32 = E(P d
0 , K

d).

8. Using kji , j ∈ {a, b, c, d}, i ∈ 1, t compute P b
32−t, P

d
32−t

9. Check if P b
32−t ⊕ P d

32−t
?
= (e7, 0). If true, store (P a

32−t, P
b
32−t, P

c
32−t, P

d
32−t) in

Θ.

10. Consider two subkeys k
a,(0)
t+1 , k

a,(1)
t+1 :

k
a,(l)
t+1 [j] =


kat+1[j], j = ξ + 1, 31;

l, j = ξ;

0, j = 0, ξ − 1;

.

11. Compute the related subkeys k
c,(l)
t+1 = k

a,(l)
t+1 ⊕ e31.

20

12. For each key k
a,(l)
t+1 initialize a counter with zero and

(a) For each quartet in Θ using kji , j ∈ {a, b, c, d}, i ∈ 1, t compute

P a
32−t, P

b
32−t

(b) Compute P a
32−t−1, P b

32−t−1

(c) Check if P a
32−t−1 ⊕ P c

32−t−1

?
=(0, 0)

(d) If true, increase the counter by 1.

13. Choose one of the k
a,(0)
t+1 , k

a,(1)
t+1 with the highest counter.

14. Set kat+1[i] = k
a,(l)
t+1 [i], for the chosen l.

15. If ξ = 0, then output the subkey. Otherwise decrease counter ξ by 1 and go

to step 3.

There are two important observations regarding the generalized attacks.

The first one deals with the false quartets. Algorithms 2-5 find the correct

keys if, roughly speaking, the true quartets outnumber the false ones. Com-

puter simulations show that true quartets appear with probability of about

2−6, as predicted. At the same time, the number of false quartets increases as

the number of rounds reduces. Experiments show that differential trails for all

found false quartets follow the boomerang structure, with the same trails for

E0 (α→ β = (0, e31)→ (0, e31)), but different trails for E−1
1 .

As discussed above, the differential for E−1
1 used in true quartets splits into

1R characteristic (e7, 0)→ (0, 0) with probability 2−3 and (0, 0)→ (0, 0) char-

acteristic the for remaining rounds with probability 1 and therefore the overall

probability does not depend on the number of rounds in E−1
1 .

Differentials for E−1
1 used in false quartets can as well be split into 1R char-

acteristic (e7, 0)→ ξ and ξ → χ for remaining rounds with some nonzero ξ and

χ. Obviously, the diffusion of a nonzero difference ξ and hence the probability

of finding a false boomerang quartet strongly depends on the number of rounds

in E−1
1 . Experiments show that if E−1

1 is reduced to 3 (or more) rounds, then

21

algorithms 4 and 5 recover the subkey properly. Unfurtunately, further reduc-

tion dramatically increases the number of false quartets which in turn makes

the algorithms as “effective” as simple guessing.

The second observation is that algorithms 3 and 5 recover two possible subkey

values: kat+1 and kat+1⊕e31, assuming that kai , i ∈ 1, t are chosen correctly.

Hence, we can build a binary subkey tree of height 6 and width 26. Each node

at layer t corresponds to kat or kat⊕e31, where the value of kat is computed by

algorithm 3 or 5, assuming the keys kai , i ∈ 1, t− 1, corresponding to the nodes

in path from this node to the root, are determined correctly. Each path from a

leaf to the root of the constructed tree corresponds to a set of six subkeys, one

of which is the true set. Total number of such sets is 26. For each of the sets one

can bruteforce the two remaining subkeys or use other cryptanalytic attacks to

recover them.

8 Complexity and success rate of the presented attack

Here we explain our choice of data quantity and estimate time complexity

and success rate of the algorithms.

Claim the success rate of our attack being near 1, namely τ = 1− 10−4.

We say that the algorithm 2,3,4 or 5 executed successfully, if it output only

two possible bit combinations for algorithms 2 and 4 and only two possible

subkeys for algorithms 3 and 5.

Let n denote the number of chosen plain- or ciphertext pairs given on input.

We estimate the success rate of the algorithms 2 and 4 as

P1(n) =
(
1− (1− (pq)2)n

)
· (1− 2−n) =

(
1− (1− 2−6)n

)
· (1− 2−n).

The success rate of the algorithms 3 and 5 is estimated as follows:

P2(n) =
(
1− (1− (pq)2)n

)28
=
(
1− (1− 2−6)n

)28
.

The success rate of recovering one subkey is P1(n)P2(n), and success rate for

22

six subkeys is (P1(n)P2(n))6. One can check that given n = N = 210 implies

(P1(N)P2(N))6 > τ.

That is why we chose data quantity of N = 210 pairs of text for algorithms 2,

3, 4, 5.

Time complexity of algorithm 2 is C1 = 210 ·(4+ 4
32) encryptions/decryptions.

The complexity of algorithm 3 is C2 = 28 · 210 · (4 + 2
32) + C1 encryp-

tions/decryptions. Time complexity of algorithms 4 and 5 is C3(t) = 210 · 2t ·
(4 + 4

32 + t 4
32) and C4(t) = 28 · 210 · 2t · (4 + 2

32 + t 4
32) + C3(t) respectively. Note

that C1 = C3(0) and C2 = C4(0).

Thus, we recover 192 bits of the master key with the presented related-key

boomerang attack with time complexity

5∑
t=0

2t · C4(t) ≈ 228

encryptions with success rate over τ = 1 − 10−4. The attack uses 14 related

keys with fixed pairwise differences set by an attacker.

Using bruteforce attack for remaining subkeys results in total time complex-

ity of

228 + 26 · 232 · 232 ≈ 271

encryptions.

Remark 10 One can easy see, that probability of any differential for any bijec-

tive 4-bit wide S-box is either equal to zero or is grater or equal to 2−3. Thus,

for an arbitrary S-box set, time and data complexity of the modified attack is

the same, while the success rate can be equal or higher.

The standard GOST 28147-89 does not specify algorithms for master key

generation and usage, implying a “natural” assumption on keys being randomly

and independently chosen. In given assumption, the overall success rate of the

attack is extremely low.

23

We suppose that the attacker can encrypt and decrypt some texts under four

arbitrary and independently chosen secret keys. The probability that these four

keys form a quartet suitable for applying the partial key recovery related-key

boomerang attack (algorithms 2 and 3) is

P = 1 · 1

2256
· 1

2256
· 1

2256
= 2−256·3 = 2−768.

At the same time, one can simply “guess” a key with probability 2−256 � 2−768.

The probability that 14 arbitrary and independently chosen keys form a specific

set suitable for applying the general attack is

P = 2−256·13 = 2−3328.

One can study different attack scenarios, but in general, given the assumption

of zero-knowledge about the keys for the attacker, the practical application of

the related-key boomerang attack is doubtful, since it is based on a extremely

rare event, often, as in previous example, much more infrequent than successful

key-guessing.

9 Conclusion

In this paper we present the full key recovery attack on GOST block cipher

that uses related-key boomerang technique. Previously, such kind of attack was

presented in [3]. It considered a fixed set of S-boxes and recovered 8 bits of the

master key. We show that, due to an error, the attack from [3] actually reduces

to the exhaustive search.

Then we develop related-key boomerang attack that works for most sets

of S-boxes and uses related-key differential depending on the S-boxes. Using

the backward boomerang technique with appropriate choice of ciphertexts, our

attack recovers 31 bits of the master key. Next we present a generalized attack

that recovers 192 bits of the master key with practical data and time complexity.

Note that within the related-key model, practical attacks on variety of block

ciphers, including AES [1] and Kasumi [2] were developed. At the same time,

24

the most problematic aspect of these attacks is the reliance on related keys,

which is not universally accepted as a practical attack model. Certainly, the

possibility of such attacks has to be examined in each specific implementation

and mode of operation of a cipher, and new block ciphers have to be designed

to resist such attacks. However, any related-key attack on a block cipher does

not represent a fundamental obstacle to practical usage of the cipher.

References

[1] Biryukov A., Khovratovich D. Related-key Cryptanalysis of the Full

AES-192 and AES-256. — Cryptology ePrint Archive, Report 2009/317,

http://eprint.iacr.org/2009/317.pdf. — 2009.

[2] Dunkelman O., Keller N., Shamir A. A Practial-Time Attack on the A5/3

Cryptosystem Used in Third Generation GSM Telephony. — Cryptology

ePrint Archive, Report 2010/013, http://eprint.iacr.org/2010/013.pdf. —

2010.

[3] Fleischmann Ewan, Gorski Michael, Huehne Jan-Hendrik, Lucks Stefan. Key

recovery attack on full GOST block cipher with zero time and memory. —

Published as ISO/IEC JTC 1/SC 27 N8229. — 2009.

[4] Wagner David. The boomerang attack// Knudsen Lars R., editor, FSE/

Lecture Notes in Computer Science. — v. 1636, Springer. — 1999. —

156–170.

