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Abstract. Physical Unclonable Functions promise cheap, efficient, and secure 

identification and authentication of devices. In FPGA devices, PUFs may be 

instantiated directly from FPGA fabric components in order to exploit the 

propagation delay differences of signals caused by manufacturing process 

variations. Multiple delay based PUF architectures have been proposed. 

However, we have observed inconsistent results among them. Ring Oscillator 

PUF works fine, while other delay based PUFs show a significantly lower 

quality.  Rather than proposing complex system level solutions, we focus on the 

fundamental building blocks of the PUF.  In our effort to compare the various 

delay based PUF architectures, we have closely examined how each 

architecture maps into the FPGA fabric.  Our conclusions are that arbiter and 

butterfly PUF architectures are ill suited for FPGAs, because delay skew due to 

routing asymmetry is over 10 times higher than the random variation due to 

manufacturing process. On the other hand, ring oscillator PUF does not suffer 

from the same limitations. 

Keywords: Physical Unclonable Functions (PUF), process variation, FPGA 

routing, delay, arbiter, ring oscillator, butterfly. 

1   Introduction 

A Physical Unclonable Function (PUF) has the unique advantage of generating 

volatile chip-specific signatures at runtime. It not only excludes the need of an 

expensive non-volatile memory for key storage, but also offers robust security shield 

against attacks. It is emerging as a promising solution to issues like intellectual 

property (IP) protection, device authentication, and user data privacy. The IP 

protection issue on FPGA platform is specially a critical one due to the reconfigurable 

nature of the FPGA devices. A PUF can potentially resolve this issue by creating 

device-specific IPs using device-specific signature. Similarly, other security related 

issues can be addressed using a PUF. 

However, implementing a PUF circuit on an FPGA device requires complex design 

decisions, and an in-depth understanding of the FPGA platform. Existing PUF 

techniques mainly focus on the fundamental mechanism of the PUF ignoring 

implementation related complexities specific to FPGA environment. In this paper, we 



present the critical factors that need to be considered by the designer while 

implementing a delay-based PUF on FPGA. 

The majority of the PUF designs is based on delay variation of logic and 

interconnect. We analyze three delay based architectures, namely, Arbiter PUF, Ring 

Oscillator PUF and Butterfly PUF. The fundamental principle followed in a delay-

based PUF is to compare a pair of structurally identical/symmetric circuit elements 

(composed of logic and interconnect), and measure any delay mismatch that is 

introduced by the manufacturing process variation, and not by the design. This 

essentially requires identical/symmetrical implementation for the two compared 

circuit elements in consideration. This can be best achieved by VLSI level placement 

and routing techniques. However, VLSI level circuit manipulation techniques cannot 

be used because implementation of circuits on FPGA is a post fabrication process. 

Moreover, the lack of information regarding the underlying VLSI layout of the 

reconfigurable fabric limits the design space to FPGA components such as lookup 

tables and storage. At this level, achieving symmetry in circuit elements is not only 

difficult, but also requires many assumptions about the FPGA structure. Additionally, 

the limitations of standard FPGA design tools to control low-level placement and 

routing make a PUF design somewhat complex in nature.  

 We will show that Arbiter PUF and Butterfly PUF largely suffer from the above 

limitations, and an effective implementation of these two PUFs is difficult on FPGA. 

The delay skew, inherently present between a pair of circuit elements that are required 

to be symmetric in these PUFs, is an order of magnitude higher than the delay 

variation due to random process variation. On the other hand, the architecture of a 

ring oscillator based PUF is independent of these limitations, and thus allows for an 

easy implementation on FPGA. Our main contribution in this paper is to present a 

detailed comparative analysis of the implementation complexities of these three PUFs 

on a 90nm commodity FPGA platform. 

The rest of the paper is organized as follows. Section 2 briefly discusses the basic 

definition of a PUF and various PUF techniques. It also includes a delay model of the 

PUF interconnects, and a structural comparison of the three PUFs. Section 3 describes 

some necessary architectural information of a Xilinx Spartan 3E FPGA which we 

used as the reference platform. In section 4, we present our detailed analysis of the 

PUF implementation complexities.  Finally, in section 5 we conclude the paper.  

2   Background  

A PUF is a function that generates a set of responses while stimulated by a set of 

challenges. It is a physical function because the challenge-response relation is defined 

by complex properties of a physical material, such as the manufacturing variability of 

CMOS devices. Its unclonability is attributed to the fact that these properties cannot 

be controllably reproduced, making each device effectively unique.  



2.1 CMOS PUFs 

Extraction and characterization of the static process variation out of a CMOS device 

is the underlying principle of an on-chip PUF circuit. On-chip PUF techniques either 

exploit components such as SRAM cells [1, 2], FPGA configuration memory [3] or 

add a specialized circuit to extract the process variation imprint. In analyzing the 

design complexity, we will consider only the last type. This category of PUF is 

mainly based on the delay variation of logics and interconnects, and we focus on three 

existing techniques of this category – arbiter PUF (APUF), ring oscillator PUF 

(ROPUF) and Butterfly PUF (BPUF).   

 

Arbiter PUF – An APUF, proposed by Lim et.al [4], is composed of two identically 

configured delay paths that are stimulated by an activating signal. The difference in 

the propagation delay of the signal in the two delay paths is measured by an edge 

triggered flip-flop known as the arbiter. The delay difference is a function of the 

manufacturing process variation present in the delay paths. Several PUF response bits 

can be generated by configuring the delay paths in multiple ways using the challenge 

inputs. An APUF scheme is shown in Figure 1. 

 

Fig. 1. An arbiter PUF scheme with several switches and an arbiter. 

Ring Oscillator PUF – In an ROPUF [5], variations in frequencies of several 

identically laid out ring oscillators are exploited to build the PUF. The RO 

frequencies are captured in a counter, and are subsequently transformed into binary 

outputs by a simple comparison method.  

 

Butterfly PUF – The Butterfly PUF, proposed by Kumar et.al [6], is a technique that 

aims to emulate the behavior of an SRAM PUF [1]. However, the functionality of this 

PUF is based on the delay variations of interconnects unlike the SRAM PUF where 

the variation in threshold voltage of transistors is the key factor. A BPUF cell 

employs two cross-coupled latches, and exploits the random assignment of a stable 

state from an unstable state that is forcefully imposed by holding one latch in preset 

while the other in clear mode by an excite signal (Figure 3(c)). The final state is 

determined by the random delay mismatch in the pair of feedback paths and the excite 

signal paths due to process variation.  
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2.2 Delay Model in Delay Based PUFs 

The main idea of this work is to analyze the implementation complexities of the three 

delay-based PUF architectures, namely, APUF, ROPUF and BPUF. In order to do 

that, we first introduce a delay model for the PUF interconnect. We define the delay d 

of a net in Equation 1, where dS is the static delay as determined by the static timing 

analysis tools, and dR is the random delay component due to process variation.  

 

 

d = dS + dR (1) 

 

In a delay based PUF, let us consider two nets N1 and N2 that need to be compared.  

The delay values for the two nets are defined as follows. 

 

d (N1)= dS1 + dR1  

d (N2) = dS2 + dR2 

(2) 

(3) 

If the two nets have identical layout, then we can assume dS1 = dS2. As a result, the 

delay skew Δd between N1 and N2 can be expressed as follows. 

 

Δd  = d1 – d2 = dR1 – dR2 = ΔdR (4) 

This is the ideal case for a delay based PUF where the delay skew is purely a function 

of the random delay component.  The output of the PUF, in this case, will be 

dependent entirely on the delay difference due to process variation.  However, if N1 

and N2 are not identically laid out, it is more likely that we have dS1 ≠ dS2. As a result, 

delay skew becomes: 

 

Δd  = dS1 – dS2 + dR1 – dR2 = ΔdS + ΔdR (5) 

In such case, the output of a given PUF structure will be at least partially dependent 

on ΔdS, causing the output to be biased.  Further, if ΔdS > ΔdR, the effect of random 

variation becomes insignificant, and the output of the PUF structure becomes static 

regardless of dR. 

For an efficient PUF implementation, the designer should achieve a routing such 

that ΔdS → 0. In an ASIC environment, this is easier to implement using VLSI layout. 

However, in an FPGA, static timing values provided by the timing analysis tools are 

the only available delay estimates that a designer can access. We will show that using 

existing FPGA routing resources, it is very difficult to achieve the condition such that 

ΔdS → 0. As a result, those PUF techniques that strictly depend on this condition are 

not suitable choice for FPGA implementation. 



2.3 Structural Comparison among APUF, ROPUF and BPUF 

A delay-based PUF circuit involves extraction and comparison of the random delay, 

dR. The effectiveness of the PUF depends on how much symmetry we can achieve 

between a particular pair of elements in order to minimize the effect of ΔdS in 

Equation 5. This symmetry requirement is different in nature from one PUF technique 

to another, and determines the implementation complexity of a PUF on FPGA. 

Independent of the implementation platform, we first analyze the elementary building 

blocks of the three PUFs to present the inherent symmetry requirement that eventually 

leads to the implementation complexity. 

In Figure 2(a), the switch which is the main building block of the APUF, is shown. 

The pairs of nets connected to the multiplexers (pairs shown with different patterns) 

need to be symmetric in order to minimize ΔdS. In Figure 2(b), multiple instances of a 

ring oscillator loop are shown. It can be noticed that there is no symmetric pair of 

components involved in an individual RO loop. In this case, the value of ΔdS between 

a pair of RO loops needs to be minimized. As a result, each of these RO loops needs 

to be identical. In figure 2(c), a BPUF cell is presented. For a functional BPUF, the 

pair of nets AB/AC as well as XY/X’Y’ need to be symmetric along with the latches.  
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Fig. 2. (a). A switch with two multiplexers and delay paths in Arbiter PUF. The symmetric 

pairs of components are highlighted with matching patterns.   (b) Multiple instances of a basic 

five stage ring oscillator loop for a ROPUF (c) A BPUF cell with two cross coupled latches. 

Table 1 shows a brief summary of the routing requirements of the three PUFs. This 

shows that careful routing is required for APUF and BPUF while creating their 

respective building blocks. On the other hand, an oscillator loop for an ROPUF does 

not require any such design constraint. Instead, it requires identical instantiations of 

RO loops. In section 4, we will show that this fundamental structural difference 

causes complexity in PUF implementation on FPGA. The pair of multiplexers in an 

APUF as well as a pair of latches in a BPUF cell needs to be identical, too. However, 

this is not difficult to achieve. Hence, we focus on the interconnect issue. 

Table 1.  Summary of comparison among APUF, ROPUF and BPUF.  
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Requires symmetric 

routing in a building 

block. 

Does not require symmetric 

routing in a building block. 

Requires symmetric routing 

in a building block. 

Identical instantiation of 

building blocks may not be 

necessary. 

Building blocks require 

identical instantiation. 

Identical instantiation of 

building blocks may not be 

necessary. 

3   FPGA Architecture and Resources 

Before we can explain how the previously described PUF architectures map into an 

FPGA, we must closely examine the resources available in an FPGA device. We 

describe the architecture of a Xilinx Spartan3E FPGA device that we used as a 

platform in our experiments.  

Like many commercial FPGA devices, the Spartan 3E FPGAs follow island-style 

architecture. In this architecture, the primary FPGA resources can be separated into 

two categories: logic blocks (referred to as Configurable Logic Blocks, CLBs) and 

routing resources (interconnect). Each CLB is surrounded by and interfaced with a 

"sea" of interconnect, hence the name. The CLB itself is composed of sub-blocks of 

logic elements, called slices in Xilinx architectures. Each slice is composed of a 

lookup table, configurable flip-flops and other logic, and connects to the CLB through 

ports. We will not focus on the internal structure of the logic elements further, 

because it is the routing resources that prove to be more important to the construction 

of PUFs.  An important observation is that different resources are often not accessible 

through the same port of a slice, so routing is specific to the CLB, slice, and port 

simultaneously. 

Any given route in an FPGA is composed of multiple segments, called arcs.  For 

example, there are over 100 arcs going into and coming out of each CLB.  The 

majority of arcs are unidirectional, meaning they can only propagate a signal one 

way.  Arcs begin and terminate at components referred to as Programmable 

Interconnection Points (PIPs). Any given PIP has a varied number of arcs terminating 

at it and a varied number of arcs originating from it.   During the FPGA configuration, 

PIPs are activated in a particular way to create the signal routes out of multiple arcs: a 

PIP is "turned on" with a certain configuration in order to bridge a terminating arc 

with one or more originating arc.  There can only be one driver signal for any 

particular arc, though it is possible for one signal to fanout and drive multiple arcs. 

Each PIP is associated with a CLB, and all the PIPs for a particular CLB combine to 

form a virtual structure referred to as a switchbox. PIP functionality varies: some 

bridge signals to and from adjacent CLBs creating inter-CLB route, while others 

direct the signals through switchbox to other local slices, creating an intra-CLB route. 

3.1   Routing Complexity 

In order to control the routing to meet the design needs, it is essential to know the 

nature of the routing resources.  

 



Inter-CLB Routing - At first glance the examination of inter-CLB routing appears 

promising: there exist direct routes to all adjacent CLBs in most of the FPGA as 

shown in Figure 3(a).  This gives us a large design space for our circuits.  It also 

means that the potential for the required symmetry exists: a signal originating from 

CLB X1Y1 can be routed to CLB X2Y1, while a signal from CLB X2Y1 can be 

routed to CLB X1Y1. However further examination of these routes indicate that the 

PIPs and the arcs employed in implementing these routes are not necessarily 

symmetric, and can lead to a timing imbalance in the circuits. Moreover, even if the 

inter-CLB route appears to be symmetric in the FPGA design tool, we can draw no 

conclusion as to the delay of the route.  Even near identical looking routes between 

slice A and slice B created by the routing software may differ in their estimated delay.  

Further, not all ports are equal: if a signal must go into a specific port to reach some 

logic element, the routing for it may differ significantly for other ports of the same 

slice as in Figure 3(b).   

 

Intra-CLB Routing – Similar observations are found in case of intra-CLB routing as 

well. All the slices belonging to a particular CLB have identical input and output nets. 

Connection among these slices can be configured using a specific set of PIPs. 

However, similar connection between a pair of slices does not necessarily results in 

same delay. For example, the connection from an output port, say out1, of slice A to 

an input port, say in1 of slice B may not have the same delay as the delay of the 

connection from out1 of slice B to in1 of slice A. Yet this type of configuration is 

often required in a PUF implementation. 
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Fig. 3.  (a)Possible inter-CLB routes from a given CLB include all 8 adjacent squares. Routes 

A to A and B to B may differ in timing. (b) Routing to the ports of the same slice may differ. 

4   Analysis of PUF Implementation Complexity 

In this section we discuss our experiments, as well as the associated analysis of 

Arbiter PUF, Butterfly PUF and RO PUF. 
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4.1   Arbiter PUF  

The two primary components required for the Arbiter PUF architecture are the 

switches and the arbiter itself. A useful secondary component is a delay element: 

trivial logic that inserts additional delay into the paths.  By design, the arbiter PUF 

must route the internal signals through long identical paths in order to extract the 

manufacturing variation in these paths.  This lends the PUF to an inter-CLB design.   

We used identical 2-input MUXes in two different slices for the switches.  The 

arbiter was instantiated as a positive clock-edge triggered flipflop in a slice.  A look-

up table in a slice served as the delay element. 

The first mapping scheme that we considered was the Parallel CLB scheme shown 

in Figure 4.  Under this scheme the two paths are located in parallel CLBs, with 

routes crossing between the two CLBs to create the crossing switch route and one of 

the arbiter routes.  Notice that there are 2 possible locations for the arbiter in this 

scheme; we considered both.  We tested this scheme in four configurations, altering 

the direction of the path in the chip: East to West, West to East, North to South, and 

South to North. 
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Fig. 4. Circuit used to analyze the routing properties of APUF paths.  The doted white 

rectangles denote a CLB.  The shaded rectangles denote an individual slice.  Slice2_3 is an 

alternative location for the arbiter. 

Using timing analysis tools, we observed the routing delay caused by each 

component.  This value does not account for the manufacturing variability. Therefore, 

we hoped to find identical static delays for symmetric routes.  Figure 5(a) shows the 

delay caused by each component for the West to East route.  There are two values for 

the switch component:  Switch Nominal is the delay of the signals when the paths are 

straight, Switch Crisscross is the delay of the signal when the paths are crossed.  

Figure 5(b) shows the cumulative delay of the signal propagated along the route when 

the switches are crossed. 

 



  
5(a) 5(b) 

Fig. 5. (a) Individual delays of each component. (b). Cumulative delay of the path through after 

each component. 

These results indicate that this PUF structure will not function.  The 3σ value of 

delay variation due to process variability in 90 nm technology has been estimated to 

be approximately 3.5% [7].  On the other hand, we observe that in this case, variation 

due to routing is much higher than expected variation due to process variability: ΔdS / 

ΔdR is 25.6 times. There are two causes of routing variation in this design: the 

asymmetric routes for the switch crisscrossing paths and the much more dramatic 

asymmetric routes to the arbiter.   The larger difference in arbiter routes is due to the 

fact that routing to a CLK input of a flipflop requires sending the signal through 

multiple additional segments to reach the CLK port, whereas the route to the D input 

of the flipflop is comparatively simple. 

All 4 directions using this mapping produced similar results.  While some 

directions significantly reduced the routing delay, a difference of at least 100 ps 

remained.   We also considered a 2nd mapping architecture where the slices were 

located in the same CLB, rather than parallel.  We hoped that this would reduce the 

asymmetry in arbiter delay.  However, this did not produce a noticeable improvement.  

Moreover, this mapping introduced a routing imbalance in the delay elements and 

nominal switch paths. Figure 6 shows the delays we observed for the arbiter 

component in each direction, depending on the location of the arbiter, and the 

mapping scheme.  Under the best possible conditions of 2 CLB mapping and West to 

East placement we observe ΔdS / ΔdR to be 11.6 times. 
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Fig. 6. Delay difference in routing to the D input and the CLK input of a slice under various 

conditions.  NS – North to South layout; SN – South to North; EW – East to Wes; WE – West 

to East. 

These results indicate that additional delay due to the complexity of routing a 

signal to the CLK input of a flipflop cannot be avoided using current routing schemes 

and architectures.  Asymmetry in routing of crisscrossing switch routes is also 

present, but that delay difference is dwarfed by the arbiter.   Additional mapping 

schemes exist, but any schemes not utilizing parallel CLBs runs a high chance of 

introducing routing delay in other components. The possibility of trying to balance 

out the delays of the arbiter paths seems low, since all the elements examined here 

introduce delays on the order of hundreds of picoseconds themselves.  Trying to 

balance out the delays using these building blocks is unlikely to produce an 

architecture that allows us to observe the delay variation due to process variability. 

4.2   Butterfly PUF  

The effectiveness of the Butterfly PUF is fundamentally based on the symmetry of 

interconnects between the two latches. In the figure 7(a), the net AB and AC are 

required to be symmetric for the proposed functionality of the BPUF. Similarly, the 

pair of nets XY and X’Y’ also needs to be symmetric. While mapping a BPUF cell 

into FPGA, two latches can be instantiated in the dedicated latch in the slices. It can 

be safely assumed that two latches at the same position of two different slices are 

identical since the slices have identical components and ports. 
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Fig. 7. (a).  Circuit structure of BPUF cell. (b) Intra-CLB BPUF mapping (c) Inter-CLB BPUF 

mapping.  

However, the real design challenge comes when a designer has to ensure that the 

interconnection pairs (XX’/YY’ and AB/AC) are symmetric. Since no layout level 

information inside the switch box is available, we depend on the static delay values 

provided by the design tool. Figure 7(b) and figure 7(c) represent how a BPUF cell 

can be mapped into an FPGA device. Figure 7(b) shows the case when both the 

latches are implemented inside a single CLB. Another way of implementing would be 

to place the latches in two different CLBs as shown in figure 7(c). 

During the automatic routing executed by the design tool, arbitrary PIP 

connections are assigned leading to different delay values of the nets. A strict timing 

constraint on the pair of nets to be matched can partially solve this problem. However, 

based on the availability of the routing resources, this often doesn’t produce the best 

result. In figure 8, we present a set of data showing the delay skew in the pair of nets 

AB/AC and XY/X’Y’ (refer to figure 7(a)) as a result of automatic routing with 

timing constraint for an intra-CLB mapping. For the delay skew in XY/X’Y’ net pair, 

the minimum value of the ratio ΔdS / ΔdR is estimated to be 17 whereas the same 

quantity for the delay skew in AB/AC is 16. Since ΔdS is an order of magnitude 

higher than ΔdR, it is obvious that this PUF implementation will produce highly 

biased outputs. 
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Fig. 8. (a). The delay values of nets XY and X’Y’. Two configurations correspond to two 

possible placements of the pair of latches inside a CLB. (b) The delay values of nets AB and 

AC. Eight configurations correspond to four possible placements of the excite signal buffer in a 

CLB for each of the two possible placements of the latches in the CLB. 

Manual routing by manipulating the PIP settings can ensure identical routing 

configuration. However, it is observed that even in this case, the delay of a pair of 

interconnects do not match based on the static delay values provided by the design 

tool. This is the reason why we refer the switch box as the source of asymmetry as 

shown by the cloud in the figure 7(b) and 7(c). 

From figure 7(b) and 7(c), it is evident that both intra-CLB and inter-CLB 

configuration of a BPUF cell suffers from the asymmetric nature of the FPGA routing 

resources. Thus, our observations contradict the results presented in [6]. However, we 

note that our experiments have been done on a Spartan-3E FPGA, and not on a 

Virtex-5 as used in [6].   

4.3   RO PUF  

A ring oscillator loop does not contain any symmetric pair of components. Therefore, 

the delay skew ΔdS does not exist in the oscillator loop. Unlike ABUF and BPUF, no 

pair of signals race with each other in a ROPUF. Instead the frequency of individual 

ring oscillators is independently recorded and compared subsequently. As a result, 

ΔdS needs to be minimized between a pair of oscillator. This leads to the fact that all 

the ROs composing the PUF must be identical.  

This requirement can be easily fulfilled in an FPGA with the help of the hard 

macro technique. When a hard macro is instantiated, the automated place and route 

tools avoid the placement of logic and signals in the designated area, and instead 

replicate the specified macro. A single implementation of an RO can be created as a 

hard macro which preserves the relative placement and routing of all the components 

in the loop. Since all the CLBs contain identical logic and routing resources, 

instantiating the hard macros in several CLB locations implements identical ROs. 
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5. Conclusion 

In this work, we have analyzed how the peculiarities of FPGA routing affect the 

implementations of delay based PUFs.  Our results show that symmetry requirements 

for Arbiter and Butterfly PUF architectures cannot be satisfied using available FPGA 

routing schemes, despite the apparent routing flexibility of FPGA devices.  Using the 

best possible routing, the delay difference due to static variation routes is an order of 

magnitude higher than expected delay variation due to manufacturing variability.  Yet 

an architecture without the mirror symmetry requirement, such a Ring Oscillator 

based PUF, can produce a working PUF.  Ultimately, understanding how a particular 

PUF architecture maps into FPGA fabric allows us to select a promising architecture 

for further investigation and characterization of PUF circuits in FPGAs. 
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