
Perfectly Secure Oblivious RAM Without Random Oracles
Preliminary version

Ivan Damgård Sigurd Meldgaard
Jesper Buus Nielsen

Department of Computer Science, Aarhus University

March 2, 2010

Abstract

We present an algorithm for implementing a secure oblivious RAM where the access
pattern is perfectly hidden in the information theoretic sense, without assuming that the
CPU has access to a random oracle. In addition we prove a lover bound on the amount of
randomness needed for information theoretically secure oblivious RAM.

1 Introduction
In many cases it is attractive to store data at an untrusted party, and only retrieve the
needed parts of it. Encryption can help ensure that the party storing the data has no idea
of what he is storing, but still it is possible to get information about the stored data by
analyzing the access pattern.

A trivial solution is to access all data every time one piece of data is needed. However,
many algorithms are designed for being effective in the RAM-model, where access to any
word of the memory takes constant time, and so accessing all data for every data access
gives an overhead that is linear in the size of the used memory.

This poses the question: is there any way to perfectly hide which data is accessed, while
paying a lower overhead cost than for the trivial solution?

Goldreich and Ostrovsky [5] solved this problem in a model with a secure CPU that
is equipped with a random oracle and small (constant size) memory. The CPU runs a
program while using a (large) RAM that is observed by the adversary. The results from [5]
show that any program in the standard RAM model can be transformed using an “ ‘oblivious
RAM simulator” into a program for the oblivious RAM model, where the access pattern is
information theoretically hidden. The overhead of this transformation is polylogarithmic in
the size of the memory.

Whereas it is not reasonable to assume a random oracle in a real implementation, Gol-
dreich and Ostrovski point out that one can replace it by a pseudorandom function (PRF)
that only depends on a short key stored by the CPU. This way, one obtains a solution
that is only computationally secure. Moreover, in applications related to secure multiparty
computation (see below), one would need to securely compute the PRF, which introduces a
very significant overhead.

It is a natural question whether one can completely avoid the random oracle/PRF. One
obvious approach is to look for a solution that uses a very small number of random bits.
However, this is not possible: in this paper we show a lower bound on the number of random
bits that an oblivious RAM simulator must use to hide the access pattern information
theoretically. The natural alternative is to generate the random bits on the fly as you need
them, and store those you need to remember in the external RAM. This assumes, of course,
that the adversary observes only the access pattern and not the data written to the RAM.
However, as we discuss below, there are several natural scenarios where this can be assumed,

1

including applications for multiparty computation. The advantage of the approach is that
it only assumes a source that delivers random bits on demand, which is clearly a more
reasonable assumption than a random oracle and much easier to implement in a multiparty
computation setting.

Using this approach, we construct an oblivious RAM simulator where we can make an
access in amortized time O(

√
N log(N)) where N is the size of the memory provided, and

next improve that solution ending up with only a polylogarithmic overhead per access.
Finally we prove a lover bound of essentially logN on the number of random bits an

oblivious RAM must use for every read operation executed.
In recent concurrent and independent work [2] Ajtai also deals with oblivious RAM and

unconditional security. His result appears to solve essentially the same problem as we do,
but using a different technique that does not seem to lead to a zero-error solution.

2 Applications
• Software protection: This was the main original application of Goldreich and Ostro-

vsky. A tamper-proof CPU with an internal secret key and randomness could run an
encrypted program stored in an untrusted memory. Now using an oblivious RAM, the
observer would only learn the running time, and the required memory of the program,
and nothing else. Note that, while the adversary would usually be able to see the data
written to RAM in such a scenario, this does not have to be the case: if the adversary
is doing a side channel attack where he is timing the memory accesses to see if the
program hits or misses the cache, he is exactly in a situation where only information
on the access pattern leaks, and our solution would give unconditional security.

• Secure multiparty computation: If secure multiparty computation is implemented by
secret sharing, each player will have a share of the inputs, and computations can be
done on the shares, so that when the results are recombined, the result will be as if
the computation had been done on the original inputs.
We can use the oblivious RAM model to structure the computation by thinking of the
players as jointly implementing the secure CPU, while each cell in the RAM is repre-
sented as a secret shared value. This is again a case where an adversary can observe
the access pattern (since the protocol must reveal which shared values we access) but
not the data. Using an oblivious RAM, we can hide the access pattern and this allows
us, for instance, to do array indexing with secret indices in a straightforward way 1.
Using the standard approach of writing the desired computation as an arithmetic cir-
cuit, indexing with secret values is cumbersome and involves an overhead linear in the
size of the array.
Note that players can generate random shared values very efficiently, so that our solu-
tion fits this application much better than an approach where a PRF is used and must
be securely computed by the players.

• Cloud computing: It is becoming more and more common to outsource data storage
to untrusted third parties. And even if the user keeps all data encrypted, analysis of
the access patterns can still reveal information about the stored data. Oblivious RAM
eliminates this problem, leaving the untrusted party only with knowledge about the
size of the stored data, and the access frequency.

3 The model
A Random Access Machine of size n can be seen as an interactive functionality that, in round
i, given input (store, pi, valuei) with valuei ∈ F , responds ok. And on input (read, pi), it
responds valuej , where j < i is the highest index, such that there have been issued a
(store, pj , valuej) with pj = pi, and 0 if there has been no storing at pi. We call a sequence

1This type of application was also already hinted at by Goldreich and Ostrovsky.

2

of store/read requests an access pattern. We can also simplify the interface, so it both
retrieves the value, and saves another value at the same location. We call this a lookup.

A simulation of a RAM is a functionality with a bounded internal memory (constant
size for example), that implements the interface of a RAM, using auxillary access to another
RAM (the physical RAM).

We say that such a simulation securely implements an ideal oblivious RAM, if for any
two access patterns to the ideal RAM, the respective access patterns that the simulation
makes to the physical RAM are indistinguishable.

We assume the simulation has constant time access to operations ∗ and +,− on its local
values taking two inputs, and yielding the product/sum/difference. And also <, =, for
comparison and equality test, taking two inputs x, y and outputting a bit; 1 if x < y/x = y
and 0 otherwise.

4 Oblivious sorting and shuffling
We will need to be able to shuffle a list of records. One way to do this, is to assign a
random number to each, and sort them according to that number. If the numbers are large
enough we choose distinct numbers for each value with very high probability, and then the
permutation we end up with is uniformly chosen among all permutations.

If we want to make sure we succeed, we can simply run through the records after sorting to
see if all random numbers were different. If not, we choose a new random set of numbers and
do another sorting. This will succeed in expected O(1) attempts, and so in asymptotically
the same (expected) time, we can have a perfect solution. This issue is, in fact, the only
source of error in our solution.

We can do an oblivious sort by means of a sorting network. This can be done with
O(n · log(n)) compare-and-switch operations, but a very high constant overhead [1], or more
practically with a Batcher’s network [3] using O(n · log2(n)) switches.

Each of these can be implemented with two reads and two writes to the memory, and a
constant number of primitive operations. This is oblivious because the accesses are fixed by
the size of the data, and therefore independent of the data stored.

If each record contains its original index, we can use these fields to shuffle according to
the inverse permutation by sorting according to this index.

5 The square root algorithm
In this section we will describe an algorithm implementing an oblivious RAM using memory
and amortized time in O(

√
N · log2N). The algorithm assumes access to a functionality

that shuffles n elements of the physical RAM in time O(n · log2 n).
Like the original square root algorithm of Goldreich in [4], the algorithm works by having

a randomized dictionary structure that is used to connect an index to a piece of data. At the
same time we store a linear cache of previously accessed elements, so we can make sure not
to look at the same place twice, and we also use dummy elements to hide whether we access
the same place twice. And we also amortize the time used for searching the increasingly
long list by reshuffling everything for every

√
N accesses.

But without a random oracle we cannot store a random permutation for free (by storing
a key to the oracle), so we save the permutation using a binary tree with each level shuffled
individually, so each branch of a node points to a random location of the next level. Also
we make

√
N dummy chains, that are also shuffled into the tree. Only the first level is not

shuffled.

5.1 Making a lookup
A lookup in the simulated RAM is implemented by making a lookup in the binary search
tree. In order to touch every node in the tree only once, we do a (possibly dummy) lookup in

3

the physical RAM on each level of the tree, and for each level we also linearly scan through
all of the cache to see if we have accessed the same node earlier.

If we found the element in the cache, the next access in the tree will still be to a dummy
node.

The physical memory is split up into log2(N) parts, the i’th part is again split in two;
physical[i] storing 2i +

√
N records (the tree, and the dummy chains), and cache[i] storing√

N records (the cache).
Each node in the three record stores a .left and .right field for pointing to the next level,

and a .bound for directing the search in the tree.
The leaf-records at the lowermost level are different, they contain the .data that are

stored, an .index field naming the original index where the data is stored in the simulated
RAM, a .used field that is used for reshuffling the data as described below.

Algorithm 5.1: dispatch(index, record)

output: The left or right child of record, depending on index
if index < record.bound
then return (record.left)
else return (record.right)

Algorithm 5.2: lookup(index)

input: index
output: Value stored at index
if count ≥

√
n

then

unmingle()
shuffle()
count← 0

else count← count+ 1
next← count
next_in_tree← count
for level← 0 to log2(N)− 1

do



match← False
for i← 0 to count− 1

do



k ← cache[level, i]
if k.index = next

then


k_from_cache← k
match← True
k.index =∞
cache[level, i]← k (1)

if match
then next← next_from_tree

k_from_tree← physical[level, next]
physical[level, next].used = True
next_from_tree← dispatch(index, k_from_tree)
next← dispatch(index, k_from_tree)
if match
then next← dispatch(index, k_from_tree)

cache[level, count]← (next,update(k))

An invariant for the outer loop can be phrased:

1. next is the real index we are going to look for at level

4

0 1 2 3

0 1 2 3 4

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8 9 10

(a) Before

0 1 2 3

0 1 2 34

01 2 345 6

0123 45 67 8910

(b) After

Figure 1: Visualization of the memory layout of a tree storing 8 elements, before and after
shuffling the tree. The edges indicate child-pointers.

2. next_in_tree is the index of the tree where we will look if we do not find the item in
the cache. If this is different from next, it is still pointing at a dummy chain.

By changing the index of the cached value to ∞ when it is found in line 1 we implicitly
invalidate it; it will be sorted last and therefore thrown away when we reshuffle. This is only
necessary to do for the cache of the last level of the tree.

5.2 Obliviously shuffling a tree
We present an algorithm for shuffling a tree, it works by shuffling one level at a time, starting
at the bottom of the tree, and ending with the root-level.

After shuffling a level, it does the reverse shuffle on a sequence {1 . . . }, and copies these
numbers into the pointer fields on the level above. We take special care to also shuffle the
dummy chains, and ensuring that their left and right pointers point to the same next node
in the chain.

Algorithm 5.3: unmingle()

a← Filter out any physical[log2(N)] which has .used= true
b← a concatenated with cache[log2(N)].
Obliviously sort b according to the original index of the records
Remove the last

√
N records of b

physical[log2N]← b

Algorithm 5.4: shuffle()

for level← log2(n) downto 1

do



Choose a permutaion π uniformly at random
Shuffle physical[level] according to π
for i← 0 to 2level +

√
N

do temp[i]← i
Shuffle temp according to π−1

for i← 0 to 2level−1

do
{
physical[level − 1, i].left← temp[2i]
physical[level − 1, i].right← temp[2i+ 1]

for i← 2level−1 to 2level−1 +
√
N

do
{
physical[level − 1, i].left← temp[2level + i]
physical[level − 1, i].right← temp[2level + i]

5

5.3 Security
The transcript of a lookup, as seen by the adversary, always consist of the following parts:

• An access at index count of the first level of the tree

• An access at a uniformly random location at each lower level of the tree

• A scan of the full cache of each level

• For each
√
N access, the tree is reshuffled

All these are independent of the access pattern to the original RAM, and thus an eaves-
dropper will learn nothing whatsoever about the access pattern.

5.4 Performance
The time for a single lookup (without the shuffling) is dominated by accessing log2(N) caches,
each of size O(

√
N). For each

√
N lookups, we perform a shuffle taking time O(N log2(N)).

Giving an amortized running time O(
√
N log2(N)) per lookup.

6 Polylogarithmic Solution

It is also possible to get a solution with an amortized overhead per access of logO(1)(N). We
introduce the notation Õ which swallows polylogarithmic factors. In this notation we have
a solution with overhead Õ(1). The solution proceeds somewhat like the protocol [5] with
polylogarithmic overhead. We will here only sketch the solution.

As in [5] the idea is to have log(N) levels of simulated RAMs. The simulated RAM at
level 1 has size Õ(N), and in general the simulated RAM at level ` has size Õ(N/2`). In [5]
each level is a dictionary reminiscent of the one used in their square root solution, and in
our solution each level is a shuffled tree, as used in our square root solution.

The main ideas behind the solution are as follows:

1. We start with a random shuffled tree at level 1 with all data in this tree and all other
levels being empty.

2. When a path (∇1, . . . ,∇m) in the tree of any level is touched, the nodes ∇i are moved
to the bottom level, i.e., level log(N), and the path is shuffled such that the nodes ∇i

are stored in random positions at the bottom level and such that ∇i points to the new
physical location of ∇i+1 at the bottom level.2

The pointers from the ∇i to the physical addresses of the siblings of the ∇i which were
not on the path (∇1, . . . ,∇m), and hence were not moved, are just copied along with
the nodes during the shuffling, so that the nodes ∇i at the bottom level might now
have points to untouched nodes in the trees at higher levels.

3. When the tree at level ` reaches size Õ(N/2`) the nodes at the lower levels log(N), . . . , `
are reshuffled such that all nodes are placed at new random positions and their intra-
pointers are updated. Pointers to untouched nodes at higher levels are kept the same.
The result is stored at level `− 1.

4. During the movement of nodes, either their moving to level log(N) after being touched
or their being shuffled higher up the levels, it is always remembered where the root
node of the tree original at level 1 is stored. Any search starts at this node. This is
oblivious as any search starts at the root no matter the index being searched for.

5. If we were just to start each search at the original root node and then following the
updated points to physical addresses it is true that we would never touch the same node
twice in the same position, as a touched node is moved down and then shuffled up. The

2This is trivial to do with overhead Õ(1) as the bottom level has size Õ(1) and m = O(log(N)) = Õ(1).

6

pattern of how the path jumps between the levels would however leak information.3
We therefore make such to touch each level once every time we follow one pointer. If
we are following a pointer to level ` we do dummy read at levels i = log2(N), . . . , `+1,
then we read the node at level `, and then we do dummy reads at levels i = `−1, . . . , 1.
Only the real node ∇ read at level ` is moved to the bottom level.

The above ensures that the access pattern is oblivious. Following a path of length
log(N) requires to look up log(N) nodes. For each node we have to touch each level, for
obliviousness, which gives a total of log2(N) reads. Moving the log(N) nodes that we looked
up to level 1 and shuffling them can be done in Õ(1), as discussed above, and the merging
and shuffling of nodes at lower levels to higher levels amortizes to Õ(1) per update, as levels
of size s are shuffled only at every s/ log(N) update, as each update pushed down log(N)
nodes such that the total number of nodes in the lower levels grow by log(N) in each update.

7 Lower bound
An equivalent way to state the definition of a secure oblivious RAM simulation is that, for
every program, the distribution of memory access to physical memory is the same for every
choice of input. In particular, if we choose (part of) the input at random, the distribution
of memory accesses must remain the same.

In this section, we assume that the simulation is data-oblivious, i.e., the simulation never
looks at the data it is asked to read or write (but it may of course look at, e.g., randomness
it wrote itself in physical memory).

We will show that this implies a lower bound on the amount of randomness that the
simulation must use. Consider the program that first writes random data to all N locations
in RAM. It then executes k read operations from randomly chosen locations.

Let P be the random variable describing the choice of locations to read from. Clearly
H(P) = k logN . Let C be the random variable describing the history of the simulation as
seen by the adversary. Finally, let K be the random variable describing the random choices
made by the simulation during the reads.

By construction of the random experiment, K is independent of P and, assuming the
simulation is perfectly secure, C and P are independent.

From this follows by elementary information theory that

H(K|C) ≥ H(P)−H(P |C,K) = k logN −H(P |C,K)

Now, let us assume that each read operation causes the simulation to access at most n
locations in physical RAM. From this we will show an upper bound on H(P |C,K). Let Pi

be the random variable describing the choice of location to read from in the i ’th read, and
let Mi represent the value of internal memory at the start of the i’th read operation. The
plan is now to bound H(Pi|C = c,K = k,Mi = m) := H(Pi|c, k,m) for arbitrary, fixed
values c, k,m, use this to bound H(Pi|C = c,K = k) = H(Pi|c, k) and finally use this to
bound H(P |C,K).

Note first that once we fix K = k,Mi = m, the choice of n locations to access depends
only on Pi, since the simulation is data-oblivious. Hence, when we fix C = c, this will
constrain the choice of Pi to be uniform over those values that cause the n locations specified
in c to be accessed. Let w be this number of remaining choices for Pi. We then have that
H(Pi|c, k,m) = logw.

Let a be the number of bits in a memory location, and let Dc,k,m represent the data
written to the w locations in question, with the distribution implied by he choices of c, k,m.
Let Dc,k be the distribution of data written to those same w words, but now only given c, k.

3If, e.g., we look up the same leaf node twice, the path to the node is moved to the bottom level in the first
update, so the second update would only touched nodes at the bottom level. If we look up a distinct leaf in the
second update the pointer jumping would at some point take us back to level 1. This would allow the adversary
to distinguish.

7

Dc,k is uniform over the 2aw possible values, again because the simulation is data oblivious,
so fixing C = c,K = k does not constrain the data stored in the w locations in question.

However, we want to estimate how uncertain the simulator is about Dc,k,m, and must
therefore take internal memory into account. To this end, we will assume in the following
that all Pj , j < i and all data written to locations other than the w in question are fixed
to arbitrary values consistent with C = c,K = k, this will not affect the distribution of Pi.
Once we do this, the value of Mi is a deterministic function f of Dc,k.

Let pre(m) be the size of the preimage under f of m, then the probability that Mi = m
conditioned on K = k,C = c is pm = pre(m)/2aw. We now have

H(Dc,k,m = log pre(m) = log pm + aw

Let Rc,k,m represent the data the data read from memory given the fixed access pattern c.
Clearly, H(Rc,k,m) ≤ an. But on the other hand H(Rc,k,m) must be larger than H(Dc,k,m),
since otherwise the simulator does not have enough information to return a correct result
of the read operation. More precisely, if the simulation always returns correct results, we
can reconstruct the exact value of Dc,k,m as a deterministic function of Rc,k,m by letting the
value of Pi run through all w possibilities and seeing what the simulation would return. Since
applying a deterministic function can only decrease entropy, it must be that H(Rc,k,m) ≥
H(Dc,k,m).

We therefore conclude that na ≥ log pm + aw or

w ≤ n− log pm
a

Combining with the above, we get

H(Pi|c, k,m) = logw ≤ log(n− log pm
a

)

By definition of conditional entropy, and writing u for the number of memory words we have
room for in internal memory, we get

H(Pi|c, k) =
∑
m

pmH(Pi|c, k,m)

≤
∑
m

pm log(n− log pm
a

)

≤ log(
∑
m

pm(n− log pm
a

))

= log(n+H(Mi|c, k)/a)
≤ log(n+ u)

where the second inequality above is Jensen’s inequality. By standard properties of entropy,
we have

H(P |c, k) ≤
∑
i

H(Pi|c, k) ≤ k log(n+ u).

So we also have H(P |K,C) ≤ k log(n+ u) by definition of conditional entropy.
Combining all of the above we therefore have:

Theorem 7.1. Suppose we are given perfectly secure oblivious RAM simulation of a memory
of size N , accessing at most n locations in pysical RAM per read operation, and using internal
memory of size at most u words. If such a simulation is data-oblivious, it must use at least
k log(N/(n+u)) random bits that are unknown to the adversary to execute k read operations.

If the simulation is only statistically secure, this means that P and C are not indepen-
dent, rather the distributions of C caused by different choices of P are statistically close.
This means that the information overlap I(C;P) is negligibly small as a function of some

8

security parameter. It is straightforward to see that if we drop the assumption that P,C
are independent the first inequality above becomes

H(K) ≥ k logN −H(P |C,K)− I(P ;C),

and since the rest of the argument for the theorem does not depend on C,P being indepen-
dent, we see that the lower bound changes by only a negligible amount if the simulation is
only statistically secure.

Data Non-Oblivous Simulation
The above argument breaks down if the simulation is not data-oblivious. The problem comes
from the fact that then, even if security demands that C is independent of the data D that
is written, this may no longer be the case if K is given. And then, if we fix C, this may
mean that the data written in the w locations in the proof above are no longer uniformly
distributed.

We nevertheless believe that a lower bound holds even for non-oblivious simulation: Since
C is independent of D and K is independent of D, it follows that I(K;D|C) = I(C;D|K).
So if I(C;D|K) is large, then H(K|C) ≥ I(K;D|C) is large as well, and we are happy. On
the other hand, if I(C;D|K) is small, this means that C is almost independent of D, even
when K is given. And this intuitively seems to mean that above argument which assumes
full independence, should “almost” hold.

In any case, we do not see this issue as very important: it is clear that for our main
application to multiparty computation, and probably in general as well, a data oblivious
simulation is what we want.

8 Conclusion
We have shown how to transfer the results of Goldreich and Ostrovsky to the standard model,
resulting in an algorithm for implementing a information theoretically secure oblivious RAM
with a

√
N log2(N) amortized overhead per access, without the need for a random oracle,

and we then improved this to obtain a poly logarithmic overhead. Finally we have also shown
a lower bound of essentially log(N) random bits per read operation based on information
theoretic arguments.

References
[1] M. Ajtai, J. Komlós, and E. Szemerédi. An 0(n log n) sorting network. In STOC ’83:

Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages 1–9,
New York, NY, USA, 1983. ACM.

[2] Miklos Ajtai. Oblivious rams without cryptographic assumptions. In STOC ’10: Pro-
ceedings of the 42nd annual ACM symposium on Theory of computing, 2010. To be
published at STOC.

[3] K. E. Batcher. Sorting networks and their applications. In AFIPS ’68 (Spring): Pro-
ceedings of the April 30–May 2, 1968, spring joint computer conference, pages 307–314,
New York, NY, USA, 1968. ACM.

[4] O. Goldreich. Towards a theory of software protection and simulation by oblivious
rams. In STOC ’87: Proceedings of the nineteenth annual ACM symposium on Theory
of computing, pages 182–194, New York, NY, USA, 1987. ACM.

[5] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
rams. J. ACM, 43(3):431–473, 1996.

9

	Introduction
	Applications
	The model
	Oblivious sorting and shuffling
	The square root algorithm
	Making a lookup
	Obliviously shuffling a tree
	Security
	Performance

	Polylogarithmic Solution
	Lower bound
	Conclusion

