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Abstract. Some new near 5 rounds impossible differential properties of
AES are first presented in this paper, in which active bytes of 1st round
or 5th round are in different columns and in favor of extension. Addi-
tionally, we first propose the complexities expressions of an universal
impossible differential attack, which can help us to rapidly search appro-
priate impossible differential paths. More importantly, our near 5 rounds
impossible differential properties and complexities expressions lead to a
series of new impossible differential attacks on 7 rounds AES-128, 7-9
rounds AES-192, and 8-12 rounds AES-256.
Keywords: AES, impossible differential properties, Impossible differen-
tial attacks.

1 Introduction

The Advanced Encryption Standard (AES)[8], designed by Joan Daemen and
Vincent Rijmen, is a 128-bit block cipher with a variable key length(128, 192,
and 256-bit keys are supported). Since adopted by NIST [13], AES has gradually
become the most widely used block cipher. It has been widely used to protect
secret data in both software and hardware applications, and to design other
cryptographic primitives, for example, CBC-MAC and Alpha-MAC[17].

In the last ten years, AES has been subjected to very intensive cryptanalytic
effort. There are some kinds of cryptanalysis on AES, including differential, lin-
ear, square, collision, impossible differential, related-key cryptanalyses, etc. In
paper [8], it is proved that 4-round differential trails with a predicted prop ratio
above 2−150 and 4-round linear trails with a correlation above 2−75 do not exist.
What’s more, it proved that there are no “square” attacks faster than exhaustive
key search for 7 rounds or more of AES. In related-key attacks, the situation
started to change from the spring of 2009, for Biryukov et al. found a series of keys
recovery attacks on AES-256 and AES-192[3,4,5]. They, who first published at-
tacks on the full AES-256 and AES-192 with time complexities of 299.5 and 2176,
respectively[3], gave an attack on 9-round and 10-round AES-256 with practical
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complexities of 232 and 244, respectively[5]. The security of AES against impos-
sible differential attacks had been challenged in previous research[6,7,14,15,16].
Later, utilizing an almost same 4-round impossible differential property, an im-
proved impossible differentials attacks on AES was presented[1,18]. Especially,
the best results of AES-128 was proposed, which is attacking on 7-round AES-
128 with 2115.5 data complexity and 2119 time complexity. In Paper [18], the
better impossible differential attacks on 7-round AES-192 and 8-round AES-256
were also presented. The complexities of 7-round AES-192 were 2115.5 chosen
plaintext (CP) pairs as well as 2119 time encrypting, and that of 8-round AES-
256 were 2116.5 data complexity and 2247.5 time complexity. Recently, under the
assumption that the (shifted) column with zero difference was fixed, the com-
plexities in [1,16,18] were slightly improved by using a trivial sleight[11].

The main contributions of this paper are to present novel near 5 rounds im-
possible differential properties of AES and the complexities expressions of an
universal impossible differential attack. In our new near 5 rounds impossible dif-
ferential properties, the number of active bytes of the 1st round or 5th round
can be 1,2 or 3, and the active bytes are in different columns and in favor of
extension. In this paper, we sum up an universal impossible differential attack
on AES and first give the formal expressions of their complexities, which can
help us to rapidly search appropriate impossible differential paths. More impor-
tantly, utilize our near 5 rounds impossible differential properties and complex-
ities expressions can obtain the best results of impossible differential attacks on
AES-128/192/256. Table 2 shows some of our results of impossible differential
attacks on AES-192/256, our result can be improved by lu’s method.[11].

Up to now, the impossible differential attacks on 7-round AES-128 are the
best known attacks. Besides impossible differential attacks, there exist two marginal
attacks on 7-round AES-128[9,10] (ie., require nearly the entire codebook, or time
complexity close to key exhaustive search), respectively using square attack and
collision attack. In this paper, we add a new and non-marginal impossible differ-
ential attack on 7-round AES-128, as well as impossible differential attacks on
more than 7-round AES-192 and more than 8-round AES-256. We summarize
our results along with some previously known works in Table 1.

AES is an iterated block cipher, each iterated round applies four basic opera-
tions: SubBytes, ShiftRows, MixColumns, and AddRoundKey. Only MixColumn
operation can change the number of active bytes, and the linear transformation
of MixColumn has the characteristic: the sum of the number of active columns at
its input and output is at least 5. Using this property and previous works[1,18],
we find some new near 2.5-round difference trails with probability 1. Moreover,
we first propose some near 5 rounds impossible differential properties. In these
impossible differential properties, the number of active bytes of 1st round and
5th round can be 1,2 or 3, and active bytes are in different columns, so our
impossible differential properties are easy to be extended.

The paper is organized as follows. In Section 2, we list the notations and
Definitions used in this paper and give a brief description of the AES. Section
3 presents our universal impossible differential attacks methods. The impossible



differential properties of AES are described in Section 4. Some of our new im-
possible differential attacks on AES are presented in Section 5 and Section 6.
Section 7 is our conclusions.

2 Backgrounds and Notations

In this section, we give a brief description of the AES, and define some notations.

2.1 A Brief Description of AES

AES is a 128-bit block cipher with square structure, and the length of secret key
is 128 , 192 or 256 bits. A 128-bit data block of the AES is usually exhibited as
an array of 4× 4 bytes as shown in Fig. 1
The input plaintext block is passed through a iterated function, named encryp-

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

Fig. 1. 4× 4 Byte coordinate of 128-bit AES data block

tion round function, 10 (respectively 12 or 14) times for 128-bit(respectively
192-bit or 256-bit) secret key. Each encryption round function consists of the
four basic transformations in the following order:

– SubBytes(SB): independently operate a non-linear byte substitution on each
byte of the state using an 8× 8 S-box.

– ShiftRows(SR): cyclically shift left the bytes in the last three rows of the
state with different numbers of bytes, i.e., one byte for the second row, two
for the third row and three for the fourth row.

– MixColumns(MC): multiply each column of the state with a fix matrix.
– AddRoundKey(AK): an exclusive-or(XOR) of the data block with the round

subkey.

Note that AK is applied before the first round and MC is excluded in the
last round [8].

Similarly, the ciphertext block can be decrypted by decryption round func-
tions, and each round functions is composed of the four basic inverse transfor-
mations: InvAddRoundKey(i.e. AddRoundKey), InvMixColumn, InvShiftRow,
and InvSubByte.

There are two properties of inverse transformations: one is that the order of
InvShiftRow and InvSubByte are indifferent, and the other is that the trans-
formation sequence AddRoundKey(Sr

i ,K ′
r) → InvMixColumn(Sr

i+1) can be



replaced by

InvMixColumn(Sr
i ) → AddRoundKey(Sr

i+1,K
′
r
−1),

where K ′
r
−1 = InvMixColumn(K ′

r). So each decryption round function can be
transformed into the following order:

– InvSubBytes(SB−1): byte substitution is the inverse table of SubByte.
– InvShiftRows(SR−1): only one difference from ShiftRows is shift right.
– InvMixColumns(MC−1): a matrix multiplication with another different

coefficients from MixColumns.
– AddRoundKey(AK−1).

AddRoundKey(S0,K0) is used before the first round as well, and InvMixColumns
is rejected in the last round.[8].

2.2 Notations and Definitions

P : a plaintext P = (p0, p1, . . . , p15).
C : a ciphertext C = (c0, c1, . . . , c15).
P : a special set of four bytes position of an AES state. After SR

operation, the four bytes must be in one column. Obviously,
P = {(0, 5, 10, 15), (4, 9, 14, 3), (8, 13, 2, 7), (12, 1, 6, 11)}.

Q : as well as a special set of four bytes position of an AES state. After
SR−1 operation, the four bytes must be in one column.
Q = {(0, 13, 10, 7), (4, 1, 14, 11), (8, 5, 2, 15), (12, 9, 6, 3)}.

b : the set of some bytes, b = (b1, . . . , bi), 0 < i ≤ 4. If b is a subset of
any element of P, we say that b ∈ P.

S(bi) : the output of s-box when input is byte bi.
r : the iterated times of an encryption (or decryption)round function.

Kr : the rth round’s 128-bit encrypting subkey, Kr = (kr
0, k

r
1, . . . , k

r
15).

Kr
j : part bytes of the rth round’s subkey, Kr

j ∈ Kr, (0 < j < 15).
Sr

B : the output state of SB at the rth encryption round.
Sr

B−1 : the output state of SB−1 at the rth decryption round.
Sr

R : the output state of SR at the rth encryption round.
Sr

C : the output state of MC at the rth encryption round.
Sr

K : the output state of AK at the rth encryption round.
t : the number of the structures.

Prr : the probability of the output of MC−1 of the rth decrypting round.
Prd : the data complexity.
Prt : the time complexity.
de : the number of left message pairs before eliminating wrong subkey

values by the part initialization key K0
zP

f
.

zk : the number of bytes for the guessed subkeys.
zP
f : the number of active bytes for the chosen plaintexts.

zC
f : the number of fixed bytes for the ciphertexts.

∆x : the XOR difference of x and x′.



3 Impossible Differential Attacks

Impossible differential attacks use differentials that hold with probability 0 (or
non-existing differentials) to eliminate wrong key material and leave the right
key candidate. The majority of impossible differential attacks on AES make use
of the extremely similar algorithms, which is named as an universal impossible
differential attack methods in the paper. Here, we describe the universal im-
possible differential attack method, and first deduce the formal expressions of
their complexities evaluation. These formulae will help us to choose appropriate
impossible differential paths quickly.

3.1 universal Impossible Differential Attacks and their Complexities

Assume that there is a r0-round impossible differentials property, then extend
r1 rounds differentials and r2 rounds differentials at the bottom and the top,
respectively. We can get r = r0 + r1 + r2 rounds AES. Without losing the
generality, we only discuss r2 ≤ 1. Impossible differential attacks on the r-round
AES can be summarized as follows:

1. Defined a structure as a set of 28×zP
f plaintexts, which have fixed values in all

but zP
f bytes. There are about 216×zP

f −1 plaintexts pairs in such a structure.
2. Randomly take t structures, and encrypt all plaintexts pairs using r-round

AES. Only choose the pairs whose ciphertexts pairs are same except zC
f

bytes in the appointed positions. The expected number of such pairs is t ×
216×zP

f −1−8×zC
f .

3. Guess some subkeys of last r1 rounds, and suppose that zk bytes be guessed.
Decrypt the chosen pairs r1 rounds using the guessed bytes (Kr0+r1+r2

j1
,

Kr0+r1+r2−1
j2

, . . . , Kr0+r2
j3

), (j1 + j2 + j3 = zk). Only select pairs, at the
output of MC−1 of the rth

1 round, whose differentials correspond to the
output of the r0-round impossible differentials property. If the probability of
each decryption round is Prr1 , P rr1−1, . . . , P r1, respectively, the excepted
number of remained pairs is de = t× 216×zP

f −1−8×zC
f × Prr1 × . . .× Pr1.

4. Eliminate wrong zP
f bytes K0

zP
f

= (k0
a1

, k0
a2

, . . . , k0
a

zP
f

) ∈ K0,(0 < a1, a2, . . . , azP
f

<

16) by showing that the impossible differential property holds if these bytes
are used in this step.
(a) Precomputation:

i. If r1 = 1,, then for the state S1
K , give all 2m possible differences

pairs (x, x0), which meet the input of the r0-round impossible differ-
ential property. For these pairs, perform orderly MC−1, SR−1 and
SB−1, respectively, then obtain the output pairs (S1

B−1 , S′1B−1). Com-
pute their difference ∆S1

B−1 . In all, there are 28×zP
f output difference

values. On average, about 2m−8×zP
f pairs (x, x0) correspond to one

value ∆S1
B−1 .



ii. If r1 = 0, give all 2m possible differences pairs (x, x0), which meet the
input of the r0-round impossible differential property. In all, there
are 28×zP

f difference values ∆S0
K . On average, about 2m−8×zP

f pairs
(x, x0) correspond to one value ∆S0

K .
(b) Give a hash table H, which contain ∆S1

B−1 and its corresponding values
S1

B−1 .
(c) For each remained pair in step 3, compute corresponding plaintext dif-

ference P ⊕ P ′ = (P ⊕ K0
zP

f
) ⊕ (P ′ ⊕ K0

zP
f
) = ∆S1

B−1 , check the hash

table H, and obtain corresponding values S1
B−1 .

(d) Initialize a list A, which contains all 28×zP
f possible values K0

zP
f
. Compute

a wrong value K0′
zP

f
= S1

B−1 ⊕ P , and eliminate it from A. At least one

of K0
zP

f
is remained with probability Pre

K0
zP

f

= 28×zP
f × (1− 2

m−8×zP
f

2
8×zP

f
)de .

(e) For all guessed zk subkeys (Kr0+r1+r2
j1

, Kr0+r1+r2−1
j2

, . . ., Kr0+r2
jr1

), (j1 +
j2 + . . . + jr1 = zk), the wrong value remains with probability

Pre
K = 28×(zk+zP

f ) × (1− 2m−8×zP
f

28×zP
f

)de ≈ 28×(zk+zP
f ) × e−2

−(16×zP
f −m)

de ,

when Pre
K is very small, the false K0

zP
f

can be eliminated with very high

probability. So if a value K0
zP

f
is remained, the guessed zk-byte of subkeys

are correct with high probability.
According to paper[1], let Pre

K ≈ 2−19, the number of chosen structures

t =
2

log
(19+8×(zk+zP

f ))×log2
e

10
log2

10
+1+8×zC

f −m

Prr1 × Prr1−1 . . . P r1
. (1)

Complexity Evaluation. Let Prr1 = 2−prr1 , P rr1−1 = 2−prr1−1 , . . . ,
P r1 = 2−pr1 , the date complexity is

Prd = 2zP
f × t = 2

log
(19+8×(zk+zP

f ))×log2
e

10
log2

10
+1+8×(zC

f +zP
f )−m+prr1+prr1−1+...

. (2)

The time complexity Prt is changed according to the impossible differential
paths. Here we can give a reference.
If having two nonzero differences bytes in the last round of impossible differ-

ential property, such as Type 1, then Prt ≤ 2
log

(19+8×(zk+zP
f ))×log2

e
10

log2
10

+8×zk+16×zP
f −m+31

;
If having 3 nonzero differences bytes in the last round of impossible differen-

tial property, such as Type 2, then Prt ≤ 2
log

(19+8×(zk+zP
f ))×log2

e
10

log2
10

+8×zk+16×zP
f −m+33

.



4 Some Important Properties of AES

Some new near 2.5-round difference paths of AES are given in this section, which
result in a series of novel near 5-round impossible differential properties of AES.
The advantage of the near 5-round impossible differential properties is easier to
be extended.

4.1 Near 2.5-round Difference Paths of AES

We propose some new near 2.5-round differential trails. Combining these near
2.5-round differential trails with other 2− 3 rounds differential trails [2,8], some
novel 5-round impossible differential properties of AES will be exhibited, subse-
quently.
Fact1: Given a plaintext pair (P, P ′) whose all bytes are fixed except two bytes

- - - -

- - - -

- -

SB

SB

SB

SR

SR

SR

MC

MC

2∆S1
B1′

= ∆S1
B3′

AK

AK

*

*

∆S1
B1′

∆S1
B1′

∆S1
B3′

∆S1
B3′

nonzero difference byte * two active bytes

Fig. 2. Near 2.5-round differential path with two difference bytes in (b1, b3) ∈ P

(bi, bj) ∈ P, (1 ≤ i, j ≤ 4). After the SB operation of the 1st round, if differences
(∆S1

Bi′
,∆S1

Bj′
)=(S(bi) ⊕ S(b′i), S(bj) ⊕ S(b′j)) satisfy some special conditions,

then at the output of MC of the 2rd round, it holds with probability 1 that
one column is fixed with four zero difference bytes, and each of the other three
columns is active with four nonzero difference bytes. Especially, once the con-
dition is determinate, so is the site of the fixed column. There is no differences
propagation until the output of SR of the 3rd round.
Assume that i = 1, j = 3, (b1, b3) ∈ P, there are four cases as follows:
Case 1 : If 2∆S1

B1′
= ∆S1

B3′
, only the column 0 is fixed with probability 1. See

Fig 2.
Case 2 : If it is satisfied that ∆S1

B1′
= 3∆S1

B3′
, then only the column 1 is fixed

with probability 1.
Case 3 : If ∆S1

B1′
= 2∆S1

B3′
, only the column 2 is fixed with probability 1..

Case 4 : If 3∆S1
B1′

= ∆S1
B3′

, only the column 3 is fixed with probability 1.



Proof. The proof of Fact 1 is obvious. (bi, bj) ∈ P , according to the definition in
Section 2.2, their output differences of SR of 1st round are in one column. For
example, in Fig.2, differences of MC of 1st round can be computed by




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 ·




∆S1
B1′
0

∆S1
B3′
0




if 2∆S1
B1′

= ∆S1
B3′

, then 2∆S1
B1′
⊕3·0⊕∆S1

B3′
⊕1·0 = 0. It holds with probability

1 that the 1st byte difference is zero. The zero difference byte deduces four zero
difference bytes in column 0 at the output of MC of the 2nd round. Only MC
operation produces difference propagate, so there is no differences propagation
until the output of SR of the 3rd round.

The proofs of other cases are similar. ut
Remark 1: In the paper, the black boxes refer to nonzero difference (active)
bytes while the white boxes denote the equal(fixed) bytes.
Remark 2: Assume that i = 1, j = 2, (b1, b2) ∈ P, then there are another four
cases, i.e., if 2∆S1

B1′
= 3∆S1

B2′
, the columns 0 is fixed with probability 1; if

∆S1
B1′

= 2∆S1
B2′

, the columns 1 is fixed with probability 1 ; if ∆S1
B1′

= ∆S1
B2′

,
the columns 2 is fixed with probability 1 ; if 3∆S1

B1′
= ∆S1

B2′
, the columns 3 is

fixed with probability 1.
Remark3: The number of the elements of set P is 4, and each element has 4
positions, so 4×C2

4 = 24; one (bi, bj) ∈ P produces 4 near 2.5-round differential
paths. In all, there is 96 near 2.5-round differential paths in Fact 1.

¾ ¾ ¾ ¾

¾ ¾ ¾ ¾

¾ ¾ ¾

SB−1

SB−1

SB−1

SR−1

SR−1

SR−1

MC−1

MC−1

AK−1

AK−1

AK−1

e4c′1 = d4c′3

4c′14c′1

4c′34c′3

4c′1

4c′3

nonzero difference byte * two active bytes

Fig. 3. Near 2.5-Round differential path with two difference bytes in (c1, c3) ∈ Q

Fact 2: Given a ciphertext pair (C,C ′) whose all bytes are fixed except two bytes
(ci, cj) ∈ Q, (1 ≤ i, j ≤ 4). After the output of SB−1 of the 1st round, if the
two nonzero differences (∆S1

B−1
i′

,∆S1
B−1

j′
)=(S−1(ci)⊕S−1(c′i), S

−1(cj)⊕S−1(c′j))



satisfy some special conditions, then at the output of MC−1 of the 2rd round, it
holds with probability 1 that one column is fixed with four zero difference bytes,
and each of other three columns are active with four nonzero difference bytes.
Especially, once the condition is confirmed, so does the site of the fixed columns.
There is no differences propagation until the output of SR−1 of the 3rd round.
Assume that two active bytes be (c1, c3) ∈ Q, Then at the output of MC−1 of
the 2rd round, it holds with probability 1 that one column is fixed and the other
three columns are active. There are four cases as follows:
Case 1 : If e ·∆S1

B−1
1′

= d ·∆S1
B−1

3′
, only the column 0 is fixed. let ∆S1

B−1
1′

= ∆c′1,

∆S1
B−1

3′
= ∆c′3, Fig. 3 shows its near 2.5-round decrypting differential path.

Case 2 : If 9 ·∆S1
B−1

1′
= b ·∆S1

B−1
3′

, the column 1 is fixed .

Case 3 : If d ·∆S1
B−1

1′
= e ·∆S1

B−1
3′

, the column 2 is fixed.

Case 4 : If b ·∆S1
B−1

1′
= 9 ·∆S1

B−1
3′

, then the column 3 is fixed.

Proof. The proof of Fact 2 is similar to that of Fact 1. For example Fig.3, we
only need to make e ·∆S1

B−1
1′
⊕ b · 0⊕ d ·∆S1

B−1
3′
⊕ 9 · 0 = 0 replace 2 ·∆S1

B1′
⊕

3 · 0⊕ 1 ·∆S1
B3′

⊕ 1 · 0 = 0 in Fig.2. ut

- - - -

- - - -

- -

SB

SB

SB

SR

SR

SR

MC

MC

AK

AK

s

s s

s s
s

nonzero difference byte s same different bytes in the same state

Fig. 4. near 2.5-Round Differential Path with Three Active Bytes

Fact 3: Given a plaintext pair (M, M ′) whose all bytes are fixed except three
bytes (bi, bj , bk) ∈ P, (1 ≤ i, j, k ≤ 4). After the output of SB of the 1st round, if
∆S1

Bi′
= ∆S1

Bj′
= ∆S1

Bk′
, then at the output of MC of the 2rd round, it is sat-

isfied with probability 1 that two columns are fixed and the other two columns
are active . Especially, once the sites of three difference bytes (b′i, b

′
j , b

′
k) ∈ P

are determinate, so are the sites of two fixed columns. There is no differences
propagation until the output of SR of the 3rd round. For example, if the three
active bytes are in position (0,10,15), the near 2.5-round differential path can be



seen in Fig.4.

Proof. Let ∆S1
Bi′

= ∆S1
Bj′

= ∆S1
Bk′

=γ. The difference bytes are in one column
at the output of the 1st SR operation, as shown in Fig.4, the output difference
of MC of the 1st round in column 0 can be computed as follows:




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 ·




γ
0
γ
γ


 =




γ
γ
0
0




If zero difference byte multiplies coefficient 01, we have 02 ·γ⊕03 ·γ⊕01 ·γ = 0.
In coefficient matrix, each row has two coefficients 01, which means two zero
differences bytes in one column. After MC operation of the 2nd round, in all,
there are eight nonzero differences bytes in two columns. Only MC operation
can produce difference propagation, so there is no differences propagation until
the output of SR of the 3rd round. ut
Fact 4: Given a ciphertext pair (C,C ′) whose all bytes are fixed except three
bytes (ci, cj , ck) ∈ Q, (1 ≤ i, j, k ≤ 4). After the output of SB−1 of the 1st

round, if (∆S1
B−1

i′
,∆S1

B−1
j′

,∆S1
B−1

k′
) satisfy some special conditions, then at the

output of MC−1 of the 2rd round, at least one column is fixed with probability
1. Especially, once the condition is determined, so do the number and the sites
of fixed columns. There is no differences propagation until the output of SR−1

of the 3rd round.
Assume that i = 1, j = 3, k = 4, and three active bytes are (c1, c3, c4) ∈ Q.

At the output of MC−1 of the 2rd round, if we want at least one column fixed
with probability 1, there are four cases. The details are as follows:
Case 1 : If e · ∆S1

B−1
1′

= d · ∆S1
B−1

3′
⊕ 9 · ∆S1

B−1
4′

, then at least the column

0 is fixed. Among all (28 − 1)3 ≈ 224 values (∆S1
B−1

1′
,∆S1

B−1
3′

,∆S1
B−1

4′
), about

(28 − 1) · (28 − 2) ≈ 216 values fulfil the condition 1, so the probability is 2−8.
Case 2 : If 9 ·∆S1

B−1
1′

= b ·∆S1
B−1

3′
⊕d ·∆S1

B−1
4′

, then at least the column 1 is fixed.

Similarly, about 216 values hold the condition 2.
Case 3 : If d ·∆S1

B−1
1′

= e ·∆S1
B−1

3′
⊕ b ·∆S1

B−1
4′

, at least the column 2 is fixed, 216

values meet this condition.
Case 4 : If b ·∆S1

B−1
1′

= 9 ·∆S1
B−1

3′
⊕e ·∆S1

B−1
4′

, then at least the column 3 is fixed.

216 values satisfy the condition 4.

Proof. The proof of Fact 4 is similar to that of Fact 1 and Fact 3. ut

4.2 Near 5-round impossible differential property of AES

In this section, we present three kinds near 5-round impossible differential prop-
erties of AES. By reversing the two parts of the difference paths or by changing



positions of difference bytes, it is easy to obtain new impossible differential prop-
erties, Here we no longer describe the details.
Type 1: If messages pairs (M, M ′) satisfy Fact 1 or Fact 2, they have near
5-round impossible differential property illustrated in Fig.5.
Type 2: If messages pairs (M, M ′) satisfy Fact 3 or Fact 4, they hold near
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Fig. 5. Type 1: Near 5-Round impossible differential property of AES

5-round impossible differential property, which is shown in Fig.6.
Type 3: If messages pairs (M, M ′) satisfy Fact 2 and Fact 3, they possess of

near 5-round impossible differential property like Fig.7.

Using the three kinds of new impossible differential properties of AES de-
scribed above, we can give some new impossible differential attacks on 7-round
AES-128/192. Furthermore, we can first give some new impossible differential
attacks on 8-round or more of AES-192/256.

5 New impossible differential attack on 7-round AES

According to the three kinds of new impossible differential properties of AES de-
scribed in Section 4, we present a new impossible differential attack on 7-round
AES-128, as well as 7-round AES-192.
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5.1 New impossible differential attack on 7-round AES-128

ATTACK 1: For Fig.8, the impossible differential attack is as follows:
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- ¾Type 1 :Near 5-round impossible differential property
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Fig. 8. Attack 1: Impossible differential attack on 7-round of AES

1. Define a structure T , whose all bytes are fixed except four bytes in position
(0, 5, 10, 15), there are C2

32 ≈ 263 plaintexts pairs in such a structure.
2. Randomly choose t structures with plaintexts pairs(P, P ′), and encrypt these

plaintexts pairs by 7-round AES. Only filtrate the pairs whose ciphertexts
pairs (C, C ′) are same except eight bytes in positions (2, 3, 5, 6, 8, 9, 12, 15).
263 × 2−64t = 2−1t pairs are excepted in this step.

3. Guess four bytes K7
1 = (k7

2, k
7
5, k

7
8, k

7
15) ∈ K7, and partially decrypt the

remained pairs (C,C ′) one round using K7
1 . Only select the pairs whose

output of MC−1 are zero difference except byte in position 9. The excepted
number of the pairs is 2−1 × 2−24t = 2−25t in this step.

4. Guess another four bytes K7
2 = (k7

3, k
7
6, k

7
9, k

7
12) ∈ K7, partially decrypt the

remained pairs (C, C ′) one round using K7
2 . Only choose the pairs whose

output of MC−1 are zero difference except byte in position 12.
Compute two subkey bytes k6

9 = k7
9 ⊕ k7

5 and k6
12 = k7

12 ⊕ k7
8,

For the remained 2−25 × 2−24t = 2−49t pairs, check if Fact 2 is satisfied. In
this case, the probability of Fact 2 is 2−6. Finally, the excepted number of
pairs is de = 2−49 × 2−6t = 2−55t in this step.

5. Eliminate wrong four bytes K0
1 = (k0

0, k
0
5, k

0
10, k

0
15) ∈ K0 by impossible dif-

ferential property in this step.
(a) Precomputation: For the state s1

K , given all 242 possible differences pairs
(x, x′), which only have one nonzero difference byte in column 0. For
these pairs, perform orderly MC−1, SR−1 and SB−1, respectively, and
obtain the output pairs (s1

B−1 , s′1B−1). Computer their difference ∆s1
B−1 .



In all, there are 232 output difference values. On average, there are about
210 pairs (x, x′) corresponding to one value ∆s1

B−1 .
(b) Give a hash table H, which contain ∆s1

B−1 and its corresponding values
s1

B−1 .
(c) For remained pairs in step 4, compute corresponding plaintext difference

P ⊕ P ′ = (P ⊕ K0
1 ) ⊕ (P ′ ⊕ K0

1 ) = ∆s1
B−1 , check table H, and obtain

corresponding values s1
B−1 .

(d) Given a table A containing all 232 values K0
1 . Compute wrong values

K0
1 = s1

B−1 ⊕ P , and eliminate them from A. If at least one value is
remained, the probability is Pre

K0
1

= 232 × (1− 210

232 )de ≈ 232 × e−2−22de .
(e) For all guessed key K7

1 and K7
2 , the wrong value (K0

1 ,K7
1 ,K7

2 ) remains
with probability Pre

K7 = 264+32 × e−2−22de . If select de = 228.32, then
Pre

K7 is very small, i.e. Pre
K7 = 296×e−2−22de ≈ 2−19, thus, the false K0

1

can be eliminated with very high probability. Hence if remains a value
K0

1 , the guessed 8-byte of K7 can be regarded as correct.
Complexity Evaluation. The date complexity is 232t = 287de = 2115.32

chosen plaintexts. Step 3 requires about 2× 232× 282.32 = 2115.32 one round
operation, Step 4 requires about 2× 264 × 258.32 = 2123.32 two round opera-
tion, Step 5 requires about 228.32 × 210 × 264 = 2102.32 memory access to A.
Thus, the overall time complexity of the attack is about 2115.32+2123.32/2+2102.32

7 ≈
2120 7-round AES encryption operations, and the required memory is about
245 bytes.

5.2 New impossible differential attack on 7-round AES-192

ATTACK 2: See Fig.9, the impossible differential attack is as follow:
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Fig. 9. Attack 2: Impossible differential attack on 7-round of AES



1. Define the same structure T as ATTACK 1 above.
2. Randomly choose t structures, encrypt all plaintexts pairs using 7-round of

AES-192, sieve the pairs whose ciphertexts pairs are different but 4-byte in
positions (0, 7, 10, 13), 263 × 2−32t = 231t pairs are excepted in this step.

3. Guess bytes K7
1 = (k7

1, k
7
4, k

7
11, k

7
14) ∈ K7, K7

2 = (k7
2, k

7
5, k

7
8, k

7
15) ∈ K7, and

K7
3 = (k7

3, k
7
6, k

7
9, k

7
12) ∈ K7, respectively.

For the chosen pairs, partly decrypt one round using K7
1 , K7

2 , and K7
3 , respec-

tively, only choose the pairs whose output of MC−1 are same except three
bytes (b1, b2, b3) ∈ P(See definition in Section 2.2). The excepted number of
the pairs is 231 × (2−24)3t = 2−41t in this step.

4. Compute relevant three subkey bytes k6
6 = k7

2 ⊕ k7
6, k6

9 = k7
9 ⊕ k7

5 and k6
12 =

k7
12 ⊕ k7

8. For remained pairs in step 3, select the pairs which hold Fact
4, the probability is (28−1)×(28−2)

(28−1)3 ≈ 2−8, the number of remained pairs is
de = 2−41 × 2−8t = 2−49t in this step.

5. Eliminate wrong four bytes K0
1 = (k0

0, k
0
5, k

0
10, k

0
15) ∈ K0 by displaying that

the impossible differential property holds if the wrong values K0
1 are used.

Refer to Step 5 in ATTACK 1.
Let de = 28.67, then t = 77.67. At least, one 32-bit key K0

1 is remained
with probability Pre

K0
1

= 232 × (1− 210

232 )de ≈ 232 × e−2−22de . For all guessed
12-byte of K7, the wrong value (K0

1 ,K7
1 ,K7

2 ,K7
3 ) remains with probability

Pre
K7 = 296 × 232 × (1− 210

232 )de ≈ 2128 × e−2−22de = 2−19. so if a value K0
1 is

remained, the guessed 8-byte of K7 will be correct with high probability.
Complexity Evaluation. The date complexity of attack is 232t = 2109.67.
Step 3 requires about 2× 232 × 231+77.67 + 2× 264 × 284.67 + 296 × 260.67 =
2141.67 + 2149.67 + 2156.67 ≈ 2156.67 one round operation, and Step 5 requires
about 228.67 × 210 × 264 = 2102.67 memory access to A. Thus, the overall
time complexity of the attack is about 2156.67+2102.67

7 ≈ 2154 7-round AES
encryption operations, and the required memory is about 245 bytes.

6 New impossible differential attack on 8 round or More
of AES

From the three kinds of new impossible differential properties of AES described
in Section 4, we can obtain many of new impossible differential attacks on 8-
round or more of AES-192/256. Here, we only simply introduce one, the results
of some others attacks refer to Table 2.
Note: the complexities in Table 2 can been slightly improved by Lu’s methods[11].

6.1 New impossible differential attack on 8 round of AES-192

ATTACK 3: See Fig.10, the process of impossible differential attack on AES-
192 is as follows:
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Fig. 10. Attack 3: Impossible differential attack on 8-round of AES

1. For t chosen structures, encrypt all plaintexts pairs using 8-round of AES.
Choose the pairs, whose ciphertexts are different except zC

f -byte, 263 ×
2−8×zC

f t = 263−8zC
f t pairs are excepted in this step.

2. In all, guess zk bytes of (K8
i ,K7

j ,K6
k). Decrypt the chosen pairs two rounds

using guessed bytes of (K8
i ,K7

j ,K6
k). Only choose the pairs whose output

of MC−1 of the 1st round are different except four bytes (0, 7, 10, 13), and
whose output of MC−1 of the 2nd hold Fact 4. The excepted number of pairs
is 2−(41+8zC

f )t = de in this step.
3. Eliminate wrong four bytes K0

4 = (k0
0, k

0
5, k

0
10, k

0
15) ∈ K0 using the same

method as ATTACK 1. Similarly, the probability of remaining wrong K0
4 is

Pre
K0 = 232 × (1− 210

232 )de = 232 × e−(2−22de).
If de = 228.5, then e−(2−22de) ≈ 2−131, and the wrong value (K0

4 ,K7
i ,K8

j )

remains with probability 28×zC
f ×Pre

K0 ≈ 2−19. So if a value K0
4 is remained,

the guessed w-byte will be correct with high probability.
Complexity Evaluation. From Section 3, The date complexity Prd =
273+8×zC

f de. If de = 228.5, then Prd < 2128 only and if only zC
f < 3.3. Refer

to Table 2 for the date complexity and time complexity .

6.2 New impossible differential attack on more than 8-round
AES-192/256

Using our near 5-round impossible differential properties and complexities ex-
pressions of an universal impossible differential attacks methods, we can have
some new impossible differential attacks on 8-9 rounds AES-192/256 and 10-12
rounds AES-256, Table 2 shows some results. Because of the limited space, we
don’t discuss them.



Intuitively, impossible differential attacks on 10-round AES-192 and 12 or
13 rounds AES-256 can be achieved by our complexities expressions and near
5-round impossible differential properties.
Note: the complexities of Table 2 can been slightly improved.

7 Conclusion

we first propose some near 5 rounds impossible differential properties. In our
properties, the number of active bytes of 1st round and 5th round can be 1,2 or
3, and the active bytes are in different columns, so our impossible differential
properties are easy to be extended. Additionally,we first propose the complexities
expressions of an universal impossible differential attack, which can help us to
rapidly search appropriate impossible differential paths. Utilizing our near 5-
round impossible differential properties and complexities expressions, we can
give a series of new impossible differential attacks on 8-9 rounds AES-192/256
and 10-11 rounds AES-256 in Table 2. Intuitively, the complexities of Table 2
can been slightly improved, and impossible differential attacks on 10 rounds
AES-192 and 12-13 rounds AES-256 can been obtained by our methods.
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Appendix A:

Table 1. Comparison of Some Previous Attacks with Our New Attacks

Key Source Number of Data Time Attack .

Size Round Complexity(CP) Complexity Type .

AES-128 Ref.[1,18] 7 2115.5 2119 Imp.Diff.

Ref.[11] 7 2112.2 2117.2 Imp.Diff.

AES-192 Ref.[16] 7 292 2186.2 Imp.Diff.

Ref.[18] 7 2115.5 2119 Imp.Diff.

Ref.[11] 7 2113.8 2118.8MA Imp.Diff.

Ref.[18] 7 292 2162 Imp.Diff.

Ref.[11] 7 291.2 2139.2MA Imp.Diff.

AES-256 Ref.[16] 7 292.5 2250.5 Imp.Diff.

Ref.[11] 7 292 2163MA Imp.Diff.

Ref.[18] 7 2115.5 2119 Imp.Diff.

Ref.[11] 7 2113.8 2118.8MA Imp.Diff.

Ref.[18] 8 2116.5 2247.5 Imp.Diff.

Ref.[11] 8 2111.1 2227.8MA Imp.Diff.

Ref.[11] 8 289.1 2229.7MA Imp.Diff.

AES-128 Ref.[9] 7 2128–2119 2120 Square.

Ref.[10] 7 232 ≈ 2128 Collision.

AES-192 Ref.[9] 8 2128–2119 2188 Related Key.

Ref.[3] 12 2123 2176 Related Key.

AES-256 Ref.[5] 8 226.5–231 226.5–231 Related Key.

Ref.[5] 9 232–239 232–238 Related Key.

Ref.[5] 10 245,249 244,248 Related Key.

Ref.[4,3] 14 299.5,2131 299.5,2131 Related Key.

AES-128 This Paper 7 2115.32 2119.32 Imp.Diff.

AES-192 This Paper 7 2109.67 2154.67 Imp.Diff.

This Paper 8 2102.3 2166.3 Imp.Diff.

This Paper 9 2115.89 2180.89 Imp.Diff.

This Paper 9 2125.89 2150.89 Imp.Diff.

AES-256 This Paper 11 2122.4 < 2254.4 Imp.Diff.



Appendix B:

Table 2. Our Impossible Differential Attacks on 8 Rounds or More of AES

Key r zP
f zC

f zk Pr1 Pr2 Pr3 Pr4 Pr5 Prd Prt .

Size .

AES-192 8 4 1 19 2−54 2−60 2120.14 2165.14

8 4 3 19 2−80 2−24 2126.14 2155.14

8 4 2 20 2−80 2−24 2118.19 2174.19

8 4 1 21 2−80 2−24 2109.89 2182.89

8 4 0 20 2−54 2−60 2112.19 2173.19

8 4 0 22 2−80 2−24 2102.3 2166.3

AES-192 9 4 1 15 2−54 2−60 2−60 2125.89 2150.89

9 4 1 23 2−54 2−60 2120.35 2185.35

9 4 2 22 2−80 2−24 2−6 2124.30 2173.30

9 4 1 15 2−80 2−24 2−6 2115.89 2180.89

9 4 1 15 2−80 2−24 2−12 2121.89 2186.89

9 4 1 22 2−80 2−24 2−15 2125.30 2181.30

AES-256 10 4 0 24 2−80 2−24 2−12 2−6 2120.4 < 2254.4

10 2 0 25 2−80 2−24 2−12 2−6 2122.4 < 2248.4

10 2 0 25 2−80 2−24 2−6 2−6 2116.35 < 2248.35

10 4 0 24 2−80 2−24 2−6 2−6 2114.4 < 2254.4

10 3 0 24 2−80 2−24 2−6 2−6 2116.4 < 2248.4

11 2 0 26 2−80 2−24 2−6 2−6 2−6 2122.4 < 2254.4

perhaps 12 2 0 26 2−80 2−24 2−6 2−6 2−6 0 2122.4 < 2254.4


