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Abstract. In this paper, we cryptanalyze two knapsack cryptosystems.
The first one is proposed by Hwang et al [4], which is based on a new
permutation algorithm named Permutation Combination Algorithm. We
show that this permutation algorithm is useless to the security of the
cryptosystem. Because of the special super increasing structure, we can
break this cryptosystem use the method provided by Shamir at Crypto’82.
The second one is provided by Su et al [16], which is based on the elliptic
curve discrete logarithm and knapsack problem. We show that one can
recover the plaintext as long as he solve a knapsack problem.Unfounately,
this knapsack problem can be solved by Shamir’s method or the low den-
sity attack. Finally, we give a improved version of Su’s cryptosystem to
avoid these attacks.
Keywords:Knapsack;public-key cryptosystem;Cryptanalysis.

1 Introduction

The knapsack (or subset sum) problem is a well-known NP-complete problem.
This problem is stated as follows: given positive integers a1, a2, . . . , an and s,
whether there is a subset of the ai that sums to s. That is equivalent to determine
whether there are variables m1, . . . ,mn such that

s =
n∑

i=1

miai,mi ∈ {0, 1}, 1 ≤ i ≤ n (1.1)

The density of the knapsack is defined as d = n/ log2 A, where A = max1≤i≤n ai.
The hardness of knapsack problem inspired many public-key cryptosystem

in the eighties, following the seminal work of Merkle and Hellman[9]. Although
the underlying problem is NP-complete, it has surprisingly been broken by
Shamir[15] because of the special structure of the private key. Later, many vari-
ants have been shown insecure for any practical parameters by lattice reduction
techniques (see the survey [11][5][10]), such as Lagarias-Odlyzko reduction [7]
pointed out that the general knapsack can be solved under the existence of
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a SVP-oracle if the density d < 0.646, which was generalized by J.Coster et
al.[2] to 0.9408. Actually, we can use the celebrated LLL algorithm[8] or other
lattice reduction [13][14] instead of the SVP-Oracle in practical applications.
However, all proposed knapsack schemes have been broken except Okamoto-
Tanaka-Uchiyama(OTU)quantum knapsack cryptosystem from Crypto ’00[12].
Either by special structure such as Merkle-Hellman cryptosystem[9] and Chor-
Rivest cryptosystem[1][18], or attacked by low-density attack[7][2]. To make sure
of the resistance of low-density attack, it is suggested that the density d must
be lager than 0.9408 [2]. Recently, several knapsack cryptosystems with high
density have been proposed [4][16][17][19].

In this paper, we analyze two knapsack cryptosystems [4][16]. In [4], Hwang et
al.investigated a new permutation algorithm named Permutation Combination
Algorithm, by exploiting this algorithm to avoid the low-density attack. We
show that the permutation algorithm is useless to avoid the low-density attack
and the density of knapsack vector is smaller than 0.9408. However, if we use
the low-density method[7][2], the dimension of the lattice is 1025, which is too
big to use LLL algorithm[8]. Because of the special super increasing structure,
we can obtain equivalent private keys using Shamir’s method. In [16], Su et
al.presented the knapsack cryptosystem based on a application of the elliptic
curve discrete logarithm problem. We show that one can recover the plaintext as
long as he can solve a knapsack cryptosystem almost the same as Merkle-Hellman
cryptosystem.

The rest of the paper is organized as follows. In Section 2, we review Shamir’s
method[15] of attacking the original Merkle-Hellman cryptosystem[9]. The low-
density attack[7][2]for the general knapsack problem will be introduced in Section
3. In Section 4, we give the description of Hwang’s algorithm and analyze it. In
Section 5, we propose the description of Su’s algorithm and provide our attack.
Finally, we conclude this paper in Section 6.

2 Shamir’s method

At Crypto’82, Adi Shamir [15] gave the first attack on the original knapsack
cryptosystem. In this section, we review Shamir’s attack on the basic Merkle-
Hellman knapsack cryptosystem. Firstly, we give a brief description of the orig-
inal Merkle-Hellman knapsack cryptosystem.

The sender chooses a super increasing sequence

B = (b1, b2, . . . , bn), i.e. bj >

j−1∑
i=1

bi, 2 ≤ j ≤ n

and two positive integers W and P , with P >
∑n

i=1 bi, (W,P ) = 1, computes

a
′

i ≡ biW (mod P ), 0 < a
′

i < P (2.1)

Then selects a permutation π of {1, 2, . . . , n} and defines

ai = a
′

π(i) 1 ≤ i ≤ n
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The public key is the sequence of n positive integers a1, a2, . . . , an and the private
key is the super increasing sequence B, the integers W , P and the permutation
π.Typically, the size of each bi is n + i bits, for 1 ≤ i ≤ n, the size of P is 2n + 1
bits. In the original Merkle-Hellman cryptosystem n = 100.
A message m = (x1, . . . , xn) is encrypted as

c =
n∑

i=1

xiai

and the receiver computes

m ≡ cW−1 (mod P )

≡
n∑

i=1

xiaiW
−1 (mod P )

≡
n∑

i=1

xia
′

π(i)W
−1 (mod P )

≡
n∑

i=1

xibπ(i) (mod P ).

Since P >
∑n

i=1 bi, we can obtain that

c =
n∑

i=1

xibπ(i)

The equation is easy to solve since the bi form a super increasing sequence.
Let U = W−1 (mod P ), 0 < U < M , from equation(2.1)

ai ≡ bπ(i)W (mod P )

We have
bπ(i) ≡ aiU (mod P )

This means that there exists some integer ki such that

aiU − kiP = bπ(i)

Hence
U

P
− ki

ai
=

bπ(i)

aiP

The cryptanalyst does not know U,P, π, ki, and bi, but ai. However, he can
find the size of ai, 1 ≤ i ≤ n and U are the same as P ’s and bi ≤ 2n+i. The first
five factors of the super sequence satisfy

bi ≤ 2n+i, 1 ≤ i ≤ 5
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let ij = π−1(j), then we obtain

|U
P
−

kij

aij

| ≤ 2n+5

24n+2
, 1 ≤ j ≤ 5 (2.2)

and subtract the j = 1 term from the others, we have∣∣∣∣kij

aij

− ki1

ai1

∣∣∣∣ ≤ 2−3n+4, 2 ≤ j ≤ 5

This implies that ∣∣kij
ai1 − ki1aij

∣∣ ≤ 2n+6, 2 ≤ j ≤ 5 (2.3)

Inequalities (2.3) show how unusual the aij and kij are. After all, the size
of each of them is 2n bits, so the size of kij

ai1 and ki1aij
is 4n bits. But the

size of the difference of two such terms to be n + 6 bits, which requires some
very special structure. Shamir’s main contribution was to notice that kij

can be
found in polynomial time by invoking H.W.Lenstra’s theorem that the integer
programming problem in a fixed number of variables can be solved in polynomial

time[15]. However, the cryptanalyst should invoke
(

5
n

)
times of H.W.Lenstra’s

integer programming algorithm because he doesn’t know the permutation π. This
yields the kij , 1 ≤ j ≤ 5. Once the kij are found, one obtains an approximation
to U/P from the equation(2.2) and constructs a pair (U

′
, P

′
) with U

′
/P

′
close

to U/P such that the weights obtained by

ci ≡ aiU
′

(mod P
′
), 0 < ci < P

′
, 1 ≤ i ≤ n

form a super increasing sequence. So one can find a equivalent secret key in
polynomial time. The concrete description of Shamir’s attack can be found in
[6].

3 Low-density attack

In this section, we will introduce the low density attack proposed by J.Coster
et al.[2] at Eurocrypt’91 which is the modification of Lagarias and Odlyzko’s
attack[7].

The knapsack problem is stated as follows: For given positive integers a1, . . . , an

and s, find variables e1, . . . , en, with ei ∈ {0, 1}, such that

n∑
i=1

eiai = s

Define the vectors b1, . . . ,bn+1 as follow:
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b1 = (1, 0, . . . , 0, Na1)

b2 = (0, 1, . . . , 0, Na2)

...

bn = (0, 0, . . . , 1, Nan)

bn+1 = (
1
2
,
1
2
, . . . ,

1
2
, Ns)

where N > 1
2

√
n. Let L be the lattice spanned by the vectors b1, . . . ,bn+1.

Notice that the vector

e = (e
′

1, . . . , e
′

n, 0) ∈ L where e
′

i = ei −
1
2

J.coster et al.showed that when the density d < 0.9408 . . ., the vector e is the
shortest vector in L. So one can find e if there exists a SVP oracle. In reality,
we usually use LLL algorithm [8] or other lattice bases reduction algorithm
[13][14] instead of the SVP oracle. However, from [3], it is thought that when
the dimension is big enough (such as bigger than 400), one can not find the
shortest vector for random lattice.

4 Attack of Hwang et al.’s cryptosystem

4.1 The description of Hwang et al.’s cryptosystem

Hwang’s cryptosystem is based on the Merkle-Hellman cryptosystem. In initial
stage, each user choose a super increasing sequence B = (b1, . . . , b1360) as secret
key vector.i.e.

bi >
i−1∑
j=1

bj (2 ≤ i ≤ 1360)

W and P are two positive integers, such that

(W,P ) = 1, P >
1360∑
i=1

bi

Compute
ai = biW (mod P ), 1 ≤ i ≤ 1360

The public key is A = {a1, . . . , a1360} and the private key is W,P and the
super increasing sequence B = {b1, . . . , b1360}. Obviously, there is no difference
between the cryptosystem above and the original Merkle-Hellman except the
omission of the permutation in initial stage.
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The author investigated a permutation combination algorithm and wanted
this algorithm to ensure the security of the cryptosystem. The permutation al-
gorithm is as follows: Define an original sequence D0 = {E1, . . . , En}, and Re-
combine all the elements of the original sequence D0 which obtain (n! − 1)
sequences D1, . . . , Dn!−1. Notice for any m, 1 ≤ m ≤ n! − 1, m can be written
as

m =
n∑

i=1

mi(n− i)!, 0 ≤ mi ≤ n− i

Input D0 = {E1, . . . , En} and integer m
Output Dm = {E′

1, . . . , E
′

n}

1. Write m as m =
∑n

i=1 mi(n− i)!
2. for(1 ≤ i ≤ n)

if (mi == 0)
E

′

i = Ei

else
{ E

′

i = Ei+mi

for(1 ≤ j ≤ mi)
E

′

i+j = Ei }
3. output Dm = {E′

1, . . . , E
′

n}.

For example, Generate the original sequence D0 = {A,B,C, D, E, F}. Compute
the value of D100,

100 = 0× 5! + 4× 4! + 0× 3! + 2× 2! + 0× 1! + 0

Then D100 = {A,F, B, E,C,D}.
Encryption:Message M , choose a hash function whose digest is 1024 bits.

D = H1024(M) (mod 170!)

So D can be written as

D =
170∑
i=1

ui((170− i)!)

And then divide the public key vector A = {a1, . . . , a1360} into 8 subset public
key vectors. Each key vector has 170 elements

A = {(a1, . . . , a170), (a171, . . . , a340), . . . , (a1191, . . . , a1360)}

Recombine each subset public key vector using U = {u1, . . . , u170} by means
of the Permutation Combination Algorithm. Then chooses the first 128 elements
in each subset public key vector, thus, the sender obtains 1024 elements
A

′
= {a′

1, . . . , a
′

1024}. Then divides M into M1, . . . ,Mj , each Mk, 1 ≤ k ≤ j is a
1024 bits message,

Mk = {xk,1, . . . , xk,1024}
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The corresponding ciphertext Ck is given as

Ck =
1024∑
i=1

xk,ia
′

i (4.1)

The ciphertext is C = {C1, . . . , Cj}.Send C and D to the receiver.
Decryption:After receiving D, D can be written as

D =
170∑
i=1

ui((170− i)!)

Divide the private key vector B = {b1, . . . , b1360} into 8 subset public key vec-
tors.Each key vector has 170 elements.

B = {(b1, . . . , b170), (b171, . . . , b340), . . . , (b1191, . . . , b1360)}

Recombine each subset private key vector using U = {u1, . . . , u170} by means
of the Permutation Combination Algorithm.Chooses the first 128 elements in
each subset public key vector, the receiver obtains 1024 elements

B
′
= {b

′

1, . . . , b
′

1024}

Divide C into C1, . . . , Cj . Each Ck,1 ≤ k ≤ j is a 1024-bit ciphertext.

Mk ≡ CkW−1 (mod P )

≡
1024∑
i=1

a
′

i × xk,i ×W−1 (mod P )

≡
1024∑
i=1

(b
′

i ×W × xk,i)×W−1 (mod P )

=
1024∑
i=1

b
′

ixk,i.

So the receiver solve this super increasing knapsack problem and then obtain
the message M .

4.2 Attack of Hwang et al.’s cryptosystem

The author suppose the super increasing sequence

B = {b1, . . . , bn} = {20, 21, . . . , 2n−1}

and n = 1360,P ≥ 21360 ≈ 2.5164× 10409

From (4.1), We can obtain the density

d =
1024

log2 P
≈ 1024

1360
= 0.7529 < 0.9408
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(In Hwang’s paper, they compute the density d = 1360
log2 max(bi)

. That is not cor-
rect.)

So this cryptosystem becomes vulnerable to the low-density attack[7][2].But
the dimension of the lattice is 1025, as we say in Section 3, we can not use LLL
algorithm [8]and other lattice basis reduction [13][14] to find the shortest vector
in the lattice.

However, we can still use Shamir’s method to break this cryptosystem. Be-
cause there is no permutation between the bi and ai. Let

U = W−1 (mod P ), 0 < U < M

From
ai ≡ biW (mod P )

We have
bi ≡ aiU (mod P )

and this means that there exists some integer ki such that

aiU − kiP = bi

Hence
U

P
− ki

ai
=

bi

aiP

The length of ai, 1 ≤ i ≤ n and U are the same as the length of P and

{b1, . . . , b5} = {20, . . . , 24}

So consider the first five of the super sequence

bi ≤ 25, 1 ≤ i ≤ 5

Therefore, we obtain

|U
P
− ki

ai
| ≤ 25

22×1360
(4.2)

and subtract the i = 1 term from the others, we have∣∣∣∣ki

ai
− k1

a1

∣∣∣∣ ≤ 26−2×1360, 2 ≤ i ≤ 5

This implies that

|kia1 − k1ai| ≤ 26, 2 ≤ i ≤ 5 (4.3)

Inequalities (4.3) show that how unusual the ai and ki are. After all, the size of
each of them is 1360 bits, so the size of kia1, k1ai is 2720 bits. But the size of the
difference of two such terms to be 6 bits. We can obtain ki, 1 ≤ i ≤ 5 by invoking
H.W.Lenstra’s integer programming algorithm only once. Once the ki are found,
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from equation(4.2) we obtain an approximation to U/P and constructs a pair
(U

′
, P

′
) with U

′
/P

′
close to U/P such that the weights obtained by

b
′

i ≡ aiU
′

(mod P
′
), 0 < bi < P

′
, 1 ≤ i ≤ n

form a super increasing sequence. So we can use Shamir’s method to find a
group of equivalent secret key (P

′
,W

′
and a new super increasing sequence B

′
).

We can use this equivalent secret key to recover the messages because we can
eavesdrop the permutation D.

5 Attack of Su et al.’s cryptosystem

Su’s cryptosystem based on a application of the elliptic curve logarithm problem
and knapsack problem.

5.1 The description of Su et al.’s cryptosystem

In initial stage, the user selects the elliptic curve domain parameters.
a) A curve y2 = x3 + ax + b over Fp, where 4a3 + 27b2 6= 0.
b) A point α = (x0, y0) such that order(α) > p which is a large prime number.
c) A super increasing sequence A

′
= {a1, a2, . . . , an}, such that

a1 ≈ 2n, ai >
i−1∑
j=1

aj , 2 ≤ i ≤ n, an ≈ 22n,
n∑

i=1

ai < p

Define the set
A = {aiα | 1 ≤ i ≤ n}

d) Select a permutation π of {1, 2, . . . , n} and positive integer e, d, such that
gcd(p, e) = 1, ed ≡ 1 (mod p), Let

S = {si | si = (eaπ(i) (mod p))α, 1 ≤ i ≤ n}

T = {ti | ti ≡ eaπ(i) (mod p), 1 ≤ i ≤ n}

The public key is S, T, α and p. The private key is e, d, π and the super increasing
sequence A

′
.

Encryption: The sender encodes the plaintext message M = (m1, . . . ,mn) to
be sent as x − y points Pmi. So the message becomes M

′
= (Pm1, . . . , Pmn),

chooses a binary message X = (x1, x2, . . . , xn) and a random positive integer
k, k < p.
When xi = 1, define Cmi

= {kα, Pmj
+ ksi}, otherwise, add confusing data to

Pmi
. The ciphertext is

c = Cm1 ‖ Cm2 ‖ · · ·Cmn
‖

n∑
i=1

xiti (mod p)



10 Authors Suppressed Due to Excessive Length

Sends c to the receiver.
Decryption:The receiver computes

D = e · Cm1 ‖ e · Cm2 ‖ · · · e · Cmn
‖ d ·

n∑
i=1

xiti (mod p)

where

e · Cmi = Pmi + ksi − ekaπ(i)α = Pmi + keaπ(i)α− ekaπ(i)α = Pmi (5.1)

Since

d ·
n∑

i=1

xiti (mod p) ≡
n∑

i=1

xiaπ(i) (mod p) =
n∑

i=1

xiaπ(i)

The receiver can obtain X = (x1, . . . , xn) by solving the super increasing knap-
sack problem and obtains Pmi

from equation (5.1) for xi = 1. Then decodes Pmi

to recover the message M .

5.2 Attack of Su et al.’s cryptosystem

We observe that the vector X = {x1, . . . , xn} is important. From this vector, the
receiver can extract the correct Cmi from the confusing data. Firstly, we give a
known the vector X attack and this attack will be used in the following.
Known X Attack

If we know the vector X = {x1, x2, . . . , xn}, from equation (5.1), we know

e · Cmj
= Pmi

+ ksi − ekaπ(i)α

Notice that
ti = eaπ(i)

Then we can obtain that

e · Cmj = Pmi + ksi − ekaπ(i)α = Pmi + ksi − tikα

Unfortunately, the set T is the public key in the cryptosystem. So we can recover
the message as long as we know the vector X.
Find the Vector X

To find the vector X, we must solve a Merkle-Hellman-like algorithm. Now
we have a super increasing sequence A

′
= {a1, . . . , an} satisfies

a1 ≈ 2n, ai >
i−1∑
j=1

aj , 2 ≤ i ≤ n, an ≈ 22n,
n∑

i=1

< p

and a permutation π, and the public key is the set

T = {ti | ti ≡ eaπ(i) (mod p), 1 ≤ i ≤ n}
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the private key is A
′
, e, π. The density

d =
n

log2 P
≤ n

2n
=

1
2

So if the n is moderate, we can use low density attack [7][2]to find the vec-
tor X. If n is big, we can still find the vector X by using Shamir’s method.
Consequently, we can recover the message after performing a known X attack .

Finally, we give an improved version of this cryptosystem to avoid the known
X attack. In Su’s paper, when xi = 1, define Cmi = {kα, Pmj +ksi}.If we redefine
Cmi

= {kaπ(i)α, Pmj
+ksi}, this new cryptosystem will be safer than the original

one. Even if one could find the vector X he can’t recover Pmi
, because e is the

secret key and it is hard to solve the elliptic curve discrete logarithm problem.

6 Conclusion

In this paper, we cryptanalyze two new cryptosystems based on knapsack prob-
lem. The security level of the two encryption schemes are overestimated. We
can break Hwang et al.’s cryptosystem use Shamir’s method and recover the
plaintext of Su et al.’s cryptosystem.
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