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Abstract. Direct Anonymous Attestation (DAA) is an anonymous dig-
ital signature scheme that aims to provide both signer authentication
and privacy. One of the properties that makes DAA an attractive choice
in practice is the split signer role. In short, a principal signer (a Trusted
Platform Module (TPM)) signs messages in collaboration with an assis-
tant signer (the Host, a standard computing platform into which the
TPM is embedded). This split aims to harness the high level of security
offered by the TPM, and augment it using the high level of compu-
tational and storage ability offered by the Host. Our contribution in
this paper is a modification to an existing pairing-based DAA scheme
that significantly improves efficiency, and a comparison with the original
RSA-based DAA scheme via a concrete implementation.

1 Introduction

An anonymous signature scheme is a special type of digital signature. In common
with a conventional signature scheme, an anonymous signature scheme must
ensure that only an authorised signer can produce a valid signature. However,
given a signature it must also ensure that no unauthorised entity should be
able to identify the signer. Another difference is highlighted by the nature of
the public keys used to perform signature verification. To verify a conventional
signature, the verifier makes use of a single public verification key which is bound
to the identity of the signer. In contrast, to verify an anonymous signature the
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verifier makes use of either a group public key or multiple public keys. In either
case the keys are not bound to an individual signer, and the level of anonymity
provided depends upon the size of the group or the number of public keys. The
first anonymous signature schemes were group signatures, introduced in 1991 by
Chaum and van Heyst [12].

In this paper we shall concentrate on a specific form of anonymous signature
that uses a group public key, namely a signature provided by a Direct Anonymous
Attestation (DAA) protocol. In addition to a number of interesting security and
privacy features, DAA has a unique property that makes it an attractive choice.
In short, the signer role in DAA is split between

1. a principal signer with limited computational and storage capability but high
security assurance, and

2. an assistant signer with greater computational and storage capability, but
lesser security.

Concrete realisation of these entities is provided by a TPM and a standard
computing platform, termed the Host, into which the TPM is embedded. The
TPM represents the principle signer and holds the secret signing key; the Host
assists the TPM in computing a signature, and satisfying the privacy require-
ment. Note that the Host is prevented from learning the secret signing key, and
hence from producing a valid signature without interaction with the TPM.

The TPM is a physically secure hardware device designed to enable higher
levels of security than are possible using software alone. One can view the TPM
as a form of coprocessor capable of storing cryptographic keys and performing
limited computational tasks in a secure manner; communication with the TPM
is typically performed via a low-bandwidth Low Pin Count (LPC) bus interface.
From a functional perspective, the TPM is specified by the Trusted Computing
Group (TCG); estimates suggest over 100 million standardised TPM devices
are currently in existence, mostly within high-end laptops. This deployment is
intended to support a wide variety of applications including full disk encryption,
Digital Rights Management (DRM) and, crucially for this work, anonymous
digital signatures. Crucially, said applications must be designed with great care
so as not to expose the constrained nature of both TPM and LPC bus as a
bottleneck.

The concept of DAA, and a concrete scheme, were first introduced by Brickell,
Camenisch, and Chen [5]; for a historical perspective, we direct the reader to [6].
This RSA-based scheme, which we term RSA-DAA from here on, was adopted
by the TCG and included in version 1.2 of the TPM specification [26]; this TPM
specification was recently adopted by ISO/IEC as an international standard [23].
Support for RSA-DAA alone represents around 10% of the TPM resources and
as such, schemes that retain the same functionality but do so more efficiently
remain an interesting and challenging open problem. One option, which has
formed the focus of much recent work, is the development of DAA schemes based
on elliptic curves and pairings; we generically term such schemes ECC-DAA from
here on. The advantage of using these underlying building blocks is obvious:
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both the key and signature length can be much shorter, and computational load
placed on the TPM less severe. As a result, ECC-DAA is typically more efficient
in computation, storage and communication cost than RSA-DAA.

Main Contributions: To the best of our knowledge, there are six existing
ECC-DAA schemes. Brickell, Chen and Li [7, 8] proposed the first such scheme,
basing it on symmetric pairings. In order to improve flexibility and efficiency,
Chen, Morrissey and Smart proposed two extensions [15–17] based instead on
asymmetric pairings. Although the security of all three schemes is based on both
the LRSW [24] and DDH problems, a flaw in the first extension was discovered
by Li and further discussed in [14, 17]. Three further schemes were proposed by
Chen and Feng [19], Brickell and Li [10], and Chen [13] respectively. The security
of these schemes is based on the q-SDH [4] and DDH problems. Using previous
work as a starting point, this paper makes two main contributions.

Firstly, we make three modifications to the ECC-DAA scheme described in
[17]. In summary, these modifications are:

1. The first modification is purely syntactic and implies no change to the secu-
rity proof from [17]: we simply move computations which could be performed
by the TPM to the Host, and vice versa. This has the effect of balancing
the workloads of TPM and Host, ultimately reducing the computational
load placed on the TPM.

2. Next we replace the public key signature based endorsement key from [17]
with a public key encryption based endorsement key, combined with a Mes-
sage Authentication Code (MAC). This mirrors more closely how the au-
thentic channel is created in the currently deployed RSA-DAA scheme.

3. Finally we replace the root key, used by the Issuer in generation of the
TPM DAA secret key, with a small subset of public system parameters.
We also remove the requirement for the TPM to verify a certificate chain
(from the root public key of the Issuer to the current public key) in every
join process. This verification was required in all previous DAA schemes,
including RSA-DAA, and has two main purposes: firstly to allow the TPM
DAA secret key to have a different life-cycle from the Issuer public key,
and secondly to to avoid the TPM accepting an arbitrary key that does not
belong to a given issuer. Our modification is based on two facts:
(a) in our new DAA scheme the TPM operations are strictly limited to the

small subset of public system parameters and do not actually use the
issuer current public key, and

(b) the public system parameters can have a much longer life-cycle than the
Issuer public key.

The modification vastly reduces the TPM workload in the Join protocol.

From here on, and unless otherwise specified, one can read ECC-DAA as meaning
our modified scheme as described in Section 2.

Secondly, we demonstrate how the ECC-DAA scheme can be implemented
and evaluate it via a concrete comparison with the incumbent RSA-DAA. In par-
ticular, we present experimental results that illustrate various implementation
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options and compare aspects of the schemes (e.g., efficiency and communication
cost) using a commodity computing platform (that represents the Host) and
an embedded computing platform (that represents the TPM).

2 The Pairing-Based ECC-DAA Scheme

A DAA scheme involves a set of issuers, signers, and verifiers. An Issuer is in
charge of verifying the legitimacy of signers, and of issuing a DAA credential to
each signer. A signer, which due to the split role is a pair of Host and associated
TPM, can prove membership to a Verifier by providing a DAA signature; this
requires the signer holds a valid DAA credential. The Verifier can verify the
membership credential from the signature, but it cannot learn the identity of the
signer. Based on these definitions, the rest of this section describes our ECC-
DAA scheme, which is based on the of [17] and relies on the use of asymmetric
pairings.

Notation: Throughout the constituent protocols and algorithms, we let I, H
and V denote the set of all Issuer, Host and Verifier entities; the set of all
TPM entities is denoted by M.

If S is a set, we denote the act of sampling from S uniformly at random
and assigning the result to the variable x by x←S. We let {0, 1}∗ and {0, 1}t
denote the set of binary strings of arbitrary length and length t respectively.
If A is an algorithm, we denote the action of obtaining x by invoking A on
inputs y1, . . . , yn by x← A(y1, . . . , yn), where the probability distribution on x
is determined by the internal coin tosses of A. Finally, we use [x]P to denote the
scalar multiplication of an elliptic curve point P by some integer x.

Note: Before proceeding with the description of our scheme, we note a general
issue that needs to be considered throughout. Specifically, every group element
received by any entity needs to be checked for validity, i.e., that it is within the
correct group; in particular, it is important that the element does not lie in some
larger group which contains the group in question. This strict stipulation avoids
numerous attacks such as those related to small subgroups. When asymmetric
pairings are used, as here, this is particularly important since G1 and G2 can
be considered as distinct subgroups of a large group G. If communicated group
elements are actually in G, as opposed to G1 and G2, then various properties
such as anonymity and linkability break down. As a result, we implicitly assume
that all transmitted group elements are elements of the specified groups: within
our scheme, the use of Type-III pairings [20] allows efficient methods for checking
subgroup membership as described by [18] and expanded upon in Section 3.

2.1 The Setup Algorithm

To initialise the system, one needs to select parameters for each protocol as well
as the long term parameters for each Issuer. We assume that prior to initial-
isation each TPM has a private endorsement key SK embedded into it (e.g.,
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in read-only memory) and that each Issuer has access to the corresponding
public endorsement key PK. We also assume a public key IND-CCA encryp-
tion/decryption scheme (ENC/DEC) has been selected for use with these keys,
and a MAC algorithm (MAC) with key space MK has been selected in order to
achieve authentication.

As explained previously, this latter point is both a minor departure from
the ECC-DAA scheme of [17] (in that there, the TPM endorsement key was a
signature/verification key pair) and a minor departure from the TCG developed
TPM specification [26] (in that there, message integrity was “achieved” by using
SHA-1 in [26] instead of a MAC function1).

On input of the security parameter 1t, the Setup algorithm executes the
following steps:

1. Generate the Commitment Parameters parC. In this step, three groups G1,G2

and GT , of sufficiently large prime order q, are selected. Two random genera-
tors are then selected such that G1 = 〈P1〉 and G2 = 〈P2〉 along with a pair-
ing ĥ : G1×G2 7→ GT . Next, two hash functions H1 : {0, 1}∗ 7→ G1 and H2 :
{0, 1}∗ 7→ Zq are selected and parC is set to (G1,G2,GT , ĥ, P1, P2, q,H1, H2).
Note that in our scheme, and in contrast with existing ECC-DAA schemes,
the TPM operations are strictly limited to G1. This allows a subset of parC,
namely parT, to be set to (G1, P1, q) and installed on the TPM in preference
to parC.

2. Generate Signature and Verification Parameters parS. Two additional hash
functions are selected, namely H3 : {0, 1}∗ 7→ Zq and H4 : {0, 1}∗ 7→ Zq, and
parS is set to (H3, H4).

3. Generate the Issuer Parameters parI. For each ik ∈ I, the following steps
are performed. Two integers x, y←Zq are selected, and the Issuer private
key iskk is set to (x, y). Next, the values X = [x]P2 ∈ G2 and Y = [y]P2 ∈ G2

are computed; the Issuer public key ipkk is set to (X,Y ). Then an Issuer
value Kk is derived from the Issuer public values. Finally, parI is set to
({ipkk,Kk}) for each Issuer ik ∈ I.

4. Generate TPM Parameters. The TPM generates a public/private key pair
(PK,SK) for the associated endorsement key. In addition, it generates the
private secret value DAAseed. Finally, parT is set to (PKh) for each TPM
embedded in some host h ∈ H.

5. Publish Public Parameters. Finally, the public system parameters par are set
to (parC, parS, parI, parT) and published.

Note 1: In our scheme, the Issuer value Kk is derived from a representation
of parT; if the same parT is used by multiple issuers, in order to limit Kk to a
single issuer, the issuer value Kk can be set by using both parT and a unique
issuer name. This is an important difference from other existing DAA schemes,

1 We place “achieved” in quotes, since it is a well known that a Merkle–Damg̊ard style
hash function, when applied to a concatenation of the message and a key, cannot
provide secure message authentication.
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including RSA-DAA. In all the previous DAA schemes, Kk is computed to be a
representation of the Issuer root public key. This is used to certify the Issuer’s
public key ipkk so that the Issuer and TPM can update their keys without
synchronising with each other.

However, there may be a long certificate chain between Kk and ipkk that could
result in the Join protocol very inefficient; specifically, the TPM needs to verify
said certificate chain. Our modification is based on the fact that the parameter
parT could be used over a longer timescale than the the Issuer public/private key
pair (iskk, ipkk). Therefore, the Issuer could update his key without changing
parT and without requiring each TPM to update its private key synchronously.

Note 2: Each TPM has a single DAAseed, but can create multiple DAA secret

keys, even associated with a single issuer. To allow this, a number cnt is used as
an additional input to DAA secret key generation: the TPM DAA secret key is
generated by using DAAseed, Kk and cnt as input.

2.2 The Join Protocol

This is a protocol between a given TPM m ∈M, the corresponding Host h ∈ H
and an Issuer i ∈ I. The protocol proceeds as shown in Figure 1, and it is
virtually identical to that of [17]. The difference is the way that the Issuer
and TPM establish an authentic channel between themselves. For simplicity of
analysis, in [17] this mechanism was provided by a digital signature algorithm.
However, in practice the TPM will not use a signature algorithm, but an en-
cryption algorithm and an integrity check function. For the sake of privacy, the
TCG does not want a TPM to provide a piece of evidence for each transaction.
Since each endorsement key is bound to a particular TPM, a signature signed
under the endorsement key can be used as such evidence in a public manner,
(although the public key encryption mechanism still provides this evidence to
an issuer). In this paper we follow this approach; the minor difference from the
TPM specification [26] is, as mentioned, that we make use of a MAC function
to achieve authentication rather than a hash function as in [26].

2.3 The Sign/Verify Protocols

This is a protocol between a given TPM m ∈ M, Host h ∈ H and Verifier
v ∈ V as described in Figure 2. The main difference between this version and
the protocol in [17] is the computation of W←[t]D by the Host, as opposed to
the computation of β←ĥ(S,X). This avoids a costly pairing operation by the
Host, and an expensive GT operation by the TPM. This advantage comes at
the expense of the Verifier being required to compute more operations in G1,
but less pairing operations and operations in GT .

It is easy to see that these minor modifications to the Sign and Verify protocols
have no affect on the security proof from [17]. Indeed, the Verifier still verifies
a Camensich-Lysyanskaya credential [11] and a proof of equality of two discrete
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TPM (m) Host (h) Initiator (I)

Issuer Request

kM←MK
cI←ENCPK(kM )

nI←{0, 1}t

TPM Response commreq� commreq� commreq←(cI , nI)

skT←PRF(DAAseed‖KI‖cnt)

kM←DECSK(cI)

If kM =⊥ then abort

str←X‖Y ‖nI str←X‖Y ‖nI

Q2←[skT ]P1

u←Zq ;U←[u]P1

v←H2(P1‖Q2‖U‖str)
w←u+ v · skT (mod q)

γ←MACkM
(P1‖Q2‖v‖w)

comm←(Q2, v, w, γ, nI) comm- comm- Issuer Response

If nI 6∈ {commreq}
then abort

γ′←MACkM
(P1‖Q2‖v‖w)

If γ 6= γ′ then abort

U ′←[w]P1 − [v]Q2

v′←H2(P1‖Q2‖U ′‖str)
If v 6= v′ then abort

∀sk′T ∈ RogueList

if Q2 = [sk′T ]P1

then abort

r←Zq

A←[r]P1; B←[y]A

C←[x]A+ [rxy]Q2

B� cre� cre←(A,B,C)

TPM Open

D←[skT ]B D- Host Verify

If ĥ(A, Y )

6= ĥ(B,P2)

or ĥ(A+D,X)

6= ĥ(C,P2)

then abort

Fig. 1: The Join protocol.
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TPM (m) Host (h) Verifier (v)

Start Sign nV� nV ∈ {0, 1}t

If bsn =⊥ then J←G1

else J←H1(bsn)

l←Zq

R←[l]A;S←[l]B

T←[l]C;W←[l]D

TPM Sign c, J, S,msg, bsn� c←H4(R‖S‖T‖W‖nV )

K = [skT ]J

nT←{0, 1}t

r←Zq

R1←[r]J; R2←[r]S

str←J‖K‖bsn‖R1‖R2

h←H5(c‖msg‖str‖nT )

s←r + h · skT (mod q) (K,h, s, nT )-
σ←(R,S, T,W,

J,K, h, s, nV , nT ) σ- Verify

∀sk′T ∈ RogueList

if K = [sk′T ]J

return false

If bsn 6=⊥
and J 6= H1(bsn)

return false

If ĥ(R, Y )

6= ĥ(S, P2)

or ĥ(R +W,X)

6= ĥ(T, P2)

return false

R′1 = [s]J − [h]K

R′2 = [s]S − [h]W

c′←H4(R‖S‖T‖W‖nV )

str′←J‖K‖bsn‖R′1‖R
′
2

h′←H5(c
′‖msg‖str′‖nT )

If h′ 6= h return false

Return true

Fig. 2: The Sign/Verify protocol.
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logarithms. However, now these two verifications are performed in distinct steps
rather than being mixed together; we suggested this makes the overall protocol
structure simpler to understand. In addition, the modifications produces a more
efficient protocol for the Host, TPM and Verifier. In addition, by splitting
the proof of equality of discrete logarithms from the credential verification step,
we enable the use of batch pairing verification techniques as expanded upon in
Section 3.

3 Implementation Details

3.1 RSA-DAA Scheme

Rather than replicate the detail here, we refer the reader to [5] for much of
the notation and the RSA-DAA scheme itself. Several implementation details
demand some discussion and clarification.

Choice of Parameters: The RSA-DAA scheme was instantiated using the
security parameters defined in [5]. That is, the security parameters in [5, Section
4.2] were used to generate public and private Issuer keys as described by [5,
Section 4.3]; pertinent features include the 2048-bit n and 1632-bit Γ .

Endorsement Key Algorithm: As described in [5, Appendix B], we altered
the Join protocol to include the notion of TPM endorsement. Effectively this
means the TPM holds a 2048-bit RSA key, and the PKCS#1 RSAES-OAEP
primitive is used as the endorsement key algorithm within Step 4 of the Join
protocol; we assume the public key of each TPM utilises a “small” exponent (i.e.,
e = 65537) and interleave additional messages to avoid extra communication
steps.

Implementation Options: A central part of each protocol in the scheme is
computation of k-term (multi-)exponentiations (i.e., the product of k single-
exponentiations) modulo an n and Γ .

Three issues related to this type of computation are worthy of note. Firstly,
there is scope for pre-computation based on the “somewhat fixed” bases taken
from the per-Issuer public key (e.g., g′, g and h). The value of such an approach
relates to the frequency of interaction with a given Issuer, and therefore we do
not pursue it in our implementation. Secondly, there exists a subtle overhead
associated with the fact that various exponents for exponentiation modulo n are
larger than the group order; no entity other than the Issuer has knowledge of
Φ(n) and hence they must be used, as presented, in their larger form. Thirdly,
we suggest that the diverse range of operand lengths used leads to some natural
inefficiency: in short, one must either employ a general-purpose implementation
strategy and pay a penalty in terms of performance, or employ a special-purpose
implementation strategy and pay a penalty in terms of memory footprint. De-
pending on the entity (i.e., Issuer, Host, Verifier or TPM) one or other may
be unattractive. Examples of this issue include:
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– In various steps, entities perform computation modulo n and Γ which are of
significantly different lengths: either one adopts a general-purpose strategy
that supports all moduli, or a special-purpose strategy for each.

– In various steps, entities compute the result of multi-exponentiation with
2, 3, 4 and 6 terms with varying length exponents. Either one adopts a
general-purpose strategy for any number of terms and any exponent length,
or a special-purpose strategy or each. As an example, consider that in step
3.a.i of the Sign protocol, the TPM is required to compute

R
rf0
0 R

rf1
1 Srv (mod n)

where rf0 and rf1 are both 688-bit integers and rv is a significantly larger
2776-bit integer. One could view the resulting mismatch as disadvantageous
in the sense that some effort is being “wasted”during a multi-exponentiation,

We opted for general-purpose strategy throughout our implementation, reason-
ing that this provides a fair comparison given the similar approach in the ECC-
DAA case.

3.2 ECC-DAA Scheme

The ECC-DAA under consideration is that described in Section 2; several im-
plementation details demand some discussion and clarification.

Choice of Parameters: To instantiate the ECC-DAA scheme, we use pairing
groups based on Barreto-Naehrig (BN) curves [2]. These are elliptic curves of
the form

E : y2 = x3 + b,

for b 6= 0, where the curve order and the finite field are defined by the polynomials

q(s) = 36s4 − 36s3 + 18s2 − 6s+ 1,
p(s) = 36s4 − 36s3 + 24s2 − 6s+ 1.

To generate such curves, one searches random values of s of the correct form
until q(s) and p(s) are both prime; searching for a b that produces a valid
elliptic curve over Fp, of order q, is then a simple task. In our implementation
we selected s = −7493989779944505618 and defined a curve using b = 18. This
yields roughly 256-bit values for q(s) and p(s) that are hence compatible with
AES-128 bit key sizes; alternatively, one could consider the security level as
comparable with 3000-bit RSA. Based on this curve, we select

1. The rational points on the curve E(Fp) as G1.
2. The order-q subgroup of Ê(Fp2), where Ê is the sextic twist of E available

due to the form of BN-curves, as G2.
3. The order-q subgroup of the finite field Fp12 , available due to the embedding

degree of BN-curves being 12, as GT .
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Elements of the finite field Fp12 are represented by a polynomial basis with
respect to the polynomial χ12 + 6. Using these groups, we implemented the Ate
pairing [22], which runs a short full-Miller loop followed by an exponentiation in
GT . We note that more efficient pairing algorithms exist (e.g., R-ate), but made
this selection partly based on possible inclusion in the IEEE P1363.3 Identity-
Based Public Key Cryptography standard.

Endorsement Key Algorithm: The choice of TPM endorsement key algo-
rithm was selected to be ECIES defined over the group G1. The KEM component
consists of a single element in G1. For encryption two point multiplications are
required, whilst for decryption one point multiplication is required. The DEM
component consisted of AES-128, combined with a CBC-MAC, (actually a vari-
ant of CBC-MAC called EMAC was used, which corresponds to MAC algorithm
two in the ISO 9797-1 standard).

Credential Verification: In both the Join and Sign/Verify protocols, verifi-
cation of a blinded Camenisch-Lysyanskaya signature is required. Namely, given
A,B,C,D ∈ G1 we need to verify whether both

ĥ(A, Y ) = ĥ(B,P2)

and
ĥ(A+D,X) = ĥ(C,P2).

To optimise this operation, we use an analogue of the small-exponent batch verifi-
cation techniques from [3]. Specifically, we select two small exponents e1, e2 ∈ Zq
whose bit length is half that of q; to verify the two pairing equations we then
verify whether

ĥ([e1]A, Y ) · ([−e1]B,P2) · ĥ([e2](A+D), X) · ĥ([−e2]C,P2) = 1.

Thus the verification involving four pairing computations is replaced by one
product of four pairings, plus four (relatively short) multiplications in G1. As
surveyed in [21], computing a “product of pairings” less expensive than comput-
ing the pairings independently; the methods improves verification of a blinded
Camenisch-Lysyanskaya signature by around 40%.

Subgroup Checking: Recall from Section 2 that group element accepted by
some entity within a protocol needs to be verified, i.e., checked to ensure it is
within the correct subgroup. Such checking falls into one of three categories:

– Checking whether X,Y ∈ G2 can be done by first checking whether X,Y ∈
Ê(Fp2), and then verifying that [q]X = [q]Y = O.

– Checking whether x ∈ Zq or Y ∈ G1 is trivial. In the first case we simply
need to check whether x is an integer in the range [0, . . . , q − 1], and in the
second case we check whether Y lies on the curve E(Fp). This simplicity is
possible because there is no cofactor of G1 in E(Fp) as a result of the curve
choice.
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– We ignore the cost of checking whether X,Y ∈ G2 because this is performed
once only, by a given entity, on receipt of a public key from some Issuer.
That is, we expect the cost to be amortised across all interactions with the
Issuer.

3.3 Experimental Results

To evaluate the proposed ECC-DAA scheme, and compare it with RSA-DAA,
we present some concrete experimental results. We used two platforms where

1. the Issuer, Host and Verifier entities were represented by a 64-bit, 2.4
GHz Intel Core2 (6600) processor targeted with GCC 4.3.2, and

2. the TPM entity was represented by a (simulated) 32-bit, 33 MHz ARM7TDMI
processor targeted with ARM ADS 1.2.

One might argue this software-only approach makes little sense because a TPM
will typically be equipped with hardware accelerators for primitives such as RSA,
SHA1 and a PRNG. As a result, we stress that our results are indicative only:
we attempt to model the asymmetry that exists between entities in terms of
computational ability, and give a relative comparison of the two schemes that
relates move directly to a software-based TPM [27].

Our implementation of both schemes was constructed using vanilla C with
assembly language fragments for performance-critical sections. Both use SHA-
256 as an underlying hash function with a counter-based iteration extending the
digest size where appropriate; rather than a cryptographically secure PRNG,
both implementations use the C LCG-based PRNG. Within both schemes we
take advantage of persistent state where possible: we avoid re-computation of
common intermediate results (e.g., between Step 5 and 6.b of RSA-DAA) via
caching. However, the clear advantage that exists in terms of computation is
counter-balanced by an implication for memory footprint that we ignore some-
what.

An important difference is the algorithms used for exponentiation (resp.
scalar multiplication):

– Within RSA-DAA and with k = 1 term, the Host, Issuer and Verifier
use sliding window (with w = 4) exponentiation; with k > 1 terms they
use Strauss’ method (or Shamir’s trick) for multi-exponentiation. The more
constrained TPM platform also uses sliding window (with w = 4) exponen-
tiation when k = 1, but repeated single-exponentiation for k > 1.

– Within ECC-DAA, all entities use (signed) sliding window (with w = 4)
scalar multiplication and group exponentiation; there are no instances of
multi-exponentiation.

We concede that aggressive specialisation and efficient (multi-)exponentiation
techniques (e.g., those described in detail by Möller [25] and Avanzi [1]) would
yield improved results for both schemes.
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Join

Step Issuer Host TPM

1 −− 13.38ms −−
2 −− −− 25.73s
3 1.62ms −− −−

4.a −− −− 30.15s
4.b 0.32ms −− −−
4.c −− < 0.01ms −−
4.d −− −− < 0.01s
4.e −− −− 17.26s
4.f −− −− −−
4.g 46.15ms −− −−
5 138.08ms −− −−

6.a −− < 0.01ms −−
6.b 30.61ms −− −−
6.c −− 72.99ms −−
7 −− −− −−
8 −− −− < 0.01s

(a) Performance of the RSA-DAAJoin
protocol.

Sign

Step Host TPM
bsn =⊥ bsn 6=⊥ bsn =⊥ bsn 6=⊥

1.a 2.03ms 13.33ms
1.b −− 1.28s
2.a 71.69ms −−
2.b −− 1.27s

3.a.i −− 30.99s
3.a.ii 144.19ms −−
3.b.i 0.04ms −−
3.b.ii −− < 0.01s
3.c.i −− < 0.01s
3.c.ii < 0.01ms −−

4 −− −−
Verify

Step Verifier
bsn =⊥ bsn 6=⊥

1 175.04ms −−
2 3.99ms −−
3 −− 13.31ms
4 1.61ms −−

(b) Performance of the
RSA-DAASign/Verify protocols.

Join

Step Issuer Host TPM

Issuer Request 1.14ms −− −−
TPM Response −− −− 2.77s
Issuer Response 4.16ms −− −−

TPM Open −− −− 1.12s
Host Verify −− 46.08ms −−

(c) Performance of the ECC-DAAJoin
protocol.

Sign

Step Host TPM
bsn =⊥ bsn 6=⊥ bsn =⊥ bsn 6=⊥

Start Sign 4.09ms 6.53ms −−
TPMSign −− 3.34s

Verify

Step Verifier
bsn =⊥ bsn 6=⊥

Verify 47.19ms 48.31ms

(d) Performance of the
ECC-DAASign/Verify protocols.

Table 1: Experimental results for RSA-DAA and ECC-DAA. Note that Steps 5
and 6.c of the RSA-DAAJoin protocol involve primality testing and, as such, the
results have quite a high standard deviation; where operations relate to entries
in a rogue list (e.g., Step 4 of the RSA-DAAVerify protocol), the quoted result
is per-entry rather than based on an assumed list length.

13



The results are given in Tables 1. For each step in each protocol, we give
timings in milli-seconds on the Host, Issuer, Verifier or (simulated) TPM
platform as appropriate. The names for the different stages for the RSA-DAA
protocol are taken from the description in [5]. We again stress that the results are
indicative only, and they do not include hidden costs such as communication and
random number generation. Even so, one can draw several concrete conclusions:

– Aside from performance, the results highlight that the RSA-DAA scheme is
significantly more complicated in terms of the number of steps and interac-
tion between entities; we suggest that this hints at a higher communication
cost.

– The performance of RSA-DAA has some significant performance bottlenecks
in our software-only approach, particularly in terms of computation on the
TPM; the availability of hardware accelerators within makes this point moot
however. In contrast, the results indicate that our ECC-DAA scheme is fea-
sible using a software-only approach. As such, one can either view is as
removing the need for dedicated hardware in the TPM (e.g., for modular
arithmetic) or potentially being significantly faster should similarly dedi-
cated hardware be available.

– Our ECC-DAA scheme not only provides performance advantages for the
TPM, but also for the Issuer and Host. What is surprising is that even
though the verification in our ECC-DAA scheme requires several pairing op-
erations, it is still faster than the equivalent RSA-DAA verification operation
by some margin. In part, this is due to our efficient batching technique, and
the specific choice of pairings adopted.

– Finally, we note that the security parameters for our ECC-DAA scheme
have been selected to be equivalent to a 128-bit AES security level. Thus,
on paper at least, our ECC-DAA scheme has a higher security margin than
the RSA-DAA scheme while still delivering the aforementioned performance
advantages.
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