# **Traitor-Tracing on Binary Strings**

Michael J. Collins

Sandia National Laboratories\* Albuquerque, NM USA 87185 mjcolli@sandia.gov

Abstract. Codes with the *Identifiable Parent Property* (IPP) have been studied in the context of traitor tracing; such codes can be used to enable a data supplier to determine the origin of pirated data. We consider an analogous property for a set of binary strings S: if a new string  $\tau$  is formed by concatenating substrings of members of S, we should be able to identify at least one original string which must have been used to generate  $\tau$ . We prove upper and lower bounds for the size of sets which satisfy this property.

**Keywords:** Traitor Tracing, Identifiable Parent Property, Strings, Watermarking

## 1 Introduction

Codes with the *Identifiable Parent Property* (IPP) were introduced in [3] (and generalized in [4]) with the motivation of detecting piracy when users combine several watermarked versions of a single document to produce a pirated version of the same document. We consider a related problem in which users generate new *derivative* documents by cutting and pasting from multiple watermarked documents. First we recall the definition of IPP codes:

**Definition 1.** Let C be a code of length n over alphabet  $\Sigma$ , and let  $T \subset C$ . Then  $d = (d_1, d_2 \cdots d_n) \in \Sigma^n$  is a descendant of T and T is a parent set of d if, for each  $1 \leq i \leq n$ , there exists  $(t_1, t_2 \cdots t_n) \in T$  with  $d_i = t_i$ .

If  $d \in \Sigma^n$  has a parent set of size  $\leq c$ , then d is a c-descendant of C; a parent set of size  $\leq c$  is a c-parent set.

**Definition 2.** Let C be a code of length n over alphabet  $\Sigma$ . Then C is c-IPP if, for any d which is a c-descendant of C, the intersection of all c-parent sets of d is nonempty.

<sup>\*</sup> Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

The idea is that the document D to be protected is divided into n segments, where each segment can be watermarked by embedding an element of  $\Sigma$ , and each legitimate document owner has a copy watermarked by a different codeword. Then c or fewer owners may collude to produce an unauthorized copy D'of D by combining portions of their copies. It is possible to identify at least one individual who must have contributed to D' by finding a parent of the vector of watermarks in D' [2]. This is a special case of the more general notion of *traitor tracing* [1].

#### 1.1 *c*-IPP Sets of Strings

Denote concatenation of strings  $\sigma$  and  $\tau$  by  $\sigma\tau$ . The length of a string  $\sigma$  is denoted by  $|\sigma|$ . Let  $\sigma^j$  denote the *j*th bit of  $\sigma$ , and define  $\sigma[s:t] = \sigma^s \sigma^{s+1} \cdots \sigma^t$ . If *s* and *t* are not integers, then  $\sigma[s:t] = \sigma[\lceil s \rceil : \lfloor t \rfloor]$ .

A (sub)string of length k will be called a k-(sub)string. We write  $\sigma \prec \tau$  to denote  $\sigma$  is a substring of  $\tau$ . If  $\sigma$  is a substring of some member of a set T, we write  $s \prec T$ .

We have a set U of "users", with each user having a local copy of a collection of documents (i.e. binary strings) D. Associated to each user  $i \in U$  there is a distinct string  $\sigma_i$  of length n. For each original document  $d \in D$ , user i has a watermarked version  $d_i$  of length m. The watermark string  $\sigma_i$  is embedded in  $d_i$  in such a way that, given a substring of  $d_i$ , we can extract the corresponding substring of  $\sigma_i$ ; i.e. there is an extraction function  $\mathcal{E}$  such that

$$\mathcal{E}(d_i[j:k]) = \sigma_i \left[ j \frac{n}{m} : k \frac{n}{m} \right]$$

Without loss of generality we can assume that all watermarked documents in D are of the same length m.

Now suppose one or more users create a new *c*-derivative document d' of length at least m by "cutting and pasting", i.e. by concatenating at most c substrings of their various watermarked documents; we have

$$d' = d_{i_1}^{t_1}[j_1:k_1] \cdots d_{i_c}^{t_c}[j_c:k_c]$$

where each  $d_i^t$  is a copy of document  $d^t$  watermarked with  $\sigma_i$ . From d' we can then extract a string  $\tau$  of length at least n which is the concatenation of the corresponding substrings of the  $\sigma_i$ , i.e.

$$\mathcal{E}(d') = \sigma_{i_i} \left[ j_1 \frac{n}{m} : k_1 \frac{n}{m} \right] \cdots \sigma_{i_c} \left[ j_c \frac{n}{m} : k_c \frac{n}{m} \right]$$

Note that the extraction function  $\mathcal{E}$  must be able to extract this derivative watermark even though is is only given d', without any indication of where the boundaries between its constituent substrings are.

Given a bound on c, we would like to use the extracted derivative watermark  $\tau$  to identify (i.e. "trace") at least one user who must have contributed to d'. Now we can ignore the outer documents and view users as simply combining substrings of their  $\sigma_i$  to produce  $\tau$ . Thus we have the following definitions: **Definition 3.** Let S be a set of binary strings of length n (i.e.  $S \subset \{0,1\}^n$ ), and let  $\tau$  be a string of length n. Then  $C \subset S$  is a c-parent set of  $\tau$  if we can write  $\tau = \tau_1 \tau_2 \cdots \tau_c$  where each  $\tau_i \prec C$ . We say that  $\tau$  is a c-descendant of C.

Note that we allow use of repeated and overlapping substrings.

**Definition 4.** The set  $S \subset \{0,1\}^n$  has the c-Identifiable Parent Property (*c*-*IPP*) if, for every c-descendant  $\tau$  of S, the intersection of all c-parent sets of  $\tau$  is nonempty.

Thus any member of this intersection can be identified as a parent of  $\tau$ . The following definition is useful:

**Definition 5.** If  $\sigma \in S$  and  $\tau \prec \sigma$ , then  $\tau$  is unique with respect to S if it is not a substring of any other member of S. When S is clear from context, we just say that  $\tau$  is unique.

## 2 Bounds for *c*-IPP Sets

#### 2.1 Necessary Conditions

In order for S to be c-IPP, members of S must be sufficiently different from one another, which means that members of S must contain sufficiently short unique substrings. We have the following

**Lemma 1.** If S is c-IPP then there exists  $\sigma \in S$  such that no  $\lceil \frac{n}{1+\lfloor c/2 \rfloor} \rceil$ -substring of  $\sigma$  is a  $\lceil c/2 \rceil$ -descendant of  $S \setminus \{\sigma\}$ .

*Proof.* Suppose on the contrary that every  $\sigma \in S$  has a substring of length  $\lceil \frac{n}{1+\lfloor c/2 \rfloor} \rceil$  which is a  $\lceil c/2 \rceil$ -descendant of  $S \setminus \{\sigma\}$ . Then take  $1 + \lfloor c/2 \rfloor$  such substrings from  $1 + \lfloor c/2 \rfloor$  users and concatenate them to produce  $\tau$ . None of these users can be identified as a parent of  $\tau$ , since each one can be removed and replaced by the  $\lceil c/2 \rceil$  other users who cover its contribution.

Now suppose  $\sigma$  is the string whose existence is guaranteed by lemma 1. Then it follows immediately that  $\sigma$  must have a unique substring of length

$$\left\lceil \frac{\left\lceil \frac{n}{1 + \lfloor c/2 \rfloor} \right\rceil}{\lfloor c/2 \rfloor} \right\rceil = \left\lceil \frac{n}{\lfloor c^2/4 \rfloor + \lceil c/2 \rceil} \right\rceil$$

which gives

**Theorem 1.** If  $S \subset \{0,1\}^n$  is c-IPP then  $|S| \le 2^{\lceil n/(\lfloor c^2/4 \rfloor + \lceil c/2 \rceil) \rceil}$ .

*Proof.* If we remove  $\sigma$  from *S*, the remaining set is still *c*-IPP, so by lemma 1 this smaller set also contains a unique substring of length  $\left\lceil \frac{n}{\lfloor c^2/4 \rfloor + \lfloor c/2 \rfloor} \right\rceil$ ; if we repeatedly remove one string at a time, no unique substring can be removed twice.

For small values of c we can obtain better results than theorem 1:

**Theorem 2.** If there are no unique  $\lceil n/3 \rceil$ -substrings in S, then S is not 2-IPP; therefore if S is 2-IPP,  $|S| \le 2^{n/3}$ .

If there are no unique  $\lceil n/5 \rceil$ -substrings in S then S is not 3-IPP; therefore if S is 3-IPP,  $|S| \leq 2^{n/5}$ .

*Proof.* Suppose there are no unique  $\lceil n/3 \rceil$ -substrings in S. Take  $X \in S$  and let  $\sigma$  be the middle third of X. Let  $Y \neq X$  contain  $\sigma$ ; without loss of generality Y contains  $\sigma \tau_Y$  where  $|\tau_Y| \geq n/3$  and  $\tau_Y \prec Z_Y \neq Y$  (see Fig. 1). Let  $\tau_X$  be left third of X and let  $\tau_X \prec Z_X \neq X$ .

Now  $\tau_X \sigma \tau_Y$  is a descendant of both  $\{Z_X, Y\}$  and  $\{Z_Y, X\}$ ; it may be the case that  $Z_X = Z_Y$ , but  $\tau_X \sigma \tau_Y$  is also a descendant of  $\{X, Y\}$ . Therefore S is not 2-IPP.



Fig. 1. Upper bound for 2-IPP



Fig. 2. Upper bound for 3-IPP

Similarly, suppose there are no unique  $\lceil n/5 \rceil$ -substrings in S. Given  $X \in S$  let  $\lambda_1 \lambda_2 \sigma \prec X$  with each  $\lambda_i, \sigma$  of length  $\lceil n/5 \rceil$ . By assumption there exists  $Y \neq X$  with  $\sigma \rho_1 \rho_2 \prec Y$  with each  $\rho_i$  of length  $\geq \lfloor n/5 \rfloor$  so that  $|\lambda_1 \lambda_2 \sigma \rho_1 \rho_2| = n$ .

There also exist  $X_1, X_2 \neq X$  such that  $\lambda_i \prec X_i$  and  $Y_1, Y_2 \neq Y$  such that  $\rho_i \prec Y_i$ . Thus  $\lambda_1 \lambda_2 \sigma \rho_1 \rho_2$  is a descendant of  $\{X, Y\}$  and of  $\{X_1, X_2, Y\}$  and of  $\{X, Y_1, Y_2\}$ . Thus S is not 3-IPP (see Fig. 2).

#### 2.2 Sufficient Conditions

**Theorem 3.** If every  $\lceil n/3 \rceil$ -substring of every member of S is unique, then S is 2-IPP. If every  $\lceil n/5 \rceil$ -substring of every member of S is unique, then S is 3-IPP.

*Proof.* Suppose S is not 2-IPP; we show that there must be a non-unique  $\lceil n/3 \rceil$ -substring. Let s be a string which is a 2-descendant of S, but for which a parent cannot be identified. Then we can write s = ab where a, b are substrings of  $A, B \in S$ . Without loss of generality let  $|a| \ge \frac{n}{2}$ . Since A cannot be identified as a parent, it must be possible to write s = cd with  $c \prec C \neq A$ . If  $|c| \ge \lceil n/3 \rceil$  then c is a non-unique substring shared by A and C. Otherwise,  $|d| \ge \lceil 2n/3 \rceil$ . Now  $d \prec D \in S$ , and (since D cannot be identified as a parent), we have cd = ef with  $e, f \prec E, F \neq D$ : then at least one of E, F has a non-unique  $\lceil n/3 \rceil$ -substring shared with D.

Similarly, suppose S is not 3-IPP; we show that there must be a non-unique  $\lceil n/5 \rceil$ -substring. Let s be a 3-descendant of S for which a parent cannot be identified. As above, let  $a, b, c, d \cdots$  denote substrings of  $A, B, C, D \cdots \in S$ . If we can write s = abc with  $\max(|a|, |b|, |c|) \ge \lceil 3n/5 \rceil$ , then we immediately have a non-unique  $\lceil n/5 \rceil$ -substring: align abc with a representation of s that does not use X, where  $X \in \{A, B, C\}$  is the user contributing the longest of a, b, c. Then X's contribution to s is split at no more than two points, yielding (at most) three non-unique substrings one of which must have length at least  $\lceil n/5 \rceil$ .

Otherwise let s = abc and (with no loss of generality) let  $|a| \ge |c|$ . Now suppose  $\lceil 2n/5 \rceil \le |a| < \lceil 3n/5 \rceil$ , and let abc = def with  $A \ne D, E, F$ . If  $\max(|d|, |e|) \ge \lceil n/5 \rceil$ , then either D or E has a non-unique  $\lceil n/5 \rceil$ -substring shared with A (see Fig. 3). Otherwise  $|f| \ge \lceil 3n/5 \rceil$ .

Now suppose  $\lceil n/5 \rceil \leq |a| < \lceil 2n/5 \rceil$ , and let abc = def with  $A \neq D, E, F$ . If  $|d| \geq \lceil n/5 \rceil$  then D has a non-unique  $\lceil n/5 \rceil$ -substring shared with A. Otherwise  $\max(|e|, |f|) \geq \lceil 2n/5 \rceil$ . If  $|f| \geq \lceil 2n/5 \rceil$  we have essentially the same situation as Fig. 3 (with f in place of a).

So suppose  $|e| \geq \lceil 2n/5 \rceil$ ,  $f < \lceil 2n/5 \rceil$ ,  $d < \lceil n/5 \rceil$  and let def = ghi with  $E \neq G, H, I$ . If  $\max(|g|, |i|) \geq \lceil 2n/5 \rceil$  we are again in the same situation as Fig. 3 (with g or i in place of a). Otherwise we have  $|h| \geq \lceil n/5 \rceil$ . Now this implies that E must have a non-unique substring; either  $h \prec e$ , or the alignment of def with ghi splits e at only one point.

Finally, if  $|a| < \lceil n/5 \rceil$  then  $|b| \ge \lceil 3n/5 \rceil$  (since  $|a| \ge |c|$ ).

## 3 *c*-Traceability

The identifiable parent property only guarantees that a parent of the descendant string  $\tau$  can be identified if all possible *c*-parent sets are considered. We would



**Fig. 3.** Shaded region is non-unique substring of length  $\geq \lceil n/5 \rceil$ 

like to have an efficient algorithm for actually identifying at least one of the parents whose existence is guaranteed. It is natural to consider the  $\sigma \in S$  which has the longest common substring with  $\tau$ , but such a  $\sigma$  need not be a parent of  $\tau$  in general. Given strings a, b let  $\ell(a, b)$  denote the length of a longest common substring.

**Definition 6.** Let  $S \subset \{0,1\}^n$  be c-IPP. S has the c-traceability property (c-TA) if, for every c-descendant  $\tau$  of S, the intersection of all c-parent sets of  $\tau$ includes all  $\sigma \in S$  which maximize  $\ell(\sigma, \tau)$ .

We have the following

**Theorem 4.** If every substring in  $S \subset \{0,1\}^n$  of length

$$\frac{4n}{(c+3)^2}$$

is unique, then S is c-TA.

*Proof.* Let  $\tau$  be a *c*-descendant of *S*, so  $\tau = s_1 s_2 \cdots s_c$  where  $|\tau| = n$  and each  $s_i$  is a substring of a member of  $T \subset S$ . Suppose *S* is not *c*-TA, so there exists  $r \in S \setminus T$  such that  $\ell(r, \tau) \geq |s_i|$  for all *i*. Let  $\lambda$  be such a longest common substring with  $|\lambda| = \frac{n}{H}$  and  $\lambda \prec s_i s_{i+1} \cdots s_{i+p}$ . Then (see Fig. 4)

$$|s_1 \cdots s_i s_{i+p} \cdots s_c| \ge n \frac{\theta - 1}{\theta}$$

which implies there is some  $s_j$  such that

$$|s_j| \ge \frac{n\frac{\theta-1}{\theta}}{c-p+1} \ .$$

But  $|s_j| \leq \frac{n}{\theta}$  which requires

$$p \leq c+2-\theta$$
.

Now one of  $s_i, \dots, s_{i+p}$  must contain a non-unique substring of length at least  $\frac{n}{\theta(p+1)}$ , i.e. at least

$$\frac{n}{\theta(c+3-\theta)} \ .$$

The denominator is maximized at  $\theta = (c+3)/2$ , giving a non-unique substring of length at least





Fig. 4. Proof of Theorem 4

## 4 Inclusion of Extraneous Substrings

We now consider the possibility that, when users combine portions of watermarked documents, some portions of non-watermaked documents may be included. If the amount of such *extraneous* content is limited, we can still trace parents. We will assume that the watermark extraction algorithm  $\mathcal{E}$ , when applied to unmarked input, produces essentially random results; thus any sequence of bits can appear in the extraneous portion of the watermark.

Suppose that the total length of the extraneous watermark is  $\leq \alpha n$ . A derivative watermark  $\tau$  is produced by concatenation of no more than c substrings, some of which now may be extraneous. Now a  $(c, \alpha)$ -descendant of S is a string  $\tau = s_1 \cdots s_c$  with  $|\tau| = n$  such that

$$\sum_{i:s_i \not\prec S} |s_i| \le \alpha n$$

We say that S is  $(c, \alpha)$ -TA if it is still the case that any  $\sigma_i$  maximizing  $\ell(\sigma_i, t)$  must be a parent of t.

**Theorem 5.** Let  $\alpha < \frac{1}{c+3}$ . Then  $S \subset \{0,1\}^n$  is  $(c,\alpha)$ -TA if all substrings of length

$$\left(\frac{1+\beta}{c+3}\right)^2 n$$

are unique, where  $\beta = \sqrt{1 - \alpha(c+3)}$ 

*Proof.* Using the same notation and argument as in the proof of theorem 4, we now have that the non-extraneous members of the set  $\{s_i, \dots, s_{i+p}\}$  must include a non-unique substring length at least  $\frac{n/\theta - \alpha n}{p+1}$ , i.e. at least

$$\frac{n(1-\alpha\theta)}{\theta(c+3-\theta)}$$

This is minimized at

$$\theta = \frac{1 - \sqrt{1 - \alpha(c+3)}}{\alpha} \; .$$

We have defined  $\beta$  such that  $\alpha = \frac{1-\beta^2}{c+3}$ . Then the lower bound is minimized at  $\theta = \frac{c+3}{1+\beta}$ , so we have a non-unique substring of length at least

$$\left(\frac{1+\beta}{c+3}\right)^2 n$$

## 5 Lower Bound

For any k < n we can construct a set of strings of length n in which every k-substring is unique as follows. Divide  $\{0,1\}^k$  into equivalence classes, where the equivalence class of  $r = r_1 r_2 \cdots r_k$  consists of all rotations of r, i.e. all strings of the form  $r_t r_{t+1} \cdots r_k r_1 \cdots r_{t-1}$ . There are at least  $\lceil 2^k/k \rceil$  such classes. Select a representative  $r_i$  from each class, and form  $\sigma_i$  by concatenating  $\lfloor n/k \rfloor$  copies of  $r_i$ , followed by the first  $n - k \lfloor n/k \rfloor$  bits of  $r_i$  to get  $|\sigma_i| = n$ . Thus we have

**Theorem 6.** For any c, n there exists  $S \subset \{0, 1\}^n$  which is c-TA such that

$$|S| \ge \frac{2^{\lceil 4n/(c+3)^2 \rceil}}{\lceil 4n/(c+3)^2 \rceil}$$

For any n there exists  $S \subset \{0,1\}^n$  which is 2-IPP such that

$$|S| \ge \frac{2^{\lceil n/3 \rceil}}{\lceil n/3 \rceil} \ .$$

For any n there exists  $S \subset \{0,1\}^n$  which is 3-IPP such that

$$|S| \ge \frac{2^{\lceil n/5 \rceil}}{\lceil n/5 \rceil} \ .$$

### References

- 1. Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas. Tracing traitors. *IEEE Transactions on Information Theory*, 46(3):893–910, 2000.
- Amos Fiat and Tamir Tassa. Dynamic traitor tracing. Proceedings of Crypto '99, LNCS, 1666:354–371, 1999.
- Henk D. L. Hollmann, Jack H. van Lint, Jean-Paul Linnartz, and Ludo M. G. M. Tolhuizen. On codes with the identifiable parent property. J. Combinatorial Theory, Series A, 82(2):121–133, 1998.
- Jessica Staddon, Douglas R.Stinson, and Ruizhong Wei. Combinatorial properties of frameproof and traceability codes. *IEEE Transactions on Information Theory*, 47(3):1042–1049, 2001.