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Abstract. We propose new cryptosystems based on self-distributive systems that are
defined by conjugator searching problems (CSP) in noncommutative groups. Under
the newly developed cryptographic assumptions, our basic construction is proven
IND-CPA secure in the standard model. Then, we describe two extensions: The first
is proven IND-CCA secure in the random oracle model, while the second achieves
the IND-CCA security in the standard model. Moreover, our proposal is instantiated
with braid groups, and leads to a new braid-based encryption scheme and its security
is directly rooted in the intractability assumption of CSP in braid groups.
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1 Introduction

Most public-key cryptosystems that remain unbroken are based on the perceived
difficulty of solving certain problems in large finite (abelian) groups. The theoretical
foundations of these cryptosystems are related to the intractability of problems that
are closer to number theory than to group theory [MST02]. In a quantum computer,
most of these problems on number theory can be efficiently solved by using algo-
rithms developed by Shor [Sho97], Kitaev [Kit95] and Proos-Zalka [PZ03]. Although
the quantum computation is still in its infancy, the knowledge regarding their po-
tential will soon create distrust in the current cryptographic methods [Lee04]. In
order to enrich cryptography and not to put all eggs in one basket [Lee04], many
attempts have been made to develop alternative public-key cryptography (PKC)
based on different kinds of problems [AAG99,KLCH00,Lee04,MST02].

Under this background, some noncommutative groups have been attracted con-
siderable attentions. One of the most popular groups in this category is the braid
group. In 1999, Anshel et al. [AAG99] proposed an algebraic method for PKC.
Shortly afterward, Ko et al. [KLCH00] published a fully fledged braid-based en-
cryption scheme using braid groups. The security of this scheme is based on the



so-called Diffie-Hellman like conjugacy problem (DHCP), which can be viewed as a
weaker variant of the conjugator searching problem (CSP). Unfortunately, Cha et
al.’s algorithm [CJ03] announced the breaking of Ko et al.’s braid-based encryption.
After then, finding new braid-based encryption becomes an interesting challenge.

Instead of giving a direct answer for the above challenge, in this study, we at
first propose some properties of the CSP-based left self-distributive systems (though
these properties could be obtained easily from the mathematic viewpoint, they are
very useful from the cryptographic perspective), and then propose new cryptosys-
tems based on these properties. Our proposal is suitable for arbitrary noncommuta-
tive group G, providing that the intractability assumption of CSP in G holds. Under
a further assumption, the ciphertext of our basic scheme is proven indistinguish-
able against chosen plaintext attacks (IND-CPA). Then two extended schemes that
achieve the IND-CCA security are described. When G is instantiated with the braid
group Bn for example, we can immediately derive a new braid-based encryption
scheme based on the intractability of CSP. This scheme can be viewed as an affir-
mative answer for the aforementioned challenge that has been remained open over
years. In fact, our originality is enlightened by Dehornoy’s previous work. In 2006,
Dehorney [Deh06] proposed an authentication scheme based on self-distributive sys-
tems in braid groups. Although some cryptanalysis on Dehorney’s authentication
scheme were reported [LU08], we find that Dehorney’s work is still meaningful at
least in the following two aspects: First, self-distributive systems can be defined
over arbitrary noncommutative groups, rather than braid groups only; second, self-
distributive systems have the potential for building variety of cryptographic schemes,
rather than authentication schemes only.

The rest of contents are organized as follows: In Section 2, we give a review
on the concept of self-distributive system and the related assumption; in Section
3, we propose some properties for the CSP-based self-distributive system; more
fledged cryptographic assumptions based on the intractability assumption of CSP
over the underlying noncommutative group were developed in Section 4; based on
these newly developed assumptions, a Diffie-Hellman-like key agreement protocol,
an ElGamal-like encryption scheme and its hashed extension, as well as a Cramer-
Shoup-like encryption scheme are proposed in Section 5; meanwhile, the provable
security theorem, the efficiency, and other related discussions are also presented.
Concluding remarks are given in Section 6.

2 Left Self-Distributive System and Hardness Assumption

Suppose that S is a non-empty set, and F : S ×S → S is a well-defined function. If
the following rewrite formula holds,

Fr(Fs(p)) = FFr(s)(Fr(p)), (∀p, r, s ∈ S) (1)

then we call F·(·) a left self-distributive system, abbreviated as LD system (See
[Deh06]). The terminology “left self-distributive” arises from the following analogical



observation: If we consider Fr(s) as a binary operation r ∗ s, then the formula (1)
becomes

r ∗ (s ∗ p) = (r ∗ s) ∗ (r ∗ p), (2)

i.e., the operation “∗” is left distributive with respect to itself.

Given a LD system F·(·) defined as (1), if it is hard to retrieve s′ from the given
pair (p, Fs(p)) such that Fs(p) = Fs′(p), then we say that this LD system is hard.
Note that s′ is not necessarily the original s. Based on a hard LD system in braid
groups, Dehornoy proposed an authentication protocol [Deh06].

Remark 1. The hardness of a LD system implies the one-wayness (OW) or pre-image
resistance (PR) of the same LD system, i.e., intractability of retrieving s from the
pair (p, Fs(p)).

3 CSP-based Left Self-Distributive System and its Properties

In his seminal paper, Dehornoy[Deh06] defined a non-trivial left self-distributive
systems based on the conjugate operation in braid groups. If we define a binary
function F as follows,

F : Bn ×Bn → Bn, (a, b) 7→ aba−1, (3)

and denote F (a, b) by Fa(b), then, we can see that F caters to the definition of
the formula (1). Moreover, under the intractability assumption of the conjugator
searching problem (CSP) in braid groups, this LD system is hard. That is, it is hard
to find s for a given pair (p, sps−1), where s and p are two braids belonging to the
braid group Bn.

Apparently, Dehornoy’s definition on LD system is suitable for arbitrary non-
commutative group G, rather then braid groups only. Thus, let us name all this cat-
egory of LD systems as CSP-based LD systems. We have developed some properties
of CSP-based LD systems. From the cryptographic perspective, these properties are
very useful under the aforementioned hardness assumption.

Remark 2. We must take care of the relationship between the intractability as-
sumption of CSP and the hardness assumption of LD systems. The CSP problem
is defined here as a worst-case problem, whereas from the cryptographic perspec-
tive, one needs average-case hardness for a LD system. Therefore, we need a special
sample algorithm that can produce the hardest instances of CSP in a particular
non-commutative G. For a general noncommutative group G, it is difficult to discuss
whether we can sample hardest instances. But for braid groups, Ko et al. [KLT08]
proposed some methods for generating hard CSP instances for braid cryptography.
In sequel, the CSP instances used in our proposal are always assumed to be hard.



Proposition 1. Suppose that F is a CSP-based LD system defined over a noncom-
mutative group G. Then, for arbitrary a, b, c ∈ G, F satisfies the following properties:

(i) F is idempotent in the sense of Fa(a) = a;

(ii) F is mutual inverse in the sense of Fa(b) = c⇔ Fa−1(c) = b;

(iii) F is homomorphic in the sense of Fa(bc) = Fa(b)Fa(c);

(iv) F is self-reflective in the sense of Fa(b) = F−1a (b−1).

Proof. See Appendix A.

Combining all above properties together, we obtain a new property, named as
power law, for CSP-based LD systems.

Proposition 2 (Power Law of CSP-based LD Systems). Suppose that F is
a CSP-based left self-distributive system defined over a noncommutative group G.
Then, for arbitrary three integers m, s, t such that m = s+ t, we have

Fa(b
m) = Fa(b

s)Fa(b
t) = Fma (b) and Fam(b) = Fas(Fat(b)). (4)

Proof. It is easy to obtain by combining the property (iii) in Proposition 1, and the
definition of the CSP-based LD system given by the formula (3).

4 New Cryptographic Assumptions over CSP-based Left
Self-Distributive Systems

4.1 The CSP-DDH assumption

Recall that the decisional Diffie-Hellman (DDH) problem is developed from the dis-
crete logarithm problems (DLP) over a cyclic group. Similarly, given the underlying
noncommutative group G, for arbitrary a, b ∈ G \ {1G} (where 1G is the identity of
G), the CSP-based decisional Diffie-Hellman (CSP-DDH) problem is to distinguish
the following two distributions:

Da,b = {(Fai(b), Faj (b), Fai+j (b)) ∈ G3 : i, j
$←−− Z},

and

D̃a,b = {(Fai(b), Faj (b), Fak(b)) ∈ G3 : i, j, k
$←−− Z}.

Here and in sequel, the symbol “
$←−− Z” always indicates a random integer sampling

process. In practice, we should randomly pick integers from an interval that is large
enough to resist exhaustive attacks. The CSP-DDH assumption says that the CSP-
DDH problem over the given noncommutative group G is intractable.



Remark 3. At present, it is unclear if the CSP-DDH problem is actually hard. But at
least in the so-called generic group model, we have no means to solve the CSP-DDH
problem without solving the CSP problem in the corresponding non-commutative
group G. To see this, we merely need to view the CSP problem and the CSP-
DDH problem over a general noncommutative group G as the analogies of the DLP
problem and the DDH problem over a general cyclic group with order q (where q
is a large prime), respectively. According to [Mau05], with access to a DDH oracle,
one can prove an O( 3

√
q) bound for solving the DLP problem in the generic cyclic

group. This suggests that from the perspective of complexity, the DLP problem and
the DDH problem are polynomially equivalent in a generic cyclic group. Therefore,
by an analogical manner, we have that

Conjecture 1. From the perspective of complexity, the CSP problem and the CSP-
DDH problem in a generic noncommutative group are polynomially equivalent.

4.2 The Strong and Twin CSP-DH Assumptions

Enlightened by the work in [CKS08], we would like to give a reformulation on the
above CSP-DDH problem and then propose the so-called strong and twin CSP-DH
assumptions over the underlying noncommutative group G.

For arbitrary a, b ∈ G \ {1G} (where 1G is the identity of G), let us define the
CSP-DH function (w.r.t. (a, b)) dh : G2 → G by

dh(X,Y ) := Z, where X = Fas(b), Y = Fat(b), and Z = Fas+t(b) (5)

for some unknown s, t
$←−− Z. The problem of computing dh(X,Y ) given random

X,Y ∈ G such that X = Fas(b), and Y = Fat(b) for some unknown s, t
$←−− Z is the

CSP-DH problem. The CSP-DH assumption asserts that this problem is hard. For
X, Ŷ , Ẑ ∈ G such that X = Fas(b), Ŷ = Fat̂(b), and Ẑ = Faû(b) for some unknown

s, t̂, û
$←−− Z, define the CSP-DH predicate dh : G3 → {0, 1} by

dhp(X, Ŷ , Ẑ) := dh(X, Ŷ )
?
= Ẑ. (6)

Apparently, the CSP-DH predicate is an exact reformulation of the aforementioned
CSP-DDH problem. Then, the strong CSP-DH assumption says that it is hard to
compute dh(X,Y ), given X,Y ∈ G such that X = Fas(b) and Y = Fat(b) for some

unknown s, t
$←−− Z, alone with access to a decision oracle for the CSP-DH predicate

dhp(X, ·, ·), which on input (Ŷ , Ẑ) such that Ŷ = Fat̂(b) and Ẑ = Faû(b) for some

unknown t̂, û
$←−− Z, and returns dhp(X, Ŷ , Ẑ).

Furthermore, for arbitrary a, b ∈ G\{1G}, let us define the twin CSP-DH function
(w.r.t. (a, b)) 2dh : G3 → G2 by

2dh(X1, X2, Y ) := (dh(X1, Y ), dh(X2, Y )), (7)



where X1 = Fas(b), X2 = Fat(b), and Y = Fau(b) for some unknown random integers

s, t, u
$←−− Z. Similarly, the twin CSP-DH predicate (w.r.t. (a, b)) is defined by

2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2) := 2dh(X1, X2, Ŷ )
?
= (Ẑ1, Ẑ2), (8)

where X1 = Fas(b), X2 = Fat(b), Y = Faû(b), Z1 = Fav̂(b) and Z = Faŵ(b) for some

unknown random integers s, t, û, v̂, ŵ
$←−− Z. Then, the twin CSP-DH assumption

states it is hard to compute 2dh(X1, X2, Y ), given random (X1, X2, Y ) ∈ G such

that X1 = Fas(b), X2 = Fat(b), and Y = Fau(b) for some unknown s, t, u
$←−− Z,

while the strong twin CSP-DH assumption states that the twin CSP-DH assump-
tion holds even with access to a decision oracle for the twin CSP-DH predicate
2dhp(X1, X2, ·, ·, ·), which on input (Ŷ , Ẑ1, Ẑ2) such that Y = Faû(b), Z1 = Fav̂(b)
and Z = Faŵ(b) for some unknown random integers û, v̂, ŵ ∈ Z, and returns
2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2). Analogically, enlightened by Theorem 1 in [CKS08], we
have that

Conjecture 2. The CSP-DH assumption over the underlying noncommutative group
G holds if and only if the strong twin CSP-DH assumption over G holds.

5 Cryptosystems from CSP-based Left Self-Distributive Systems

The CSP-DDH assumption over a noncommutative group G immediately implies a
Diffie-Hellman-like key agreement protocol, which in turn implies an ElGamal-like
encryption scheme over G. Furthermore, the strong twin CSP-DH assumption im-
plies a Cramer-Shoup-like encryption scheme over the underlying noncommutative
group G.

5.1 Constructions

Suppose that F is a hard CSP-based left self-distributive system defined over a
noncommutative group G. Let a, b ∈ G be two public elements. Assume that Alice
and Bob want to negotiate a common session key. Then, Alice (resp. Bob) picks
at random an integer s (resp. t) and then sends Fas(b) (resp. Fat(b)) to Bob (resp.
Alice). Finally, both of them can compute Fas+t(b), by which a session key can be
defined as

Ksession = Kdf(Fas+t(b)), (9)

where Kdf(·) is a key derivation function, such as KDF1 defined in IEEE Std 1363-
2000. Note that we have not specified the magnitudes of s, t and the order of the
group G. In fact, all of them should be large enough to resist exhaustive attacks.
We will see that the order of the group G could be even infinite (cf. Section 5.4).



The Basic Scheme—CSP-ElG. The above interactive is a natural analogy of the
Diffie-Hellman key agreement protocol [DH76]. Similarly, we can define the following
encryption scheme (denoted by CSP-ElG) that is an analogy of the ElGamal cryp-
tosystem [ElG85]. Our basic construction consists of the following four algorithms:

– Setup. The message space is M = G, while the ciphertext space is C = G2.
Picks a, b ∈ G and publishes them as the system parameters.

– KeyGen. Picks an integer s ∈ Z at random. The public key is pk = Fas(b),
while the secret key is sk = s.

– Enc. Picks an integer t ∈ Z at random, the ciphertext on a message m ∈ G is

c = (Fat(b), mFat(pk)),

– Dec. m = c2F
−1
as (c1).

Under certain assumptions, the above scheme is IND-CPA secure (See Theorem
1 in Section 4). It is easy to derive a CCA secure encryption scheme by employing
the Fujisaki-Okamoto transformation [FO99]. However, enlightened by the work in
[CKS08,ABR01,CS03], we would like to give the following two different extensions:
the first is called the hashed ElGamal variant that is IND-CCA secure in the random
oracle model, while the second is called the Cramer-Shoup-like variant that is IND-
CCA secure even in the standard model (cf. Section 4).

The First Extended Scheme—CSP-hElG. Our first extension is the hashed
version of the above CSP-ElG scheme and thus denoted by CSP-hElG. The CSP-
hElG scheme consists of the following four algorithms:

– Setup. Suppose that Π = (E,D) is a symmetric cipher with the key space K,
and H : G2 → K be a hash function. Pick a, b ∈ G randomly and publish them
as the system parameters.

– KeyGen. The public key is X, with the corresponding secret key x, where
X = Fax(b).

– Enc. To encrypt a message m ∈M, one chooses a random y ∈ Z, computes

Y := Fay(b), Z := Fay(X), k := H(Y,Z), c := Ek(m),

and the ciphertext is (Y, c).
– Dec. Given the ciphertext (Y, c), and the secret key x, one computes

Z := Fax(Y ), k := H(Y,Z), m := Dk(c).

The Second Extended Scheme—CSP-CS. Our second extension, denoted by
CSP-CS, is an analogy of the well-known cryptosystem due to Cramer and Shoup
[CS03]. The CSP-CS scheme consists of the following four algorithms:



– Setup. Suppose that Π = (E,D) is a symmetric cipher with the key space G 6,
and T : G2 → Z be a hash function. Pick a, b ∈ G randomly and publish them
as the system parameters.

– KeyGen. The public key is (X1, X2, X3, X4), with the corresponding secret key
(x1, x2, x3, x4), where Xi = Faxi (b) for i = 1, 2, 3, 4.

– Enc. To encrypt a message m ∈M, one chooses a random y ∈ Z, computes

Y := Fay(b), Z1 := Fay(X1), t := T (Y,Z1), Z2 := Fay(Fat(X2)X3),

k := Fay(X4), c := Ek(m)

and the ciphertext is (Y,Z1, Z2, c).

– Dec. Given the ciphertext (Y, Z1, Z2, c), and the secret key (x1, x2, x3, x4), one
computes t := T (Y,Z1) and tests if

Fax1 (Y )
?
= Z1 and Fat+x2 (Y )Fax3 (Y ) = Z2.

If not, reject. Otherwise, compute k := Fax4 (Y ) and output m := Dk(c).

5.2 Securities

Theorem 1 (IND-CPA of CSP-ElG). Based on the CSP-DDH assumption, the
ciphertexts of the encryption scheme CSP-ElG are indistinguishable under chosen
plaintext attacks in the standard model.

Proof. See Appendix B.

Theorem 2 (IND-CCA of CSP-hElG). If H is modeled as a random oracle,
and the underlying symmetric cipher Π is itself secure against chosen ciphertext
attacks, then the hashed ElGamal encryption scheme CSP-hElG is secure against
chosen ciphertext attacks under the strong CSP-DH assumption.

Proof. Analogically implied by Theorem 1 and the claims in [CKS08].

Theorem 3 (IND-CCA of CSP-CS). Suppose T is a target collision resistant
hash function. Further, suppose the CSP-DDH assumption holds, and the symmetric
cipher Π = (E,D) is secure against chosen ciphertext attack. Then CSP-CS is
secure against chosen ciphertext attack.

Proof. Analogically implied by Theorem 13 in [CKS08].

6 Similar to the reformulation in [CKS08], for simplicity we assume that the cipher’s secret key
consists of a random group element in G, but this assumption can be removed using standard
techniques, c.f. [CS03].



5.3 Efficiency for Computing and Representing Fat(b)

For computing Fat(b), we should at first compute at, and then plus one inversion
and two multiplications. When t is large, say several hundreds of digits, rather than
to multiply a t times, a similar successive doubling method should be employed, and
thus a factor of log t would be introduced in the following performance evaluation.
At present, it is enough to set t as an integer with 128 bits to resist exhaustive
attacks.

It is necessary to assume that the basic group operations, i.e., multiplication of
two elements and the inversion, can be finished efficiently. This assumption implies
that the lengths of the representations of all elements in G, including a, b, at and
Fat(b), should be polynomial in the system security parameters, since the results
have to be output bit-by-bit by using classical computers.

5.4 Potential Implementations and Evaluations

Now, let us proceed to give an implementation on our proposal by using braid
groups.

Intractability of CSP in braid groups. Although some algorithms for solving
CSP in braid groups were proposed [EH94,GM02,FGM03,Geb05], none of them has
ever been proven in polynomial time (with respect to the braid index n). As far as
we know, Gebhardt’s algorithm [Geb05], which was proposed in 2003 but formally
published in 2005, is the most efficient method for solving CSP in braid groups.
The algorithm has not been proven to be polynomial-time, yet. After then, CSP in
braid groups is classified for further study. According to Garber’s report [Gar07],
at present we can merely solve CSP for periodic braids within polynomial time.
From ultimate solutions for CSP in braid groups, we are still facing two kinds of
challenges: One is how to solve CSP for rigid braids within polynomial time, and
the other is how to find a polynomial boundary for Gebhardt’s method. (Please
see [BGGM07a,BGGM07b,BGGM08] for more details.) According to [Deh04] and
[KLT08], most of known attacks against braid-based cryptosystems take advantage
of the way that the keys are generated, rather than solve CSP itself. So in ref.
[KLT08], Ko et al. also proposed some new methods for generating hard CSP in-
stances for the braid cryptography. According to Shpilrain’s latest claim in [SU08],
there is no deterministic polynomial-time algorithm for solving CSP in braid groups
up to 2008. This gives us certain confidence for using braid groups as the platform
to implement our proposal. Moreover, the capability of CSP assumption to resist
currently known quantum attacks is also discussed from the perspective of hidden
subgroup problems [WWC+10].

Parameter Suggestion. Note that the braid group Bn is infinite, and it is not con-
venient to work with an infinite group. So in practice, we always choose two positive



integers n and l as the system parameters, and assume that all the braids involved
in our schemes are randomly chosen from the following finite subset [KCCL02]

Bn(l) = {b ∈ Bn|`(b) ≤ l} ⊆ Bn, (10)

where `(b) is the canonical length of b. According to ref. [KCCL02], |Bn(l)| ≤(
bn−12 c!

)l
. Further, if the keys are selected properly, say by employing Ko et al.’s

method [KLT08], then according to Maffre’s suggestion [Maf06], it is enough to set
n = 50 and l = 10 to resist all known classical attacks.

Ciphertext Expansion. Apparently, in the CPA-secure scheme, CSP-ElG, the
length of the ciphertexts is double of the length of the message to be encrypted. This
means the expansion factor is 2, exactly the same situation of ElGamal cryptosys-
tems. Regarding the extended CCA-secure schemes, i.e. CSP-hElG and CSP-CS,
the ciphertext expansion factors are (κ+ ι(G))/κ and (κ+ 3 · ι(G))/κ respectively,
where κ is the block size of the underlying symmetric cipher and ι(G) indicates the
length of the representation of an element in G. If G is finite, say ZN , then in general
we can assume ι(G) = log |G|. Now, new problems arise:

– First, when ι(G) is fixed, the expansion factors of these extensions could be
strictly less than 2 for sufficiently large κ. This in turn suggests that these
extensions might be more efficient in space than the basic CPA construction.
What is the expense for achieving this? Our answer is: We achieve this at the
expense of more computations.

– Second, when G is infinite, what is ι(G)? In fact, we never need to represent
infinite elements in practice. We just need to represent the involved elements. For
example, if G is instantiated with the braid group Bn and the canonical length
of all involved braids are bounded by l, then a braid in Bn(l) (cf. the previous
subsection) can be represented by a bit string of the length ι(Bn(l)) = ln log n
[KLCH00,CKL+01].

Performance. Combining the above discussions together, let us give a performance
evaluation on our proposal. Let us merely focus on braid groups, since for arbitrary
group G, we have no method to evaluate the complexity of group operations, such
as multiplication, inversion, etc.

According to refs. [CKL+01] and [Maf06], the complexities of the braid op-
erations such as multiplication, inversion, canonical form computation, etc., are
bounded by O(l2n log n) in the sense of bit operations, where n and l are the braid
index and the canonical length of involved braids, respectively. Then, taking CSP-
ElG for example and combining the issues discussed in Section 5.3, the complexity
for encryption and decryption can be concluded in Table 1.

Now, if we neglect small constant factors and the cost for pre-computations,
then the encryption and decryption of the scheme CSP-ElG can be finished with



Table 1. Computation Cost of CSP-ElG

Comp. content Comp. cost Explanation

at log t · l2n logn successive doubling

a−t l2n logn 1 inversion
Enc c1 = Fat(b) 2 · l2n logn 2 multiplications

c2 = mFat(pk) 3 · l2n logn 3 multiplications

as log s · l2n logn successive doubling, pre-computing

Dec a−s l2n logn 1 inversion, pre-computing

m = c2F
−1
as (c1) 4 · l2n logn 3 multiplications, 1 inversion

the complexities of O(log t · l2n log n) and O(l2n log n), respectively. When log t ≤
128 = 27 (cf. Section 5.3) and Maffre’s suggestion [Maf06] is adopted (i.e., n = 50
and l = 10), the number of bit operations for performing one time encryption
is directly proportional to 222, while the number of bit operations for one time
decryption is directly proportional to 215. We know that at present, the modulus of
a secure RSA cryptosystem should be at least 1024 bits. Then, the number of bit
operations for performing a modular exponential operation is directly proportional
to 230. This suggests that our proposal is much efficient than RSA cryptosystem. Of
course, every coin has two sides. The disadvantage of our newly derived braid-based
encryption scheme is that the length of the public-key is considerably large—about
12K bits (where K = 1024) [WWC+10].

6 Conclusion

Although CSP-based LD systems over any noncommutative groups are non-trivial,
only those based on a noncommutative group with the intractability assumption
of CSP are suitable for our proposal. It is worth mentioning that even if the CSP
assumption in braid groups were broken in future, our method is still significant
in building cryptosystems in other noncommutative groups provided that CSP in
these groups is intractable. For example, given a ring R with identity, the general
linear group GLn(R), i.e., the group of n × n invertible matrices with elements
in R, can be taken into account. Especially, considering that multiplications over
0-1 matrices can be implemented much efficiently and these matrices have tightly
relation with certain lattice problems, it seems very promising to implement our
proposal in GLn(Z2).
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A Proof of Proposition 1

Proof. Suppose F is a CSP-based LD system defined over noncommutative group
G. Then, for arbitrary a, b, c ∈ G, we have that

– Property (i): Idempotent. Since aaa−1 = a, i.e., a will remain unchanged when
it conjugates to itself. By using the notation as in the formula (1), we have
Fa(a) = a.

– Property (ii): Mutual inverse. According to the definition of F (cf. (3)), we have

Fa(b) = c⇔ c = aba−1

⇔ a−1ca = b

⇔ Fa−1(c) = b.

– Property (iii): Homomorphic.

Fa(bc) = a(bc)a−1

= (aba−1)(aca−1)

= Fa(b)Fa(c).

– Property (iv): Self-reflective.

Fa(b) = aba−1

= (ab−1a−1)−1

= (Fa(b
−1))−1

, F−1a (b−1).

This concludes the proposition. ut



B Proof of Theorem 1

Proof. Assume that the CSP-DDH assumption holds for the underlying noncommu-
tative group G. We will prove by contradiction that CSP-ElG is IND-CPA. Suppose
that CSP-ElG is not IND-CPA, and let A be an algorithm which, on the system
parameters a, b ∈ G and a random public key Fas(b), has probability non-negligibly
greater than 1/2 of distinguishing random encryptions Enc(m0) and Enc(m1) of
two messages m0,m1 of its choice. Let (Fas(b), Fat(b), Fau(b)) ∈ G3 be either a
random CSP-DDH triple or a random triple, with equal probability. We will pro-
duce an algorithm B which can distinguish between the two cases, using A as an
oracle, with probability close to 1. (This result is stronger than what we need to
prove.) The algorithm B picks two random integers v, w and constructs the triple of
group elements

T = (Fas+v(b), Fat+w(b), Fau+v+w(b)),

which is easy to do since B knows Fas(b), Fat(b), Fau(b), a, b, v and w. The algorithm
B then callsA with the public key Fas+v(b), which is guaranteed to be random since v
is chosen randomly. Afterwards, the algorithm A selects two messages m0,m1 ∈ G,
and B replies with the ciphertext c∗β = (Fat+w(b),mβ · Fau+v+w(b)) for randomly
picked β ∈ {0, 1}. There are now two cases to consider.

1. Suppose that u = s + t holds. Then u + v + w = (s + v) + (t + w), so T is a
CSP-DDH triple. Moreover, all possible CSP-DDH triples w.r.t. (a, b) are equally
likely to occur as T , since v and w are random. Therefore c∗β is a valid random
encryption of mβ (random since Fat+w(b) is a random group element). Under
these conditions, the algorithm A by hypothesis will succeed in outputting β
with probability exceeding 1/2 by a non-negligible quantity.

2. Suppose that u is random. Then T is a random triple of group elements, and all
possible triples of group elements occur with equal probability. In this situation,
the probability distribution of c∗0 is identical to that of c∗1, over all possible
random choices of v and w. It follows that the algorithm A cannot exhibit
different behavior for β = 0 and β = 1. Note that we can arrive at this conclusion
even though the expression c∗β is an invalid encryption of mβ —that is, even
though we have no information about how A behaves on invalid inputs, we
know for certain that A cannot behave differently depending on the value of β.

The above analysis reveals that if (Fas(b), Fat(b), Fau(b)) is a CSP-DDH triple then
A with non-negligible probability exhibits different behavior depending on whether
β = 0 or β = 1, whereas if (Fas(b), Fat(b), Fau(b)) is not a CSP-DDH triple then
A must behave identically regardless of the value of β. Hence, by repeating this
process with several different choices of random integers v, w, the algorithm B can
determine with high probability whether or not A can determine the value of β. In
this way B can determine whether or not (Fas(b), Fat(b), Fau(b)) is a CSP-DDH
triple, thus violating the CSP-DDH assumption for G. ut


