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Abstract—In this paper we analyze the cheating detection and
cheater identification problems for the secret sharing schemes
based on the Chinese remainder theorem (CRT ), more exactly
for Mignotte [1] and Asmuth-Bloom [2] schemes. We prove
that the majority of the solutions for Shamir’s scheme [3] can
be translated to these schemes and, moreover, there are some
interesting specific solutions.

I. INTRODUCTION

A secret sharing scheme starts with a secret and then de-
rives from it certain shares (or shadows) which are distributed
to some parties. The secret may be reconstructed only by
certain predetermined groups which belong to the access
structure. Secret sharing schemes have been independently
introduced by Blakley [4] and Shamir [3] as a solution for
safeguarding cryptographic keys. Secret sharing schemes can
be used for any situation in which the access to an important
resource has to be restricted. We mention here the case of
opening bank vaults or launching a nuclear missile. Modern
applications of the secret sharing schemes can be categorized
as secure multiparty computation protocols, i.e., protocols
which allow to some users to compute f(x1, . . . , xm) such
that the input xi is known only by the ith user. Threshold cryp-
tographic protocols and some e-voting or e-auction protocols
are special cases of secure multiparty computation protocols.

Usually, a secret sharing scheme is coordinated by a dealer
(or administrator) who has to be a mutually trusted party,
but there are secret sharing schemes which can be configured
without the presence of a dealer. The reconstruction of the
secret can be made by the participants after they pool together
their shares or by a special party, called combiner, after
receiving the shares from the users of an authorized group.

Several solutions for the case in which the dealer or some
users may behave maliciously have been proposed in the
literature. The case of a possible dishonest dealer has been
discussed for the first time by Chor, Goldwasser, Micali, and
Awerbuch [5], who have introduced the notion of verifiable
secret sharing schemes in which every user can verify that
he has received a valid share. The problem of cheating in
the reconstruction phase has been discussed by McEliece and
Sarwate [6], and later on, by Tompa and Wool [7]. All the
mentioned papers refer to Shamir’s secret sharing scheme,
which is the most popular (and used) secret sharing scheme.

The study of the secret sharing schemes based on the
Chinese remainder theorem (Mignotte [1] and Asmuth-Bloom
[2]) has been recently reactivated, due to the applications of
these schemes in threshold cryptography (see [8], [9], [10]),
e-voting (see [11]) or private integer comparison (see [12]).
In this paper, we analyze the cheating detection and cheater
identification problems for these secret sharing schemes. We
prove that the majority of the solutions for Shamir’s scheme
can be translated to these schemes and, moreover, there
are some interesting specific solutions. To the best of our
knowledge, this is the first paper dedicated to this topic.

The paper is organized as follows. In Section 2 we present
the Chinese remainder theorem (the standard variant and the
general one). In the next section, after a short introduction to
secret sharing, we present the secret sharing schemes based on
the Chinese remainder theorem. In Section 4 we present our
solutions to the cheating detection and cheater identification
problems for the secret sharing schemes based on the Chinese
remainder theorem. The last section concludes the paper.

II. THE CHINESE REMAINDER THEOREM

We recall first some basic facts on number theory (for more
details, the reader is referred to [13]).

Let a, b, m ∈ Z, m ≥ 2. The remainder of the integer
division of a by m will be denoted by a mod m. We say that
a and b are congruent modulo m, and we use the notation
a ≡ b mod m, if a mod m = b mod m. Zm denotes the set
{0, 1, . . . ,m− 1}.

Let a1, . . . , an ∈ Z such that a2
1 + · · · + a2

n 6= 0. The
greatest common divisor (gcd) of a1, . . . , an will be denoted
by (a1, . . . , an).

Let a1, . . . , an ∈ Z such that a1 · · · an 6= 0. The least
common multiple (lcm) of a1, . . . , an will be denoted by
[a1, . . . , an].

We will present first the standard variant of the Chinese
remainder theorem:

Theorem 1: Let k ≥ 2, m1, . . . ,mk ≥ 2, b1, . . . , bk ∈ Z.
If (mi,mj) = 1 for all 1 ≤ i < j ≤ k, then the system of
equations 

x ≡ b1 mod m1

...
x ≡ bk mod mk



has a unique solution in Zm1···mk
.

We will present next a more general variant of the Chinese
remainder theorem:

Theorem 2: (Ore [14]) The system of equations
x ≡ b1 mod m1

...
x ≡ bk mod mk

(1)

has solutions in Z if and only if

(∀1 ≤ i, j ≤ k)(bi ≡ bj mod (mi,mj)). (2)

Moreover, if the above system of equations has solutions in
Z, then it has a unique solution in Z[m1,...,mk].

Fraenkel has proposed an efficient algorithm in [15]. The
main idea of his algorithm is that, having x, the solution for
the first i equations of the system, by adding a well-chosen
multiple of the least common multiple of the first i modules
to x, we may obtain an integer that is also a solution for the
(i + 1)th equation and iterate this construction until the final
solution is obtained. The algorithm is presented next:

CRT Fraenkel(b1,. . . , bk ,m1,. . . , mk)
input: b1, . . . bk , m1, . . . mk ∈ Z that satisfy (2);
output: x, the unique solution modulo [m1, . . . mk] of the system (1);
begin

1. for i:=1 to k − 1 do ci := [m1, . . . , mi];
2. x := b1 mod m1;
3. for i:=1 to k − 1 do

begin

4. y :=
bi+1−x

(ci,mi+1)
· ( ci

(ci,mi+1)
)−1 mod

mi+1
(ci,mi+1)

;
5. x := x + y · ci;

end
end.

In case (mi,mj) = 1, for all 1 ≤ i < j ≤ k, we obtain
Garner’s algorithm [16].

The Chinese remainder theorem has many applications in
computer science (see [17] for an interesting survey on this
topic).

III. SECRET SHARING BASED ON THE CHINESE
REMAINDER THEOREM

A secret sharing scheme starts with a secret and then derives
from it certain shares (or shadows) which are distributed
to users. The secret may be reconstructed only by certain
predetermined groups which belong to the access structure.

Suppose we have n users labeled with the numbers 1, . . . , n
and let A be a set of subsets of {1, 2, . . . , n}. Informally1,
an A-secret sharing scheme is a method of generating
(S, (I1, . . . , In)) such that

• (correctness) - for any A ∈ A, the problem of finding the
element S, given the set {Ii | i ∈ A}, is “easy”;

• (security) - for any A /∈ A, the problem of finding the
element S, given the set {Ii | i ∈ A}, is intractable.

S will be referred to as the secret, I1, . . . , In will be referred
to as the shares (or the shadows) of S, A will be referred

1For the most important mathematical models for secret sharing, the reader
is referred to Chapter 2 of [18].

to as the authorized access structure (or simply as the access
structure), the elements of the authorized access structure are
called authorized groups and the rest are called unauthorized
groups.

The schemes in which the unauthorized groups gain no
information about the secret are referred to as perfect. In an
ideal (perfect) secret sharing scheme the shares are as long as
the secret.

In the first secret sharing schemes (e.g., Blakley’s scheme
[4] and Shamir’s scheme [3]) only the number of the partici-
pants in the reconstruction phase was important for recovering
the secret. Such schemes have been referred to as threshold
secret sharing schemes. In this case, the access structure is

A = {A ⊆ {1, 2, . . . , n} | |A| ≥ k},

for some n ≥ 2, 2 ≤ k ≤ n - this access structure will be
referred to as the (k, n)-threshold access structure and, in this
case, any A-secret sharing scheme will be referred to as an
(k, n)-threshold secret sharing scheme.

We review next the most important secret sharing schemes
based on the Chinese remainder theorem.

A. Mignotte’s Scheme

Mignotte’s threshold secret sharing scheme [1] uses special
sequences of integers, referred to as Mignotte sequences.

Definition 1: Let n be an integer, n ≥ 2, and 2 ≤ k ≤ n.
An (k, n)-Mignotte sequence is a sequence of pairwise co-
prime positive integers p1 < p2 < · · · < pn such that

k−2∏
i=0

pn−i <

k∏
i=1

pi.

The above relation is equivalent with

max1≤i1<···<ik−1≤n(pi1 · · · pik−1) <

min1≤i1<···<ik≤n(pi1 · · · pik
).

Given a publicly known (k, n)-Mignotte sequence, the
scheme works as follows:

• The secret S is chosen as a random integer such that
β < S < α, where α =

∏k
i=1 pi and β =

∏k−2
i=0 pn−i;

• The shares Ii are chosen as Ii = S mod pi, for all 1 ≤
i ≤ n;

• Given k distinct shares Ii1 , . . . , Iik
, the secret S is recon-

structed using the standard variant of the Chinese remain-
der theorem, as the unique solution modulo pi1 · · · pik

of
the system 

x ≡ Ii1 mod pi1
...

x ≡ Iik
mod pik

.

Indeed, the secret S is an integer solution of the above
system by the choice of the shares. Moreover, S lies in
Zpi1 ···pik

because S < α. On the other hand, having
only k − 1 distinct shares Ii1 , . . . , Iik−1 , we obtain only
that S ≡ x0 mod pi1 · · · pik−1 , where x0 is the unique



solution modulo pi1 · · · pik−1 of the resulted system (in-
deed, S 6= x0 because S > β ≥ pi1 · · · pik−1 > x0).
Therefore, in order to assure a reasonable level of secu-
rity, (k, n)-Mignotte sequences with a large factor α−β

β
must be chosen (a method of generating such sequences
is presented in [19, page 9], these sequences being formed
by consecutive primes).

We have extended Mignotte’s threshold secret sharing
scheme in [20] by introducing the generalized Mignotte se-
quences whose elements are not necessarily pairwise coprime.

Definition 2: Let n be an integer, n ≥ 2, and 2 ≤ k ≤ n. A
generalized (k, n)-Mignotte sequence is a sequence p1, . . . , pn

of positive integers such that

max1≤i1<···<ik−1≤n([pi1 , . . . , pik−1 ]) <

min1≤i1<···<ik≤n([pi1 , . . . , pik
]).

It is easy to see that every (k, n)-Mignotte sequence is a
generalized (k, n)-Mignotte sequence. Moreover, if we multi-
ply every element of a (generalized) (k, n)-Mignotte sequence
p1, . . . , pn by a fixed element δ ∈ Z, (δ, p1 · · · pn) = 1, we
obtain a generalized (k, n)-Mignotte sequence.

The generalized Mignotte scheme works like Mignotte’s
scheme, with α = min1≤i1<···<ik≤n([pi1 , . . . , pik

]) and β =
max1≤i1<···<ik−1≤n([pi1 , . . . , pik−1 ]). In this case, the general
variant of the Chinese remainder theorem must be used for
reconstructing the secret.

Obviously, Mignotte’s scheme is not perfect, but it can lead
to small shares and, thus, can be used in applications in which
the compactness of the shares is the deciding factor.

B. Asmuth-Bloom Scheme

Asmuth and Bloom have proposed a slightly different
scheme in [2], by choosing the shares as

Ii = (S + γ · p0) mod pi,

for all 1 ≤ i ≤ n, where γ is an arbitrary integer such that
S + γ · p0 ∈ Zp1···pk

, providing that p0 is a prime number
less than α

β and the secret S is a positive integer less than p0

- in this case the secret is reconstructed as S = x0 mod p0,
where x0 is the solution of the system of k modular equations.
Goldreich, Ron, and Sudan [21] have proposed choosing
p0, p1, . . . , pn as prime numbers of the same size. Quisquater,
Preneel, and Vandewalle [22] have proven that, by choosing
p0, p1, . . . , pn as consecutive primes, the resulted schemes are
asymptotically perfect and asymptotically ideal (for technical
details, the reader is referred to [22]).

In [11] we have proved that more general access structures
can be realized using the Chinese remainder theorem.

IV. CHEATING DETECTION AND CHEATER
IDENTIFICATION IN CRT-BASED SECRET SHARING

SCHEMES

Usually, a secret sharing scheme is coordinated by a dealer
(or administrator) who has to be a mutually trusted party,
but there are secret sharing schemes which can be configured

without the presence of a dealer. The reconstruction of the
secret can be made by the participants after they pool together
their shares or by a special party, called combiner, after
receiving the shares from the users of an authorized group.

Dealing with a possible malicious behavior of some users
in the reconstruction phase has two aspects:

• cheating detection - when the frauds are detected but not
the parties involved;

• cheater identification - when the authors of the frauds are
identified.

Two main models for secret sharing schemes that deal with
cheating have been proposed in the literature:

• The CDV Model, proposed by Carpentieri, De Santis, and
Vaccaro in [23], in which the cheaters know the secret
and they try to make another user obtain an invalid secret;

• The OKS Model, proposed by Ogata, Kurosawa, and
Stinson in [24], in which the cheaters do not know the
secret in advance.

In our opinion, the most natural model is when the cheaters
form an unauthorized group and they combine with a group
of honest users in order to reconstruct the secret. The cheaters
modify their shares such that the reconstruction phase leads
to an invalid secret but they will be able to obtain the correct
secret.

As Schoenmakers has remarked in [25], verifiable secret
sharing can also be seen as a solution for the problem of
cheating - the shares presented in the reconstruction phase
may be verified with respect to the distribution phase. Thus,
the method proposed by Kaya and Selçuk in [26] for assuring
verifiability in CRT-based secret sharing schemes, can also
be used in order to detect cheating, but this method is
rather expansive, requiring zero-knowledge proofs and special2

sequences of modules.
We further discuss our solutions for cheating detection and

cheater identification.

A. Cheating Detection for Mignotte’s Scheme

In this subsection we prove that, in the case of the original
Mignotte secret sharing scheme, a single participant can de-
ceive other k − 1 users with probability 1 in the CDV model
and with high probability in the OKS model.

Suppose that the participants i1, i2, . . . , ik pool their shares
and that the participant i1 decides to cheat. Then, the user i1
should change his share Ii1 in I ′i1 such that a new secret S′ 6=
S, S′ ∈ (β, α) is reconstructed. Let l = pi2pi3 · · · pik

and r =
pi1pi2 · · · pik

. From the reconstruction phase, it follows that S
has the form pl + q, where p ∈ Zp1 and q ∈ Zl. Moreover,
using the Chinese remainder theorem, we can conclude that
S mod l = S′ mod l = q. Thus, S′ has the form p′l + q.
Since the Mignotte sequence p1, . . . , pk is publicly known, the
cheater can easily compute l. Thus, he can choose p′ = p±1,

2The verifiability feature described in [26] requires Asmuth-Bloom se-
quences p0, p1, ..., pn such that p1, . . . , pn are Sophie Germain primes -
the existence of such sequences and the magnitude of their elements have not
been precisely stated.



adjusts his share I ′i1 = (Ii1 ± l) mod pi1 , thus leading to
S′ = (p± 1)l + q = (S ± l) mod r.

In the CDV model the cheater knows the secret, so, using
the relation S′ = (S ± l) mod r he can assure that S′ ∈
(β, α) (see Figure 1). The existence of such S′ is granted since
k− 1 participants cannot uniquely determine the secret. Thus,
the cheater can deceive honest participants with probability 1.
Moreover, in the CDV model the cheater has control over the
fake secret S′. Instead of using the relation S′ = (S±l) mod r,
he can compute q directly from S. The cheater can use I ′i1 =
S′ mod pi1 , where S′ = p′l + q, by choosing p′ ∈ Zβ such
that S′ ∈ (β, α).

Fig. 1.

The above statement does not hold in the OKS model. Since
the cheater does not know the secret, he cannot verify whether
S − l < β or S + l > α. In this case he may always use
I ′i1 = (Ii1+l) mod p1. The only case when cheating is detected
is S + l > α, this leading to S′ = (S + l) mod r < β (see
Figure 2) or S′ = (S + l) mod r > α (see Figure 3). Thus,
honest participants are deceived with probability 1− 1

dα−β
l e

.

Fig. 2.

Fig. 3.

The next example illustrates this kind of attack:
Example 1: (with artificially small parameters)

Let n = 5, k = 3, and p1 = 661, p2 = 673, p3 = 677, p4 =
683, p5 = 691. In this case, α = 301165481 and β = 471953.

For the secret S = 500000, the dealer computes the shares
I1 = 284, I2 = 634, I3 = 374, I4 = 44, and I5 = 407.

Now, suppose that participants 1, 2, and 3 pool their shares
and participant 1 decides to cheat. Then, he can easily compute
p2 · p3 = 455621 and adjust his share according toI ′1 = (I1 +

p2p3) mod p1 = 476. Thus, by solving the system of equations x ≡ 476 mod 661
x ≡ 634 mod 673
x ≡ 374 mod 677

.

the participants reconstruct the invalid secret S′ = (S +
p2p3) mod p1p2p3 = 955621 that is also between β and
α. The user 1 can obtain the real secret as S = (S′ −
p2p3) mod p1p2p3 = 500000.

We propose the following solution for cheating detection in
Mignotte’s secret sharing scheme:

• The dealer generates an (k, n)-Mignotte sequence
p1, p2, . . . , pn. The dealer also generates n
distinct prime numbers m1, . . . ,mn such that

α−β
βmax1≤i1<···<ik−1≤n(mi1 ·mi2 ···mik−1 ) is large enough;

• The secret S is chosen such that β < S < α;
• The shares Ii are (S mod pi, S mod mi, pi,mi).
The reconstruction phase is done exactly the same as in

the original Mignotte’s secret sharing scheme. After the secret
S′ is reconstructed, any participant i can detect cheating
by comparing S′ mod mi with the information provided by
the dealer. Thus, the cheaters can deceive participant j with
probability 1

mj
.

B. Cheating Detection for Asmuth-Bloom Scheme

The attack presented in the previous subsection can be
adapted to the Asmuth-Bloom secret sharing scheme. Here, we
must note that (S +γp0) = pl+q, where q ∈ Zl and p ∈ Zp1 .
It follows that (S + γp0) mod l = (S′ + γp0) mod l = q, thus
(S′ + γp0) has the form p′l + q. Indeed, the cheater i1 only
controls the parameter p′ in the above expression. Moreover,
if the cheater chooses p′ = p+y, then his fake share would be
I ′i1 = (Ii1 + yl) mod pi1 . Thus, the reconstructed fake secret
S′ would satisfy the equality

S′ = ((pl + yl + q) mod r) mod p0. (3)

In both the OKS and CDV models the cheater can deceive
the other participants with probability 1− 1/p0, by choosing
y randomly. Indeed, the only case when he does not succede
is when S = S′. Furthermore, we prove that if the cheater
has access to the other shares (i.e, if he pools his share last),
he has full control over the secret S′. More exactly, for any
secret S′ ∈ Zp0 he can find y such that the equality (3) holds.
Knowing the other shares, the cheater can compute x0 = (S+
γp0) by solving the system of k modular equations. Then
he can compute p and q such that x0 = pl + q, by taking
q = x0mod l and p = (x0− q)/l. Now, the cheater has to find
y such that (3) is satisfied. Let y = y0+y1, where y0 is chosen
such that (pl+y0l+q) mod r = q. From p1l = r, it follows that
y0 = p1−p. Next, we prove that for any fake secret S′ ∈ Zp0

the cheater can choose y1 such that equality (3) written as S′ =
((pl+(y0 +y1)l+q) mod r) mod p0 holds. The above relation
can be written as S′ = ((pl+y0l+y1l+q) mod r) mod p0. Since
pl + y0l = r, it follows that S′ = ((y1l + q) mod r) mod p0.



When y1 ∈ Zp0 we obtain S′ = (y1l + q) mod p0, because
q ∈ Zl and pi0 < pi1 . Since (p0, l) = 1 it follows that such
y1 exists for any S′ ∈ Zp0 .

The next example illustrates this type of attack, when the
cheater knows others’ shares and controls the secret:

Example 2: (with artificially small parameters)
Let n = 5, k = 3 and p1 = 661, p2 = 673, p3 = 677, p4 =
683, p5 = 691, p0 = 23, γ = 1254895, and S = 10. The
dealer computes S +γp0 = 28862595 and the shares I1 = 30,
I2 = 317, I3 = 54, I4 = 381, and I5 = 216. Now, suppose
that participants 1, 2 and 3 pool their shares and the participant
1 decides to cheat, and chooses S′ = 18. The cheater computes
l = 455621 and r = 301165481. Solving the modular equation
system, he can compute x0 = 28862595. After that, he obtains
q = 158472 and p = 63. Furthermore, the cheater computes
y0 = p1 − p = 598, and solving the equation S′ = (y1l +
q) mod p0 he obtains y1 = 11. Thus, he can adjust his share
I ′1 = (I1 + (y0 + y1)l) mod p1 = 622.

Then, by solving the system of equations x ≡ 622 mod 661
x ≡ 317 mod 673
x ≡ 54 mod 677

the participants obtain the solution x′0 = 5170303 and S′ =
5170303 mod p0 = 18.

We propose the following solution for cheating detection in
Asmuth-Bloom secret sharing scheme:

• The dealer computes an (k, n)-Asmuth-Bloom sequence
p0, p1, p2, . . . , pn;

• The secret S is chosen as a random element in Zp0 ;
• The shares Ii are chosen as

Ii = ((S + γ · p0) mod pi, (S + f(γ) · p0) mod pi)),

where f is a pseudo random function such that f(γ) ∈
Zp1···pk

.
The reconstruction is done same as in the original Asmuth-

Bloom secret sharing scheme. Every participant can now verify
if the reconstructed secret S′ is the real secret. He can compute
γ and check if (S′ + f(γ) · p0) mod pi is equal with the
information provided by the dealer. In this way, k−1 cheaters
can deceive the kth participant with probability 1

pk
. Now we

prove that in our scheme k − 1 participants cannot narrow
down the key space. Let i1, ..., ik−1 be the coalition that tries
to find the secret, l = pi1 · · · pik−1. Let q′ be the solution in Zl

of the first resulted system of equations and q′′ the solution
of the second resulted system of equations (with the values
used for verification). It is easy to see that for any honest
participant ik, the solutions modulo p0 for the two systems
(with k equations) satisfy the relation (q′ + j′ · l) mod p0 =
(q′′ + j′′ · l) mod p0. From p0 · pn−k+2 · · · pn < p1 · · · pk, both
q′ + j′ · l and q = q′′ + j′′ · l are smaller than l ∗ pik

, for any
ik 6= ij,(j<k) and j′, j′′ ∈ Zp0 . Thus, since (p0, l) = 1, if we
take j′ = 0, 1, . . . , p0−1, q′+j′ · l will all be different. This is
also valid for j′′. Since we have p0 different values less than

p0, it follows that for any q ∈ Zp0 there exist j′, j′′ ≤ p0 such
that q = (q′ + j′ · l) mod p0 and q = (q′′ + j′′ · l) mod p0.

C. A Cheating Detection Method based on Doubling the
Shares

This method has been proposed by Ghodosi and Pieprzyk in
[27] for cheating detection in Shamir’s secret sharing scheme.
For simplicity, we will present it only for Mignotte secret shar-
ing scheme but it can be adapted to Asmuth-Bloom scheme
in a straightforward manner. The main idea is to double the
shares, using the second component for detecting a possible
malicious behavior of some users in the reconstruction phase.

• Generate a (2k − 1, 2n)-Mignotte sequence p1, . . . , p2n;
• The secret S is chosen as a random integer such that

β < S < α, where α =
∏2k−1

i=1 pi and β =
∏2k−3

i=0 p2n−i;
• The shares Ii are chosen as

Ii = (S mod p2i−1, S mod p2i),

for all 1 ≤ i ≤ n;
• Given the shares Ii1 = (I1

i1
, I2

i1
), . . . , Iik

= (I1
ik

, I2
ik

),
the secret S is recovered using the standard variant of
the Chinese remainder theorem, as the unique solution
modulo p2i1−1p2i1 · · · p2ik−1−1p2ik−1p2ik−1 of the sys-
tem 

x ≡ I1
i1

mod p2i1−1

x ≡ I2
i1

mod p2i1
...

x ≡ I1
ik

mod p2ik−1

.

The cheating detection can been performed by verifying

S ≡ I2
ik

mod p2ik
.

The next example illustrates this method of cheating detec-
tion:

Example 3: (with artificially small parameters)
Let n = 5 and k = 3. Let us consider the following (5, 10)-
Mignotte sequence: 661, 673, 677, 683, 691, 701, 709, 719,
727, and 733. In this case, α = 142135952254393 and β =
271652377961. Let the secret be S = 500000000000.

The dealer computes the shares of each user: I1 = (28, 350),
I2 = (151, 457), I3 = (309, 539), I4 = (547, 52), and I5 =
(157, 80).

Let us consider the case when the first three users try to
reconstruct the secret and the second user tries to cheat and
sends the value 470.

x ≡ 28 mod 661
x ≡ 350 mod 673
x ≡ 151 mod 677
x ≡ 470 mod 683
x ≡ 309 mod 691

By solving the system, the secret obtained (S′) is
59601918653364 (fake). However, the cheater is detected
because S′ mod 701 = 138 which is different from 539.



D. Methods based on Extra Shares

In the paper [28] of Harn and Lin, the detec-
tion/identification of cheaters is done using the extra shares - if
the threshold is k, then the number of participants required in
the reconstruction phase, denoted by j, is strictly greater than
k (j > k). The main idea is that, if the number of honest users
(denoted by h) is strictly greater than the number of cheaters
(denoted by c) then the most frequent reconstructed secret
(considering all groups of k users from the total j participants),
will be the one reconstructed by the honest users, thus, the
correct secret. In the rest of this subsection, we will show that
the methods described by Harn and Lin can be adapted to
Mignotte’s scheme (and, similary, to Asmuth-Bloom scheme).

Let X be a set of j users. X is consistent if by solving all
the systems of equations corresponding to any k users from X ,
the result obtained is the same for each system. For Mignotte’s
scheme we can use a more efficient algorithm. We choose
arbitrary k users from X and solve the resulted system. Let
S be the value we obtain. For all the other users from X we
verify the following congruence:

S ≡ Ii mod pi.

It is obvious that the set X is consistent if and only if all
these congruences are satisfied. In order to detect if there are
cheaters, we test if the given set of j users is consistent or
not. If this set is consistent then there are no cheaters and the
result obtained is the correct secret.

In order to identify the cheaters, we have to solve all the(
j
k

)
systems in order to obtain the most frequent reconstructed

secret. A more efficient solution is to solve all the systems of
k−1 equations and then solve the systems resulted by adding
an equation to these systems (using Fraenkel’s algorithm). In
this way, we reduce the number of operations required for
solving the original systems. Now that we have obtained the
most frequent reconstructed secret, denoted by S, we can
identify the cheaters by verifying the following congruence:

S ≡ Ii mod pi.

If the above congruence is satisfied then the current user is
honest and will be put in the set of the honest users (the initial
users that have reconstructed the secret S will be put in the
set of the honest users); otherwise, the user is a cheater and
will be put in the set of the cheaters.

We will analyse next three types of attacks. The bounds for
detection and identification, for these attacks, remain the same
as those described by Harn and Lin in [28].

The first type of attack considers honest users who acciden-
tally give bad shares or cheaters who give fake shares, but do
not collaborate with other cheaters (stand-alone cheaters). The
bounds in this case are:

• Detection : j ≥ k + 1 (we must have strictly more than
k users participating in the reconstruction phase);

• Identification : j − c ≥ k (number of honest users must
be greater than the threshold so that the most frequent

reconstructed secret will be the one reconstructed by the
honest users, thus, the correct one).

The next example illustrates this type of attack:
Example 4: (with artificially small parameters)

Let n = 5, j = 5, k = 3, and one cheater. Let us consider the
following (3, 5)-Mignotte sequence: 661, 673, 677, 683, 691.
In this case, α = 301165481 and β = 471953. Let the secret
be S = 500000.

The dealer computes the shares of each user: I1 = 284,
I2 = 634, I3 = 374, I4 = 44, and I5 = 407.

Let us consider the case when the first user accidentally
types the value 280 (instead of the correct share 284). The
solutions to all the systems corresponding to 3 users are
presented next:

• System for I1 I2 I3 : 82056159
• System for I1 I2 I4 : 5096590
• System for I1 I2 I5 : 208839264
• System for I1 I3 I4 : 156788158
• System for I1 I3 I5 : 157683152
• System for I1 I4 I5 : 2387812
• System for I2 I3 I4 : 500000
• System for I2 I3 I5 : 500000
• System for I2 I4 I5 : 500000
• System for I3 I4 I5 : 500000
The set of all the 5 users is not consistent, therefore

there are cheaters. The most frequent reconstructed secret is
S = 500000 and, thus, the users 2, 3, 4, 5 are honest. All
the systems in which the first user has taken part lead to
different results and, therefore, the cheater (the first user) is
easily identified.

The second type of attack is when the cheaters collaborate
in order to obtain “better faked” shares but they do not
see the shares of the honest users (all shares are released
simultaneously). The bounds in this case are:

• Detection : (c < k ∧ j ≥ k+1) ∨ (c ≥ k ∧ j−c ≥ k);
• Identification : (c < k ∧ j − c ≥ k + 1) ∨

(c ≥ k ∧ j − c > c + k − 1).
The next example illustrates this type of attack, for the case

c < k.
Example 5: (with artificially small parameters)

Let n = 6, j = 6, c = 3, h = 3, and k = 4. In this example
we will show that we cannot always identify the cheaters.
We can only detect cheating. Let us consider the following
(4, 6)-Mignotte sequence: 719 , 727 , 733 , 739, 743, 751. We
obtain α = 283146836831 and β = 412356827. Let the secret
be S = 500000000.

The dealer computes the shares of each user: I1 = 210,
I2 = 661, I3 = 176, I4 = 729, I5 = 379, and I6 = 722.

Let us consider the case when the first three users are
cheaters. They cannot reconstruct the secret only by them-
selves. They can only modify their shares. Suppose the new
(faked) shares for the first three users are: I1 = 200, I2 = 660,
and I3 = 170.

The solutions to all the systems corresponding to 4 users
are presented next:



• System for : I1 I2 I3 I4 : 93542325129
• System for : I1 I2 I3 I5 : 148332579076
• System for : I1 I2 I3 I6 : 41050962956
• System for : I1 I2 I4 I5 : 88134336431
• System for : I1 I2 I4 I6 : 159210759319
• System for : I1 I2 I5 I6 : 195326045915
• System for : I1 I3 I4 I5 : 26942450166
• System for : I1 I3 I4 I6 : 279320923710
• System for : I1 I3 I5 I6 : 113481864647
• System for : I1 I4 I5 I6 : 9571850194
• System for : I2 I3 I4 I5 : 138830066764
• System for : I2 I3 I4 I6 : 48254583494
• System for : I2 I3 I5 I6 : 2231452279
• System for : I2 I4 I5 I6 : 82146651746
• System for : I3 I4 I5 I6 : 163380946665

As you can see, there is no result that appears more than
once. Therefore, we detect the presence of the cheaters, but
we cannot identify them.

Interesting is the case when c ≥ k. In this case the cheaters
can reconstruct the secret by themselves. Moreover, they can
create fake shares so that they will not be detected. This attack
succeeds only if the number of cheaters is greater than the
number of honest users (c > h). If c ≥ k ∧ j−c > c+k−1, the
cheaters, even if they can reconstruct to the secret, they cannot
produce fake shares that will lead to a fake secret (because
h > c). They can at most produce fake shares, combining
with groups of k− 1 honest users, but this is not enough. The
most frequent reconstructed secret will be the one obtained by
the honest users.

The next example illustrates the case c ≥ k :
Example 6: (with artificially small parameters)

Let n = 14, j = 12 , c = 4 , h = 8, and k = 3. Let us
consider the following (3, 14)-Mignotte sequence: 719, 727,
733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811.
We obtain α = 383148629 and β = 656099. Let the secret be
S = 700000.

The dealer computes the shares of each user: I1 = 413,
I2 = 626, I3 = 718, I4 = 167, I5 = 94, I6 = 68, I7 = 532,
I8 = 641, I9 = 210, I10 = 435, I11 = 357, I12 = 234,
I13 = 215, I14 = 107.

Suppose that only the first twelve users participate in the
reconstruction phase and that the first four users are cheaters.
The first user can create a fake share in combination with only
a group of k − 1 = 2 honest users. Suppose that these users
are the user 10 and the user 11. Suppose the first user changes
his share to 222. The new secret obtained in association with
the shares from user 10 and 11 is 192330565. Now, the other
three cheaters will adjust their shares.

The new shares will be : I1 = 222, I2 = 534, I3 = 161,
I4 = 642, I5 = 94, I6 = 68, I7 = 532, I8 = 641, I9 = 210,
I10 = 435, I11 = 357, and I12 = 234.

After solving all the
(
12
3

)
= 220 systems, the original secret

will appear 56 times, the fake secret will appear 20 times, and
the other results, only once. Therefore, the cheaters will be
easily identified.

If c > h, the cheaters can give fake shares so that the honest

users are lead to a wrong secret or, worse, they can be pointed
out as cheaters (the cheaters can reconstruct S by themselves,
and, thus, they have access to the shares of the honest users
(see Example 7).

The third type of attack is that when the cheaters collaborate
and, moreover, have access to the shares of the honest users.
The bounds in this case are:

• Detection : j − c ≥ k;
• Identification : j ≥ k + 1 ∧ j − c > c + k − 1.

The next example illustrates this type of attack:
Example 7: (with artificially small parameters)

We will consider the worst case scenario: the cheaters are not
identified and the honest users reconstruct an invalid secret.

Let n = 12, j = 9, c = 7, h = 2, and k = 3. Let us
consider the following (3, 12)-Mignotte sequence: 661, 673,
677, 683, 691, 701, 709, 719, 727, 733, 739, and 743. We
obtain α = 301165481 and β = 549077. Let the secret be
S = 750000.

We now compute the shares of each user: I1 = 426, I2 =
278, I3 = 561, I4 = 66, I5 = 265, I6 = 631, I7 = 587,
I8 = 83, I9 = 463, I10 = 141, I11 = 654, and I12 = 313.

Let us consider the case when the first nine users participate
in the reconstruction, the first seven users are cheaters. The
cheaters (any 3 of them) can easily reconstruct the secret. The
cheaters also know the shares of the honest users. For instance,
the 7th user (who is a cheater) computes a new share and a
new secret with the help of the shares of the two honest users:

• I7 : 200 p7 = 709
• I8 : 83 p8 = 719
• I9 : 463 p9 = 727
By solving this system, the obtained secret (an invalid one)

is 129337398 which is also between β and α. Now, the other
cheaters just have to compute their new share in the following
manner: Ii = 129337398 mod pi, for all i ∈ {1, 2, 3, 4, 5, 6}.
The new shares will be: I1 = 189, I2 = 258, I3 = 610,
I4 = 420, I5 = 164, I6 = 94, I7 = 200, I8 = 83, and
I9 = 463. Now, all the systems will have the same solution,
namely, 129337398. In this way, the cheaters are not detected,
they obtain the correct secret and the honest users obtain an
invalid secret.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we analyze the cheating detection and cheater
identification problems for Mignotte and Asmuth-Bloom se-
cret sharing schemes. We prove that the majority of the
solutions for Shamir’s scheme can be translated to these
schemes and, moreover, there are some interesting specific
solutions due to particularities of the reconstruction phase
based on the (general) Chinese remainder theorem.

An interesting problem is preventing the cheaters from
acquiring the secret. Indeed, let us suppose that, for instance,
the secret is the launching code of a nuclear missile. If a group
of cheaters have succeeded in reconstructing the correct code
(for example, in the case c ≥ k), it is irrelevant if the cheating
is detected or if the cheaters are identified. It is too late -



the missile has been already launched. The simplest solution,
suggested by Tompa and Wool [7], is to iterate the process of
secret sharing on a sequence of m secrets that includes, besides
the real secret S, some “dummy” secrets. The probability that
the cheaters acquire the correct secret before being detected
and identified is 1

m . The main disadvantage of this method
is that each user will receive m shares, one for each secret.
In our future work, we will consider finding more efficient
methods for preventing the cheaters from acquiring the secret
in CRT-based secret sharing schemes.
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