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Abstract. We study a problem of secure data storage on hardware that may leak information. We
introduce a new primitive, that we call leakage-resilient storage (LRS), which is an (unkeyed) scheme
for encoding messages, and can be viewed as a generalization of the All-Or-Nothing Transform (AONT,
Rivest 1997). The standard definition of AONT requires that it should be hard to reconstruct a message
m if not all the bits of its encoding Encode(m) are known. LRS is defined more generally, with respect
to a class Γ of functions. The security definition of LRS requires that it should be hard to reconstructm
even if some values g1(Encode(m)), . . . , gt(Encode(m)) are known (where g1, . . . , gt ∈ Γ ), as long
as the total length of g1(Encode(m)), . . . , gt(Encode(m)) is smaller than some parameter c.
We construct an LRS scheme that is secure with respect to Γ being a set of functions that can depend
only on some restricted part of the memory. More precisely: we assume that the memory is divided in 2
parts, and the functions in Γ can be just applied to one of these parts. We also construct a scheme that is
secure if the cardinality of Γ is restricted (but still it can be exponential in the length of the encoding).
This construction implies security in the case when the set Γ consists of functions that are computable
by Boolean circuits of a small size.
We also discuss the connection between the problem of constructing leakage-resilient storage and a
theory of the compressibility of NP-instances.
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1 Introduction

Some of the most devastating attacks on cryptographic devices are those that break the actual
physical implementation of the scheme, not its mathematical abstraction. These, so-called side-
channel attacks, are based on the fact that the adversary may obtain some information about the
internal data of the device by observing its running-time [27], electromagnetic radiation [35,19],
power consumption [28], or even sound that the device is emitting [40] (see [34,32] for more
examples of such attacks).

1.1 Memory Leakages — Previous Work

Over the last couple of years there has been a growing interest in the design of schemes that already
on the abstract level guarantee that their physical implementation is secure against a large well-
defined class of side-channel attacks (the pioneering paper in this area was [30]). The main idea is
to augment the standard security definition by allowing the adversary to learn the value of a chosen
by him leakage function g on the internal data τ used by the cryptographic scheme. The results in
this area can be categorized according to the class of leakage functions g that the model covers.
Some papers consider very restricted classes (e.g. in [24] the model assumes that the adversary
can simply read-off some wires that represent the computation), while other ones consider more
general leakages—e.g. [1] allow the adversary to choose any function g that is input-shrinking (i.e.
such that |g(τ)| � |τ |).

Another popular paradigm is to assume that only computation leaks information, i.e. the mem-
ory cells that do not take part in the computation (in a given time period) do not leak any informa-
tion. The first paper to state this assumption is [30] (where it is stated as “Axiom 1”, page 283), and
the other papers that use it are [17,33]. The schemes of [17,33] are actually secure even if the total
amount of information that leaks is greater than the memory size (this is possible since the mem-
ory contents is evolving during the computation). The other approach [1,31,25,12,11] is to assume
that the memory may simply leak information, independently on the computation performed.

It may be questioned if the “only computation leaks information” paradigm is really relevant
to the attack that the adversary can perform in real-life. In many situations memory may actually
leak information, even if it is unaccessed. First of all, in modern computer systems it is hard to
guarantee that a given part of memory really never gets accessed (for example the memory may
be refreshed or moved to cache, etc.). Some practical attacks on unaccessed memory were also
demonstrated in [38]. More recently a class of cold boot attacks relying on the data remanence
property was presented in [20].

A natural question to ask is whether there exist methods for storing data securely in the mem-
ory that may leak information. This is the main subject of this paper.

A relation to the Bounded-Retrieval Model The idea to reason about the partial key leakages by
modeling them as input-shrinking functions originates from the Bounded-Retrieval Model (BRM)
[14,9,15,6,16,2] (that in turn was inspired by the Bounded-Storage Model of Maurer [29]). Origi-
nally BRM was proposed as a method for protecting against computer viruses that may steal large
amounts of data from the PCs: the main idea of the BRM is to construct schemes where the secret
key τ is large and to assume that the adversary can retrieve the value of some input-shrinking
function g of τ . The main differences between this setting and the models for the side-channel
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attack come from the fact that the keys in the BRM are huge and hence: (1) one has to design
scheme where the honest user does not need to frequently process the entire τ , and (2) one can
allow that some part of τ leaks each time the scheme is used. Nevertheless in [14] it was observed
that BRM can be used to model the side-channel attacks.

1.2 Our Contribution

In this paper we introduce a new primitive, that we call leakage-resilient storage, which can be
viewed as a secure storage scheme in the model where the physical memory may leak some
side-channel information. A scheme like this consists of two poly-time algorithms Encode and
Decode, where the encoding algorithm Encode takes as input a message m and produces as out-
put a string τ def

= Encode(m), and the decoding algorithm Decode is such that we always have
Decode(Encode(m)) = m (observe that these algorithms do not take as input any secret key).

Informally speaking, in the security definition we allow the adversary to adaptively choose a
sequence of leakage functions g1, . . . , gt, and learn the values of

g1(τ), . . . , gt(τ).

We require that the adversary, after learning these values, should gain essentially no additional
information on m (this is formalized using a standard indistinguishability game, see Sect. 2 for
details). We assume that the gi’s are elements of some fixed set Γ (that will be a parameter in the
definition). Obviously, the larger Γ , the stronger is our definition, and we should aim at defining
Γ in such a way that it covers all the attacks the adversary can launch in real-life. All the Γ ’s that
we consider in this paper contain at least the set of functions that read-off the individual bits of τ ,
hence we need to require that

t∑
i=1

|gi(τ)| < |τ | (1)

(as otherwise the functions gi could be chosen in such a way that (g1(τ), . . . , gt(τ)) = τ ). This is
essentially the input-shrinking property that, as discussed above, was already used in the literature.

LRS can also be viewed as a generalization of the All-Or-Nothing Transform (AONT) intro-
duced in [37]. More precisely: AONT is a special case of LRS, where the leakage functions are
projections of the individual bits.

Obviously, if we go to the extreme and simply allow the adversary to choose any (poly-time)
functions gi that satisfy (1) then there is no hope for any security, since the adversary could always
choose g1 in such a way that it simply calculates Decode(τ) and outputs some information about
m (say: its first bit). Therefore Γ cannot contain the Decode function, and hence, we need to
restrict Γ in some way.

Note that the assumption that Γ is a restricted class of functions is actually very realistic.
In practice, the leakage functions need to be computationally “simple”: while it is plausible that
the adversary can read-off the individual bits, or learn their sum, it seems very improbable that
an attack based on measuring power consumption or electromagnetic radiation can directly give
information about some more complicated functions of the secret bits.

In this paper we consider two natural choices of such Γ ’s and show LRS schemes secure in
these settings relying on deterministic extractors [43,4,7,8,5]. In Sect. 3.1 we describe a construc-
tion where each leakage function can depend only on some restricted part of the memory: either
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because it consists of two separate blocks, or because it is infeasible for the adversary to choose a
function that depends on the memory cells that are physically far from each other. In Sect. 3.2 we
construct a scheme that is secure if the cardinality of Γ is restricted (but still it can be exponential
in |τ |). This construction implies security in the case when the set Γ consists of functions that are
computable by Boolean circuits of a small size. Our construction is an adaptation of the technique
already used (in a different context) in [41,3].

The idea to model the leakages as functions from a small complexity class appeared already in
[17], and was recently used in an independent work by Faust et al. [18] (we discuss the relationship
between our work and [18] in Sect. 5). We also discuss (in Sect. 4) the connection between the
problem of constructing leakage-resilient storage and a theory of compressibility of NP-instances
[23].

1.3 Preliminaries

Let Un be a random variable distributed uniformly over {0, 1}n. Given two random variables

X0, X1 with values inX , their statistical distance is defined as∆(X0;X1)
def
= 1/2

∑
x∈X |P [X0 = x]−

P [X1 = x] |. IfX assumes values in {0, 1}n, then we let d(X)
def
= ∆(X,Un) be the statistical dis-

tance3 between X and the uniform distribution over {0, 1}n. If d(X) ≤ ε we say that X is ε-close

to uniform. We also define ∆(X0;X1|Y )
def
= ∆(X0, Y ;X1, Y ) and d(X|Y )

def
= ∆(X,Y ;Un, Y ).

The following was proven in [16].

Lemma 1 ([16]). Let A,B be random variables where A ∈ A. Then P [B = A] ≤ d(A|B) +
1/ |A|.

Given a random variable X ∈ X , the min-entropy of X is H∞(X)
def
= − logmaxx∈X P [X = x] .

We will use the following lemma whose proof appears in Appendix A.

Lemma 2. For every random variables X,Y and an event E we have

d(X|Y = y ∧ E) + P
[
E
]
≥ d(X|Y ). (2)

The proofs of the following lemmata appear in the full version of [16].

Lemma 3. LetA,B be two random variables and let φ be any function. Then d(A|B) ≥ d(A|φ(B)).

Lemma 4. LetA,B be independent random variables and consider a sequence V1, . . . , Vi of ran-
dom variables, where for some function φ, Vi = φi(Ci) = φ(V1, . . . , Vi−1, Ci), with eachCi being
eitherA orB. ThenA andB are independent conditioned on V1, . . . , Vi, i.e. I(A;B|V1, . . . , Vi) =
0, where I denotes the Shannon’s information4.

We will also use the following standard fact whose proof appears in Appendix B.

Lemma 5. Let X be a random variable uniformly distributed over {0, 1}n, and let W be a ran-
dom variable that is independent on X . Let f : {0, 1}∗ → {0, 1}c. Then for every k ∈ N we
have

Py:=f(X,W ) [H∞(X|f(X,W ) = y) ≤ k] ≤ 2k+c−n. (3)

3 We will overload the symbols∆(·) and d(·) and sometimes apply them to the probability distributions instead of the
random variables.

4 In [16] this lemma is stated in terms of a Markov chain.
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A family {hs}s∈S of functions hs : X → Y is called a collection of `-wise independent hash
functions if for every set {x1, . . . , x`} ⊆ X of ` elements, and a uniformly random S ∈ S we
have that (hS(x1), . . . , hS(x`)) is distributed uniformly over Y`. Several constructions of such
functions exist in the literature. For example if GF (2n) is the field with 2n elements, and for
s = (s0, . . . , s`) ∈ GF (2n)`+1 and every n′ ≤ n we define

hs(x) =

(∑̀
i=0

six
i

)
1...n′

(where z1...n′ denotes the set of n′ first bits of z) then {hs} is a collection of `-wise independent
hash functions.

We will also use the following lemma (proven in [3]):

Lemma 6 ([3]). Let Y be an n-bit random variable with H∞(Y ) ≥ k. Let H = {hs}s∈S be a
collection of `-wise independent hash functions hs : {0, 1}n → {0, 1}α (for ` ≥ 2). For at least
1− 2−u fraction of s ∈ S, we have d(hs(Y )) ≤ ε for

u =
`

2
(k − α− 2 log(1/ε)− log `+ 2)− α− 2. (4)

2 The Definition

Formally, a leakage-resilient storage (LRS) scheme is a pair Φ def
= (Encode,Decode), where

– Encode is a randomized, efficiently computable function Encode : {0, 1}α → {0, 1}β , and
– Decode is a deterministic, efficiently computable function Decode : {0, 1}β → {0, 1}α.

Security of such a scheme is defined as follows. Consider the following game between an adversary
A and an oracle O (a similar game was used to define security of the Forward-Secure Storage
(FSS) [15], the main difference being that (1) FSS had a secret key and (2) the FSS game had just
one round)

1. The adversary chooses a pair of messages m0,m1 ∈ {0, 1}α and sends them to O.
2. O chooses a random bit b ∈ {0, 1} and sets τ def

= Encode(mb).
3. The following is executed t times, for i = 1, . . . , t:

(a) A selects a function gi : {0, 1}β → {0, 1}ci ∈ Γ , and sends it to O,
(b) O sends gi(τ) to A. We say that A retrieved ci bits from τ .

4. The adversary outputs b′. We say that he won the game if b = b′.

Such an adversary is called a (Γ, c, t)-adversary if
∑t

i=1 ci ≤ c. We say that Φ is (Γ, c, t, ε)-
secure if no (Γ, c, t)-adversary wins the game with probability greater than 1

2 + ε.5 We will drop
t and say that Φ is (Γ, c, ε)-secure if the parameter t does not matter, i.e. if no (Γ, c, t)-adversary
wins the game with probability greater than 1

2 + ε, for any t. Unless explicitly stated otherwise,
we will assume that the adversary is computationally-unbounded. In this case we assume that
the adversary is deterministic. This can be done without loss of generality, since the unbounded
adversary can always compute the optimal randomness. For an adversary A as above, let viewA

5 We say that Φ is non-adaptively (Γ, c, t, ε)-secure if the adversary wins the game with probability at most 1
2
+ ε,

with the restriction that his choice of the functions gi is non-adaptive (i.e. he has to choose all the gi’s in advance).
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denote the vector of values that the adversaryA retrieves from τ , i.e. viewA
def
= (g1(τ), . . . , gt(τ)).

Note that |viewA| ≤ c.
As argued in the introduction, LRS can be viewed as a generalization of the All-Or-Nothing

Transform (AONT) introduced in [37] (see also e.g. [5] for a formal definition). In our framework
AONT is simply a (Γ↓, c, ε)-secure LRS, Γ↓ being a set of functions gi that leak some bits of the
memory, i.e. the functions that have a form gi(τ1, . . . , τβ) = τi, where ε is equal to 0 if we consider
perfectly-secure AONT, or is some negligible value if we consider statistically-secure AONT.

2.1 A Weaker Definition

In our schemes, the encoding τ of a string m ∈ {0, 1}α is composed of two parts: (1) the random-
ness τrand used to encode the message and (2) the result of the encoding process, i. e. some value
f(τrand) xored with the message m (where f is some publicly-known function). More generally,
one can assume that m is a member of some group (G,+) and f has a type {0, 1}∗ → G. In this
case the encoding of a message m is (τrand, f(τrand) +m).

For the sake of the security proofs in this paper, we will consider a game that we call a weak
attack in which f(τrand) +m is hidden from the adversary, and the gi’s are applied only to τrand.
The adversary in this game will be called a weak adversary and denoted Aweak , and we will say
that the LRS scheme is weakly (Γ, c, t, ε)-secure if d(f(τrand)|viewAweak

) ≤ ε, for any Aweak ,
where τrand is distributed uniformly over {0, 1}n. We will say that Γ is robust if Γ is closed on
the operation of fixing the second part of the input, i.e. if for every g ∈ Γ and every z ∈ G we have
that g′(x) := g(x, z) is also a member of Γ . The following lemma shows that a weakly-secure
scheme is also secure according to the general definition.

Lemma 7. Let Γ be an arbitrary robust set as above. For any c, t and ε, if an encoding scheme is
weakly (Γ, c, t, ε)-secure then it is also (Γ, c, t, ε · 2α)-secure.

Proof. Take some adversary A that wins the game described in Sect. 2 with some probability
0.5 + δ. We construct a weak adversary Aweak such that

d(f(τrand)|OutAweak
) = δ · 2−α, (5)

where OutAweak
is some value that is a function of viewAweak

(we will think of it as an output
of the adversary Aweak at the end of the execution). Therefore, by Lemma 3, we will have that
d(f(τrand)|viewAweak

) ≥ δ · 2−α. After showing this we will be done, by setting δ := ε · 2α. The
adversaryAweak works by simulatingA. First, it chooses a random string z ∈ {0, 1}α and it starts
A. Let m0,m1 be the messages that A outputs. Then, Aweak handles the requests issued by A in
the following way. Recall that each request of A is a function gi : {0, 1}n × {0, 1}α → {0, 1}ci
that should be applied to τ . Each time such a request is issued, the adversary Aweak constructs a
request g′i defined for every τrand as follows:

g′i(τrand) := gi(τrand, z).

(By the robustness of Γ we have that if gi ∈ Γ then also g′i ∈ Γ .) When the interaction is over and
A outputs b′, the adversary Aweak outputs OutAweak

:= z −mb′ . By Lemma 1 we have

P [OutAweak
= f(τrand)] ≤ 2−α + d(f(τrand)|OutAweak

). (6)
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Now suppose that for some i ∈ {0, 1} the following event Ei occurred: z = mi + f(τrand). In
this case Aweak simply simulated the execution of A against the oracle O with b = i. Since z
is chosen uniformly hence P [E0] = P [E1] = 2−α. Therefore the probability that b′ = b(= i)
is equal to 0.5 + δ. Moreover, in this case (i.e. when E0 ∪ E1 occurred and b′ = b) we get that
OutAweak

= mi + f(τrand)−mb′ , and therefore OutAweak
= f(τrand). Hence we have

P [OutAweak
= f(τrand)] ≥ P [b = i | E0 ∪ E1] · P [E0 ∪ E1]

= (0.5 + δ) · 2−α+1

= 2−α + δ · 2−α+1.

Combining it with (6) we get (5). ut

3 The Implementations

In this section we consider two types of leakage functions Γ , and show LRS schemes secure
against these Γ ’s relying on deterministic extractors [43,4,7,8,5]. In Sect. 3.1 we describe a con-
struction where each leakage function can depend only on some restricted part of the memory:
either because it consists of two separate blocks, or because it is infeasible for the adversary to
choose a function that depends from the memory cells that are physically far from each other. In
Sect. 3.2 we construct a scheme that is secure if the cardinality of the set of functions that the
adversary can choose is restricted.

3.1 Memory Divided into Two Parts

Suppose that the encoding is stored on some physical storage device that consists of two separate
chips, i.e. the memoryM is divided into two partsM0 andM1, and each leakage function can
be applied to one of theMi’s separately. In other words, the only restriction is that the adversary
cannot choose leakage functions that depend simultaneously on bothM0 andM1. More precisely,
take some β′ < β and let τ = (τ0, τ1) where τ0 def

= (τ1, . . . , τβ′), and τ1 def
= (τβ′+1, . . . , τβ). Let

Γ2 be the set of all functions gi that “depend only on τ0 or τ1”, i. e. they have a form

gi(τ) = g′i(τ
0),

or

gi(τ) = g′i(τ
1)

(for some g′i). Of course, τ0 and τ1 do not need to be stored on two separate memory chips, and it is
enough that it is simply impossible for the adversary to compute any function of τ0 and τ1 jointly.
This may happen for example if τ0 and τ1 are stored on one chip, but are physically far from
each other. Observe also that the class Γ2 includes all the functions g(·) that have communication
complexity c (where c is the bound on the total amount of bits that the adversary can retrieve).
This includes for example the function that computes sum of the bits in (τ0, τ1) (as long as c is at
least logarithmic in the length of (τ0, τ1)).
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The construction One may observe that this model is very similar to the one of the two-party
Intrusion-Resilient Secret Sharing (IRSS) of Dziembowski and Pietrzak (see [16], Sect. 2.1). The
main difference is that the scheme of [16] has an additional property that the decoding function
needs to access only small part of the encoded message. Since we do not need this property here,
we can use in our construction a standard tool called two source extractors [7]. A function Ext :
{0, 1}n × {0, 1}n → {0, 1}α is a (k0, k1, ε)-two source extractor if it has the following property:
for every two independent random variables R0 and R1, such that H∞(R0) ≥ k0 and H∞(R1) ≥
k1 we have that d(Ext(R0, R1)) ≤ ε. Let Φ2

def
= (Encode2,Decode2). To encode a message

m ∈ {0, 1}α, we pick two n-bit strings R0 and R1 uniformly at random and we set

τ = Encode2(m) = (τrand,m
∗)

def
= (R0, R1,Ext(R0, R1)⊕m)

and we store R0 in the first part of the memory (M0), and (R1,Ext(R0, R1) ⊕m) in the second
part (M1). To decode it suffices to evaluate

Decode2(R0, R1,m
∗)

def
= m∗ ⊕ Ext(R0, R1).

We have the following lemma.

Lemma 8. If Ext : {0, 1}n × {0, 1}n → {0, 1}α is a (k, k, ε)-two source extractor then Φ2 is
(Γ2, c, 2

α · ε+ 21+α+k+c−n)-secure.

Proof. First we show that Φ2 is weakly secure against the adversaryAweak outlined in Section 2.1
(with τrand = (R0, R1)) and then we use Lemma 7. Let Aweak be an adversary that can apply
the leakage functions gi only to τrand and denote with viewAweak

= (g1(τrand), . . . , gt(τrand)) the
view of the adversary after t queries to the oracle O. We can now apply Lemma 4 (with A = R0,
B = R1, φi = gi and Vi = gi(τrand)

6) and conclude that R0 and R1 are independent given
viewAweak

, i.e. I(R0;R1|viewAweak
) = 0. Moreover by Lemma 5 we know that for each i ∈ {0, 1}

Py:=viewAweak
[H∞(Ri|viewAweak

= y) ≤ k] ≤ 2k+c−n.

Thus with probability at least 1 − 21+k+c−n it happens that y = viewAweak
is such that for both

i ∈ {0, 1} we have H∞(Ri|viewAweak
= y) ≥ k. Let V denote the corresponding event. We

clearly have that
d(Ext(R0, R1)|viewAweak

= y ∧ V) ≤ ε.

Hence, by Lemma 2 we get that d(Ext(R0, R1)|viewAweak
) ≤ ε + P

[
V
]
= ε + 21+k+c−n.

Combining it with Lemma 7 we get that Φ2 is (Γ2, c, 2α · ε+ 21+α+k+c−n)-secure. ut

Instantiations Several constructions [7,39,42,10,36] of a two-source extractor exist in the litera-
ture, and can be used in our scheme. Let F be a finite field and denote with ExtHad : Fn×Fn → F
the inner product in F, denoted ExtHad(x, y) = 〈x, y〉. As shown in [36], for any δ > 0, the
function ExtHad is a (kHad, kHad, εHad)-two source extractor, for kHad > (1/2 + δ)n log |F| and

6 Clearly φi depends only on the values Vi that the adversary retrieved in the previous rounds.
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εHad = |F|(n+1)/2 2−kHad (this generalizes previous results of Chor and Goldreich [7] and Vazi-
rani [42]). Plugging it into the construction described above we get the following LRS scheme
ΦHad = (EncodeHad,DecodeHad) for encoding messages m ∈ F:

EncodeHad(m) = (r0, r1, 〈r0, r1〉+m)
DecodeHad(r0, r1,m

∗) =m∗ − 〈r0, r1〉.
(7)

Observe that above, instead of using the xor we used the group operation in F. This is ok, since,
as explained in Sect. 2.1, one can transform a weakly-secure scheme into a standard one by using
any group operation (not necessarily xor). Using Lemma 8 we get that ΦHad is (Γ2, c, |F| · εHad +
|F|1−n 21+kHad+c).

3.2 Functions that have small descriptions

The second case that we consider is when the only restriction on Γ is that it is a small set of robust
functions: |Γ | = 2v, where v is some parameter (that can be for example quadratic in β). One way
to look at this family is to fix some method to describe the leakage functions as binary strings, and
observe that the set of functions whose description has length v has exactly size 2v.

A natural example of such a Γ is a set of functions computable by Boolean circuits of a fixed
size (see e.g. [44] for an introduction to the complexity of Boolean circuits). Recall that the size of
a Boolean circuit is the number ρ of its gates. Each gate G can be connected with two other gates
(G1, G2) (and we can assume that G is an AND gate if G1 6= G2, and it is a NOT gate otherwise).
Hence, for each gate we can have at most (ρ−1)(ρ−1) < ρ2 choices. Therefore there are at most
(ρ2)ρ = ρ2ρ circuits of size ρ. Thus the circuits of size ρ can be described using 2ρ log2 ρ bits.

Several natural functions can be computed by Boolean circuits of a small size (see Sect. 3 of
[44]). For example every symmetric function7 can be computed by a circuit of a linear size (in its
input).

Let Γv be any robust set of functions such that |Γv| = 2v. We will now construct a (Γv, c, t, ε)-
secure LRS. Let H = {hs : {0, 1}n → {0, 1}α}s∈S be a collection of `-wise independent

hash functions. The scheme is parameterized by a value s ∈ S. For any s ∈ S let Φs
def
=

(Encodes,Decodes), being

Encodes(m) = (R, hs(R)⊕m),

where R ∈ {0, 1}n is random. Let

Decodes(R, d) = hs(R)⊕ d.

We point out that also the above construction can be interpreted in terms of deterministic ex-
tractors. Indeed, as shown in [41] (and in [3]), `-wise independent hash functions are, with high
probability, deterministic extractors for sources (with some min-entropy) that can be generated by
an efficient sampling algorithm or circuit of a small size.8 Stated in other words, an `-wise inde-
pendent hash function can be viewed as a function Ext : {0, 1}n → {0, 1}α with the following

7 A function is symmetric if its output does not depend on the permutation of the input bits. For example every function
that just depends on the sum of the input bits is symmetric. See Sect. 3.4 of [44].

8 The approach used in [41] is orthogonal to the one used in [7]: in the latter setting, distributions can be arbitrarily
complex, but they have to satisfy a strong independence requirement; in the former setting distributions have to be
samplable but can involve arbitrary dependencies.
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property: for every source R ∈ {0, 1}n with min-entropy k which is samplable by a circuit of a
small size, Ext(R) is close to uniform with high probability. The same construction was also used
by Dodis et al. [13] in the context of AONT. Both [41] and [13] consider only the non-adaptive
case. Here we show that this scheme is secure in the context of leakage-resilient storage. The fol-
lowing lemma states that with a good probability (over the choice of s ∈ S) the scheme Φs is
secure.

Lemma 9. Fix an arbitrary robust set Γv such that |Γv| = 2v. For a randomly chosen s with
probability at least 1−ξ we have that Φs is (Γv, c, t, 2α·ε+2α+k+c−n)-secure, for any c, k, t, v, `, ε
and ξ such that

ξ = 2tv−
`
2
(k−α−2 log(1/ε)−log `+2)+α+2. (8)

In the lemma above k is a parameter, that in the proof will correspond to the min-entropy of
R conditioned on the view of the adversary. Observe that we have a trade-off between 2α · ε +
2α+k+c−n and ξ (larger k increases the first term, and decreases the second). The proof of this
lemma is more involved and we present it in Sect. 3.2.1. Let us first discuss this lemma for more
concrete values of the parameters.

Corollary 1. Fix an arbitrary robust set Γv such that |Γv| = 2v. For a randomly chosen s with
probability at least 1 − ξ we have that Φs is (Γv, c, t, 2−λ)-secure, for any c, t, v, `, λ and ξ such
that

ξ = 2tv−
`
2
(n−c−3λ−4α−log `−1)+α+2. (9)

Proof. Set ε := 2−α−λ−1 and let k := n− λ− 1− α− c. Take Φs from Lemma 9. We have that

2α · 2−α−λ−1 + 2α+k+c−n ≤ 2−λ−1 + 2−λ−1 ≤ 2−λ,

and

ξ = 2tv−
`
2
((n−λ−1−α−c)−α−2(α+λ+1)−log `+2)+α+2

which is equal to (9). ut

Concrete values If we want to have security against circuits of size χn (for some constant χ > 1)
then the size of Γ is equal to 22χn log(χn). If we apply it t = ωn times (for some constant ω < 1)
then tv = 2χωn2 log(χn). To be more precise set λ := 24 and α := 128, and n := 1024. If we
set χ := 10, ω := 3/25 then we can allow the adversary to retrieve at most 180 bits by setting
` = 278323. With these settings we get ξ ≤ 4 · 10−12.
If we consider a non-adaptive scenario, in which the adversary chooses a single leakage function
(i.e. t = 1) and retrieves at most c bits9, then we obtain a better value for `: for λ := 24, α := 128,
n := 1024 and χ := 10, we can allow the adversary to retrieve at most 180 bits by setting
` = 2203. With these settings we get ξ ≤ 2 · 10−28.

9 This is equivalent to consider an adversary who chooses t > 1 leakage functions in advance, with the same total
number of retrieved bits. Note that this scenario is theoretically weaker than the adaptive one but it is useful from a
practical point of view.
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Practical considerations The parameter s can be public. Therefore if ξ is negligible, then for the
real-life applications s can be just chosen once and for all by some trusted party. For example,
one can assume that s = H(0)||H(1)|| · · · , where H is some hash function (this of course can be
proven secure only in the random oracle model).

Alternatively, we could just assume that s is chosen independently each time Encodes is cal-
culated, and becomes a part of the encoding. In other words we could define

Encode′(m)
def
= (s,Encodes(m)) and Decode′(s, x)

def
= Decodes(x).

Of course, in this way the length β of encoding gets larger, and hence if Γv is a family of circuits
whose size ρ is some function of β, then v becomes much larger.

3.2.1 Proof of Lemma 9
We first show that Φs is weakly secure. Suppose that the adversary Aweak performs a weak attack
against Φs. Let R be distributed uniformly over {0, 1}n. Then we show that for any ε > 0 and for
at least 1− ξ fraction of s ∈ S we have

d(hs(R)|viewAweak
) ≤ ε+ 2k+c−n,

where ξ is a function of t, v, `, k, α and ε as defined in (8). Consider some fixed adversary Aweak .
Let GoodAweak

denote the event that H∞(R|viewAweak
= y) ≥ k, where y := viewAweak

. By
Lemma 5 we get that P

[
GoodAweak

]
≤ 2k+c−n. On the other hand, we have

H∞(R|viewAweak
= y,GoodAweak

) ≥ k.

Therefore, by Lemma 6 we get that

Ps [d(hs(R)|viewAweak
= y,GoodAweak

) ≥ ε] ≤ 2−u, (10)

where Ps means that the probability is taken over the choice of s ∈ S, and u is defined in (4).
From Lemma 2 we get that (10) implies that

Ps
[
d(hs(R)|viewAweak

) ≥ ε+ P
[
GoodAweak

]]
≤ 2−u,

which implies that
Ps
[
d(hs(R)|viewAweak

) ≥ ε′
]
≤ 2−u, (11)

where ε′ := ε+ 2k+c−n. Of course (11) holds just for a fixed adversary and to complete the proof
we need to give a bound on the value

max
Aweak

(
Ps
[
d(hs(R)|viewAweak

) ≥ ε′
])

. (12)

We will do it by applying a union-bound (over all Aweak ) to (11). However, since that the total
number of different adversaries Aweak is doubly-exponential in c,10 we cannot do it in a straight-
forward way. Instead, we first observe that

max
Aweak

Ps
[
d(hs(R)|viewAweak

) ≥ ε′
]
= max

g1,...,gt
Ps
[
d(hs(R)|g1(R), . . . , gt(R)) ≥ ε′

]
. (13)

10 This is because after retrieving ci bits in the ith round the adversary can choose 2v different functions gi+1, hence
in every round there are 2v·2

ci .
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Since each gi ∈ Γv, and |Γv| = 2v we get

max
Aweak

(
Ps
[
d(hs(R)|viewAweak

) ≥ ε′
])
≤ (2v)t · 2−u = 2tv−u. (14)

This completes the proof, since now using Lemma 7 we are done. ut

4 Connection with the theory of compressibility of NP-instances

We believe that in general the idea to model the leakage as functions from some low complexity
class is worth investigating further, as it may lead to new applications of the circuit lower bounds.
Interestingly, this is probably the first scenario ever considered in cryptography in which the com-
puting power of the adversary is smaller than the computing power of the users (during some part
of the attack). A similar observation was already made in [17] (footnote 3, page 295).

It may also be worth exploring some interesting connections between this area and the theory
of the compressibility of NP-instances of Harnik and Naor [23]. Informally, an NP-language L
is compressible if every x ∈ {0, 1}∗ can be “compressed” to a much shorter string compress(x)
(where g is some poly-time function, and c = |compress(x)| � |x|) such that an infinitely power-
ful machineM can determine if x ∈ L just by looking at compress(x). Call this (PTIME,∞)-c-
compressibility. Of course, one could generalize this concept and consider any (P0,P1)-compressibility
(where P0 and P1 are some complexity classes): in this setting we would require that g ∈ P0, and
the machine M operates in P1.

For simplicity in this section consider only the one-round LRS’s i.e. t = 1 (cf. game in Sect.
2). Moreover, assume that the adversary is poly-time. Informally speaking what we are looking
for, when constructing a Γ -secure LRS Φ = (Encode,Decode) is a class of problems that are not
(Γ, PTIME)-c-compressible on average. More precisely, consider the language L of all valid
encodings of some fixed message M . Of course, if this language is (Γ, PTIME)-c-compressible
with some probability ε then Φ cannot be (Γ, c, 1, ε)-secure (as otherwise the adversary could just
choose compress to be his leakage function). We leave investigating these connections as a future
research direction.

5 Extensions and comparison with [18]

In an independent work Faust et al. [18] consider a problem of leakage-resilient computation. In
their work, that can be viewed as an extension of the “private circuits” paper of [24], they provide
a formal definition of a circuit computation that is secure against a class of leakages LTR (cf. Def.
1 of [18]), and for certain classes LTR, they construct (Theorem 1, [18]) a generic transformation
that, given any circuit C transforms it into another circuit C ′ that is secure against the leakages in
LTR.

The main ingredient of their construction is a linear encoding scheme that is secure against
leakages in some class L. Linearity of the encoding means that the decoding function can be
expressed as Decode(x1, . . . , xβ) = r1x1+ · · ·+rβxβ , where r1, . . . , rβ are constants from some
field. Their definition of an encoding scheme is very similar to ours: essentially their p-adaptive
(L, τ, ε)-leakage-indistinguishable encoding is the same as our (L, c, t, ε)-secure LRS scheme.
The additional parameter τ , that they use indicates the running time of the adversary (that we
do not consider in our paper). On the other hand we use the parameter c, that indicates the total
amount of bits retrieved from the encoding, which is absent in [18].
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We note that while the work of [18] has an obvious advantage over ours by considering not only
secure storage, but also computation, our schemes cover different (and possibly more realistic)
classes of leakage functions. In particular, both of the approaches in our paper cover trivially the
so-called Hamming weight attacks [26], where the adversary is allowed to learn a sum of the bits,
while the approach of [18] does not cover them.
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A Proof of Lemma 2

Before showing this lemma let us first prove the following:

Lemma 10. For every random variable X and events E ,H we have

d(X|H) ≤ d(X|H ∧ E) + P
[
E|H

]
. (15)

Proof. It is enough to show that

∆(PX|H;PX|H∧E) ≤ P
[
E|H

]
. (16)

After showing this we will be done, since from the triangle inequality we have

=d(X|H)︷ ︸︸ ︷
∆(PX|H;UX ) ≤

=d(X|H∧E)︷ ︸︸ ︷
∆(PX|H∧E ; UX )+∆(PX|H;PX|H∧E),

where UX denotes the uniform distribution over X . Let F denote the set

{x : P [X = x|H] > P [X = x|H ∧ E ]} .

We have that the left-hand side of (16) is equal to

∑
x∈F

P [X = x|H]−

=
P[X=x∧E|H]

P[E|H]
≥P[X=x∧E|H]︷ ︸︸ ︷

P [X = x|H ∧ E ] . (17)

≤
∑
x∈F

P [X = x|H]− P [X = x ∧ E|H] (18)

=
∑
x∈F

P [X = x|H]−
∑
x∈F

P [X = x ∧ E|H] (19)

= P [X ∈ F|H]− P [(X ∈ F) ∧ E|H] (20)

≤ P
[
E|H

]
. (21)

ut

Proof (of Lemma 2). The right-hand side of (2) is equal to∑
y

d(X|Y = y) · P [Y = y] , (22)

and the left-hand side of (2) is equal to∑
y

(
d(X|(Y = y) ∧ E) + P

[
E|Y = y

])
· P [Y = y] . (23)

To finish the proof it suffices to show that for every y we have

d(X|(Y = y) ∧ E) + P
[
E|Y = y

]
≥ d(X|Y = y).

This follows directly from Lemma 10, withH being the event that Y = y. ut
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B Proof of Lemma 5

Proof. We prove that (3) holds for a fixed w. This clearly implies that (3) holds when W is a
random variable independent on X . Since |f(X,w)| ≤ c, hence the number of all y’s is at most
equal to 2c. Therefore the number of x’s for which there exists some y such that

|x : f(x,w) = y| ≤ 2k (24)

holds is at most 2c+k. Hence the probability that for a randomX we have that (24) holds is at most
2c+k−n. Since clearly if (24) does not hold then H∞(X|f(X,w) = y) > k we get that

Py:=f(X,w)(H∞(X|f(X,w) = y) ≤ k) ≤ 2c+k−n.

Thus we are done. ut
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