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Abstract. In this paper, we investigate how to achieve verifiable secret
sharing (VSS) schemes by using the Chinese Remainder Theorem (CRT).
We first show that two schemes proposed earlier are not secure from an
attack where the dealer is able to distribute inconsistent shares to the
users. Then we propose a new VSS scheme based on the CRT and prove
its security. Using the proposed VSS scheme, we develop joint random
secret sharing (JRSS) and proactive SSS protocols, which, to the best of
our knowledge, are the first secure protocols of their kind based on the
CRT.
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1 Introduction

Threshold cryptography deals with the problem of sharing a highly sensi-
tive secret among a group of users so that only when a sufficient number of
them come together can the secret be reconstructed. Well-known secret
sharing schemes (SSSs) in the literature include Shamir [26], based on
polynomial interpolation, Blakley [2], based on hyperplane geometry, and
Asmuth-Bloom [1], based on the Chinese Remainder Theorem (CRT).

A t-out-of-n secret sharing scheme contains two phases: In the dealer
phase, the dealer shares a secret among n users. In the combiner phase, a
coalition of size greater than or equal to t constructs the secret. We call
a SSS verifiable if each user can verify the correctness of his share in the
dealer phase and no user can lie about his share in the combiner phase.
Hence, neither the dealer nor the users can cheat in a VSS scheme. Veri-
fiable secret sharing schemes based on Shamir’s SSS have been proposed
in the literature [9, 23]. These schemes have been extensively studied and
used in threshold cryptography and secure multi-party computation [12,
22, 23].



There have been just two CRT-based VSS schemes by Iftene [16] and
Qiong et al. [24]. In this paper, we show that these schemes are vulnerable
to attacks where a corrupted dealer can distribute inconsistent shares
without detection such that different coalitions will obtain different values
for the secret. To the best of our knowledge, these are the only VSS
schemes that have been proposed so far based on the CRT.

A typical application of a VSS scheme is the joint random secret shar-
ing (JRSS) primitive frequently used in threshold cryptography [12, 17,
18, 22, 23]. In a JRSS scheme, all players act as a dealer and jointly gener-
ate and share a random secret. So far, there have been no JRSS protocols
proposed based on the CRT. Another important extension in threshold
cryptography is the proactivity feature of secret sharing schemes. With
this feature, a SSS has the capability of renewing the shares of the users
without changing the long-term secret such that any shares obtained by a
corrupted party becomes obsolete. So far, no CRT-based proactive secret
sharing (PSS) schemes have been proposed in the literature.

In this paper, we first show why existing attempts of a CRT-based
verifiable secret sharing scheme fail when attacked. We then propose a
VSS scheme based on the Asmuth-Bloom secret sharing [1] and using this
VSS scheme, we propose a JRSS scheme. By combining and extending
the ideas used in the VSS and JRSS schemes, we also propose a PSS
scheme. To the best of our knowledge the VSS, JRSS, and PSS schemes
we propose are the first secure CRT-based schemes of their kind in the
literature.

The rest of this paper is organized as follows: In Section 2, we describe
the Asmuth-Bloom SSS in detail and introduce the notation we followed
in this paper. In Section 3, we describe the VSS schemes proposed in [16,
24] and analyze their flaws. After presenting our VSS scheme in Sec-
tion 4, we propose the joint random scheme in Section 5. In Section 6,
we describe the CRT-based proactive SSS and in Section 7, we analyze
the practicability and efficiency of the schemes. Section 8 concludes the
paper.

2 Asmuth-Bloom Secret Sharing Scheme

The Asmuth-Bloom SSS [1] shares a secret d among n parties by mod-
ular arithmetic such that any t users can reconstruct the secret by the
CRT. The scheme presented in Figure 1 is a slightly modified version by
Kaya and Selcuk [19] that obtains better security properties.



– Dealer Phase: To share a secret d among a group of n users, the dealer does
the following:
• A set of relatively prime integers m0 < m1 < . . . < mn are chosen, where
m0 is a prime and

t∏
i=1

mi > m0
2
t−1∏
i=1

mn−i+1. (1)

• Let M denote
∏t
i=1mi. The dealer computes y = d + Am0 where A

is a positive integer generated randomly subject to the condition that
0 ≤ y < M .

• The share of the ith user, 1 ≤ i ≤ n, is yi = y mod mi.
– Combiner Phase: Let S be a coalition of t users gathered to construct the

secret. Let MS denote
∏
i∈Smi.

• Let MS\{i} denote
∏
j∈S,j 6=imj and M ′S,i be the multiplicative inverse

of MS\{i} in Zmi , i.e., MS\{i}M
′
S,i ≡ 1 (mod mi). First, the ith user

computes
ui = yiM

′
S,iMS\{i} mod MS .

• The users then compute

y =

(∑
i∈S

ui

)
mod MS

and obtain the secret d by computing

d = y mod m0.

Fig. 1. Asmuth-Bloom secret sharing scheme



According to the Chinese Remainder Theorem, y can be determined
uniquely in ZMS

since y < M ≤MS for any coalition S of size t.
Kaya and Selcuk [19] showed that the Asmuth-Bloom version pre-

sented here is perfect in the sense that no coalition of size smaller than t
can obtain any information about the secret.

Quisquater et al. [25] showed that when mis are chosen as consecutive
primes, the scheme has better security properties. In this paper, we will
also assume that all mis are prime and we will choose them such that
pi = 2mi+1 is also a prime for 1 ≤ i ≤ n. The notation used in our paper
is summarized in Table 1.

Notation Explanation

n The number of users.
t The threshold, the minimum number of users required to

construct the secret.
d The secret to be shared.
m0 A prime; specifies the domain of d ∈ Zm0 .
mi : 1 ≤ i ≤ n The prime modulus for user i.
pi : 1 ≤ i ≤ n A safe prime, 2mi + 1.
P

∏n
i=1 pi.

y d+Am0, where A is a random number.
M The domain of y ∈ ZM .
yi : 1 ≤ i ≤ n y mod mi, the share of user i.
E(y) The commitment value of an integer y.
S A coalition of users.
MS The modulus of coalition S,

∏
i∈Smi.

Table 1. Notations

For the protocols in this paper, we assume that private channels exist
between the dealer and users. The share of each user is sent via these
private channels, hence, no one except the user himself knows the share.
Besides, we assume that a broadcast channel exists and if some data is
broadcast each user will read the same value. Hence, an adversary cannot
send two different values to two different users in a broadcast data.

3 Analysis of the Existing CRT-based VSS Schemes

There have been two different approaches to achieve VSS by a CRT-based
secret sharing scheme. The first one, proposed by Iftene [16], obtains
a VSS scheme from Mignotte’s SSS [20], which is another CRT-based



SSS similar to Asmuth-Bloom. Here, we adapt Iftene’s approach to the
Asmuth-Bloom SSS. The scheme is given in Figure 2.

– Dealer Phase: To share a secret d ∈ Zm0 among a group of n users with
verifiable shares, the dealer does the following:
1. Use the dealing procedure of the Asmuth-Bloom SSS to obtain the shares

yi = y mod mi for each 1 ≤ i ≤ n where y = d+Am0 < M . Choose mis
such that each pi = 2mi + 1 is also a prime.

2. Let gi ∈ Z∗pi be an element of order mi. The dealer sends yi to the ith
user privately and makes the values pi, gi, and zi = gyi mod pi public for
1 ≤ i ≤ n. The ith user can find whether his share is valid or not by
checking

zi
?
= gi

yi mod pi. (2)

– Combiner Phase: Let S be a coalition gathered to construct the secret.
1. The share yi of user i ∈ S can be verified by the other users in S by the

verification equation zi
?
= gi

yi mod pi.
2. If all shares are valid then the coalition S can obtain the secret d: First,

the ith user computes

ui = yiM
′
S,iMS\{i} mod MS .

3. Then the users compute

y =

(∑
i∈S

ui

)
mod MS

and obtain the secret d by computing d = y mod m0.

Fig. 2. Iftene’s CRT-based VSS extension

If the dealer is honest and the discrete logarithm problem is hard,
the scheme in Figure 2 is secure against a dishonest user because the
verification data, giy mod pi, can be used to detect an invalid share from
a corrupted user in the first step of the combiner phase.

However, if the dealer is dishonest, he can mount an attack despite the
additional verification data above: Let y be an integer and yi = y mod mi

for 1 ≤ i ≤ n. In the combiner phase of the Asmuth-Bloom SSS, the
minimum number of users required to obtain the secret is t; hence, y =
d + Am0 must be smaller than M =

∏t
i=1mi. Note that to reconstruct

the secret d, each coalition S must first compute y mod MS , where MS ≥
M . If the dealer distributes the shares for some y > M , then y will be
greater than MS for some coalition S of size t. Hence, S may not compute
the correct y value and the correct secret d even though yi = y mod mi



for all i. Therefore, the given VSS scheme cannot detect these kinds of
inconsistent shares from the dealer where different coalitions end up with
different d values. The same problem also arises in Iftene’s original VSS
scheme [16].

Another VSS scheme based on Asmuth-Bloom secret sharing was pro-
posed by Qiong et al. [24]. Their approach is similar to the Pedersen’s
VSS [23] based on Shamir’s SSS. Their scheme is given in Figure 3.

– Dealer Phase: To share a secret d ∈ Zm0 among a group of n users with
verifiable shares, the dealer does the following:
1. Use the dealing procedure of the Asmuth-Bloom SSS to obtain the shares

yi = y mod mi for all 1 ≤ i ≤ n where y = d+Am0 < M .
2. Let p, q be primes such that q|(p− 1). Construct the unique polynomial

f(x) ∈ Zq[x] where deg(f(x)) = n − 1 and f(mi) = yi. Construct a
random polynomial f ′(x) ∈ Zq[x] where deg(f ′(x)) = n − 1. Let zi =
f ′(mi) for all 1 ≤ i ≤ n.

3. Let g ∈ Zp with order q, h be a random integer in the group generated
by g, and E(a, b) = gahb mod p for inputs a, b ∈ Z∗q . Compute

Ei = E(fi, f
′
i) = gfihf

′
i mod p,

where fi and f ′i are the (i−1)th coefficients of f(x) and f ′(x), respectively,
for all 1 ≤ i ≤ n. Broadcast Eis to all users.

4. Send (yi, zi) secretly to the ith user for all 1 ≤ i ≤ n.
5. Each user checks

E(yi, zi)
?≡

n∏
j=1

Ej
mi

j−1
≡

n∏
j=1

gfjmi
j−1

n∏
j=1

hf
′
jmi

j−1

≡ gyihzi (mod p) (3)

to verify the validity of his share.
– Combiner Phase: Let S be a coalition gathered to construct the secret.

1. The share (yi, zi) of user i ∈ S can be verified by the other users in S

with the verification equality E(yi, zi)
?≡
∏n
j=1Ej

mi
j−1

(mod p).
2. If all shares are valid; the coalition S can obtain the secret d by using the

reconstruction procedure described in Section 2.

Fig. 3. Qiong et al.’s CRT-based VSS extension

As the scheme shows, Qiong et al. treated the shares of, Asmuth-
Bloom SSS as points on a degree-(n − 1) polynomial and adopted Ped-
ersen’s approach by evaluating the polynomial in the exponent to verify
the shares. If the dealer is honest, the scheme in Figure 3 is secure be-



cause the verification data can be used to detect an invalid share from a
corrupted user in the first step of the combiner phase.

However, similar to the attack on Iftene’s VSS scheme, if the dealer
uses some y > M and computes the verification data by using the shares
yi = y mod mi, 1 ≤ i ≤ n, the verification equation (3) holds for each
user. But, for a coalition S where y > MS , the coalition S cannot compute
the correct y value and the secret d.

Note that Iftene’s VSS scheme uses a separate verification data for
each user; hence, even if all verification equations hold, the secret can
still be inconsistent for different coalitions. Quiong et al.’s VSS scheme
generates a polynomial f(x) from the shares, as in Feldman’s and Ped-
ersen’s VSS schemes. This polynomial is used to check all verification
equations. But the Asmuth-Bloom SSS depends on the CRT and unlike
Shamir’s SSS, here f is not inherently related to the shares. Hence, even if
all equations hold, the shares can still be inconsistent, as we have shown.

4 Verifiable Secret Sharing with the Asmuth-Bloom SSS

As discussed in Section 3, existing CRT-based VSS schemes in the liter-
ature cannot prevent a dealer from cheating. To solve this problem, we
will use a range-proof technique originally proposed by Boudot [4] and
modified by Cao et al. [6].

4.1 Range-Proof Techniques

Boudot [4] proposed an efficient and non-interactive technique to prove
that a committed number lies within an interval. He used the Fujisaki-
Okamoto commitment scheme [11], where the commitment of a number
y with bases (g, h) is computed as

E = E(y, r) = gyhr mod N,

where g is an element in Z∗N , h is an element of the group generated by g,
and r is a random integer. As proved in [4, 11], this commitment scheme
is statistically secure assuming the factorization of N is not known.

After Boudot, Cao et al. [6] applied the same proof technique with a
different commitment scheme,

E = E(y) = gy mod N,

to obtain shorter range proofs. Here, we will use Cao et al.’s non-interactive
range-proof scheme as a black box. For further details, we refer the user



to [4, 6]. For our needs, we modified the commitment scheme to

E = E(y) = gy mod PN,

where P =
∏n
i=1 pi and N is an RSA composite whose factorization is

secret. Note that even if φ(P ) is known, φ(PN) cannot be computed since
φ(N) is secret. Throughout the section, we will use RngPrf(E(y),M) to
denote the range proof that a secret integer y committed with E(y) is in
the interval [0,M).

4.2 A CRT-Based VSS Scheme

In our VSS scheme, the RSA composite N is an integer generated jointly
by the users and the dealer, where its prime factorization is not known.
Such an integer satisfying these constraints can be generated by using the
protocols proposed for shared RSA key generation [3, 10] at the beginning
of the protocol. Note that we do not need the private and the public RSA
exponents in our VSS scheme as in the original protocols [3, 10]; hence,
those parts of the protocols can be omitted.

Let gi ∈ Z∗pi be an element of order mi. Let P =
∏n
i=1 pi and

g =

(
n∑
i=1

giP
′
i

P

pi

)
mod P, (4)

where P ′i =
(
P
pi

)−1
mod pi for all 1 ≤ i ≤ n, i.e., g is the unique integer

in ZP satisfying gi = g mod pi for all i. Our VSS scheme is described in
Figure 4.

4.3 Analysis of the Proposed VSS Scheme

We analyze the correctness of the scheme and its security against passive
and active attackers below:

Correctness Aside from the verification equation, the scheme uses the
original Asmuth-Bloom scheme. Hence, for correctness, we only need
to show that when the dealer and the users are honest, the verifica-
tion equations in the dealer and combiner phases hold. Note that the
condition y < M is checked in Step 3 of the dealer phase by using
RngPrf(E(y),M)). Furthermore, for a valid share yi,



– Dealer Phase: To share a secret d ∈ Zm0 among a group of n users with
verifiable shares, the dealer does the following:
1. Use the dealing procedure of the Asmuth-Bloom secret sharing scheme

described in Section 2 to obtain the shares

yi = y mod mi

for each 1 ≤ i ≤ n where y = d + Am0 < M =
∏t
i=1mi. Note that the

mis are large primes, where pi = 2mi + 1 is also a prime for 1 ≤ i ≤ n.
2. Let N be an integer whose prime factorization is not known by the users

and the dealer. Compute E(y) = gy mod PN . Send yi to the ith user
secretly for all 1 ≤ i ≤ n and broadcast (E(y),RngPrf(E(y),M)).

3. The ith user checks

gi
yi

?≡ E(y) (mod pi) (5)

to verify yi = y mod mi. Then he checks the validity of the range proof
to verify y < M .

– Combiner Phase: Let S be a coalition gathered to construct the secret.
1. The share yi of user i ∈ S can be verified by the other users in S with

the verification equality gi
yi

?≡ E(y) (mod pi).
2. If all shares are valid, the participants can obtain the secret d by using the

reconstruction procedure described in Section 2. Otherwise, the corrupted
users are disqualified.

Fig. 4. CRT-based verifiable secret sharing scheme

E(y) mod pi = gy mod PN mod pi
= gy mod pi
= gi

y mod pi
= gi

yi mod pi.

Hence, if the dealer and the users behave honestly, the verification equa-
tion holds and the ith user verifies that his share is a residue modulo mi

of the integer y < M committed with E(y).

Security For the security analysis, we will first show that the underlying
SSS is perfect, as proved by Kaya et al. [19], i.e., no coalition of size smaller
than t can obtain any information about the secret.

Theorem 1 (Kaya and Selcuk [19]). For a passive adversary with
t− 1 shares in the VSS scheme, every candidate for the secret is equally



likely, i.e., the probabilities Pr(d = d′) and Pr(d = d′′) are approximately
equal for all d′, d′′ ∈ Zm0.

Proof. Suppose the adversary corrupts t − 1 users and just observes the
inputs and outputs of the corrupted users without controlling their ac-
tions, i.e., the adversary is honest in user actions but curious about the
secret. Let S′ be the adversarial coalition of size t − 1, and let y′ be the
unique solution for y in ZMS′ . According to (1), M/MS′ > m0, hence,
y′ + jMS′ is smaller than M for j < m0. Since gcd(m0,MS′) = 1, all
(y′ + jMS′) mod m0 are distinct for 0 ≤ j < m0, and there are m0 of
them. That is, d can be any integer from Zm0 . For each value of d, there
are either bM/(MS′m0)c or bM/(MS′m0)c+1 possible values of y consis-
tent with d, depending on the value of d. Hence, for two different integers
in Zm0 , the probabilities of d equals these integers are almost equal. Note
that M/(MS′m0) > m0 and given that m0 � 1, all d values are approxi-
mately equally likely.

Aside from the shares, the only additional information a corrupted
user can obtain are E(y) and RngPrf(E(y),M). Given that the discrete
logarithm problem is hard and Cao et al.’s range-proof technique is com-
putationally secure, the proposed VSS scheme is also computationally
secure. ut

The shares distributed by a dealer are said to be inconsistent if dif-
ferent coalitions of size at least t obtain different values for the secret.
The following theorem proves that the dealer cannot distribute shares
inconsistent with the secret.

Theorem 2. A corrupted dealer cannot cheat in the VSS scheme without
being detected. I.e., if the shares are inconsistent with the secret d then
at least one verification equation does not hold.

Proof. Let U = {1, . . . , n} be the set of all users. If the shares are incon-
sistent, for two coalitions S and S′ with |S|, |S′| ≥ t,(∑

i∈S
yiM

′
S,iMS\{i}

)
mod MS 6=

(∑
i∈S′

yiM
′
S′,iMS′\{i}

)
mod MS′ .

Hence,

y =

(
n∑
i=1

yiM
′
U,iMU\{i}

)
mod MU > M.



If this is true then the dealer cannot provide a valid range proof RngPrf(E(y),M).
So, when a user tries to verify that y < M , the range proof will not be
verified.

If the dealer tries to use a different y′ 6= y value in the commitment
E(y′) and generates a valid proof RngPrf(E(y′),M), the verification equa-
tion (5) will not hold for some user i.

Hence, the VSS scheme guarantees that the n distributed shares are
consistent and that they are residues of some number y < M . ut

Theorem 3. A user cannot cheat in the VSS scheme without being de-
tected; i.e., if a share given in the combiner phase is inconsistent with the
secret, then the verification equation does not hold.

Proof. When a user i sends an incorrect share y′i 6= yi = y mod mi in the
combiner phase, the verification equation

E(y)
?≡ giyi (mod pi)

will not hold because E(y) = gy mod PN , pi|P , and since the order of
gi ∈ Zpi is mi, the only value that satisfies the verification equation is
yi. ut

Therefore, we can say that the scheme is secure for up to t−1 corrupted
users and no participant can cheat in any phase of the scheme.

5 Joint Random Secret Sharing

Joint random secret sharing protocols enable a group of users to jointly
generate and share a secret where a trusted dealer is not available. Al-
though there have been JRSS schemes based on Shamir’s SSS, so far no
JRSS scheme has been proposed based on the CRT. Here we describe a
JRSS scheme based on the VSS scheme in Section 4. We first modify (1),
used in the Asmuth-Bloom secret sharing scheme in Section 2 to

t∏
i=1

mi > nm0
2
t−1∏
i=1

mn−i+1. (6)

We also change the definition of M as M =
⌊
(
∏t
i=1mi)/n

⌋
. The proposed

JRSS scheme is given in Figure 5.



– Dealing Phase: To jointly share a secret d ∈ Zm0 the users do the following:
1. Each user chooses a secret di ∈ Zm0 and shares it by using the VSS

scheme as follows: He first computes

y(i) = di +Aim0,

where y(i) < M =
⌊
(
∏t
i=1mi)/n

⌋
. Then the secret for the jth user is

computed as
y
(i)
j = y(i) mod mj .

He sends y
(i)
j to user j secretly for all 1 ≤ i ≤ n and broadcasts

(E(y(i)),RngPrf(E(y(i)),M)).
2. After receiving shares the jth user verifies them by using the verification

procedure in (5). Let B be the set of users whose shares are verified
correctly. The jth user computes his overall share

yj =

(∑
i∈B

y
(i)
j

)
mod mj

by using the verified shares.
– Combiner Phase: Let S be a coalition of t users gathered to construct the

secret.
1. The share yi of user i ∈ S can be verified by the other users in S with

the verification equation

gyi
?≡

(∏
j∈B

E(y(j))

)
(mod pi). (7)

2. If all shares are valid, the participants obtain the secret

d =

(∑
i∈B

di

)
mod m0

by using the reconstruction procedure described in Section 2.

Fig. 5. CRT-based joint random secret sharing scheme.



5.1 Analysis of the Proposed JRSS Scheme

Correctness Observe that when all users behave honestly, the JRSS
scheme works correctly. Let y =

∑
i∈B y

(i). It is easy to see that y <∏t
i=1mi, since y(i) < M for all i ∈ B, where |B| ≤ n andM =

⌊
(
∏t
i=1mi)/n

⌋
.

One can see that yj = y mod mj for all j ∈ B by checking

y mod mj =

(∑
i∈B

y(i)

)
mod mj

=

(∑
i∈B

y
(i)
j

)
mod mj

= yj mod mj = yj .

Hence, each yi satisfies yi = y mod mi and y <
∏t
i=1mi; y can be con-

structed with t shares.
For correctness of the verification procedure in (7), one can observe

that (∏
i∈B

E(y(i))

)
mod pi = g

∑
i∈B y

(i)
mod pi

= gy mod pi = gi
y mod pi

= gi
yi mod pi.

Hence, when every user behaves honestly, the proposed JRSS scheme
works correctly.

Security We will show that no coalition of size smaller than t can obtain
any information about the secret.

Theorem 4. For a passive adversary with t − 1 shares in the JRSS
scheme, every candidate for the secret is equally likely. I.e., the prob-
abilities Pr(d = d′) and Pr(d = d′′) are approximately equal for all
d′, d′′ ∈ Zm0.

Proof. Suppose the adversary corrupts t − 1 users and just observes the
inputs and outputs of the corrupted users without controlling their ac-
tions, i.e., the adversary is honest in user actions but curious about the
secret. Let S′ be the coalition of the users corrupted by the adversary.
Shares are obtained when each user shares his partial secret di, i.e., the



adversary will obtain t−1 share for each di. We will prove that the proba-
bilities that di = d′i and d = d′′i are almost equal for two secret candidates
d′i, d

′′
i ∈ Zm0 .
We already proved that the Asmuth-Bloom SSS described in Section 2

is perfect with equation (1). By using the shares of S′, the adversary can
compute y′(i) = y(i) mod MS′ . But even with these shares, there are M

MS′

consistent y(i)s that are smaller than M and congruent to y′(i) mod-
ulo MS′ . By replacing (1) with (6) and changing the definition of M to⌊
(
∏t
i=1mi)/n

⌋
, the value of the ratio

M

MS′
>

M∏t−1
i=1 mn−i+1

≈
∏t
i=1mi

n
∏t−1
i=1 mn−i+1

is greater thanm0
2. Hence, even with t−1 shares, there are stillm0

2 candi-
dates for each y(i) which is used to share the secret di. Since gcd(m0,MS′) =
1, there are approximately m0 y

(i)s, consistent with a secret candidate d′i.
Hence, for a secret candidate d′i the probability that di = d′i is approxi-
mately equal to 1

m0
and the perfectness of the scheme is preserved.

Aside from the shares, the only other information the adversary can
observe are the commitments and range-proofs. Given that the discrete
logarithm problem is hard and Cao et al.’s range proof scheme is secure,
the proposed JRSS scheme is also computationally secure. ut

A corrupted user cannot cheat in the JRSS scheme without being de-
tected. Since we are using a VSS scheme, while user i is sharing his partial
secret di, the conditions of the Asmuth-Bloom SSS must be satisfied as
proved in Theorem 2. Furthermore, if user i sends an incorrect share in
the combiner phase, the verification equation (7) will not hold. As a re-
sult, we can say that the JRSS scheme is secure for up to t− 1 corrupted
users and no user can cheat in any phase of the scheme.

6 Proactive Secret Sharing

Proactive SSS protocols enable shareholders to jointly renew their shares
without changing and revealing the long-term secret. By this feature, the
shares compromised by an adversary can be made obsolete with the up-
date process. Proactive secret sharing schemes have been investigated by
several researchers and various schemes are proposed in the literature [7,
8, 14, 15, 21].

In a proactive SSS, at the end of a certain time period τ , first the cor-
rupted users are identified in the detection procedure and then all such



users are rebooted, i.e., the adversary is removed from the computers
of the users and all of the past information is erased. Subsequently, the
new shares of the rebooted users are recovered in the recovery procedure.
Then, the shares of the remaining users are refreshed by a renewal proce-
dure. At the end of this protocol, the long-term secret remains the same
although the shares of the users for the next period are renewed. This
update phase is repeated at the end of each time period.

Adversary model: We assume the mobile adversary model of Herzberg
et al. [15]. In this model, the adversary is allowed to move among players
and can corrupt users at any time. The only restriction on the adversary
is that he cannot corrupt more than t− 1 distinct users in a time period
where t < n/2 is the threshold of the secret sharing scheme and n is the
number of users. If a user is corrupted during the course of the update
phase executed at the end of time period τ , he is considered corrupted for
both time periods τ and τ +1. With this model, Herzberg at al. proposed
an efficient and secure Shamir-based proactive SSS.

We use Aτ to denote the set of users where adversarial behavior is
detected in their actions in time period τ , and Bτ to denote the set of
remaining users. A user is disqualified and becomes a member of Aτ if his
share is inconsistent with the secret or if he tries to cheat in the share-
update phase. Each disqualified user is rebooted at the beginning of the
update phase, i.e., all the information including the secret share is erased,
hence, the new share of a corrupted user must be recovered by the users
in Bτ .

6.1 CRT-based Proactive Secret Sharing Scheme

To obtain a proactive SSS, we first modify equation (1), used in the
Asmuth-Bloom secret sharing scheme in Section 2 to

t∏
i=1

mi > nm0
3
t−1∏
i=1

mn−i+1. (8)

We also change the definition of M to

M =

⌊∏t
i=1mi

nm0

⌋
.

In the proposed proactive sharing scheme, first a secret is shared by
a dealer as described in Figure 6 by using the VSS scheme proposed in
Section 4.



Dealer Phase: The dealer shares a secret d ∈ Zm0 by equation (8) and
M , using the VSS scheme proposed in Section 4. Similar to the VSS, let
pi = 2mi + 1 be a prime for 0 ≤ i ≤ n. As in the VSS, y = d + Am0 is
an integer smaller than M , yi = y mod mi is the share of user i, and the
commitment E(y) = gy mod PN is broadcast with the range proof for y.

Fig. 6. CRT-based proactive SSS: The dealer phase.

The share update phase executed at the end of a time period τ has
three phases:

1. Detection: If a user j is detected as corrupted he is rebooted and
becomes a member of Aτ .

2. Share Recovery : The share of each rebooted user j ∈ Aτ is recon-
structed by the remaining users in Bτ .

3. Share Renewal : The users jointly share 0 by setting di = 0 for 1 ≤
i ≤ n in the JRSS protocol of Figure 5. Then they add these renewal
shares to their previous ones and obtain their new shares.

Detection If a user does not participate in a protocol where he is an
active member, or if the information he sends does not verify correctly, we
say that an adversarial action is detected. However, when an adversary
silently corrupts some users by only modifying their local data, we cannot
detect such inconsistencies after the adversary detaches himself from the
user. Hence, to protect proactiveness, we need to periodically test the
correctness of users’ local data. To do this, we use the E(y) values each
player holds, as in Figure 7.

Note that t < n/2, hence, there are at least t honest users who have
not been silently or actively corrupted by an adversary. Since the views
of all honest users are the same, an inconsistent value will be detected by
at least t users.

Share Recovery At the beginning of the update phase, the shares of
the rebooted users will still be missing. To recover the share of a rebooted
user j ∈ Aτ−1, each user Bτ−1 shares a random multiple of mj ∈ [0,M);
hence, the sum of these shared values, which will be denoted by z, will be
a multiple of mj . This ensures that when the users in Bτ−1 add their new
shares to their old ones for y, they obtain a share for an integer y′ = y+z,
where yj ≡ y ≡ y′ (mod mj). After obtaining a share for y′, each user in
Bτ−1 sends it to the jth user via a private channel so the jth user can



1. Let E(i)(y) denotes the local copy of the commitment E(y) for user i. For detection, the
ith user first checks the validity of his share by using the equation

yi
?
= E(i)(y) mod pi.

If the equation is not satisfied he broadcasts an inconsistency warning, reboots himself
and becomes a member of Aτ .

2. If the equation is satisfied, after receiving each E(i)(y) for i ∈ Bτ , the jth user tries to
find an inconsistency

E(i1)(y) 6= E(i2)(y)

for i1, i2 ∈ Bτ and he broadcasts an accusation either for user i1, i2 or both, depending
which is inconsistent with at least t E(i)(y)s.

3. If at least t accusations are broadcasted for a user i, he is rebooted with the users who
did not accuse him.

Fig. 7. CRT-based proactive SSS: The detection procedure.

compute y′ and hence, yj . This share recovery procedure is described in
detail in Figure 8.

Share Renewal After the recovery procedure, each user i ∈ Bτ has a
share yi = y mod mi, where y = d + Am0 < M . The idea used in this
phase is similar to the one in the JRSS scheme described in Section 5.
Instead of a random secret, each user shares 0 by some y(i) ≡ 0 (mod m0),
and y(i) ∈ [0,M), hence, the overall shared value will be a multiple of m0.
So, when a user adds his renewal shares with his old share yi, he obtains
a new share y′′i , which is a residue of an integer y′′ ∈

[
0,
∏t
i=1mi

)
such

that d = y′′ mod m0. In the next time period, y′′ will be the new y. The
share renewal procedure is described in Figure 9.

Note that y will remain less than
∏t
i=1mi provided that m0, which

is a very large integer, is greater than the number of times the update
procedure is applied, since y(i) < M , |Bτ | < n, and

m0

∑
i∈Bτ

y(i) < nm0M = nm0

⌊∏t
i=1mi

nm0

⌋
≤

t∏
i=1

mi.

6.2 Security

Assume that the update phase is started at the end of the τth time
period. In the share recovery procedure, the participants share z, which
is equivalent to 0 modulo mj for a rebooted user j. Also, in the share



1. To recover the share of a compromised user j ∈ Aτ each user i ∈ Bτ
chooses an integer

y(i,j) = Aimj ,

where Ai is a random integer such that y(i,j) < M and then shares it
among Bτ by computing the secrets

y
(i,j)
k = y(i,j) mod mk

for each user k ∈ Bτ . He sends y
(i,j)
k to user k secretly and broadcasts

(E(y(i,j)),RngPrf(E(y(i,j)),M)).

2. After receiving the shares y
(i,j)
k from each i ∈ Bτ , the kth player verifies

them by using the verification procedure in equation (5). In addition, each

commitment is checked by E(y(i,j)) mod pj
?
= 1. If a verification equation

does not hold for a user, he is disqualified.
3. The kth user computes his ephemeral secret

y′k =

(
yk +

∑
i∈Bτ

y
(i,j)
k

)
mod mk

and sends it to user j secretly.
4. After receiving the shares, y′ks, from each user k ∈ Bτ , the jth player

verifies them by using the verification procedure in equation (5) for y′.
The verification data for y′ = y +

∑
i∈Bτ y

(i,j) can be computed as

E(y′) = E(y)
∏
i∈Bτ

E(y(i,j)).

If a verification equation does not hold for a user, he is disqualified for
time period τ and τ + 1.

5. The compromised user jth computes

y′ =
∑
k∈Bτ

y′kM
′
Bτ ,kMBτ\{k} mod MBτ

where MBτ\{k}M
′
Bτ ,k ≡ 1 (mod mk). He computes his share as yj =

y′ mod mj .

Fig. 8. CRT-based proactive SSS: The share recovery procedure.



1. Each user i in Bτ shares 0 by first computing

y(i) = Aim0

where Ai is a random integer such that y(i) < M . Then he computes the
share for user j ∈ Bτ as

y
(i)
j = y(i) mod mj .

He sends y
(i)
j to each user j secretly and broadcasts(

E(y(i)),RngPrf(E(y(i)),M)
)

.

2. After receiving the shares y
(i)
j for i ∈ Bτ , the jth user verifies them by

using the verification procedure in equation (5). Besides, each commitment

is checked for E(y(i))
?≡ 1 (mod p0). If the verification equation of user

i does not hold, he is disqualified, i.e., he is moved from Bτ to Aτ and
Aτ+1. The jth user updates his overall share as

y′′j =

(
yj +

∑
i∈Bτ

y
(i)
j

)
mod mj .

3. The new verification data for y′′ = y +
∑
i∈Bτ y

(i) is computed as

E(y′′) = E(y)
∏
i∈Bτ

E(y(i)).

Fig. 9. CRT-based proactive SSS: The share renewal procedure.



renewal procedure, the participants jointly share y′′ − y, where y′′ is the
new shared integer and y is the previous one. With the following theorems,
we will prove that the perfectness condition is preserved in the dealing
phase and the shared integers in the next two phases are not computable
by a passive adversary.

Theorem 5. The modified secret sharing scheme with the new

M =

⌊∏t
i=1mi

nm0

⌋

and equation (8) is perfect in the sense that the probabilities Pr(d = d′)
and Pr(d = d′′) are approximately equal for all d′, d′′ ∈ Zm0.

Proof. Let S′ be a corrupted coalition of t− 1 users. For perfectness, we
need to check the value of M/MS′ which is

M

MS′
>

∏t
i=1mi

nm0
∏n
i=n−t+1mi

> m0
2

due to equation (8). Similar to the proof of Theorem 1, we can say that
the perfectness condition is preserved. ut

Lemma 1. For a passive adversary that has corrupted t− 2 users in the
recovery procedure, there are at least m0

2 possible candidates for each
y(i,j) used.

Proof. Let S′ be the set of t−2 corrupted users. In the recovery procedure,
first each user i shares a y(i,j) where adversary has t−2 shares for each of
them, i.e., y(i,j)

k for k ∈ S′\{j}. So, for a shared value y(i,j), the adversary
can only have the shares of S′ and additional information that y(i,j) ≡
0 (mod mj). Hence, although the adversary can obtain y(i,j) mod MS′ ,
there are still

M

MS′
=
∏t
i=1mi

nm0MS′
> m0

2

candidates for y(i,j) since y(i,j) < M . ut

Lemma 2. Let j be the rebooted user whose share is being recovered in the
recovery procedure. For a passive adversary that has corrupted t− 1 users
including j, there are at least m0

2 possible values for each uncompromised
yi, the secret share of user i.



Proof. In Step 3 of the recovery procedure described in Figure 8, an
honest user i computes his ephemeral secret

y′i =

yi +
∑
k∈Bτ

y
(k,j)
i

 mod mi

and sends it to user j, who has been corrupted by the adversary. Note
that yi is masked with y

(k,j)
i s, where

y
(k,j)
i = y(k,j) mod mi,

and due to Lemma 1, from the adversary’s point of view there are at least
m0

2 candidates, with the same remainder in modulo MS′ , for each y(k,j).
Hence, there are at least m0

2 candidates for each y(k,j)
i since (mi,MS′) =

1. This also proves that there are at least m0
2 candidates for yi = d +

Am0 mod mi. ut

Theorem 6. For a passive adversary in the recovery procedure, two se-
crets d′, d′′ ∈ Zm0 are equally likely.

Proof. Let j be the rebooted user whose share is being recovered. Since
user j was corrupted in time period τ , the adversary can have at most
t − 2 additional users corrupted in the recovery procedure. Beside these
t − 2 users, the adversary is allowed to corrupt only the jth user again.
Due to the mobile adversary model this is the best the adversary can do.
Let S′ be the set of t− 1 corrupted users including user j.

From Lemma 2, we know that there are at least m0
2 candidates for

yi = d+Am0 mod mi. Since gcd(m0,mi) = 1 these m0
2 candidates cover

all m0 secret candidates at least m0 times. Hence, all secret candidates
are equally likely. ut

Lemma 3. For a passive adversary that has corrupted t− 1 users in the
share renewal procedure, there are at least m0 possible candidates for each
y(i).

Proof. Assume that the adversary corrupted t− 1 users in time period τ
without being detected. Let S′ denote this set of corrupted users. Con-
sidering M ≈ (

∏t
i=1mi)/(nm0), we know that

M =
∏t
i=1mi

nm0
> m0

2
t−1∏
i=1

mn−i+1 > m0
2MS′



due to equation (8).
For a shared value y(i) = Aim0, the adversary will know that y(i) ≡

0 (mod m0). Since y(i) < M , there are M
m0

> m0MS′ candidates for y(i) ≡
0 (mod m0). In addition, the adversary can compute y(i) mod MS′ by
using the t−1 shares he obtained for y(i). But, there are still M

m0MS′
> m0

candidates for y(i). ut

Theorem 7. An adversary with t − 1 corrupted shares in the share re-
newal procedure cannot compute a new share in time period τ + 1 from
an old share he has from time period τ .

Proof. In Step 2 of the renewal procedure described in Figure 9, the jth
user updates his overall share as

y′′j =

(
yj +

∑
i∈Bτ

y
(i)
j

)
mod mj .

From Lemma 3, there are at least m0 possible candidates for y(i) and
gcd(mj ,m0MS′) = 1. Hence, there are at least m0 possible candidates for
each

y
(i)
j = y(i) mod mj .

Hence, the adversary cannot compute y′′j even if he knows the old share
yj . ut

By Theorems 6 and 7, the proposed PSS scheme is secure against
passive adversaries in Herzberg et al.’s mobile adversary model.

Security Analysis for an Active Adversary As proved in Sections 4.3
and 5.1, in the proposed VSS and JRSS schemes, if a user tries to cheat
by sending inconsistent information he will be detected easily since some
verification equations will not hold.

In the share renewal and share recovery phases, we use modified ver-
sions of the JRSS scheme, where the shared values are congruent to 0
with respect to moduli m0 and mj , respectively, and where user j has
been rebooted before the execution of the update phase. To verify these
restrictions, in the second step of Figure 9, a user j checks his share for
y(i) by using the verification procedure in equation (5) and checks

E(y(i))
?≡ 1 (mod p0).



In the second step of Figure 8, a user k also verifies his share for y(i,j) by
using the verification procedure in equation 5 and checks

E(y(i,j))
?≡ 1 (mod pj).

Note that the other restrictions are also verified since they are automati-
cally checked by the proposed VSS scheme. Therefore, an active adversary
cannot send inconsistent data without being detected.

7 Practicality and Efficiency of the Schemes

If both p and 2p+1 are prime numbers then p is called a Sophie Germain
prime. It is believed that the number of Sophie Germain primes is infinite
and due to the conjecture of Hardy and Littlewood [13], for sufficiently
large N the number of Sophie Germain primes less than N is

2C
∫ N

2

dx

log x log 2x
≈ 2CN

(lnN)2
, (9)

where C ≈ 0.66 is the twin prime constant. The accuracy of the conjecture
and the ratio can be seen in Table 2.

N Actual Integral Ratio

1,000,000 7746 7811 6917
10,000,000 56032 56128 50822

100,000,000 423140 423295 389107
1,000,000,000 3308859 3307888 3074425

10,000,000,000 26569515 26568824 24902848
100,000,000,000 218116524 218116102 205808662

Table 2. Number of Sophie Germain primes less than N [5]. Second column is the
actual number of Sophie Germain primes less than N . Third and fourth columns are
the integral and ratio approximations in the left and right side of (9), respectively.

For the proposed VSS, JRSS, and PSS schemes, a sequence m1 <
m2 < · · · < mn consisting of n Sophie Germain primes is needed. And for
the security issues, this sequence must also satisfy (1) for the VSS scheme.
Let us assume that m0, the number of secret candidates, is a k-bit prime.
From (1), first, each mi must be at least a 2k-bit Sophie Germain prime.
We know that such primes exist since the number of Sophie Germain
primes is infinite. Second, we need to argue that we can find a Sophie



Germain sequence for every t and k such that the product of t smallest
number in the sequence is larger than the product of t−1 largest ones and
m0

2. Note that the Hardy-Littlewood conjecture says that the density of
the Sophie Germain primes less than N is proportional with 1/(lnN)2,
where the prime number theorem says that the density of primes less than
N is proportional with 1/(lnN). Hence, considering N � lnN , finding
an Asmuth-Bloom sequence with Sophie Germain primes satisfying (1)
should not be much harder than finding such a sequence with ordinary
primes.

An informal analysis of the existence of a desired sequence and the
information rate of the proposed schemes can be given as follows: Let m0

be a k-bit prime. Considering n (the number of participants) is in the
order of hundreds or thousands, from (9), the number of 2k-bit Sophie
Germain primes is

2C22k+1

(ln 22k+1)2
− 2C22k

(ln 22k)2
=
C22k+1

(ln 2)2

(
2

(2k + 1)2
− 1

(2k)2

)
� n.

Let m1 be a 2k-bit Sophie Germain prime and ` = lnm1. Let mi be the
i − 1st Sophie Germain prime after m1. Due to (9), we can assume that
mi ≈ m1 + (i − 1)`2. Note that the ratio mi/mj for i < j is bounded

above by
(

1 + n`2

m1

)
. Hence, the inequality

m1 >
m0

2
∏t−1
i=1 mn−i+1∏t−1
i=1 mi+1

is satisfied when

m1 > m0
2

(
1 +

n`2

m1

)t−1

.

Since m1 � n`2 and m1 � t, we can choose m1 ≈ m0
2, and the informa-

tion rate of the VSS scheme becomes |m0|/|mn| ≈ |m0|/|m0
2 + 4n(lnm0)2| ≈

1/2. A similar analysis can be devised for the JRSS and PSS schemes.
For the JRSS scheme, (1) is replaced with (6). So,

m1 > nm0
2

(
1 +

n`2

m1

)t−1

.

And for the PSS scheme, (1) is replaced with (8), hence,

m1 > nm0
3

(
1 +

n`2

m1

)t−1

.



So the information rate for the JRSS and PSS schemes are,

|m0|
|nm0

2 + 4n(lnm0)2|
≈ 1

2
and

|m0|
|nm0

3 + 4n(lnm0)2|
≈ 1

3
,

respectively.
Although the proposed schemes are not ideal, they are practical since,

the information rates for the VSS, JRSS, and PSS schemes are approx-
imately 1/2, 1/2 and 1/3, respectively. Note that the denominators of
these rates are actually the exponents of m0 in (1), (6), and (8). In [1],
the perfectness definition used by Asmuth and Bloom guarantees that an
adversary with t − 1 shares cannot eliminate any secret candidate, i.e.,
the cardinality of the secret candidate set is not reduced. Note that the
perfectness definition used in Theorem 1 and Section 2 is stronger than
the one used by Asmuth and Bloom. As Theorem 1 shows, with (1) not
only no secret candidate can be eliminated but also the probabilities of
each candidate being the secret are almost equal. Instead of (1), Asmuth
and Bloom used the following equation:

t∏
i=1

mi > m0

t−1∏
i=1

mn−i+1. (10)

If (10) is used the VSS and JRSS schemes (the right hand side of (10)
is multiplied by n for the JRSS scheme) will still be perfect in the sense
that no secret candidate is eliminated in case of an adversary obtains
t − 1 shares. On the other hand, the information rates of these schemes
will be approximately 1 and the schemes would be almost ideal. For the
PSS scheme, if we use m0

2 instead of m0
3 in the left of (8), i.e.,

t∏
i=1

mi > nm0
2
t−1∏
i=1

mn−i+1,

although Theorems 5 and 8 can be rewritten with the weaker perfectness
definition, in Lemma 9, we cannot guarantee that there are m0 possi-
ble candidates for each y(i) since the adversary also knows that y(i) ≡ 0
mod m. Hence, we cannot use the same trick to obtain a smaller infor-
mation rate for the PSS scheme.

8 Conclusion

In this paper, we proposed a practical CRT-based verifiable secret shar-
ing scheme. We showed that previous solutions for this problem did not



guarantee the consistency of the shares. We also put forth a secure JRSS
scheme based on Asmuth-Bloom secret sharing as a naive application of
the VSS scheme. Additionally, by extending the ideas used in the VSS
and JRSS schemes, we proposed a PSS scheme where the shares of the
users are periodically renewed without changing the long-term secret. To
the best of our knowledge, the proposed schemes are the first CRT-based
secure VSS, JRSS, and PSS schemes in the literature.
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