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Abstract. Codes with the Identifiable Parent Property (IPP) have been
studied in the context of traitor tracing; such codes can be used to enable
a data supplier to determine the origin of pirated data. We consider an
analogous property for a set of binary strings S: if a new string τ is
formed by concatenating substrings of members of S, we should be able
to identify at least one original string which must have been used to
generate τ . We prove upper and lower bounds for the size of sets which
satisfy this property.
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1 Introduction

Codes with the Identifiable Parent Property (IPP) were introduced in [3] (and
generalized in [4]) with the motivation of detecting piracy when users combine
several watermarked versions of a single document to produce a pirated version
of the same document. We consider a related problem in which users generate
new derivative documents by cutting and pasting from multiple watermarked
documents. First we recall the definition of IPP codes:

Definition 1. Let C be a code of length n over alphabet Σ, and let T ⊂ C. Then
d = (d1, d2 · · · dn) ∈ Σn is a descendant of T and T is a parent set of d if, for
each 1 ≤ i ≤ n, there exists (t1, t2 · · · tn) ∈ T with di = ti.

If d ∈ Σn has a parent set of size ≤ c, then d is a c-descendant of C; a parent
set of size ≤ c is a c-parent set.

Definition 2. Let C be a code of length n over alphabet Σ. Then C is c-IPP if,
for any d which is a c-descendant of C, the intersection of all c-parent sets of d
is nonempty.
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The idea is that the document D to be protected is divided into n segments,
where each segment can be watermarked by embedding an element of Σ, and
each legitimate document owner has a copy watermarked by a different code-
word. Then c or fewer owners may collude to produce an unauthorized copy D′

of D by combining portions of their copies. It is possible to identify at least one
individual who must have contributed to D′ by finding a parent of the vector of
watermarks in D′ [2]. This is a special case of the more general notion of traitor
tracing [1].

1.1 c-IPP Sets of Strings

Denote concatenation of strings σ and τ by στ . The length of a string σ is denoted
by |σ|. Let σj denote the jth bit of σ, and define σ[s : t] = σsσs+1 · · ·σt. If s
and t are not integers, then σ[s : t] = σ[⌈s⌉ : ⌊t⌋].

A (sub)string of length k will be called a k-(sub)string. We write σ ≺ τ to
denote σ is a substring of τ . If σ is a substring of some member of a set T , we
write s ≺ T .

We have a set U of “users”, with each user having a local copy of a collection
of documents (i.e. binary strings) D. Associated to each user i ∈ U there is a
distinct string σi of length n. For each original document d ∈ D, user i has a
watermarked version di of length m. The watermark string σi is embedded in
di in such a way that, given a substring of di, we can extract the corresponding
substring of σi; i.e. there is an extraction function E such that

E(di[j : k]) = σi
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m
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.

Without loss of generality we can assume that all watermarked documents in D
are of the same length m.

Now suppose one or more users create a new c-derivative document d′ of
length at least m by “cutting and pasting”, i.e. by concatenating at most c
substrings of their various watermarked documents; we have

d′ = dt1
i1

[j1 : k1] · · · d
tc

ic
[jc : kc]

where each dt
i is a copy of document dt watermarked with σi. From d′ we can

then extract a string τ of length at least n which is the concatenation of the
corresponding substrings of the σi, i.e.

E(d′) = σii

[

j1
n

m
: k1

n

m

]

· · ·σic

[

jc
n

m
: kc

n

m

]

.

Note that the extraction function E must be able to extract this derivative
watermark even though is is only given d′, without any indication of where the
boundaries between its constituent substrings are.

Given a bound on c, we would like to use the extracted derivative watermark
τ to identify (i.e. “trace”) at least one user who must have contributed to d′.
Now we can ignore the outer documents and view users as simply combining
substrings of their σi to produce τ . Thus we have the following definitions:



Definition 3. Let S be a set of binary strings of length n (i.e. S ⊂ {0, 1}n),
and let τ be a string of length n. Then C ⊂ S is a c-parent set of τ if we can
write τ = τ1τ2 · · · τc where each τi ≺ C. We say that τ is a c-descendant of C.

Note that we allow use of repeated and overlapping substrings.

Definition 4. The set S ⊂ {0, 1}n has the c-Identifiable Parent Property (c-
IPP) if, for every c-descendant τ of S, the intersection of all c-parent sets of τ
is nonempty.

Thus any member of this intersection can be identified as a parent of τ . The
following definition is useful:

Definition 5. If σ ∈ S and τ ≺ σ, then τ is unique with respect to S if it is
not a substring of any other member of S. When S is clear from context, we just
say that τ is unique.

2 Bounds for c-IPP Sets

2.1 Necessary Conditions

In order for S to be c-IPP, members of S must be sufficiently different from one
another, which means that members of S must contain sufficiently short unique
substrings. We have the following

Lemma 1. If S is c-IPP then there exists σ ∈ S such that no ⌈ n
1+⌊c/2⌋⌉-

substring of σ is a ⌈c/2⌉-descendant of S\{σ}.

Proof. Suppose on the contrary that every σ ∈ S has a substring of length
⌈ n

1+⌊c/2⌋⌉ which is a ⌈c/2⌉-descendant of S\{σ}. Then take 1 + ⌊c/2⌋ such sub-

strings from 1 + ⌊c/2⌋ users and concatenate them to produce τ . None of these
users can be identified as a parent of τ , since each one can be removed and
replaced by the ⌈c/2⌉ other users who cover its contribution.

Now suppose σ is the string whose existence is guaranteed by lemma 1. Then
it follows immediately that σ must have a unique substring of length

⌈

⌈ n
1+⌊c/2⌋⌉

⌊c/2⌋

⌉

=

⌈

n

⌊c2/4⌋+ ⌈c/2⌉

⌉

which gives

Theorem 1. If S ⊂ {0, 1}n is c-IPP then |S| ≤ 2⌈n/(⌊c2/4⌋+⌈c/2⌉)⌉.

Proof. If we remove σ from S, the remaining set is still c-IPP, so by lemma 1

this smaller set also contains a unique substring of length
⌈

n
⌊c2/4⌋+⌈c/2⌉

⌉

; if we

repeatedly remove one string at a time, no unique substring can be removed
twice.



For small values of c we can obtain better results than theorem 1:

Theorem 2. If there are no unique ⌈n/3⌉-substrings in S, then S is not 2-IPP;
therefore if S is 2-IPP, |S| ≤ 2n/3.

If there are no unique ⌈n/5⌉-substrings in S then S is not 3-IPP; therefore
if S is 3-IPP, |S| ≤ 2n/5.

Proof. Suppose there are no unique ⌈n/3⌉-substrings in S. Take X ∈ S and let
σ be the middle third of X . Let Y 6= X contain σ; without loss of generality Y
contains στY where |τY | ≥ n/3 and τY ≺ ZY 6= Y (see Fig. 1). Let τX be left
third of X and let τX ≺ ZX 6= X .

Now τXστY is a descendant of both {ZX , Y } and {ZY , X}; it may be the
case that ZX = ZY , but τXστY is also a descendant of {X, Y }. Therefore S is
not 2-IPP.

τY
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Y σ τY
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Fig. 1. Upper bound for 2-IPP
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Fig. 2. Upper bound for 3-IPP

Similarly, suppose there are no unique ⌈n/5⌉-substrings in S. Given X ∈ S let
λ1λ2σ ≺ X with each λi, σ of length ⌈n/5⌉. By assumption there exists Y 6= X
with σρ1ρ2 ≺ Y with each ρi of length ≥ ⌊n/5⌋ so that |λ1λ2σρ1ρ2| = n.



There also exist X1, X2 6= X such that λi ≺ Xi and Y1, Y2 6= Y such that
ρi ≺ Yi. Thus λ1λ2σρ1ρ2 is a descendant of {X, Y } and of {X1, X2, , Y } and of
{X, Y1, Y2}. Thus S is not 3-IPP (see Fig. 2).

2.2 Sufficient Conditions

Theorem 3. If every ⌈n/3⌉-substring of every member of S is unique, then S
is 2-IPP. If every ⌈n/5⌉-substring of every member of S is unique, then S is
3-IPP.

Proof. Suppose S is not 2-IPP; we show that there must be a non-unique ⌈n/3⌉-
substring. Let s be a string which is a 2-descendant of S, but for which a parent
cannot be identified. Then we can write s = ab where a, b are substrings of
A, B ∈ S. Without loss of generality let |a| ≥ n

2 . Since A cannot be identified as
a parent, it must be possible to write s = cd with c ≺ C 6= A. If |c| ≥ ⌈n/3⌉ then
c is a non-unique substring shared by A and C. Otherwise, |d| ≥ ⌈2n/3⌉. Now
d ≺ D ∈ S, and (since D cannot be identified as a parent), we have cd = ef with
e, f ≺ E, F 6= D: then at least one of E, F has a non-unique ⌈n/3⌉-substring
shared with D.

Similarly, suppose S is not 3-IPP; we show that there must be a non-unique
⌈n/5⌉-substring. Let s be a 3-descendant of S for which a parent cannot be
identified. As above, let a, b, c, d · · · denote substrings of A, B, C, D · · · ∈ S. If
we can write s = abc with max(|a|, |b|, |c|) ≥ ⌈3n/5⌉, then we immediately have
a non-unique ⌈n/5⌉-substring: align abc with a representation of s that does not
use X , where X ∈ {A, B, C} is the user contributing the longest of a, b, c. Then
X ’s contribution to s is split at no more than two points, yielding (at most)
three non-unique substrings one of which must have length at least ⌈n/5⌉.

Otherwise let s = abc and (with no loss of generality) let |a| ≥ |c|. Now
suppose ⌈2n/5⌉ ≤ |a| < ⌈3n/5⌉, and let abc = def with A 6= D, E, F . If
max(|d|, |e|) ≥ ⌈n/5⌉, then either D or E has a non-unique ⌈n/5⌉-substring
shared with A (see Fig. 3). Otherwise |f | ≥ ⌈3n/5⌉.

Now suppose ⌈n/5⌉ ≤ |a| < ⌈2n/5⌉, and let abc = def with A 6= D, E, F . If
|d| ≥ ⌈n/5⌉ then D has a non-unique ⌈n/5⌉-substring shared with A. Otherwise
max(|e|, |f |) ≥ ⌈2n/5⌉. If |f | ≥ ⌈2n/5⌉ we have essentially the same situation as
Fig. 3 (with f in place of a).

So suppose |e| ≥ ⌈2n/5⌉, f < ⌈2n/5⌉, d < ⌈n/5⌉ and let def = ghi with
E 6= G, H, I. If max(|g|, |i|) ≥ ⌈2n/5⌉ we are again in the same situation as Fig.
3 (with g or i in place of a). Otherwise we have |h| ≥ ⌈n/5⌉. Now this implies
that E must have a non-unique substring; either h ≺ e, or the alignment of def
with ghi splits e at only one point.

Finally, if |a| < ⌈n/5⌉ then |b| ≥ ⌈3n/5⌉ (since |a| ≥ |c|).

3 c-Traceability

The identifiable parent property only guarantees that a parent of the descendant
string τ can be identified if all possible c-parent sets are considered. We would



e

s |a| ≥ 2n
5

cb

s f|d| < n
5

e

s |d| ≥ n
5

f

Fig. 3. Shaded region is non-unique substring of length ≥ ⌈n/5⌉

like to have an efficient algorithm for actually identifying at least one of the
parents whose existence is guaranteed. It is natural to consider the σ ∈ S which
has the longest common substring with τ , but such a σ need not be a parent of
τ in general. Given strings a, b let ℓ(a, b) denote the length of a longest common
substring.

Definition 6. Let S ⊂ {0, 1}n be c-IPP. S has the c-traceability property (c-
TA) if, for every c-descendant τ of S, the intersection of all c-parent sets of τ
includes all σ ∈ S which maximize ℓ(σ, τ).

We have the following

Theorem 4. If every substring in S ⊂ {0, 1}n of length

4n

(c + 3)2

is unique, then S is c-TA.

Proof. Let τ be a c-descendant of S, so τ = s1s2 · · · sc where |τ | = n and each
si is a substring of a member of T ⊂ S. Suppose S is not c-TA, so there exists
r ∈ S\T such that ℓ(r, τ) ≥ |si| for all i. Let λ be such a longest common
substring with |λ| = n

θ and λ ≺ sisi+1 · · · si+p. Then (see Fig. 4)

|s1 · · · sisi+p · · · sc| ≥ n
θ − 1

θ

which implies there is some sj such that

|sj | ≥
n θ−1

θ

c − p + 1
.

But |sj | ≤
n
θ which requires

p ≤ c + 2 − θ .

Now one of si, · · · si+p must contain a non-unique substring of length at least
n

θ(p+1) , i.e. at least
n

θ(c + 3 − θ)
.



The denominator is maximized at θ = (c + 3)/2, giving a non-unique substring
of length at least

4n

(c + 3)2
.

τ

r |λ| =
n
θ

s1 scs2 · · · si · · ·· · · si+p

Fig. 4. Proof of Theorem 4

4 Inclusion of Extraneous Substrings

We now consider the possibility that, when users combine portions of water-
marked documents, some portions of non-watermaked documents may be in-
cluded. If the amount of such extraneous content is limited, we can still trace
parents. We will assume that the watermark extraction algorithm E , when ap-
plied to unmarked input, produces essentially random results; thus any sequence
of bits can appear in the extraneous portion of the watermark.

Suppose that the total length of the extraneous watermark is ≤ αn. A deriva-
tive watermark τ is produced by concatenation of no more than c substrings,
some of which now may be extraneous. Now a (c, α)−descendant of S is a string
τ = s1 · · · sc with |τ | = n such that

∑

i:si 6≺S

|si| ≤ αn

We say that S is (c, α)-TA if it is still the case that any σi maximizing ℓ(σi, t)
must be a parent of t.

Theorem 5. Let α < 1
c+3 . Then S ⊂ {0, 1}n is (c, α)-TA if all substrings of

length
(

1 + β

c + 3

)2

n

are unique, where β =
√

1 − α(c + 3)

Proof. Using the same notation and argument as in the proof of theorem 4, we
now have that the non-extraneous members of the set {si, · · · si+p} must include

a non-unique substring length at least n/θ−αn
p+1 , i.e. at least

n(1 − αθ)

θ(c + 3 − θ)
.



This is minimized at

θ =
1 −

√

1 − α(c + 3)

α
.

We have defined β such that α = 1−β2

c+3 . Then the lower bound is minimized at

θ = c+3
1+β , so we have a non-unique substring of length at least

(

1 + β

c + 3

)2

n .

5 Lower Bound

For any k < n we can construct a set of strings of length n in which every k-
substring is unique as follows. Divide {0, 1}k into equivalence classes, where the
equivalence class of r = r1r2 · · · rk consists of all rotations of r, i.e. all strings of
the form rtrt+1 · · · rkr1 · · · rt−1. There are at least ⌈2k/k⌉ such classes. Select a
representative ri from each class, and form σi by concatenating ⌊n/k⌋ copies of
ri, followed by the first n − k⌊n/k⌋ bits of ri to get |σi| = n. Thus we have

Theorem 6. For any c, n there exists S ⊂ {0, 1}n which is c-TA such that

|S| ≥
2⌈4n/(c+3)2⌉

⌈4n/(c + 3)2⌉
.

For any n there exists S ⊂ {0, 1}n which is 2-IPP such that

|S| ≥
2⌈n/3⌉

⌈n/3⌉
.

For any n there exists S ⊂ {0, 1}n which is 3-IPP such that

|S| ≥
2⌈n/5⌉

⌈n/5⌉
.
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