
Preimage Attacks on Reduced DHA-256*

 Jinmin Zhong and Xuejia Lai

Department of Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, 200240 China
zjm_new@sjtu.edu.cn

DHA-256 (Double Hash Algorithm) was proposed at the Cryptographic Hash

Workshop hosted by NIST in November 2005. DHA-256 is a dedicated hash function

with output length of 256 bits and 64 steps of operations designed to enhance SHA-256

security. In this paper, we show two attacks on reduced DHA-256. The first attack finds

one-block second preimage and preimage of 26-step DHA-256 with time complexity of

2223.82 compression function operations and 232 x 9 words memory. The second attack

finds pseudo-preimage and preimage of 35-step DHA-256 with time complexity of 2239.63

and 2248.82 compression function operations, respectively, and 216 x 11 words memory. To

the best of our knowledge, this is the first paper that analyzes second preimage resistance

and preimage resistance of DHA-256.

Keywords: DHA-256, meet-in-the-middle, second preimage, preimage, hash function

1. INTRODUCTION
 Hash function is an important cryptographic primitive. It is applied in many cryp-

tographic applications, such as digital signature and message authentication. Since 2004,

Wang et al. has made tremendous progress in the cryptanalysis of hash functions [24, 25,

26, 27] by showing theoretical attacks on SHA-1. NIST plans to replace SHA-1 with

SHA-2 [1]. The competition for SHA-3 is due to recent advances in cryptanalysis of

hash functions [22].

The meet-in-the-middle technique is used to construct preimage attacks on MD4 [4,

14], MD5 [4, 5, 17, 18], reduced RIPEMD [19, 23], HAVAL [5, 16], reduced SHA-0/1

[2] and reduced HAS-160 [20]. Constructing the second preimage using hash collision

was presented in [28]. Reversing the inversion problem and P3 graphs techniques are

applied to analyze the preimage resistance of reduced SHA-0/1 [6]. The most step num-

ber of current collision attack on reduced SHA-2 is 24 [10, 15]. The first result about

preimage attack on 24-step SHA-256 was proposed in [11]. Recently, preimage attack on

1

 2

43-step SHA-256 and 46-step SHA-512 was presented in [3, 9, 21].

DHA-256 was proposed in the first cryptographic hash workshop hosted by NIST

in 2005 by Jesang Lee, et al. [12]. The compression function of DHA-256 has 64 step

operations and outputs length 256 bits, and uses the two same message words to update

two intermediate words every step. In order to enhance the security of SHA-256, the

designers claimed that DHA-256 uses the same resource as SHA-2 for the message ex-

pansion and step function, but it is more secure than SHA-2 against known attack meth-

ods, especially Wang et al.’s attack [12]. IAIK Krypto Group presented a preliminary

analysis on the message expansion of DHA-256 and gave a 9-step local collision for

DHA-256 in 2005 [8]. So far, it is the only paper about the analysis of DHA-256.

Our Results. We show two preimage attacks on reduced DHA-256. A summary of

our results is shown in Table 1.

The first attack is a one-block preimage attack on 26-step DHA-256. This attack is

based upon strategy of Isobe and Shibutani [11] and uses two-way message expansion

technique proposed in [3, 9].

We present a 2-word initial structure with two message words, which is a variant of

so-called initial structure technique shown in [3, 2, 18, 21] with only one message word

in every step. We propose pseudo-preimage and preimage attack on 35-step DHA-256.

This attack is based on the general framework proposed by Sasaki and Aoki and uses

two-way message expansion and message compensation technique proposed in [3, 9].

In addition, we find that the matrix of the inverse function 1
1σ
− of SHA-2 showed in

[11] is not correct, and we provide a correct one and the corresponding program code in

appendix B, A respectively.

Table 1. Preimage attacks on reduced DHA-256.

 Attack Type Time Complexity Memory Complexity
26-step DHA-256 (one block) (Second)Preimage 223.822 322 9× words

Pseudo-preimage 239.63235-step DHA-256 162 11× words Preimage 248.822

2. PRELIMINARIES

Preimage Attacks on Reduced DHA-256 3

2.1. Specification of DHA-256

Fig. 1. Step Operation for DHA-256.

DHA-256 is a dedicated hash function. The structure of DHA-256 is similar to that

of SHA-256. But their message expansion functions are different from each other. More-

over, it is more important that the two same message words are used in the state update

function of DHA-256, while the only one message word is used in that of SHA-256. So

the hash function is called double hash algorithm (DHA) because of the two message

words. The step operation for DHA-256 is depicted in Figure 1.

The initial values, the input block length，the padding rule and the constants of

DHA-256 are the same as those of SHA-256.

The Boolean functions of DHA-256 are as follows.

(, ,) () ()
(, ,) () () ()

f x y z x y x z
g x y z x y y z x z

= ∧ ∨ ¬ ∧
= ∧ ∨ ∧ ∨ ∧

The shift rotations of DHA-256 are as follows.

1 2

1 2

() (11) (25), () (19) (29)
() 17, () 2

SS x x x x SS x x x x
S x x S x x

= ⊕ <<< ⊕ <<< = ⊕ <<< ⊕ <<<
= <<< = <<<

We divide the 512 bits message block into 16 message words, M0||M1||…||M15. The

algorithm of message expansion is

1 1 9 2 15 16

, 0
() () ,16 6
i

i
i i i i

M i
W

W W W W iσ σ− − − −

≤ ≤⎧
= ⎨ + + + ≤ ≤⎩

15
3

1 2() (7) (22), () (13) (27)x x x x x x x xσ σ= ⊕ <<< ⊕ <<< = ⊕ <<< ⊕ <<< .

The step operation of DHA-256 is

 4

1 1 1 1 1 2 , ,

1 1 2 1 1 1 , ,

(1) , (2) , (3) , (4) () () ,
(5) , (6) , (7) , (8) () () .

i i i i i i i i i i i i i

i i i i i i i i i i i i i

i

i

A B B C S C D D E SS H g F G H W K
E F F G S G H H A SS D f B C D W K

+ + + +

+ + + +

= = = = + + + +
= = = = + + + +

The output of the compression function of DHA-256 is

. 0 64 0 64 0 64 0 64 0 64 0 64 0 64 0 64(A +A , B +B , C +C , D +D , E +E , F +F , G +G , H +H)

2.2. Related techniques

 The following are some important techniques used to analyze the preimage resistance

of MD4-family, HAS-160 and DHA-256.

2.2.1. Meet-in-the-middle attack (MITM)

The meet-in-the-middle attack is a type of birthday attack and makes use of a

space-time tradeoff. The balanced meet-in-the-middle attack appeared in [7], and the

unbalanced one was proposed first in [13]. When it is applied to a hash function, the

compression function computes forward to the given step and gets a set of results for

intermediate chaining, and then compression function computes backward to the same

given step and gets another set of results for the same intermediate chaining. The two

sets of results are matched to find an equal value according to the birthday attack rule. So

the two sets of results must be independent of each other in order to satisfy the birthday

attack rule. The key issue for the meet-in-the-middle attack is to find the two message

parts independent of each other.

2.2.2. Converting pseudo-preimage attack into preimage attack

The method of converting pseudo-preimage attack into preimage attack was pro-

posed first in [13]. The initial chaining values of pseudo-preimage are not the fixed IV,

so a message block is needed to hash and connect the fixed IV with the initial chaining

value of pseudo-preimage. The method of the birthday attack is used to search the proper

message block. Assume that it takes 2k complexity to produce a pseudo-preimage. 2(n-k)/2

pseudo-preimages cost 2k x 2(n-k)/2 complexity. It needs 2(n+k)/2 complexity to compute the

hash values of 2(n+k)/2 one-block messages. Then, 2(n+k)/2 hash values are compared with

the initial chaining values of 2(n-k)/2 pseudo-preimages, and thus 2(n+k)/2+(n-k)/2 = 2n pairs are

compared. A pair will succeed in matching according to birthday attack rule with high

probability. The total complexity is 2k x 2(n-k)/2 + 2(n+k)/2 = 21+(n+k)/2. Thus, if k is less than

n-2, it will succeed in transforming pseudo-preimage attack into preimage attack.

2.2.3. Splice-and-cut technique

The hash values equal the values to which the initial values are added for the final

Preimage Attacks on Reduced DHA-256 5

chaining values in the Davies-Meyer mode. Splice-and-cut technique proposed first in [4]

regards the first step and the last step as consecutive steps. So the neutral words and in-

dependent chunk can be searched in all of the range.

2.2.4. Partial-matching technique, Partial-fixing technique and Indi-

rect-partial-matching technique

 The state update function only updates a chaining word for MD4-family hash function

(updates two chaining words for SHA-2) and the corresponding chaining words of the

next step equal to or are easy to compute based on other chaining words. For example,

two words out of eight chaining words are updated every step in SHA-2 and other six

chaining words equal to the corresponding words of the next step and one chaining word

of the next step can be derived from the eight chaining words. If eight chaining words in

the same step are known, seven chaining words in the next step will be known for

SHA-2 while we do not need to know the corresponding message words. In a similar

way, there is a chaining word that can be derived from eight words in each current step,

in every step of the succeeding seven steps. So we only need to match the corresponding

chaining words in the meet-in-the-middle attack, while we do not care about the seven

message words. This property helps us to find the neutral words and independent chunks.

The technique is so-called partial-matching technique proposed first in [4]. The state

update function of SHA-2 is different from that of DHA-256. The main difference is that

the state update function of DHA-256 includes two message words and updates two in-

termediate words at the same time, while that of SHA-2 only includes one message word

and updates two intermediate words. Thus, the partial-matching technique in DHA-256

can match at most three steps while that in SHA-2 can match up to seven steps.

 The partial-fixing technique proposed first in [4] is essentially the partial-matching

technique. The number of matched bits in the partial-matching technique is the number

of bits in a chaining word at least, while the one in the partial-fixing technique can be

several bits, and any bit. During the meet-in-the-middle attack, a chunk meets the oppo-

site neutral word and has to stop computing the intermediate values. If the part values of

the opposite neutral word are fixed and known, the chunk can continue to compute the

intermediate values with the known part values of the opposite neutral word and thus we

can attack more steps.

 Indirect-partial-matching proposed first in [3, 9] is an extension of partial-matching.

 6

The computation of the match point can be decomposed the independent computation of

the function of the two neutral words. Indirect-partial-matching makes use of the prop-

erty so as to transfer the problem of the computation of the match point into the problem

of the independent computation of the function of the two neutral words. Indi-

rect-partial-matching can get two more steps for SHA-2.

2.2.5. Initial structure

 If the two independent chunks overlap at the beginning of the meet-in-the-middle at-

tack, we will meet the problem which is how to compute forward and backward in these

overlapped steps, respectively. Initial structure proposed first in [18] is designed to solve

this problem. Initial structure with deterministic way for SHA-0 introduced in [2] can

reduce the memory requirement by a factor of 232. The 4-step initial structure for SHA-2

proposed in [3, 9] consumes a lot of message freedom. Until now all of proposed initial

structures only contain one message word every state update step.

2.2.6. Two-way expansion, Message modification and Message compensation

 Any consecutive 16 message words can determine other message words for SHA-2 in

two directions. This property helps to find the longer chunks independent of each other,

and the neutral words. The two-way expansion proposed in [3, 9] makes use of the above

property.

 The message modification introduced in [11] is used to construct two independent

chunks in the message expansion of SHA-2. Note that the message modification tech-

nique is different from the one proposed in [24].

 The message compensation proposed in [3, 9] is used to attain the goal that the change

of the neutral words in an independent chunk does not affect the message words in an-

other independent chunk. The message compensation is similar to the message modifica-

tion.

2.2.7. Finding kernel and neutral words technique

 Finding kernel and neutral words technique proposed in [2] is used to analyze the lin-

ear message schedule of SHA-0/1 and to find the two independent chunks and the neu-

tral words for SHA-0 (bits for SHA-1 instead of words). The strategy uses a matrix to

represent the expanded message of SHA-0/1. The message expansion functions of

SHA-2 and DHA-256 are not linear and are different from those of SHA-0 and SHA-1.

Preimage Attacks on Reduced DHA-256 7

3. ONE-BLOCK (SECOND) PREIMAGE ATTACK ON 26-STEP

DHA-256

A one-block preimage attack on 26-step DHA-256 is also a one-block second pre-

image attack on 26-step DHA-256. We combine the strategy of analysis of SHA-2 in [11]

with the two-way message expansion technique, and then apply them to DHA-256. Only

the 24-step SHA-2 in [11] can be analyzed. If we use the same strategy in [11], only the

24-step DHA-256 can be analyzed. So we extend to the 26-step DHA-256 using the

two-way expansion technique.

3.1. Construct two message chunks independent of each other

The values of message words Wi, i∈ {0, 1, …, 15} determine those of Wj, j∈ {16,

17, …, 25} according to the rule of message expansion of DHA-256.

 (1) 16 1 15 7 2 1 0() 1 (1))(W W W const Wcons Wt σσ← + + ← +

 (2) 17 1 16 8 2 2 1() 2 (2))(W W W const Wcons Wt σσ← + + ← +

 (3) 18 1 17 9 2 3 2() 3 (3))(W W W const Wcons Wt σσ← + + ← +

 (4) 19 1 210 3418() 4)4 ()(W W W const Wcons Wt σσ← + + ← +

 (5) 1120 1 19 2 45() () 5 (5)W W W const const W Wσ σ← + + ← +

1 20 2 612 521W ← +

1322 1 21W ← +

1423 1 22W ← +

24W ← +

25W ← +

() ()WW W Wσ σ+ +

6)) ((WW W Wσσ + +

7)) ((WW W Wσσ + +

1 23 8)) ((WW W Wσσ + +

1 2 2 10 94 6() ()W W W Wσσ + +

 (6)

 (7) 2 7

 (8) 2 8

 (9) 15 2 9

 (10) 1

The following description shows that the forward computation and the backward com-

putation can produce the two sets of intermediate chaining values independent of each

other to match using the rule of birthday attack.

The neutral word of forward computation is W11, which is used to compute W20 in

equation (5) and is not used in other expansion message words before step 26 of

DHA-256. So W20 will change with changes in W11. In order to keep W20 unchanged, we

use W4 to absorb the change of W11 using the message modification technique proposed

in [11], that is to say, the sum of W11 and W4 (const5), does not change. Hence the value

of W20 does not change with changes in W11. The change of W4 can be absorbed by the

 8

(4)change of W3 in equation in a similar way. The same analysis is true for W1 and

W0.

The neutral word of backward computation is W25. The change of W25 is absorbed

by the change of W24 in equation (10) so that other message words do not change in

equation (10). The change of W21 can be absorbed by the change of W12 in equation

(6) as the same reason. W12 is not used in other expansion message words before step

26, thereby the change of W12 will not affect other message words. Moreover, W12, W13

and W14 will be neglected through the partial-matching technique.

Because the initial values can be any value, this attack directly produces a one-block

preimage and a one-block second preimage.

This attack is also easy to extend to a one-block (second) preimage attack on

27-step DHA-256, which needs to deal with the most significant bit of message word

W13 to satisfy the padding rule. The two message chunks independent of each other are

{W0, W1,…,W12} and {W13, W14,…,W26}, and the corresponding neutral words are W0

or W12 and W13 or W26.

We discuss the two-block preimage attack on 35-step DHA-256 in Section 4.
3.2. Attack procedure

1. Initialization

(a) Set the values of Wi, i∈ {13, 14, 15} to satisfy the padding rule.

(b) Select the values of Wi, i∈ {5, 6, 7, 8, 9, 10} randomly.

(c) Select the values of const1, const2, const3, const4 and const5 randomly.

(d) Compute the values of Wi, i∈ {16, 17, 18, 19, 20} using equation (1)~(5), respec-

tively.

2. Forward Computation

For all possible value of W11 (32 free bits in total),

(a) Compute the following equations,

4 11 3 2 4 2

1 2 2 0 2 1

5 , 4 (), 3 (),
2 (), 1 ()

W const W W const W W const W
W const W W const W

σ σ
σ σ

← − ← − ← −
← − ← −

2 3

(b) Compute 1 (,)j j j jp R p W+ ← for j=0, 1, ..., 11. Store the values of (p12, W11)

into the list L.

3. Backward Computation and Comparison

Preimage Attacks on Reduced DHA-256 9

For all possible values of W25 (32 free bits in total),

(a) Compute the following equations (The program code about computing 1
1σ
− and the

value of is in appendix A and C), 1
1σ
−

1 1
24 1 25 16 2 10 9 23 1 24 15 2 9 8

1 1
22 1 23 14 2 8 7 21 1 22 13 2 7 6

12 21 1 20 2 6 5

(()), (()

(()), (()
() ()

W W W W W W W W W W

W W W W W W W W W W
W W W W W

σ σ σ σ

σ σ σ σ
σ σ

− −

− −

← − − − ← − − −

← − − − ← − − −
← − − −

),

),

)

(b) Compute 1
1(,j j j jp R p W−

+← for j=25, 24, ..., 15. Compare D12, H12 in the list L with

A15>>>17, E15>>>2.

(c) If matched, compute p14 using p15 and W14. Compare C12, G12 in the list L with

A14>>>17, E14>>>2.

(d) If matched, compute p13 using p14 and W13. Compare B12, F12 in the list L with A13,

E13.

(e) If matched, compute p12 and W12. Compare A12, D12 in the list L with A12, E12.

(f) If matched, return (W0, W1, …, W15) preimage of 26-step DHA-256, otherwise, re-

peat the attack procedure.

4. Complexity analysis
The complexity analysis of the one-block (second) preimage attack on 26-step

DHA-256 is as follows.
1. The cost of initialization compared to that of other steps is negligible. (ME repre-

sents the computation of message expansion and CF represents the computation of com-

pression function. We use the same notations hereafter.)

2. For forward computation, the complexity is about 32 2
262 i ME in step 2a. The com-

plexity is CF in step 2b. The memory complexity is 32 12
262 i 322 9⋅ words.

3. For backward computation, the complexity is 32 5
262 i ME in step 3a. The complex-

ity is 32 11
262 i CF in step 3b. The cost of comparison compared to that of other steps is

negligible. pairs will take part in comparison. The number of bits for

matching is 64 in total. If matched, pair remains, and thus, the complexity

is negligible in step 3c~3f. Hereto, the complexity is

64 32 322 (2 2)= i

0 64 642 (2 2)−= i

32 327 52
26 26 262 (2 (= +i i)) ME

and 32 3223 12 11
26 26 262 (2 (= +i i)) CF in total. It is about 32 31.8223

262 2≈i 26-step DHA-256 opera-

 10

tions. The rate of success to find a one-block preimage of 26-step DHA-256

is . So it needs to repeat times. 192 64 2562 (2 2)− = i 1922−

)

 Hence, the complexity for finding a one-block preimage of 26-step DHA-256 is

26-step DHA-256 operations. The memory complexity is words. 223.82 192 31.822 (2 2= i 322 9⋅

4. PREIMAGE ATTACK ON 35-STEP DHA-256

4.1. Construct two message chunks independent of each other

Wj-8, Wj-7, …, Wj+5, Wj+7Wj-9

The second chunk
Partial-
fixing

Wj+22Wj+6 , Wj+8, Wj+9, …, Wj+21

The first chunk
Partial-
fixing

2-Word Initial
Strunture

Partial-matching, Skip them: Wj-10, Wj-11, Wj-12

Backward computation Forward computation

Fig. 2. The roles of message words in the meet-in-the-middle attack on 35-step DHA-256.

 How to find two independent message chunks is the key issue of meet-in-the-middle

attack. The message expansion rule of DHA-256 is similar to that of SHA-2 and it is also

a bijective mapping. The consecutive 16 message words out of 64 message words of

DHA-256 can compute other message words determinately. This property allows us to

use two-way message expansion technique proposed in [3, 9] to find the two independ-

ent message chunks with long steps. We select Wj+6 and Wj+7 as the neutral words by

our manual attempts, and thus the two independent message chunks are {Wj-7, Wj-6, …,

Wj+6} and {Wj+7, Wj+8, …, Wj+20}.

 In order to extend the independent message chunks, we exchange the two neutral mes-

sage words through a 2-word initial structure which will be explained in next subsection.

This makes us to get 2 more steps. The two longer independent message chunks are

{Wj-8, Wj-7, …, Wj+7} and {Wj+6, Wj+8, …, Wj+21}, and the extended corresponding mes-

sage words are Wj-8 and Wj+21 respectively. But Wj+16 in equation (11) is derived from

Wj+7 which is the neutral word. Then, the value of Wj+16 will be affected by Wj+7 when

the value of Wj+7 changes. Such will break the rule of meet-in-the-middle. We use mes-

sage compensation technique proposed in [3, 9] to solve the problem. Let Wj = -Wj+7,

Preimage Attacks on Reduced DHA-256 11

such that the change of Wj+7 can be absorbed by the corresponding change of Wj and will

not affect the value of Wj+16 in (11). The change of Wj will not break the rule of

meet-in-the-middle, because Wj is not a neutral word and is in the same message chunk

with Wj+7. The similar operations for Wj+6 and Wj+15 in another message chunk are car-

ried out for the same reason. Therefore, we make Wj+15 = Wj+6 in equation (18).

The first chunk { 86 9, , , ..., jj j jW WW W 21+ ++ +

)jW

} is used to compute forward.

16 1 15 72 17() () (j j jj j jW W WW W Wσ σ+ + ++ += −= + + + ⇒ (11)

 17 1 16 8 2 2 1() ()j j j jW W W W Wjσ σ+ + + += + + + + (12)

 18 1 17 9 2 3 2() ()j j j jW W W W Wjσ σ+ + + += + + + + (13)

 19 1 18 10 2 4 3() ()j j j jW W W W Wjσ σ+ + + + += + + + (14)

 20 1 19 11 2 5 4() ()j j j jW W W W Wjσ σ+ + + + += + + + (15)

 21 1 20 12 2 6 5() ()j j j jW W W W Wjσ σ+ + + + += + + + (16)

 (17) 22 1 21 13 62 7() (())jj j j jW W W W Partial fixW ingσ σ+ + + += ++ + −

8, , , ...,

+

7The second chunk { 5 4j j jWW W+ + −

6)

} is used to compute backward. jW +

 11 15 1 14 2 56() () (j j j j j j jWW W W W W Wσ σ− + + ++ += − − − ⇒ = (18)

 2 14 1 13 5 2() (j j j j jW W W W W 1)σ σ− + + + −= − − − (19)

 3 13 1 12 4 2() (j j j j jW W W W W 2)σ σ− + + + −= − − − (20)

 4 12 1 11 3 2() (j j j j jW W W W W 3)σ σ− + + + −= − − − (21)

 5 11 1 10 2 2() (j j j j jW W W W W 4)σ σ− + + + −= − − − (22)

 6 10 1 9 1 2() (j j j j jW W W W W 5)σ σ− + + + −= − − − (23)

 7 9 1 8 2() (j j j j jW W W W W 6)σ σ− + + −= − − − (24)

 8 8 1 7 1 2() (j j j j jW W W W W 7)σ σ− + + − −= − − − (25)

 9 7 2 21 86 () (())j j j j jW W W W Partial fixingW σσ− + − −+= − − − − (26)

 10 6 1 5 3 2 9() () (j j j j jW W W W W Partial matching)σ σ− + + − −= − − − − (27)

 11 5 1 4 4 2 10() () (j j j j jW W W W W Partial matching)σ σ− + + − −= − − − − (28)

 12 4 1 3 5 2 11() () (j j j j jW W W W W Partial matching)σ σ− + + − −= − − − − (29)

4.2. The description of 2-word initial structure

 12

Fig. 3. Description of 2-word initial structure for 35-step DHA-256.

The section shows how to construct the 2-word initial structure.

The intention of the initial structure is to prevent the change of the opposed neutral

word from the computation of the corresponding intermediate state values. For example,

the change of the neutral word W18 is not allowed to affect the computation of the inter-

mediate state values A18, B18, …, H18 (i.e. p18) shown in Figure 3 in order to carry out the

meet-in-the-middle attack. The neutral word W18 must be independent of p18. The neutral

word W19 should satisfy the same relation with p20.

The step update functions of MD5, SHA-0/1 and SHA-2 only use one message word

to update one (or two) chaining values in every step, while that of DHA-256 uses two

same message words to update two chaining values in every step. Thereby only one mes-

sage word is needed to deal with in every step of the initial structure of MD5, SHA-0/1

and SHA-2. The 2-word initial structure for 35-step DHA-256 is depicted in Figure 3.

 The points T1, T2, T3 and T4 in Figure 3 are set to four fixed values. A18 = T1 – f(B18,

C18 , D18) – SS1(D18)+ K18. Because T1 is fixed, the change of W18 does not affect A18.

The change of A18 is independent of G20 because of G20 = H19 = T1 + W18 + K18 and the

Preimage Attacks on Reduced DHA-256 13

fixed value of T1. The effect of T2, T3 and T4 is similar to that of T1.

4.3. Attack procedure
 The attack procedure for 35-step DHA-256 includes initialization, forward computa-

tion, backward computation and comparison. The description of partial-fixing and par-

tial-matching procedure is depicted in Figure 4.

1. Initialization

(a) Set the values of Wi, i=13,14,15 to satisfy the padding rule for a 2-block message.

(b) Select the values of T1, T2, T3, T4, C18, D18, G18 and H18 in the 2-word initial struc-

ture randomly. Let A20=B19=C18<<<17, C19=D18, B20=C19<<<17, E20=F19=G18<<<2,

G19=H18, F20=G19<<<2.

(c) Select the values of Wi, i∈ {16, 17, 20, 21, 22, 23, 24, 25, 26}, const1and const2

randomly. Select the values from the 16th bit to the 31st bit of X (=) and the values

from the 0th bit to the 15th bit of Y (=) randomly.

1 18()Wσ

2 19(Wσ)

2. Forward Computation

For the free bits of X (=) (from the 0th bit to the 15th), do the following, 1 18()Wσ

(a) Compute W18 = 1
1 ()Xσ − . Let W27 = W18 + const2. Compute the values of W28, W29,

W30, W31, W32, W33 and the values from the 0th bit to the 15th bit of W34 using the values

from the 0th bit to the 15th bit of Y. (). 1 33 2

15 0 15 0

34

ALL
W Y

− −

5 18()W W Wσ= + + +

(b) Compute G20=H19=T1+W18+K18, C20=D19=T2+W18+K18, H20=T3+f(B19, C19,

D19)+SS1(D19)+K19, D20=T4+g(F19, G19, H19)+SS2(H19)+K19.

(c) Compute 1 (,)j j j jp R p W+ ← for j=28, 29, ..., 33. Compute p35 using p34 and W34,

then only get the values from the 0th bit to the 15th bit for D35 and H35, all the bit values

for other intermediate variables. Let
31 17, 0(0) 15 0 17 2 15 0

35 35() 17, ()
unused ALL ALL

m d D n h H
− − − −

2= − <<< = − <<< .

Store the values of
31 17 17 2

34 18(, , ,)p m n W
− −

into the list L. The memory requirement of the list L

is words. Note that because and , we can get the

equation . We can also get the equation

162 11i 3 2 1 17A B C= = <<< 1 0 3C D d D= = − 5

17 23 35()A m d D= = − <<< 3 35()E n h H= = − <<< in

a similar way. We store m and n, i.e. A3 and E3, into the list, instead of D0 and H0 due to

the convenience of comparison next subsection. This is slightly different from the de-

scription in Figure 4, but they are the same in essence.

 14

A34 B34 C34 D34 E34 F34 G34 H34

f

ss1

<<<17
W34

K34

g

ss2

<<<2
W34

K34

A0 B0 C0 D0 E0 F0 G0 H0

f

ss1

<<<17
W0

K0

g

ss2

<<<2
W0

K0

A1 B1 C1 D1 E1 F1 G1 H1

f

ss1

<<<17
W1

K1

g

ss2

<<<2
W1

K1

A2 B2 C2 D2 E2 F2 G2 H2

f

ss1

<<<17
W2

K2

g

ss2

<<<2
W2

K2

A3 B3 C3 D3 E3 F3 G3 H3

f

ss1

<<<17
W3

K3

g

ss2

<<<2
W3

K3

A4 B4 C4 D4 E4 F4 G4 H4

A35 B35 C35 D35 E35 F35 G35 H35

a b c d e f g h

Partial-
fixing

Partial-
fixing

Partial-
matching

Splice:
p35=Hash - p0

Fo
rw

ar
d

C
om

pu
ta

ti o
n

p35

p0

(Skip W2, W1, W0)

B
ac

kw
ar

d
C

om
pu

ta
tio

n

Fig. 4. The partial-fixing and partial-matching.

Preimage Attacks on Reduced DHA-256 15

3. Backward Computation and Comparison

For the free bits of Y (=) (from the 16th bit to the 31st bit), do the following (The

program about computing

2 19()Wσ

 and the value of is in appendix A and D), 1
2σ − 1

2σ −

(a) Compute W19 = . Let W12 = const1-W19. Compute the values of W11, W10, …,

W4 and the values from the 16th bit to the 31st bit of W3 using the values from the 16th bit

to the 31st bit of X. ().

1
2 ()Yσ −

131 16(2) 31 16

3 19 10 2W
− −

= − 4()
ALL ALL ALL

W WX Wσ− −

)

(b) Compute B18=A19=T3 – W19, F18=E19=T4 – W19, A18=T1-f(B18, C18, D18)-SS1(D18)

and E18=T2-g(F18, G18, H18)-SS2(H18).

(c) Compute 1
1(,j j j jp R p W−
+← for j=17, 16, ..., 4. Compute A3 and E3 using p4 and

, then only get the values from the 16th bit to the 31st bit for A3 and E3. Compare

in the list L with

131 16(2)

3W
−

1 131 16(2) 31 16(2)

3 3,A E
− −31 17 17 2

,m n
− −

respectively.

(d) If matched, compute W3 using the corresponding W18 in the list L and compute p3

using W3, then all bits of A3 and E3 are known. Compare
31 17 17 2

,m n
− −

in the list L with

3 3,
ALL ALL
A E respectively.

2 17
ALL ALL
m c A= − >>>(e) If matched, compute W2 and p2 successively. Let ,

. Compare in the list L with respectively. 2 2
ALL ALL
n g E= − >>> 34 34,

ALL ALL
D H ,

ALL ALL
m n

(f) If matched, compute W1 and p1 successively. Let . Compare

in the list L with respectively.

1 ,
ALL ALL ALL ALL
m b A n f E= − = − 1

0

34 34,
ALL ALL
C H 17, 2

ALL ALL
m n>>> >>>

(g) If matched, compute W0 and p0 successively. Let . Compare 0 ,
ALL ALL ALL ALL
m a A n e E= − = −

34 34,
ALL ALL
B F in the list L with respectively. ,

ALL ALL
m n

34 34,
ALL ALL
A E(h) If matched, compute W34 and compute using W34 and p35=Hash - p0. Com-

pare 34 34,
ALL ALL
A E 34 34,

ALL ALL
A Ein the list L with respectively.

(i) If matched, return (p0, W0, W1, …, W15) as a pseudo-preimage of 35-step DHA-256,

otherwise, repeat the attack procedure.

4. Complexity analysis

 16

 The complexity analysis of pseudo-preimage and preimage attack on 35-step

DHA-256 is as follows.

1. The cost of initialization compared to that of other steps is negligible.

2. The number of the free bits for forward computation is 16. In step 2a, the complexity

for computing W18 and W27 is negligible. For others, the complexity is 16 7
352 ⋅ ME. In step

2b, the complexity is CF. In step 2c, the complexity is16 1
352 ⋅ 16 7

352 ⋅ CF. The memory

complexity is 162 11⋅ words.

3. For backward computation and comparison, the number of the free bits is 16. In step

3a, we get two candidates of for every
31 16

3W
− 31 16

X
−

 because of the two possible carried

number patterns from bit 15 to bit 16, so the complexity is 16 8 2
35 352 ()⋅ + ME and we get

pairs . In step 3b, the complexity is
31 16

3W
− 31 16

3A
−

CF. In step 3c, we obtain pairs 172 16 1
352 ⋅ 172

and
31 16

3E
−

, thus the complexity is 16 14 2
35 352 ()⋅ + CF before comparison. So pairs take

part in comparison. and match 16 bits in total. Therefore

pairs remain. The complexity for comparison is negligible compared

to other steps. In step 3d, the complexity for computing W3 is

16 172 2i

31 17 31 17

3(,m A
− −

))
17 16 17 16

3(,n E
− −

17 16 17 162 (2 2 2)−= i i

17 1
352 ⋅ ME. The complex-

ity for computing p3 is 17 1
352 ⋅ CF. matches 14 bits in total.

So pairs remain. Moreover, all of bit values of A3 and E3 are known, and

thus the carry from the 15th bit to the 16th bit for is known. There-

fore, pairs remain.

15 2 15 2

3(,)n E
− −

3 17 142 (2 2)−= i

1 131 16(2) 31 16(2)

3 3(,A E
− −

)

2 3 12 (2 2)−= i

The cost in step 3e~3h is negligible compared to other steps. Hereto, the complexity is
16 16 1719 7 8 2

35 35 35 35 352 (2 () 2= + + +i i i 1) ME and 16 16 1727 71 1 14 2
35 35 35 35 35 35 352 (2 () 2= + + + + +i i i 1) CF.

It is about 16 15.6327
352 2≈i 35-step DHA-256 operations. It produces

matched pair. Thus, it needs to repeat times in step 3i to produce one matched pair.

224 16 16 2562 (2 2 2)− −= i i

2242

Hence, the complexity of pseudo-preimage is 35-step DHA-256 op-

erations. The complexity of preimage is 35-step DHA-256 operations. The mem-

ory complexity is words in step 2c.

239.63 224 15.632 (2 +=)

248.822
162 11i

Preimage Attacks on Reduced DHA-256 17

5. CONCLUSION

 This paper proposes two attacks on reduced DHA-256. The first attack is one-block

second preimage and preimage attack on 26-step DHA-256, and the second one is pre-

image attack on 35-step DHA-256. We propose a 2-word initial structure which is a

variant of initial structure. This first attack is based upon the strategy which is proposed

by Isobe and Shibutani and uses two-way message expansion technique. The second

attack is based on the general framework proposed by Sasaki and Aoki and combines

two-way message expansion and message compensation techniques with 2-word initial

structure. We also point out the incorrect matrix of the inverse function 1
1σ
− of SHA-2

showed in [11] and show a correct one. This is the first analysis of second preimage re-

sistance and preimage resistance of DHA-256, as far as we know.

REFERENCES

1. National Institute of Standards and Technology (NIST), "FIPS-180-2: Secure Hash

Standard," August 2002, http://www.itl.nist.gov/fipspubs/.

2. K. Aoki and Y. Sasaki, "Meet-in-the-Middle Preimage Attacks Against Reduced

SHA-0 and SHA-1," CRYPTO 2009, Springer-Verlag.

3. Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki and Lei Wang,

"Preimages for Step-Reduced SHA-2," ASIACRYPT 2009, Springer-Verlag.

4. Kazumaro Aoki and Yu Sasaki, "Preimage attacks on one-block MD4, 63-step MD5

and more," Liam Keliher Roberto Avanzi, and Francesco Sica, SAC 2008, pp.82-98.

5. Jean-Philippe Aumasson, Willi Meier and Florian Mendel, "Preimage attacks on

3-pass HAVAL and step-reduced MD5," Liam Keliher Roberto Avanzi, and Francesco

Sica, SAC 2008, pp.99 - 144.

6. C. De Canniere and C. Rechberger, "Preimages for reduced SHA-0 and SHA-1,"

David Wagner, CRYPTO 2008, Springer-Verlag, pp.179-202.

7. W. Diffie and M. Hellman (1977). "Exhaustive cryptanalysis of the NBS Data

Encryption Standard." Computer(10(6)): 74 - 84.

8. IAIK Krypto Group, "Preliminary Analysis of DHA-256,"

http://eprint.iacr.org/2005/398.pdf.

9. Jian Guo and Krysitan Matusiewicz, "Preimages for Step-Reduced SHA-2,"

http://www.itl.nist.gov/fipspubs/
http://eprint.iacr.org/2005/398.pdf

 18

Submission version for ASIACRYPT2009,

http://www1.spms.ntu.edu.sg/~guojian/doc/SHA2.pdf.

10. S Indesteege, F Mendel, B Preneel and C Rechberger, "Collisions and other

non-random properties for step-reduced SHA-256," SAC 2008.

11. T Isobe and K Shibutani, "Preimage Attacks on Reduced Tiger and SHA-2," FSE

2009, Springer-Verlag.

12. Jesang Lee, Donghoon Chang, Eunjin Lee Hyun Kim, Deukjo Hong, Jaechul Sung,

Seokhie Hong and Sangjin Lee, "A New 256-bit Hash Function DHA-256: Enhancing

the Security of SHA-256," NIST, 2005 Cryptographic Hash Workshop.

13. Xuejia Lai and James L. Massey, "Hash Function Based on Block Ciphers,"

Eurocrypt 1992, Springer-Verlag, pp.55-70.

14. G. Leurent, "MD4 is Not One-Way," K. Nyberg, FSE 2008, Springer-Verlag,

pp.412-428.

15. SK Sanadhya and P Sarkar, "New collision attacks against up to 24-step SHA-2,"

D.R. Chowdhury, Rijmen, V., Das, A., INDOCRYPT 2008, Springer-Verlag, pp.91-103.

16. Y. Sasaki and K. Aoki, "Preimage Attacks on 3, 4, and 5-Pass HAVAL," Josef

Pieprzyk, Advances in Cryptology - Asiacrypt 2008, Springer-Verlag, pp.253-271.

17. Y. Sasaki and K. Aoki, "Preimage attacks on step-reduced MD5," Yi Mu and Willy

Susilo, ACISP2008, Springer-Verlag, pp.282-296.

18. Y. Sasaki and K. Aoki, "Finding Preimages in Full MD5 Faster Than Exhaustive

Search," Ronald Cramer, Advances in Cryptology - Eurocrypt 2009, Springer-Verlag,

pp.134-152.

19. Y. Sasaki and K. Aoki, "Meet-in-the-Middle Preimage Attacks on Double-Branch

Hash Functions: Application to RIPEMD and Others," ACISP 2009, pp.214-231.

20. Y. Sasaki and K. Aoki, "A Preimage Attack for 52-Step HAS-160," Pil Joong Lee and

Jung Hee Cheon, Information Security and Cryptology - ICISC 2008, Springer-Verlag,

pp.302-317.

21. Yu Sasaki, Lei Wang and Kazumaro Aoki, "Preimage Attacks on 41-Step SHA-256

and 46-Step SHA-512 ", http://eprint.iacr.org/2009/479.

22. National Institute of Standards and Technology (NIST) U.S. Department of

Commerce, "Secure Hash Standard (SHS) (Federal Information Processing Standards

Publication 180-3)," 2008,

http://www1.spms.ntu.edu.sg/%7Eguojian/doc/SHA2.pdf
http://eprint.iacr.org/2009/479

Preimage Attacks on Reduced DHA-256 19

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf.

23. G. L. Wang and S. H. Wang, "Preimage Attack on Hash Function RIPEMD," ISPEC

2009, Springer-Verlag, pp.274-284.

24. X Wang, X Lai, D Feng, H Chen and X Yu, "Cryptanalysis of the Hash Functions

MD4 and RIPEMD," Ronald Cramer, Advances in Cryptology - CEUROCRYPT 2005,

Springer-Verlag, pp.1-18.

25. X Wang, YL Yin and H Yu, "Finding collisions in the full SHA-1," CRYPTO 2005,

Springer-Verlag, pp.17–36.

26. X Wang and H Yu, "How to Break MD5 and Other Hash Functions," Ronald Cramer,

Advances in Cryptology - EUROCRYPT 2005, Springer-Verlag, pp.19-35.

27. X Wang, H Yu and YL Yin, "Efficient Collision Search Attacks on SHA-0," CRYPTO

2005, Springer-Verlag, pp.1-16.

28. H. B. Yu, G. L. Wang, G. Y. Zhang and X. Y. Wang, "The second-preimage attack on

MD4," Y.G. Desmedt, Wang, H., Mu, Y., Li, Y, CANS 2005, Springer-Verlag, pp.1-12.

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

 20

Appendix A

The program codes for computing the inversion of the matrix of Sigma function of

SHA-256 and DHA-256

% The codes are written by MATLAB 7.1
%*******The Inversion of the matrix of Sigma-1 function of SHA-256*********
% The codes written using matlab are used to computer the matrix for the function
σ_1^{-1} % of sha-256.
%Y(X)=(X>>>17)^(X>>>19)^(X>>10)
% gf() is used to operate the matrix in GF(2).
a=gf(zeros(32, 32),1);
for i=1:32 %Note that the subscript in matrix is from 1 to 32.
 x= mod(i+17, 32);
 if x==0
 x=32;
 end
 a(i,x)=1;

 y=mod(i+19, 32);
 if y==0
 y=32;
 end
 a(i, y)=1;

 z=i+10;
 if z <= 32
 a(i, z)=1;
 end
end
b=gf(zeros(32, 32),1);
% Let the first line in matrix is the 32th data line and left-msb.
for i=1:32
 for j=1:32
 b(i,j)=a(32-i+1,32-j+1);
 end
end

c=gf(zeros(32, 32),1);
c=inv(b) % Get the inversion and c is the matrix which we seek.

%**********The Inversion of the matrix of Sigma-1 function of DHA-256********

%Y(X)=X^(X<<<7)^(X<<<22)

Preimage Attacks on Reduced DHA-256 21

a=gf(zeros(32, 32),1);

for i=1:32

 a(i,i)=1; % Deal with the operation X

 x= mod(i-7, 32); % Deal with the operation (X<<<7)

 if x==0

 x=32;

 end

 a(i,x)=1;

 y=mod(i-22, 32); % Deal with the operation (X<<<22)

 if y==0

 y=32;

 end

 a(i, y)=1;

end

b=gf(zeros(32, 32),1);

% Let the first line in matrix is the 32th data line and left-msb.

for i=1:32

 for j=1:32

 b(i,j)=a(32-i+1,32-j+1);

 end

end

c=gf(zeros(32, 32),1);

c=inv(b) % Get the inversion and c is the matrix which we seek.

%*****The Inversion of the matrix of Sigma-2 function of DHA-256********

%Y(X)=X^(X<<<13)^(X<<<27)

a=gf(zeros(32, 32),1);

for i=1:32

 a(i,i)=1; % Deal with the operation X

 x= mod(i-13, 32); % Deal with the operation (X<<<13)

 22

 if x==0

 x=32;

 end

 a(i,x)=1;

 y=mod(i-27, 32); % Deal with the operation (X<<<27)

 if y==0

 y=32;

 end

 a(i, y)=1;

end

b=gf(zeros(32, 32),1);

% Let the first line in matrix is the 32th data line and left-msb.

for i=1:32

 for j=1:32

 b(i,j)=a(32-i+1,32-j+1);

 end

end

c=gf(zeros(32, 32),1);

c=inv(b) % Get the inversion and c is the matrix which we seek.

Preimage Attacks on Reduced DHA-256 23

Appendix B

The Inversion of the matrix of Sigma-1 function of SHA-256

1
1

 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0
 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0
 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1
 0

M
σ − =

 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0
 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1
 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1
 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0
 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 1 0
 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1
 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1
 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0
 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 0
 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1
 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1
 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1
 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1
 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1
 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1
 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1
 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1
 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1
 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1
 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1
 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1
 1 0 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1
 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1
 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1
 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0
 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1
 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 1
 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0
 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 24

Appendix C

The Inversion of the matrix of Sigma-1 function of DHA-256

1
1

 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0
 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0
 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0
 0

M
σ − =

 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1
 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0
 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1
 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1
 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0
 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0
 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0
 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0
 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1
 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1
 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1
 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1
 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1
 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1
 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0
 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1
 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1
 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0
 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1
 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0
 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0
 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0
 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1
 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1
 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0
 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0
 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1
 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1
 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Preimage Attacks on Reduced DHA-256 25

Appendix D

The Inversion of the matrix of Sigma-2 function of DHA-256

1
2

 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1
 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0
 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1
 1

M
σ − =

 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1
 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0
 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0
 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0
 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1
 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1
 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0
 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1
 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0
 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1
 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0
 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1
 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0
 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1
 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1
 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1
 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0
 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0
 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0
 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0
 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1
 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0
 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0
 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1
 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1
 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1
 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1
 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0
 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

	Department of Computer Science and Engineering
	Shanghai Jiao Tong University
	26-step DHA-256
	(one block)

