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Abstract

To reduce the damage of phishing and spyware attacks, banks, governments, and other security-sensitive
industries are deploying one-time password systems, where users have many passwords and use each password
only once. If a single password is compromised, it can be only be used to impersonate the user once, limiting
the damage caused. However, existing practical approaches to one-time passwords have been susceptible to
sophisticated phishing attacks.

We give a formal security treatment of this important practical problem. We consider the use of one-
time passwords in the context of password-authenticated key exchange (PAKE), which allows for mutual
authentication, session key agreement, and resistance to phishing attacks. We describe a security model
for the use of one-time passwords, explicitly considering the compromise of past (and future) one-time
passwords, and show a general technique for building a secure one-time-PAKE protocol from any secure PAKE
protocol. Our techniques also allow for the secure use of pseudorandomly generated and time-dependent
passwords.

1 Introduction

Many security attacks on the Internet today, such as phishing and spyware, aim to compromise a user’s
password. As a result, some businesses and government agencies are deploying one-time password systems.
In these systems, users carry a sheet of paper listing passwords, or use an electronic device that generates
passwords, and use a different password each time they log in. Ideally, without obtaining this physical list of
passwords (or the device generating them), an attacker should be unable to impersonate the user.

However, most deployments of one-time passwords have not used them in the strongest way possible. In a
typical usage, Alice visits a bank’s website in her browser, views a challenge on the website indicating which
one-time password to use, and enters that one-time password into her browser, which transmits the one-time
password to the website. This type of usage remains susceptible to the same attacks that threaten regular
passwords today: if Alice did not really have an encrypted link with her actual bank, then an attacker may be
able to learn the one-time password and impersonate Alice. Unfortunately, average users are not very good at
telling if an SSL connection is really encrypted and authenticated.

More advanced cryptographic protocols, such as password-authenticated key exchange (PAKE), can allow
us to use passwords in a secure way that reveals no useful information about the password to a phishing or
man-in-the-middle attacker. These protocols can provide strong mutual authentication as well: not only does
the bank learn whether Alice really knew her password, but Alice learns whether the bank really knew her
password.

One-time password systems are being deployed by banks, governments, and corporate virtual private
networks (VPNs) to reduce the damage of passwords compromised through phishing and some spyware
attacks. To date, however, they have not been formally studied using techniques from provable security; one
existing work [ACP05a] presents a PAKE protocol that uses pseudorandom passwords, but does not consider
how the security properties of one-time passwords or pseudorandom passwords differ from normal long-term
passwords. The goal of this work is to describe and formalize security properties for one-time password
systems, especially in the context of authenticated key exchange protocols.

We emphasize that one-time password schemes are practical, as numerous deployments [RSA, Nat09, Nor,
F-S05, Bli09] have shown. Businesses that have already deployed one-time passwords in the form of token
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cards or sheets of paper could benefit from the greater security offered by our techniques by upgrading their
back end systems without needing to deploy new password data to users; however, clients would need to
upgrade their browsers or VPN clients to support these new protocols.

Contributions. In this work, we aim to answer three questions on the security of one-time password
schemes:

1. How should we model the security of one-time password schemes?
2. How should we build secure one-time password schemes?
3. Are existing one-time password schemes secure?
To answer the first question, we describe in Section 2 an extension to the Bellare-Pointcheval-Rogaway

[BPR00] PAKE security model that adds one-time passwords and handles the compromise of other past or
future one-time passwords.

For the second question, we give a general construction in Section 3 for building a one-time-PAKE protocol
from any PAKE protocol and show that this transformation preserves security. The transformation itself is
straightforward and efficient, and allows for extensions to the basic functionality of one-time passwords: the
secure use of pseudorandomly generated passwords (Section 4), time-dependent passwords (Section 5), and
verifier-based one-time passwords, in which the server stores a one-way transformation of the passwords, not
the passwords themselves (Section 2.2).

Existing uses of one-time passwords over SSL connections can be troublesome as they require a public
key infrastructure and users often have difficulty validating public keys. To our knowledge, the only existing
consideration of one-time passwords in PAKE is the OPKeyX protocol [ACP05a], which requires the one-time
passwords be of a particular form (namely, a hash chain), and that future passwords not be revealed. We
discuss the security of OPKeyX in Section 6, noting that our model is stronger and allows for arbitrary
passwords to be revealed.

Outline. The rest of this paper is organized as follows. In Section 1.1, we describe related work. Section 2
deals with the security of one-time password protocols: it introduces the general properties we seek, and then
presents a security model encompassing those properties. In Section 3, we give our central theoretical result
that secure one-time-password-authenticated key exchange protocols can be built out of secure password-
authenticated key exchange protocols. We then discuss the use of pseudorandom (Section 4) and time-
dependent (Section 5) passwords. We conclude with a brief discussion of how this work relates to the existing
OPKeyX protocol in Section 6 and some general conclusions in Section 7.

1.1 Related work

Many businesses, especially banks, have adopted one-time passwords in their authentication procedures.
One-time passwords can be efficiently deployed using electronic tokens [RSA], using a chip-and-pin card
in combination with a reader device as some British banks are doing [Nat09], or on sheets of paper as
some European banks do [Nor]; interestingly, there have subsequently been phishing attacks specifically
targeting these sheets of one-time passwords [F-S05]. One-time passwords are also being used for stronger
authentication in virtual economies such as World of Warcraft [Bli09]. The Internet Engineering Task Force
(IETF) has standardized various mechanisms for deriving [Hal95, HMNIS98] and using [Kau05, Nys07, KS08]
one-time passwords. While all of these systems may generate and deploy one-time passwords securely, none
of them proceed to use one-time passwords in cryptographically secure way.

Password-authenticated key exchange was first introduced by Bellovin and Merritt in 1992 [BM92] as a
protocol in which the client and server share a plaintext password and exchange encrypted information to
allow them to derive a shared session key. A later variant [BM93], often called verifier-based, removed the
requirement that the server have the plaintext password, instead having a one-way transformation of the
password.

The most extensively used model for the security of PAKE protocols is the Bellare-Pointcheval-Rogaway
(BPR) model [BPR00] and its extension [GMR05] for verifier-based protocols. This model is the starting point
of our model for the security of one-time-PAKE protocols. One particular such protocol is the PAK protocol
[BMP00a, Mac02], which is the basis of our construction in the full version of this paper.

Various authors have noted the value of using one-time passwords in authenticated key exchange protocols
[ACP05a, FMCS04, Ste09]. Abdalla et al. [ACP05a] (see also [CSH05]) describe the OPKeyX protocol, a
verifier-based one-time-PAKE protocol. It uses a hash chain to derive subsequent one-time passwords from a
seed such that the server can verify but not compute the next password. We will discuss OPKeyX in greater
detail in Section 6.
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2 Security of one-time-password protocols

The main security property that protocols employing one-time passwords should achieve is: strong mutual
authentication based on knowledge of one-time passwords. Our work will address one-time passwords in the
context of PAKE protocols, which provide an additional property: secure key exchange.

The motivation for using one-time passwords is that the compromise of one password should not affect
the security of sessions involving another password. The one-time password serves to mutually authenticate
the client and the server; there are no other long-term values like public keys or certificates. Authentication is
based on knowledge of the shared password. Informally, a protocol will provide secure mutual authentication
if no honest party Â accepts a session as being with party B̂ unless B̂ participated in the protocol, and vice
versa. We want a one-time-password protocol to give secure mutual authentication for the current session
even if other one-time passwords have been revealed.

In addition to mutually authenticating two parties to each other, we want a protocol that will also output a
session key that can be used to encrypt and protect the integrity of future communications between those two
parties. This is a common feature required of many secure communication protocols.

The traditional use of one-time passwords – sending the password over an SSL connection – is not
compatible with our approach. Using SSL to establish an authentic channel requires that the user can obtain
and properly use an authentic public key for the server. In other words, it requires a public key infrastructure,
whereas one-time-PAKE only needs shared passwords.

2.1 Security model

In the most widely adopted security model for PAKE, that of Bellare, Pointcheval, and Rogaway [BPR00],
when the adversary corrupts a party it learns all of the party’s authentication secrets at once. In the one-time
password setting, we want to model the situation where users have multiple passwords and the attacker can
learn the passwords one-by-one. This more closely models the functionality, design goals, and capabilities of
the adversary in many one-time password scenarios.

Participants. An instance of the protocol takes place between two interacting parties, each of which is a
member of the set Parties; each party is identified by a unique fixed length string. Each pair of distinct parties
{Â, B̂} shares a set of one-time passwords {pwÂ,B̂,ch} indexed by ch ∈ Indices (we use the notation ch to suggest
that the one-time password may be selected in response to a challenge, although the model does not assume
that need be the case). We note that pwÂ,B̂,ch = pwB̂,Â,ch (this is the symmetric setting; in Section 2.2, we
discuss how to model verifier-based one-time passwords). The size of the set Indices determines the maximum
number of passwords shared between each pair of parties. Each one-time password is chosen uniformly at
random from the set Passwords. 1

Protocol execution. The protocol is a message-driven protocol. During execution, a party Û may have
multiple instances of the protocol running; each instance is modelled as an oracle and is denoted by ΠÛ

(Û ′,ch)
: it

is indexed by the values (Û ′,ch) ∈ Parties× Indices, where Û ′ is its purported partner and ch is the one-time
password index for that instance. A party Û must be activated to act as an initiator or a responder with Û ′

for a particular instance by having oracle ΠÛ
(Û ′,ch)

be sent a message of the form “initiator” or “responder”,
respectively. An instance for a particular partner-index pair can only be activated once. This restriction can
be achieved by having each party maintain a record of used one-time passwords. In practice, this is easy to
achieve: for example, a user could cross out a one-time password on a piece of paper once it has been used, or
increment a counter if pseudorandomly generated passwords are used.

There are distinguished instances ΠÛ
(Û ′,⊥)

which can be sent messages of the form “initiator” or “responder”;

Û then picks an unused one-time password index ch and activates the corresponding instance ΠÛ
(Û ′,ch)

with the
given role.

There is a sequence of messages, or flows, specified by the protocol, starting with a flow from the initiator
to the responder, then from the responder to the initiator, and so on. After some number of flows, an instance
may accept, at which point it holds a session key sk, partner id pid, and session id sid, and, possibly after some
additional flows, terminate. Alternatively, at any point in time, an instance may reject (note that instances that
reject have not terminated; accepting is a precondition for terminating). Two instances ΠÂ

(pid,ch) and ΠB̂
(pid′,ch′)

are said to be partnered if they both accept, hold (pid, sid, sk) and (pid′, sid′, sk′), respectively, with pid= B̂,

1One common complaint about models for PAKE protocols is the typical assumption that passwords are uniformly distributed. In
practice, human-selected passwords are rarely uniformly distributed. By contrast, one-time passwords are more likely in practice to be
uniformly distributed since they are often generated by a computer.
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pid′ = Â, sid = sid′, sk = sk′, and ch = ch′, and no other instance accepts with session id equal to sid. It is
likely that the session identifier will include the one-time password index ch.

Queries allowed. The protocol is determined by how participants respond to inputs from the environment,
and the environment is considered to be controlled by the adversary, which is a probabilistic algorithm that
issues queries to parties’ oracle instances and receives responses. For a protocol P, the queries that the
adversary can issue are as follows (where clear by the setting, we may omit the subscript P). The first two
queries model normal operation of the protocol:
• ExecuteP(Â, B̂,ch): This query activates initiator instance ΠÂ

(B̂,ch)
and responder instance ΠB̂

(Â,ch)
with

one-time password indexed by ch, causes them to faithfully execute protocol P, and returns the resulting
transcript.

• SendP(Û , (Û ′,ch), M): Send message M to user instance ΠÛ
(Û ′,ch)

, which performs the appropriate
portion of protocol P based on its current state and the message M , updates its state, and returns any
resulting messages.

The next two queries model the compromise of information by the adversary:
• RevealSessionKeyP(Û , Û ′,ch): If instance ΠÛ

(Û ′,ch)
has accepted, then it returns the session key sk held

by ΠÛ
(Û ′,ch)

.

• RevealPWP(Û , Û ′,ch): Returns the one-time password pwÛ ,Û ′,ch.
The RevealPW query models the adversary learning the authentication secrets, which corresponds to weak
corruption in the Bellare-Pointcheval-Rogaway model. The adversary cannot modify stored authentication
secrets (also called strong corruption). We note that the RevealPW(Û , Û ′,ch) query allows the adversary to
reveal any password, regardless of whether it has been used in a session.

The final query is used to define the task that the adversary has to achieve in order for the session key
security of the protocol to be considered broken. To define security, the adversary will interact with a challenger
who, simulating the parties, answers all the queries above, as well as this one:
• TestP(Û , Û ′,ch): If instance ΠÛ

(Û ′,ch)
has accepted, then the following happens: the challenger chooses

b ∈R {0, 1}; if b = 1, then it returns the session key held by ΠU
(Û ′,ch)

, otherwise it returns a random string
of the same length as the session key. This query may only be asked once.

Freshness. We adapt the notion of freshness in the Bellare-Pointcheval-Rogaway model to allow the adversary
to compromise one-time passwords from any session except the target session.

Definition 1 (Freshness). In a one-time-PAKE protocol, an instance ΠÛ
(Û ′,ch)

is fresh (with forward-secrecy) if
and only if none of the following events occur:

1. a RevealSessionKey(Û , Û ′,ch) query occurs;
2. a RevealSessionKey(Û ′, Û ,ch) query occurs;
3. either of the following queries occur before the Test query:

(a) RevealPW(Û , Û ′,ch) or (b) RevealPW(Û ′, Û ,ch);
and Send(Û , (Û ′,ch), M) occurs for some string M.

Adversary’s goals. The adversary’s goals are to break either the confidentiality of the session key or the
security of the mutual authentication.

For confidentiality, the goal of an adversary is to guess the bit b used in the Test query of a fresh session:
this corresponds to the ability of an adversary to distinguish the session key from a random string of the same
length. Let Succ1×ake

P (A) be the event that the adversary A makes a single Test query to some fresh instance
ΠÛ
(Û ′,ch)

that has accepted and A eventually outputs a bit b′, where b′ = b and b is the randomly selected bit

in the Test query. The 1×ake-advantage of A attacking P is defined to be

Adv1×ake
P (A) =

�

�

�2 Pr
�

Succ1×ake
P (A)

�

− 1
�

�

� . (1)

We can define a similar notion for mutual authentication. Let Succ1×ma
P (A) be the event that the adversaryA

causes a participant instance ΠÛ
(Û ′,ch)

with partner id Û ′ and one-time password index ch to terminate without

a partnered instance, before either of the RevealPW queries in part 3 of Definition 1. The 1×ma-advantage of
A attacking P is defined to be Adv1×ma

P (A) = Pr
�

Succ1×ma
P (A)

�

.
We overload the Adv notation as follows: for a security notion N , let

AdvN
P (t, qse, qex, qpw, qro) =max

A
{AdvN

P (A)} , (2)
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where the maximum is taken over all adversaries running in time at most t, making at most qse SendP queries,
qex ExecuteP queries, qpw RevealPWP queries, and qro random oracle queries (if the security argument uses
the random oracle model).

Definition 2 (Security). Let λ be a security parameter. A protocol P is a secure one-time-password-authenticated
key agreement protocol if for all adversaries A running in time polynomial in λ and making at most qse SendP
queries, there exists a constant δ and a negligible ε(λ) such that

Adv1×ake
P (A)≤

δqse

|Passwords|
+ ε(λ) , (3)

and a similar bound applies for Adv1×ma
P (A).

This notion of security says that no polynomially-bounded adversary can do negligibly better than randomly
guessing an unknown password in each online attempt and can gain no advantage by doing an offline dictionary
attack.

This bound is of the same form as bounds for the security of PAKE. One might expect that we could do
better in the one-time password setting, since passwords are not reused. However, the adversary always has
a password guessing strategy each time it participates in the protocol, leading to the qse/|Passwords| factor.
Hence, this bound is effectively the best possible, up to making δ or ε(λ) smaller. The advantage of one-time
password systems comes from their robustness in the face of richer models of compromise.

2.2 Verifier-based one-time passwords

In the verifier-based model, the server stores a verifier, which is a one-way transformation of the client’s
password that cannot be used to impersonate the user. This offers increased security against server database
compromise. The security of verifier-based PAKE protocols is defined by the extension of the BPR model
given by Gentry et al. [GMR05]. The main difference is that an instance can remain fresh even if either the
password or the verifier (but not both) is compromised. This necessitates the introduction of a new query for
revealing the verifier. Additionally, it allows for the separate definitions of client-to-server and server-to-client
authentication. In this section, we follow that approach and modify the security model of Section 2.1 to
define the security of a verifier-based one-time password-authenticated key exchange protocol.

Participants. We distinguish between two types of parties: Clients and Servers, with Parties = Clients ∪̇ Servers.
Each distinct client-server pair (Ĉ , Ŝ) ∈ Clients × Servers has a set of one-time password-verifier pairs
{(pwĈ ,Ŝ,ch,VĈ ,Ŝ,ch)} indexed by ch. Each of the one-time passwords pwĈ ,Ŝ,ch is chosen uniformly at random
from the set Passwords, and VĈ ,Ŝ,ch is the verifier for the corresponding password, the derivation of which is
specified by the registration phase of the protocol. The client stores the one-time passwords and the server
stores the one-time verifiers.

Queries allowed. The allowed queries are modified as follows. The RevealPW query is modified to model
the compromise of the client’s one-time password, and a new RevealV query is introduced to model the
comprise of the server’s one-time verifier.
• RevealPWP(Â, B̂,ch): If Â∈ Clients and B̂ ∈ Servers, then it returns the one-time password pwÛ ,Û ′,ch;

otherwise, it returns an error.
• RevealVP(Â, B̂,ch): If Â∈ Clients and B̂ ∈ Servers, then it returns the one-time verifier VÂ,B̂,ch; otherwise,

it returns an error.

Freshness. The notion of freshness for verifier-based one-time-password-authenticated key exchange proto-
col is adapted as follows.

Definition 3 (Freshness, verifier-based). In a verifier-based one-time-password authenticated protocol, an
instance ΠÛ

(Û ′,ch)
is fresh (with forward-secrecy) if and only if none of the following events occur:

1. a RevealSessionKey(Û , Û ′,ch) query occurs;
2. a RevealSessionKey(Û ′, Û ,ch) query occurs;
3. if Û ∈ Clients, either of the following queries occur before the Test query:

(a) RevealPW(Û , Û ′,ch), or
(b) RevealV(Û , Û ′,ch),
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and Send(Û , (Û ′,ch), M) occurs for some string M.
4. if Û ∈ Servers, RevealPW(Û ′, Û ,ch) occurs before the Test query, and Send(Û , (Û ′,ch), M) occurs for

some string M.

Adversary’s goals. The adversary’s goal related to confidentiality is the same, using Adv1×ake
P (A).

The adversary’s goals related to authentication are modified as follows. We introduce separate notions of
client-to-server, server-to-client, and mutual authentication. Let Succ1×c2s

P (A) be the event that the adversary
A causes a server instance ΠŜ

(Ĉ ,ch)
with partner id Ĉ to terminate without a partnered instance, before the

RevealPW or RevealV queries in part 3 of Definition 3. Let Succ1×s2c
P (A) be the event that the adversary

A causes a client instance ΠĈ
(Ŝ,ch)

with partner id Ŝ to terminate without a partnered instance, before the

RevealPW query in part 4 of Definition 3. Finally, let Succ1×ma
P (A) = Succ1×c2s

P (A)∨Succ1×s2c
P (A). We define

the corresponding advantages Adv1×c2s
P (A), Adv1×s2c

P (A), and Adv1×ma
P (A) analogously to Section 2.1.

Definition 4 (Security, verifier-based). A protocol P is a secure verifier-based one-time-password-authenticated
key exchange protocol if Adv1×ake

P (A) is bounded as in equation (3), and similar bounds apply for Adv1×c2s
P (A),

Adv1×s2c
P (A), and Adv1×ma

P (A).

3 A generic construction for one-time password protocols

We now describe a technique for building a one-time-PAKE protocol, 1(P), out of any PAKE protocol P, and
then show that the one-time-password protocol is at least as secure as the password protocol out of which it is
built.

3.1 Construction of 1(P) from P

The basic idea of the construction is as follows. For each client-server-index combination (Ĉ , Ŝ,ch) in the
one-time-password protocol, we will construct a new pair of users with compound names (Ĉ , Ŝ,ch) and
(Ŝ, Ĉ ,ch) in the password protocol, and pass the queries against the session in the one-time-password protocol
down to the new pair of users in the underlying password protocol. Since every PAKE protocol should be
secure even if each pair of users is used only once, this constructed one-time-PAKE protocol should also be
secure.

We now describe the technique to construct a one-time-PAKE protocol 1(P) from a PAKE protocol P. There
are two phases: the registration phase, in which pairs of clients and servers establish passwords, and the login
phase, in which pairs of clients and servers attempt to establish a secure session.

Registration phase. The registration phase of the 1(P) protocol is specified in Figure 1 below. For every
client-server pair (Ĉ , Ŝ) ∈ Parties × Parties, and for each one-time-password index ch ∈ Indices, initiate
the registration phase of P with the users (Ĉ , Ŝ,ch) and (Ŝ, Ĉ ,ch), and set pwĈ ,Ŝ,ch in 1(P) equal to the
corresponding password in P.

Although one might be concerned about the time that it takes to complete the registration phase if Indices
is large, the registration phase of any one-time password protocol can not, in general, be completed in less time
asymptotically if truly one-time passwords are used. In other words, this is effectively the same complexity
as password establishment in currently deployed one-time password schemes, and hence is quite practical.
Moreover, the registration for each challenge can be run in parallel to reduce the number of communication
rounds.

Protocol 1(P) – Registration Phase
Client Ĉ Server Ŝ

for each ch ∈ Indices:

1. run registration phase of protocol P with users (Ĉ , Ŝ,ch) and (Ŝ, Ĉ ,ch)

2. pwĈ ,Ŝ,ch in 1(P)← pw(Ĉ ,Ŝ,ch),(Ŝ,Ĉ ,ch) in P

3. usedĈ (Ŝ,ch)← false usedŜ(Ĉ ,ch)← false
end for each

Figure 1: Protocol 1(P) – Registration Phase; must use a private, authenticated channel.
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Login phase. The login phase of the 1(P) protocol is specified in Figure 2 below. Each party Û maintains
a set of tables usedÛ(Û ′,ch), where each entry in the table is either true or false and indicates whether the
one-time-password indexed by ch has been used by Û with Û ′.

To initiate the protocol, instance ΠĈ
(Ŝ,⊥) of user Ĉ sends a message (“hello”, Ĉ) to instance ΠŜ

(Ĉ ,⊥) of party

Ŝ. When a party Ŝ receives a message (“hello”, Ĉ), it picks a one-time-password index ch from Indices such
that usedŜ(Ĉ ,ch) = false. Then it sets usedŜ(Ĉ ,ch)← true and activates ΠŜ

(Ĉ ,ch)
. Finally, it sends “hello” to

instance ΠĈ
(Ŝ,ch)

of party Ĉ . It then waits to engage in a single instance of protocol P acting as user (Ŝ, Ĉ ,ch)
interacting with party (Ĉ , Ŝ,ch). When the corresponding instantiation of protocol P accepts, the instance in
1(P) sets its session key to the session key in P and then accepts. When it rejects in P, it rejects in 1(P); when
it terminates in P, it terminates in 1(P) as well.

When instance ΠĈ
(Ŝ,ch)

of party Ĉ receives a message (“hello”), it checks to see if usedĈ(Ŝ,ch) = true; if so,

then it rejects; if not, then it sets usedĈ(Ŝ,ch)← true. It then initiates the login phase of protocol P acting
as user (Ĉ , Ŝ,ch) interacting with party (Ŝ, Ĉ ,ch). It follows protocol P until it accepts or rejects. When the
corresponding instantiation of protocol P accepts, the instance in 1(P) sets its session key to the session key in
P and then accepts. When it rejects in P, it rejects in 1(P); when it terminates in P, it terminates in 1(P) as
well.

Protocol 1(P) – Login Phase
Client Ĉ Server Ŝ

1. “hello”,Ĉ
−−−−−→

2. pick ch ∈ Indices s.t.
usedŜ(Ĉ ,ch) = false

3. usedŜ(Ĉ ,ch)← true

4. ΠĈ
(Ŝ,ch)

“hello”←−−−−−
5. if (usedĈ (Ŝ,ch) = true) then reject
6. usedĈ (Ŝ,ch)← true

7. run protocol P with users (Ĉ , Ŝ,ch) and (Ŝ, Ĉ ,ch) and password pw(Ĉ ,Ŝ,ch),(Ŝ,Ĉ ,ch)

8. when P accepts: when P accepts:
8.a) sid1(P)← sidP ; pid← Ŝ sid1(P)← sidP ; pid← Ĉ
8.b) sk1(P)← skP sk1(P)← skP
8.c) accept in 1(P) accept in 1(P)
9. when P rejects: reject when P rejects: reject

Figure 2: Protocol 1(P) – Login Phase; can use a public, unauthenticated channel.

3.2 Security of 1(P)

Theorem 1. Let P be a secure password-authenticated key exchange protocol. Then 1(P) is a secure one-time-
password-authenticated key exchange protocol.

The basic idea of the argument is as follows. We will show that attacks against 1(P) correspond to attacks
against P. As a result, if an adversary could break 1(P), it could break P. Thus, an adversary could use
the 1(P) construction, which is efficient, as part of its algorithm for breaking P. But since P is a secure
password-authenticated key exchange protocol, no adversary should be able to attack P, and hence no
adversary should be able to attack 1(P) either. The security argument is a straightforward simulation involving
creating separate user instances in P for each instance of 1(P).

Proof. In order to show that 1(P) is a secure one-time-password-authenticated key exchange protocol, we
need to show that it provides secure key exchange and secure mutual authentication.

First, we construct a 1(P) simulator in which the adversary’s queries to 1(P) are translated into queries on
a P challenger as follows:
• Execute1(P)(Â, B̂,ch): Return the result of ExecuteP((Â, B̂,ch), 1, (B̂, Â,ch), 1).
• Send1(P)(Û , (Û ′,ch), M): If message M is for one of the two flows added by the 1(P) construction, then

respond as indicated in Figure 2. If message M is for one of the flows from P, then return the result of
SendP((Û , Û ′,ch), 1, M).

• RevealSessionKey1(P)(Û , Û ′,ch): Return RevealSessionKeyP((Û , Û ′,ch), 1).
• RevealPW1(P)(Â, B̂,ch): Return RevealPWP((Â, B̂,ch), (B̂, Â,ch)).
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• Test1(P)(Û , Û ′,ch): Return TestP((Û , Û ′,ch), 1).
Next, we show that a fresh session in the 1(P) simulator corresponds to a fresh session in the P challenger.

Then we show that a session-key distinguisher for a fresh session of 1(P) is a session-key distinguisher for a
fresh session of P, and hence 1(P) provides secure key agreement.

Suppose Π(Û ,Û ′,ch)
1 with partner id (Û ′, Û ,ch) is not a fresh instance in the P challenger. We will show that

ΠÛ
(Û ′,ch)

is not a fresh instance in the 1(P) simulator.

If Π(Û ,Û ′,ch)
1 with partner id (Û ′, Û ,ch) is not a fresh instance in the P challenger, then one of the following

must have occurred:
• RevealSessionKeyP((Û , Û ′,ch), 1) occurred. A RevealSessionKey1(P)(Û , Û ′,ch) query must have oc-

curred, since no other query in 1(P) leads to this query in P. Hence, ΠÛ
(Û ′,ch)

is not fresh in 1(P).

• RevealSessionKeyP((Û ′, Û ,ch), 1) occurred, where Π(Û
′,Û ,ch)

1 is the partner instance of Π(Û ,Û ′ch)
1 in P. In

this case, a RevealSessionKey1(P)(Û ′, Û ,ch) query must have occurred, since no other query in 1(P)
leads to this query in P. Hence, ΠÛ

(Û ′,ch)
is not fresh in 1(P).

• RevealPWP((Û ,ch), (Û ′,ch)) occurred before the TestP query and SendP((Û ,ch), 1, M) occurred for
some message M . In this case, RevealPW1(P)(Û , Û ′,ch) must have occurred in 1(P) before the Test1(P)

query and Send1(P)(Û , (Û ′,ch), M) must have occurred, since no other sequence of queries in 1(P) leads
to this sequence of queries in P. Hence, ΠÛ

(Û ′,ch)
is not fresh in 1(P).

Thus, Π(Û ,Û ′,ch)
1 with partner id (Û ′, Û ,ch) is a fresh instance in P.

Having shown that fresh sessions in the 1(P) simulator are also fresh in the P chappenger, we now
show that breaking session key security of the 1(P) simulator leads to breaking session key security of the P
challenger.

We first note that, since each one-time password pwĈ ,Ŝ,ch for 1(P) was chosen according to the distribution
Passwords for P, the distribution of passwords with which P is initialized satisfied the protocol requirements
of P.

By the argument above, every fresh session in 1(P) corresponds to a fresh session in P. Since the session
key in 1(P) is equal to the session key in P and since the output of Test1(P) is equal to the output of TestP , a
session key distinguisher for fresh sessions of 1(P) will also distinguish session keys for P. Thus, an adversary’s
1×ake-advantage in 1(P) cannot be better than its ake-advantage in P:

Adv1×ake
1(P) (t, qse, qex, qpw, qro)≤ Advake

P (t, qse, qex, qpw, qro) . (4)

Finally, we show that the ability of an adversary to break authentication in 1(P) is related to its ability
to break authentication in P, in a manner analogous to the discussion above for key agreement security.
Suppose an instance of 1(P) terminates without a partnered instance, before any of the queries in part 3
of Definition 1. Instances in 1(P) terminate if and only if the corresponding instance in P has terminated.
Moreover, none of the prohibited queries in the definition of mutual authentication for password-authenticated
key exchange could have occurred since otherwise one of the prohibited queries for mutual authentication
of one-time-password-authenticated key exchange must have occurred. Hence, mutual authentication must
have been broken for P as well. Thus, an adversary’s 1×ma-advantage in 1(P) cannot be better than its
ma-advantage in P:

Adv1×ma
1(P) (t, qse, qex, qpw, qro)≤ Advma

P (t, qse, qex, qpw, qro) . (5)

Thus 1(P) is a secure one-time-PAKE protocol if P is a secure PAKE protocol.

We note that the converse does not necessarily hold, namely, that it is not necessarily the case that, if 1(P)
is secure, so is P. For example, an attacker trying to attack P may do so by causing the users in P to run
multiple sessions. If the adversary causes a pair of users (Ĉ , Ŝ,ch) and (Ŝ, Ĉ ,ch) to run multiple sessions in P,
then there is no way of mapping this to an allowable instance of 1(P), and we cannot translate the attack on
P into an attack on 1(P).

Example instantiation. Suppose we were to construct a one-time-password-authenticated key exchange
protocol using the 1(P) construction where the underlying password-authenticated key exchange protocol
is the (symmetric, non-verifier-based) protocol PAK [BMP00a]. The specification for the example 1(PAK)
protocol is given in Appendix A.

In our example, we wish for an adversary to be able to break the one-time-password protocol with
probability at most 2−20, where the adversary runs in time at most 260, and can only make a limited
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number of Send queries. Assuming the hardness of solving the elliptic curve computational Diffie-Hellman
problem (using estimates in [BCC+08]), we can achieve this security level using 10-digit numerical passwords
(Passwords= {0, . . . , 9}10) and a 348-bit elliptic curve group. (See Appendix A.1 for the full analysis.)

3.3 Efficiency and Practicality of 1(P)

Login phase and computational efficiency. During the login phase, the 1(P) construction provides no loss of
efficiency in terms of the number of expensive operations (such as group exponentiations) or security level
of P, since the reduction is tight. 1(P) does add two additional message flows to the length of the protocol,
but depending on the message flow of protocol P it may be possible to combine some flows without affecting
security.

One might think that designing a one-time-password protocol from scratch may lead to greater efficiency,
since some of the effort in designing PAKE protocols goes to preventing the transcript of one session leaking
information about the password and in a one-time-password protocol we may not have to worry as much about
leaking information about passwords during a protocol run. However, many PAKE protocols are already highly
efficient in terms of number of operations. For example, the Diffie-Hellman-based PAK [Mac02] protocol can
be run with just 2 group exponentiations on each side (plus a group inversion on the client side, which is
inexpensive in many groups like elliptic curve groups), which is very close to the operation count of the basic,
unauthenticated Diffie-Hellman protocol (2 group exponentiations for both parties). The main efficiency to be
gained, then, would be in improving the tightness in the security reduction to the underlying Diffie-Hellman
problem so as to allow smaller group sizes.

Registration phase. The registration phase of 1(P) obviously requires establishing many more passwords
than a single instance of P, but any one-time password scheme requires establishing many more passwords
than a long-term password scheme. The 1(P) registration phase calls the registration phase of P many times.
Depending on the PAKE protocol P, the registration phase can be quite efficient: for example, in the PAK
protocol [Mac02], the registration phase can be optimized to consist of just one hash function evaluation.

Password storage. In practice it is important to consider how clients will store a list of one-time passwords,
especially if they wish to log in to a site while away from their normal computer. One method is to provide a
piece of paper with a list of one-time passwords; for example, the Swedish bank Nordea provides its customers
with a “scratch sheet” of 120 one-time passwords [Nor]. Alternatively, one-time passwords could be delivered
through an out-of-band channel such as an SMS message to the user’s mobile phone (for example, [Mob]).
Passwords can also be stored on or generated by an electronic token device, for example the RSA SecurID
[RSA], or even in a smart card built into credit cards [Pri08].

We can further reduce the complexity of the registration phase and password storage by using pseudoran-
dom or time-based one-time passwords, which we describe in the following sections.

3.4 Verifier-based protocols

The construction of 1(P) can be modified in the obvious way to support verifier-based protocols as well. Using
an argument similar to the one for Claim 1, we can easily show the following claim:

Theorem 2. Let P be a secure verifier-based password-authenticated key exchange protocol. Then 1(P), modified
to support verifier-based protocols, is a secure verifier-based one-time-password-authenticated key exchange
protocol.

4 Using pseudorandom passwords

To improve the efficiency of password registration and storage, it may be desirable to pseudorandomly generate
passwords instead of truly random ones. For example, users may be given a hardware token [RSA, Bli09]
with a preprogrammed private seed which iteratively generates one-time passwords, or the device may accept
a challenge as an input and then output a response from a pseudorandom function based on the seed and that
challenge. We show that pseudorandomly generated passwords can be safely used in one-time-PAKE protocols.

Suppose P is secure one-time-PAKE protocol. We construct a new protocol P̃ based on P that uses
pseudorandomly generated passwords as follows.

We modify the registration phase of P̃ as follows. For each (unordered) pair of users {Â, B̂} ∈ Parties×
Parties, choose a random seed seedÂ,B̂ ∈R {0, 1}λ, where λ is a security parameter. Let F = {Fk} be a family of
pseudorandom functions [GGM86]. For each one-time-password index ch ∈ Indices, set pwÂ,B̂,ch = FseedÂ,B̂

(ch).
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The login phase of P̃ is exactly as in P, except that the passwords chosen in the modified registration phase
above are used. For the purposes of the security model in Section 2.1, the RevealPW queries work exactly as
before and only reveal an individual password pwÂ,B̂,ch. No query reveals seedÂ,B̂.2

The only difference between P̃ and P is that pseudorandom passwords are being used instead of random
passwords. It is then easy to see that any efficient adversary A that can defeat session key security or mutual
authentication in P̃ can be used to build either an adversary A1 that breaks session key security or mutual
authentication in P, or an algorithm A2 that acts as a polynomial-time distinguisher for the pseudorandom
function family F . Thus P̃ is secure if P is, and we see that pseudorandomly generated one-time passwords
can be safely used in any secure one-time-PAKE protocol.

5 Using time-dependent passwords

A further refinement to the use of pseudorandomly generated passwords is to use passwords that also depend
on the current time. This allows the client and server to agree upon a challenge – the current time – without
any communication, while easily enforcing the one-time use of passwords.

For example, consider a hardware token for party Â interacting with party B̂ which has a pseudorandom
function FseedÂ,B̂

∈ F and an onboard clock. It generates one-time passwords as follows. Let t be the hardware
token’s current time. Treat t as the one-time password index ch, and then compute

pwÂ,B̂,t = FseedÂ,B̂
(t) . (6)

User Â then participates in the one-time-PAKE protocol using pwÂ,B̂,t .
Whenever clocks are used by two parties, one must consider the issue of clock skew, in which the two

clocks may not be perfectly synchronized. For example, ordinary quartz clocks drift at a rate of approximately
10−6 seconds per second, or about 1 second every 12 days.

One solution is to have a common network time server that both parties use for synchronization. This
is problematic for two reasons: (1) the network time server must be trusted (or at least dealt with in the
security model); (2) all of the parties participating must have a way of synchronizing with the clock server; an
inexpensive, credit-card-sized hardware token may not be connected to the network, making synchronization
difficult or impossible.

Another method for dealing with clock skew is to have the server accept multiple passwords from a small
window around the server’s current time (say, plus or minus 60 seconds). However, this is a problem for PAKE
protocols, as the server never receives the client’s password directly. Rather, each party uses what it believes to
be the password in the protocol, and at the end the two parties know that the same password was used if and
only if they arrive at the same session key. This prevents the server from accepting multiple passwords as valid.
(Traditional one-time password systems often avoid this problem by having the client send the password itself
to the server over an existing encrypted but not mutually authenticated channel.)

A simpler alternative mechanism for dealing with clock skew is for one party (the initiator) to just tell the
other party (the responder) what time t it used in the protocol. If the time used by the initiator is acceptable
to the responder (say within plus or minus 60 seconds of the responder’s clock) then the responder continues
the protocol using the specified time. This provides a simple mechanism for ensuring both sides use the same
time-dependent password while accommodating clock skew.

Adjusting the model. In order to accommodate this alternate mechanism in the security model described in
Section 2.1, the definition of freshness would need to be adapted (in part 3.(a) and 3.(b) of Definition 1) so
that a responder instance ΠÛ

(Û ′,t)
is fresh provided that no RevealPW(Û , Û ′, t ′) or RevealPW(Û ′, Û , t ′) query

was issued for any time t ′ in the valid time window of ΠÛ
(Û ′,t)

. This captures the notion that the authentication
should be secure as long as none of the currently valid passwords have been revealed.

With this modified security definition, and assuming F is a secure family of pseudorandom functions,
one-time time-based passwords generated in equation (6) can be safely used in a secure one-time-PAKE
protocol as a result of the discussion about pseudorandom passwords in Section 4.

2We could add a further query, say RevealPWSeed(Â, B̂), that does reveal the value seedÂ,B̂ and then add an additional constraint
to the definitions of freshness and authentication so that an instance is not considered fresh if the relevant RevealPWSeed query is
called before the Test query. This enhanced model would make it clear that corruption of one pair of users’ pseudorandom seed should
not affect the security of another pair of users. It is not hard to see that this construction would satisfy this enhanced security model,
assuming independent random seeds.
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6 Analysis of the OPKeyX protocol

The OPKeyX protocol [ACP05a] is a PAKE protocol that uses a sequence of passwords derived via a hash
chain from a single seed. The protocol is a verifier-based protocol, meaning that the compromise of the value
stored on the server should not allow someone to impersonate the client. We note that [ACP05a] omits a
complete analysis of OPKeyX: it gives a proof for a non-verifier-based PAKE protocol in the BPR model but no
proof that OPKeyX, a verifier-based hash-chain variant of the protocol, is also secure.

The sequence of passwords in OPKeyX is as follows. Each client Ĉ picks, for each server Ŝ, a seed
password pw. Let Nmax be the maximum number of login sessions for the seed pw. During the registration
phase, the client gives the server its verifier VNmax

← f Nmax+1(pw), where f is a random oracle and f i denotes
the i-fold application of f . The parties each maintain internal counters n of the current login phase, starting
from n = Nmax and decreasing to 1. During login phase with internal counter equal to n, the client and server
do an encrypted key exchange where the Diffie-Hellman ephemeral public keys are encrypted using a value
derived from the verifier Vn = f n+1(pw). Then, the client encrypts f n(pw) under a value s derived from the
shared Diffie-Hellman key (but distinct from the session key sk) and sends it to the client. The server decrypts
to obtain V ′, verifies Vn = f (V ′), and sets Vn−1← V ′ and n← n− 1.

OPKeyX relies on the correct sequence of passwords being used. In the security model for verifier-based
one-time-PAKE in Section 2.2, we allow the adversary to reveal one-time passwords in any order. As a result,
OPKeyX cannot be a secure verifier-based one-time-PAKE protocol in the sense of Section 2.2. For example,
an adversary could reveal the password for session with counter i, which is f i+1(pw), and then be able to
derive the password for the earlier session with counter i+ 1 (recalling that counters decrease as time passes),
which is f i+2(pw) = f ( f i+1(pw)). To describe the security of OPKeyX, we would need to further restrict our
model so that a session is not fresh if the password or verifier of a subsequent session has been revealed which,
although weaker from a theoretical perspective, still models a plausible practical scenario. The situation is
even more complicated if RevealSessionKey is deemed to reveal the value s (which encrypted the next verifier
V ′ and is in some sense a “session key”) in addition to sk, in which case no earlier s value for the target users
can have been revealed before the Test query.

7 Conclusions

One-time password systems are already being widely deployed by banks, governments, and corporate virtual
private networks (VPNs) to reduce the effects of password compromise. Bank customers today are using sheets
of paper with lists of one-time passwords. Online shoppers and gamers today are using hardware one-time
password generators. The money being spent on deploying one-time passwords is wasted if these passwords
are not being used safely and securely.

By using one-time passwords in one-time-PAKE protocols, as we have proposed in this paper, we can
be assured that one-time passwords are being used in a more secure way. We have presented a model for
the secure use of one-time passwords in PAKE protocols, taking into account the idea that such protocols
should be secure even if previous or future one-time passwords have been compromised. We have given
a generic technique for constructing secure one-time password protocols. Our construction can be used
with pseudorandomly generated one-time passwords or time-based one-time passwords, providing greater
efficiency in one-time password distribution.

As with all cryptographic protocols, an essential precondition to security is getting users to use the protocol.
If an adversary can trick a user into entering their password in a non-secure manner so that the secure protocol
is never used – a so-called chosen protocol attack – then the cryptographic countermeasures are bypassed. For
any PAKE protocol to succeed, user training and user interface design will be very important.

Spyware remains a significant threat to password security. In the face of passive spyware, such as a
keystroke logger which collects information and occasionally relays it back to the attacker, both traditional
one-time password schemes and one-time-PAKE are useful since used one-time passwords are useless to an
attacker. If the spyware is active – it captures a one-time password, terminates the user’s connection, and
immediately sends the password to the attacker – the captured password may still be useful to an attacker,
and it seems that neither traditional one-time password schemes nor one-time-PAKE can do much unless
time-dependent passwords are used with careful expiration procedures.

An additional challenge is widespread deployment of such secure protocols. Passwords, as they are used in
HTTP and SSL on the Internet today, remain susceptible to phishing attacks. The huge installed base of web
browsers and web servers has significantly slowed efforts to deploy PAKE.

Our techniques may see more immediate application in corporate virtual private network (VPN) software.
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Many corporate VPNs use one-time passwords now, albeit in a less secure way than we have proposed.
Moreover, both endpoints – the user’s computer and the VPN server – are often under control of the same
organization and using software from the same vendor, making it easier to deploy enhancements. An
interesting avenue of future research is the integration of secure PAKE and one-time-PAKE protocols into
IPsec for use in corporate VPNs. Indeed, IKEv2 (one of the key exchange protocols for IPsec) notes the need
for password authentication: after showing how to derive a shared key for authenticated Diffie-Hellman
key exchange in IKEv2, the RFC goes on to say: “... deriving the shared secret from a password is not
secure. This construction is used because it is anticipated that people will do it anyway” [Kau05, p. 30].
One-time-password-authenticated key exchange is one way in which one-time passwords can be used more
securely.
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A 1(PAK): a one-time-password-authenticated key exchange protocol

In this section, we present the protocol 1(PAK), an adaptation of the PAK protocol to use one-time passwords
using the 1(P) construction of Section 3.1. In the presentation, the notation has been simplified from the
1(P) construction where appropriate (for example, we avoid the repetitive subscripting pw(Ĉ ,Ŝ,ch),(Ŝ,Ĉ ,ch) and
simplify to the unambiguous pwĈ ,Ŝ,ch). The PAK protocol was introduced by Boyko, MacKenzie, and Patel
[BMP00a]. It is a symmetric, or non-verifier-based, protocol. The original paper [BMP00a] gave a proof that
PAK was secure in the simulation model of Shoup [Sho99b] and was later shown to be secure in the BPR
model by MacKenzie [Mac02].

Let G be a finite cyclic group of order q and let g be a generator of G. Let Acceptable : G→ {true, false}
such that Acceptable(z) = true if and only if z ∈ G, where G is a specified abelian group which has G as a
subgroup. H1 is a full-domain random hash function returning elements of G; H2, H3, and H4 are random
hash functions returning suitably large bit strings.

The user registration phase of the 1(PAK) protocol is given in Figure 3. For each one-time password index
ch ∈ Indices, the server Ŝ uniformly at random picks a password pwĈ ,Ŝ,ch ∈R Passwords and stores a related
value τ−1. Then, using a private, authenticated channel, the server provides all the one-time passwords to the
client Ĉ who stores them. Alternatively, the set of one-time passwords for each client-server pair could be
selected by each client and supplied to the server over a secure channel; the end result would be the same.

The login phase of the 1(PAK) protocol is given in Figure 4. In this phase, the client sends a “hello”
message to the server to obtain the one-time password index ch and, provided that one-time password index
is unused. follows the user login phase of the PAK protocol, which includes mutual authentication based on
the shared password pwĈ ,Ŝ,ch and the computation of a shared session key sk based on the Diffie-Hellman
shared secret.

Mackenzie [Mac02, Theorem 6.9] shows that PAK is a secure password-authenticated key exchange
protocol in the BPR model, assuming the hardness of the computational Diffie-Hellman problem and using
the random oracle model. Combining that result with our Theorem 1, we have that 1(PAK) is a secure
one-time-password-authenticated key exchange protocol:
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Protocol 1(PAK) – Registration Phase
Client Ĉ Server Ŝ

for each ch ∈ Indices:
1. choose pwĈ ,Ŝ,ch ∈R Passwords
2. τ−1← (H1(Ĉ , Ŝ,pwĈ ,Ŝ,ch))

−1

3. store pwŜ[Ĉ ,ch]← τ−1

end for each
4. PĈ ,Ŝ ← {(ch,pwĈ ,Ŝ,ch) : ch ∈ Indices}

5.
PĈ ,Ŝ

←−−−−−
6. store PĈ ,Ŝ
7. usedĈ (Ŝ,ch)← false for all ch ∈ Indices usedŜ(Ĉ ,ch)← false for all ch ∈ Indices

Figure 3: Protocol 1(PAK) – Registration Phase. This phase must use a private, authenticated channel.

Lemma 1. Let G be a finite cyclic group generated by g and let texp denote the running time of exponentiation in
G. Assume passwords are uniformly distributed among the set Passwords. Let A be an adversary that runs in
time t and makes at most qse and qex queries of type Send and Execute, respectively, and at most qro queries to
the random oracles. Then, for t ′ = t + (4q2

ro + qse + 2qex)texp,

Adv1×ake
1(PAK)(A)≤

qse

|Passwords|
+ ε , (7)

where

ε= 2qseAdvCDH
G,g

�

t ′, q2
ro

�

+ 2
(qse + qex)(qro + qse + qex)

|G|
(8)

and AdvCDH
G,g (t,`) is the advantage an adversary running in time t and outputting a list of ` items has in solving

the (list) computational Diffie-Hellman (CDH) problem. Moreover, the same bound applies for Adv1×ma
1(PAK)(A).

A.1 Parameter sizes for example instantiation

As a consequence of Theorem 1, we can pick a desired security level and under a suitable assumption on the
difficulty of solving CDH, choose a set of parameters that achieve that security level.

Suppose we wish for an adversary running in time 260 to have an ake advantage of at most 2−20 against
1(PAK).

To give an example instantiation, we have to pick appropriate values for the various parameters in the
statement of the theorem. We choose qse = 210, qex = 220, qro = 240, t = 280, and texp = 220.

We need qse

|Passwords| ≤ 2−21. Suppose each one-time password is comprised solely of numerical characters

0-9. We need |Passwords| ≥ 231 which can be achieved by using uniformly distributed 10 digit numerical
passwords (since 1010 ≈ 233.2).

We also need ε ≤ 2−21. Of the two terms in expression (8), the latter is dominated by the former.
Noting that t ′ = 282, we require that 211AdvCDH

G,g (2
82, 260)≤ 2−21. Assuming that the best technique to solve

CDH is to solve the Discrete Logarithm problem and that the best method of doing so is as described in
the detailed analysis found in an ECRYPT report [BCC+08, §6.1], we need an elliptic curve group of size
q ≥ 22(11+21+82+60) = 2348.
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Protocol 1(PAK) – Login Phase
Client Ĉ Server Ŝ

1. input username Ĉ

2. “hello”,Ĉ
−−−−−→

3. pick ch ∈ Indices s.t. usedŜ(Ĉ ,ch) = false
4. usedŜ(Ĉ ,ch)← true

5. “hello”,ch
←−−−−−

6. if (usedĈ (Ŝ,ch) = true) then reject
7. usedĈ (Ŝ,ch)← true
8. lookup pwĈ ,Ŝ,ch
9. τ= H1(Ĉ , Ŝ,pwĈ ,Ŝ,ch)
10. x ∈R Zq
11. X ← g x

12. m← X ·τ

13.
Ĉ ,m
−→

14. if ¬Acceptable(m) then reject
15. y ∈R Zq
16. Y ← g y

17. lookup τ−1← pwŜ[Ĉ ,ch]
18. X ← m ·τ−1

19. σ← X y

20. sid← (Ĉ , Ŝ,ch, m, Y ); pid← Ĉ
21. sk← H2(sid,σ,τ−1); accept
22. M1← H3(sid,σ,τ−1)

23.
Y,M1←−

24. σ← Y x

25. compute τ−1

26. sid← (Ĉ , Ŝ,ch, m, Y ); pid← Ŝ
27. sk← H2(sid,σ,τ−1); accept
28. if (M1 6= H3(sid,σ,τ−1)) then reject
29. M2← H4(sid,σ,τ−1)

30.
M2−→

31. if (M2 6= H4(sid,σ,τ−1)) then reject

Figure 4: Protocol 1(PAK) – Login Phase. This phase can use a public, unauthenticated channel.
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