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1 Introduction

Zero-knowledge proofs introduced by Goldwasser, Micali and Rackoff [GMR89] are fundamental building
blocks in cryptography that are used in numerous protocols. Zero-knowledge proofs are protocols that enable
a prover to convince a verifier of the truth of a statement without leaking any other information. The central
properties are captured in the notions of completeness, soundness and zero-knowledge.

Completeness: The prover can convince the verifier if the statement is true. We will in this paper focus
on statements of the form x ∈ L, where L is an NP-language, and the efficient-prover case, where the
polynomial time prover knows an NP-witness w for x ∈ L when she creates the zero-knowledge proof.

Soundness: A malicious prover cannot convince the verifier if the statement is false. We distinguish be-
tween computational soundness that protects against polynomial time cheating provers and statistical or
perfect soundness where even an unbounded prover cannot convince the verifier of a false statement. We
will call computationally sound proofs for arguments.

Zero-knowledge: A malicious verifier learns nothing except that the statement is true. We distinguish be-
tween computational zero-knowledge, where a polynomial time verifier learns nothing from the proto-
col interaction and statistical or perfect zero-knowledge, where even a verifier with unlimited resources
learns nothing from the proof.

1.1 Non-interactive Zero-Knowledge Proofs

While the first zero-knowledge proofs were interactive, there are many cryptographic tasks that are done off-
line, for instance signing messages or encrypting messages. For these situations, it is desirable to have non-
interactive zero-knowledge (NIZK) proofs, where there is no interaction and a proof just consists of a single
message from the prover to the verifier. Only trivial languages in BPP have NIZK proofs in the plain model
without any setup [Ore87,GO94,GK96]. However, Blum, Feldman and Micali [BFM88] introduced NIZK
proofs in the common reference string model, where both the prover and verifier have access to a common
reference string generated in a trusted way. Such NIZK proofs have many applications, ranging from the
first chosen ciphertext attack secure construction of public-key encryption [DDN00] to recent advanced
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signature schemes [CGS07,BW06]. For this reason there has been a lot of research into the underlying
assumptions [FLS99,BCNP04,GO07], the efficiency [Dam92,DDP02,KP98], and the security guarantees
offered by NIZK proofs [DP92,Sah01,DDO+02].

NIZK proofs based on standard cryptographic assumptions used to be inefficient and not useful in
practice. To get around this inefficiency, applied cryptographers have relied on the so-called Fiat-Shamir
heuristic for transforming public-coin interactive zero-knowledge proofs into NIZK arguments by using a
cryptographic hash-function to compute the verifier’s challenges. The Fiat-Shamir heuristic can give very
efficient NIZK arguments that are secure in the random oracle model [BR93], where the cryptographic hash-
function is modeled as a random function. Unfortunately, there are several examples of protocols that are
secure in the random oracle model, but do not have any secure standard model instantiation no matter which
hash-function is used [CGH98,CGH04,MRH04,BBP04,Nie02]. Particularly relevant here is Goldwasser and
Kalai’s [GK03] demonstration of a signature scheme built from a public-coin identification scheme that is
secure in the random oracle model, but insecure in real life. While it is possible that the Fiat-Shamir heuristic
is secure for “natural” protocols, it is worthwhile to investigate alternative approaches.

Another way to get around the inefficiency of traditional NIZK proofs is to use non-interactive desig-
nated verifier proofs. In a designated verifier proof, the proof is not publicly verifiable, it can only be verified
by a designated verifier. Damgård, Fazio and Nicolosi [DFN06] gave an efficient linear size non-interactive
designated verifier proof for circuit satisfiability based on an assumption related to Paillier encryption. There
are cases where designated verifier proofs suffice, for instance Cramer and Shoup’s chosen ciphertext attack
secure public-key cryptosystem [CS98]. In many other cases, the lack of public verifiability is problematic
though. When there is only one designated verifier, it is for instance not possible to use them to construct
advanced digital signatures, such as ring signatures and group signatures, since here public verifiability is
needed for non-repudiation.

Recent work in NIZK proofs has used bilinear groups to improve efficiency. Groth, Ostrovsky and
Sahai [GOS06b,GOS06a] gave NIZK proofs for circuit satisfiability where the proof consists of O(∣C∣)
group elements, with ∣C∣ being the number of gates in the circuit. Their NIZK proofs have the property
that they can be set up to give either perfect soundness and computational zero-knowledge, or alterna-
tively computational (co-)soundness and perfect zero-knowledge. Works by Boyen, Waters, Groth and Sahai
[BW06,BW07,Gro06,GS08] have explored how to build efficient NIZK proofs that are directly applicable
in bilinear groups instead of going through circuit satisfiability.

In some special cases, for instance in the ring signature of Chandran, Groth and Sahai [CGS07] these
techniques lead to sub-linear size NIZK proofs, but in general the number of group elements in an NIZK
proof grows linearly in the size of the statement. Looking at the general NP-complete problem of circuit
satisfiability, the reason these NIZK proofs grow linearly in the circuit size is that they encrypt the value
of each wire in the circuit. Abe and Fehr [AF07] gave a construction based on commitments instead of
encryptions, but since each wire is committed by itself they also get a linear growth in the size of the circuit.
The goal in this paper is to break the linear size barrier and propose NIZK arguments with sub-linear size
without using the Fiat-Shamir heuristic.

1.2 Our Contribution

We construct NIZK arguments for circuit satisfiability and arithmetic circuits with perfect completeness,
computational (co-)soundness and perfect zero-knowledge. The NIZK arguments are both of sub-linear size
and very efficient to verify, but the prover uses a super-linear number of group operations. Table 1 gives
a quick comparison to other NIZK proofs and arguments for circuit satisfiability, where G stands for the



size of a group elements, and M, E, and P, are the costs of respectively multiplication, exponentiation and
pairings in a bilinear group (see Section 2.1). We refer to Section 11 for further details on the efficiency of
our NIZK argument including the exact constants hidden by the Big-Oh notation.

CRS size Proof size Prover comp. Verifier comp. Soundness Zero-knowledge Assumption
Kilian-Petrank [KP98] O(∣C∣�2) G O(∣C∣�2) G O(∣C∣�2) E O(∣C∣�2) M statistical computational trapdoor permutation
Groth-Ostrovsky-Sahai O(1) G O(∣C∣) G O(∣C∣) E O(∣C∣) P perfect computational subgroup decision or
[GOS06b,GOS06a] O(1) G O(∣C∣) G O(∣C∣) E O(∣C∣) E computational perfect linear decision
Abe-Fehr [AF07] O(1) G O(∣C∣) G O(∣C∣) E O(∣C∣) E computational perfect DLog and knowledge of expo.
Groth [Gro09] O(

√
∣C∣) G O(

√
∣C∣) G O(∣C∣) M O(∣C∣) M computational perfect DLog and Fiat-Shamir

This paper O(∣C∣
3
4 ) G O(∣C∣

3
4 ) G O(∣C∣

5
4 ) M O(∣C∣) M computational perfect generic bilinear group

Table 1. Comparison of NIZK proof and arguments.

TRANSFERABILITY AND EFFICIENCY. Our NIZK arguments are publicly verifiable. This means that unlike
interactive zero-knowledge proofs they are transferable; they can be copied and distributed to many different
entities that can do their own independent verification.

Due to their transferability, there are many situations where it is reasonable to accept a super-linear com-
putational cost for the prover in return for less communication and very efficient verification. In situations
where many entities want to verify the same NIZK argument, the one-off cost of creating the NIZK argument
may be acceptable due to bandwidth savings in distributing the NIZK argument to many parties. Further,
the NIZK argument is as efficient to verify as state of the art interactive zero-knowledge arguments, so the
prover’s computational overhead may be offset by many verifiers’ highly efficient verification process.

SETUP AND ZERO-KNOWLEDGE/WITNESS-INDISTINGUISHABILITY. We assume a trusted setup, where a
common reference string is made available to the prover and verifier. If the trust is violated and the common
reference string is adversarially chosen, we are in better shape than with traditional zero-knowledge proofs
though. Most NIZK proofs are proofs of knowledge, where the adversary might learn all of the prover’s
witness if the prover uses an adversarially chosen common reference string. In contrast, sub-linear size
NIZK arguments have the advantage that there is an information theoretic upper bound on how many bits of
the witness may be leaked.

The common reference string in our NIZK argument has a particular structure; it is not a uniform random
string. The common reference string is verifiable though; the prover can verify that the common reference
string does have the right structure. This implies that even if the trust assumption is violated and the common
reference string is chosen by the adversary, the argument will still be perfectly witness-indistinguishable,
i.e., it will be impossible for the adversary to tell which out of potentially many witnesses the prover used
when creating the argument. Dwork and Naor [DN00] introduced the notion of Zaps, 2-move witness-
indistinguishable proofs, where the verifier’s initial message can be used over and over again. The results
in this paper imply the existence of communication-efficient Zaps with perfect witness-indistinguishability
and computational soundness.

ASSUMPTIONS AND SOUNDNESS/CO-SOUNDNESS. As we will demonstrate, it is infeasible for an adver-
sary restricted to the generic bilinear group operations to give a valid argument for a false statement. Even
stronger, in the generic group model [Nec94,Sho97] there is negligible probability of constructing a valid
argument without being able to extract a valid witness. Based on this we may conjecture that our NIZK
argument is a computationally sound argument of knowledge for circuit satisfiability.



Basing security on the generic group model is risky. Just as there exist protocols with no secure instanti-
ation that are provably secure in the random oracle model, so there exists a signature scheme with no secure
instantiation that is secure in the generic group model as demonstrated by Dent [Den02]. We believe our use
of the generic group model is more benign than the typical use of the random oracle model though. To make
a sub-linear size NIZK argument in the random oracle model, soundness is usually proved through rewind-
ing the protocol and then running the protocol again with a different output from the random oracle. In real
life it is of course not possible for a deterministic hash-function to have two different outputs. In contrast, we
do not use rewinding techniques to prove security of our NIZK argument in the generic group model. The
issue of rewinding can in theory be overcome though, Pass [Pas03] and Fischlin [Fis05] have given NIZK
arguments with straight-line extractors in the random oracle model. While it is quite speculative to argue the
merits of one heuristic model over another, we believe in either case that it is desirable to develop a set of
techniques that is completely different from the previous random oracle model approach.

Another concern regarding soundness is that any NIZK argument with statistical or perfect zero-
knowledge is non-falsifiable in Naor’s terminology [Nao03]. Given an adversary producing a statement
and a valid argument, it may be impossible to efficiently check whether the statement is false and therefore
impossible to verify that soundness has been broken. Abe and Fehr [AF07] showed that only languages
in P/poly can have an NIZK argument with statistical zero-knowledge, where soundness is proved using a
“direct black-box” proof to a falsifiable cryptographic assumption. All known NIZK arguments with statis-
tical or perfect zero-knowledge, including Abe and Fehr’s NIZK argument, therefore rely on non-falsifiable
assumptions. Bellare and Palacio [BP04], have shown that it may be possible to combine a standard cryp-
tographic assumption and a falsifiable assumption to get a falsifiable assumption though. So if a NIZK
argument is composed with another cryptographic protocol, it may be that the security of this composition
is falsifiable.

To capture a falsifiable notion of security that can undergo cryptanalytic scrutiny, Groth, Ostrovsky
and Sahai [GOS06b] introduced the weaker notion co-soundness. When defining co-soundness, we restrict
ourselves to languages in NP ∩ coNP. An NIZK argument is co-sound if it is infeasible for the adversary
to create a valid argument for a false statement together with a coNP witness that the statement is false.
The extra requirement of the adversary having to produce a witness for the statement being false, leads to
the co-soundness of an NIZK argument being falsifiable. As a consequence, it is possible to prove from
natural cryptographic assumptions that the perfect zero-knowledge variants of Groth, Ostrovsky and Sahai’s
[GOS06b,GOS06a] NIZK arguments are co-sound. One might worry about the restriction to languages
in NP ∩ coNP, however, in the authors’ experience most statements arising in the design of cryptographic
protocols do actually belong to NP∩coNP. Consider for example the setting of verifiable encryption, where
we may want to argue that the plaintext contains the string “$ 1,000,000”. Here the decryption key may be a
coNP witness for the plaintext not containing this string. We remark that in protocols using NIZK arguments
with co-soundness, the adversary is not expected to explicitly produce the coNP witness, it suffices that the
coNP witness is available in the security reduction when proving security of the protocol.

This leads us to the weaker conjecture that our NIZK argument is computationally co-sound. While
falsifiable, we still consider this a strong assumption to make. In favor of the assumption, we note that it is
a standard-model computational assumption, where the adversary is given an input and has to produce an
output that can be checked whether it constitutes a breach. The amount of the adversary’s input and output
depends on the size of statements we want to give NIZK arguments for. The assumption therefore falls into
the class of “q-style” assumptions in pairing-based cryptography of which the q-SDH assumption [BB04] is
arguably the most prominent member.



Finally, it is worth noting the trade-off between soundness and zero-knowledge. It is well-known that it
is not possible to have both statistical/perfect soundness and statistical/perfect zero-knowledge at the same
time for non-trivial languages in NP. In many applications, soundness is checked shortly after the generation
of the NIZK argument whereas confidentiality should be preserved many years into the future. NIZK proofs
with statistical/perfect soundness may be the wrong choice since technical advances may lead to a breach
of the computational zero-knowledge property. For such situations, it is better to be guaranteed long-term
zero-knowledge and have soundness that is based on a cryptographic assumption that nobody knows how to
break with current cryptanalytic techniques.

2 Preliminaries

Given two functions f, g : ℕ → [0, 1] we write f(�) ≈ g(�) when ∣f(�) − g(�)∣ = O(�−c) for every
constant c > 0. We say that f is negligible when f(�) ≈ 0 and that it is overwhelming when f(�) ≈ 1.

We write y = A(x; r) when the algorithm A, on input x and randomness r, outputs y. We write y ←
A(x) for the process of picking randomness r at random and setting y = A(x; r). We also write y ← S
for sampling y uniformly at random from the set S. We will assume it is possible to sample uniformly at
random from sets such as ℤp. We define [n] to be the set {1, 2, . . . , n}.

2.1 Bilinear Groups

Our NIZK argument will use prime order bilinear groups. Let G take a security parameter � written in unary
as input and output a description of a bilinear group (p,G,GT , e, g)← G(1�) such that

1. p is a �-bit prime.
2. G,GT are cyclic groups of order p.
3. e : G×G is a bilinear map (pairing) such that ∀a, b : e(ga, gb) = e(g, g)ab.
4. g generates G and e(g, g) generates GT .
5. Membership in G,GT can be efficiently decided, group operations and the pairing e are efficiently

computable and the descriptions of the groups and group elements each have size O(�) bits.

See for instance Boneh and Franklin’s paper [BF03] for an elliptic curve example of a candidate bilinear
group with these properties. Their example has the additional advantage that it is possible to verify whether
the output (p,G,GT , e, g) of G actually describes a bilinear group. Furthermore, in their example it is
possible to pick the prime p first and then construct a bilinear group on top of that prime. This latter property
is useful in case we have a specific field ℤp in mind for which we want to argue satisfiability of an arithmetic
circuit.
EFFICIENCY. When giving efficiency estimates in the paper, we will use the following notation. P is the
computational cost of computing a pairing, E is the computational cost of computing an exponentiation and
M is the computational cost of computing a multiplication in G. We write G for the size of a group element
in G. We will assume membership of G is always verified, but ignore the cost of verifying membership
of G, since on elliptic curves it can be done with a few multiplications and will therefore be insignificant
compared to other computational costs in our NIZK argument.

2.2 The Schwartz-Zippel Lemma

For completeness we state a variation of the well-known Schwartz-Zippel lemma that we will use several
times in the paper.



Lemma 1 (Schwartz-Zippel). Let poly be a non-zero multivariate polynomial of degree d over ℤp, then
the probability of poly(x1, . . . , xm) = 0 for randomly chosen x1, . . . , xm ← S ⊂ ℤp is at most d/∣S∣.

The Schwartz-Zippel lemma is frequently used in polynomial identity testing. Given two multi-variate poly-
nomials poly1 and poly2 we can test whether poly1(x1, . . . , xm) − poly2(x1, . . . , xm) = 0 for random
x1, . . . , xm ← S. If the two polynomials are identical this will always be true, whereas if the two polyno-
mials are different then there is only probability max(d1, d2)/∣S∣ for the equality to hold.

3 Non-interactive Arguments

Let R be an efficiently computable trinary relation. For triples (�, x, w) ∈ R we call x the statement and
w the witness. Let L� be the NP-language consisting of statements with witnesses in R given �. If � is the
empty string this is the standard definition of an NP-language. We will use the more general definition where
the relation may or may not depend on an input �.

A non-interactive argument for a relation R consists of a common reference string generator algorithm
K, a prover algorithm P and a verifier algorithm V that run in probabilistic polynomial time. The common
reference string generator takes as input a security parameter � and may also take additional inputs and
produces a common reference string � of length
(�). In our case, the additional input to the key generation
algorithm may be a value n ∈ ℕ specifying the size of statements we are interested in. The prover takes
as input (�, x, w) and produces an argument �. The verifier takes as input (�, x, �) and outputs 1 if the
argument is acceptable and 0 if rejecting the argument. We call (K,P, V ) an argument for R if it has the
completeness and soundness property described below.

PERFECT COMPLETENESS. For all adversaries A and n = �O(1) we have

Pr
[
� ← K(1�, n); (x,w)← A(�);� ← P (�, x, w) : V (�, x, �) = 1 if (�, x, w) ∈ R

]
= 1.

COMPUTATIONAL SOUNDNESS. For all non-uniform polynomial time adversaries A and n = �O(1) we
have

Pr
[
� ← K(1�, n); (x, �)← A(�) : x /∈ L� and V (�, x, �) = 1

]
≈ 0.

COMPUTATIONAL ARGUMENT OF KNOWLEDGE. We call (K,P, V ) an argument of knowledge if there is
an extractor that can compute a witness whenever the adversary produces a valid argument. The extractor
gets full access to the adversary’s state, including any random coins. Since extraction of a witness implies
the existence of such a witness, an argument of knowledge is always sound.

Formally, we require that for all non-uniform polynomial time adversaries A there exists a non-uniform
polynomial time extractor EA using the same random coins such that for all n = �O(1) we have

Pr
[
� ← K(1�, n); (x, �)← A(�);w ← EA(�) : (�, x, w) /∈ R and V (�, x, �) = 1

]
≈ 0.

COMPUTATIONAL CO-SOUNDNESS. Let Rco be a polynomial time decidable relation consisting of state-
ments and witnesses wco so (�, x, wco) ∈ Rco implies x /∈ L�. We say the argument is co-sound if for all
non-uniform polynomial time adversaries A and n = �O(1) we have

Pr
[
� ← K(1�, n); (x, �, wco)← A(�) : (�, x, wco) ∈ Rco andV (�, x, �) = 1

]
≈ 0.



PERFECT WITNESS-INDISTINGUISHABILITY. We say a non-interactive argument (K,P, V ) is perfectly
witness-indistinguishable if it is impossible to tell which witness the prover used in case there are many
possible witnesses. For all stateful interactive adversaries A and n = �O(1) we have

Pr
[
� ← K(1�, n); (x,w0, w1)← A(�);� ← P (�, x, w0) : (�, x, w0), (�, x, w1) ∈ R and A(�) = 1

]
= Pr

[
� ← K(1�, n); (x,w0, w1)← A(�);� ← P (�, x, w1) : (�, x, w0), (�, x, w1) ∈ R and A(�) = 1

]
.

PERFECT ZERO-KNOWLEDGE. We say a non-interactive argument (K,P, V ) is perfect zero-knowledge if
there exists a polynomial time simulator S = (S1, S2) with the following zero-knowledge property. S1
outputs a simulated common reference string and a simulation trapdoor. S2 takes the common reference
string, the simulation trapdoor and a statement as input and produces a simulated argument. For all stateful
interactive adversaries A and n = �O(1) we require

Pr
[
� ← K(1�, n); (x,w)← A(�);� ← P (�, x, w) : (�, x, w) ∈ R and A(�) = 1

]
= Pr

[
(�, �)← S1(1

�, n); (x,w)← A(�);� ← S2(�, �, x) : (�, x, w) ∈ R and A(�) = 1
]
.

4 Common Reference String

We will now describe how to generate the common reference string for our NIZK argument. The common
reference string consists of multiple parts, which each serve a particular purpose that will be explained later
in the paper. When simulating the NIZK argument, we will be using a common reference string with an
identical distribution, so we describe how to generate the simulation trapdoor as well.

Define the multivariate monomial P of degree n and the n multivariate monomials Pj of degree n − 1
as follows

P (x1, . . . , xn) =
∏
i∈[n]

xi ∀j ∈ [n] : Pj(x1, . . . , xn) =
∏

i∈[n]∖{j}

xi.

Common Reference String Generation:
1. Generate a bilinear group (p,G,GT , e, g)← G(1�) and set gk = (p,G,GT , e).
2. Choose at random x1, . . . , xn ← ℤ∗p and set ck = (g, gx1 , . . . , gxn).
3. Choose at random �← ℤ∗p and set �know = (g�, g�x1 , . . . , g�xn).
4. Set �prod = ({gxixj}i,j∈[n],i ∕=j).
5. Choose at random y1, . . . , yn ← ℤ∗p and set �perm = ({gPi(x)yj}i,j∈[n], {gxiPj(x)yk}i,j,k∈[n],i ∕=j).
6. For k = 1 to n:

Choose at random z1k, . . . , znk ← ℤ∗p and set �rot,k = ({gzik}i∈[n], {gxjzik}i,j∈[n],j ∕=k).
The common reference string is � = (gk, ck, �know, �prod, �perm, {�rot,k}k∈[n]). The simulation trap-
door is tk = (x1, . . . , xn).

VERIFIABILITY OF THE COMMON REFERENCE STRING AND ZAPS. The common reference string de-
scribed above has a particular mathematical structure and we do not know of an extraction procedure that
can generate it from a public string of random bits. However, provided one can verify that (p,G,GT , e, g)
does describe a bilinear group, it is also possible to verify that � is a well-formed common reference string.
First, one checks that all group elements in � are non-trivial. This demonstrates that all the secret exponents



xi, �, yi, zik are non-zero. Next, one uses the pairing operation to verify the structure of the common ref-
erence string. For instance, e(g, g�xi) = e(g�, gxi) and e(g, gxixj ) = e(gxi , gxj ). This verifiability of the
common reference string gives us 2-move arguments with perfect witness-indistinguishability, also known
as Zaps [DN00]. The verifier in the first move sends a common reference string and the prover then can
give many publicly verifiable arguments (second moves) for different statements using the same common
reference string.

4.1 Generic Group Model

We will provide heuristic evidence for the soundness of our NIZK argument by proving that it cannot be
broken by an adversary that only uses generic bilinear group operations. For this purpose, let us define a
generic bilinear group model, where the adversary learns what the bilinear group is but instead of seeing
any group elements it only sees a random representation of the group elements. More precisely, we choose
random permutations [⋅] : G → G and [⋅]T : GT → GT and instead of seeing for instance gxi and e(g, g),
the adversary will only see [gxi ] and [e(g, g)]T . The adversary gets access to an oracle that enables it to
compute the group operations and the pairings even though it only sees random representations of those
elements. The oracle O works as follows:

Initialization:
– Pick two random permutations [⋅] : G→ G and [⋅]T : G→ GT .
– Pick at random x1, . . . , xn, �, y1, . . . , yn, z11, . . . , znn ← ℤ∗p.
– Define

�know = ([g�], {[g�xi ]}) �prod = ({[gxixj ]}i ∕=j) �perm = ({[gPi(x)yj ]}, {[gxiPj(x)yk ]}i ∕=j)
ck = ([g], {[gxi ]}) �rot,1 = ({[gzi1 ]}, {[gxjzi1 ]}j ∕=1) . . . �rot,n = ({[gzin ]}{[gxjzin ]}j ∕=n).

– Give � = (ck, �know, �prod, �perm, �rot,1, . . . , �rot,n) as initial input to the adversary.
Operations:

– On (mult, [a], [b]) return [a+ b].
– On (multT , [a]T , [b]T ) return [a+ b]T .
– On (pair, [a], [b]) return [ab]T .

The adversary can use the generic group operations to compute a random group element inO(log p) steps by
picking a random exponent and using the oracle to go through the square-and-multiply algorithm to get [gr]
starting from [g]. Since the adversary gets no advantage of not knowing the discrete logarithm of a group
element, we can without loss of generality assume the adversary only queries the oracle with encodings
[a], [b] or [a]T , [b]T that has been given to it from the oracle at some point.

Theorem 1. In the generic group model it is infeasible for the adversary to find a non-trivial linear relation
between the group elements given in the common reference string using only a polynomial number of queries
to the generic group oracle.

Proof. We want to prove

Pr
[
(p,G,GT , e, g)← G(1�); (r1, rx1 , . . . , rxn−1znn)← AO(p,G,GT , e, g) :

(r1, . . . , rxn−1znn) ∕= {0} and gr1
n∏
i=1

(gxi)rxi ⋅ ⋅ ⋅
∏
i∈[n]

∏
j∈[n]∖{n}

(gxjzin)rxjzin = 1
]
≈ 0



Consider an algorithm ℬ getting (p,G,GT , e, g) and the generic � from O as input that runs a copy of
A(p,G,GT , e, p) simulating all oracle queries made byA. In the end,Amakes an output (r1, . . . , rxn−1znn)
and ℬ uses this as its output. ℬ keeps two lists L = {(pi, �i)} and LT = {(pi,T , �i,T )} containing pairs of
the form (pi, �i) ∈ ℤp[X1, . . . , Xn, A, Y1, . . . , Yn, Z11, . . . , Znn] × ℤp, where �i, �i,T are values the oracle
has given to A.

At first the lists are initialized as followsL = {(1, �1), (X1, �2), (X2, �3), . . . , (Xn−1Znn, �2n3+n2+n+2)}
and LT = ∅, where �1, . . . , �2n3+n2+n+2 are the values ℬ got from the oracle. The list L thus starts out
by containing the polynomials used in the exponents when generating a common reference string and the
matching encodings of those group elements. ℬ aborts the simulation if there are any collisions, i.e., �i = �j
for some i ∕= j.

Upon input (mult, �i, �j) it looks up (pi, �i) and (pj , �j) in L. If there is an entry (pi + pj , �) ∈ L it
returns �. Otherwise, it picks � ← G ∖ {�1, . . .}, appends (pi + pj , �) to L and returns �. Inputs of the
form (multT , �i,T , �j,T ) are treated similarly using the list LT . On input (pair, �i, �j) it looks up (pi, �i) and
(pj , �j) in L. If there is an entry (pipj , �T ) in LT it returns �T . Otherwise, it picks �T ← GT ∖ {�1,T , . . .},
appends (pipj , �T ) to LT and returns �T .

Let us argue that B’s simulation of the oracle is statistically indistinguishable from O. We can imag-
ine O keeping track of polynomials pi and answers �i corresponding to the oracle queries just as ℬ does.
It is possible with the concrete choices of x1, . . . , znn ← ℤ∗p made by O that we have some i, j so
pi(x1, . . . , znn) = pj(x1, . . . , znn) and hence O would return �i = [gpi(x1,...,znn)] = [gpj(x1,...,znn)] = �j ,
whereas ℬ will always use �i ∕= �j . A similar problem can occur for GT . The maximal degree of these poly-
nomials is n+1 in L and 2n+2 in LT , so by the Schwartz-Zippel lemma each pair of polynomials (pi, pj)
has no more than negligible probability 2n

p−1 of giving a collision. With a total of at most a polynomial num-
ber of queries there is negligible chance of encountering a collision for any pair of oracle answers. Since O
uses a random permutation to disguise the actual group elements, the answers it returns look random just
like ℬ’s answers, as long as no collision happens.

In the generic group model the common reference string � contains evaluations of monomials in
ℤp[X1, . . . , Xn, A, Y1, . . . , Yn, Z11, . . . , Znn]. It is easy to see that all the monomials are different, so there
is no non-trivial linear combination r + r1x1 + ⋅ ⋅ ⋅ rn−1,n,nxn−1znn that gives us the zero-polynomial in
ℤp[X1, . . . , Znn]. The adversary must therefore find a linear combination for the concrete evaluation of the
monomials that the oracle has chosen, when it picked x1, . . . , znn at random. The probability of outputting
a non-trivial linear combination (r1, rx1 , . . . , rxn−1znn) of the group elements underlying � is a negligible
n+1
p−1 if we have no information at all about the group elements. By the Schwartz-Zippel lemma there is neg-
ligible probability for the oracle outputting a � with a collision and since the group elements are encoded
using a random permutation they give no information away except the fact that there is no collision. This
means ℬ has negligible probability of outputting a non-trivial linear combination. Further, since A with-
out loss of generality can check in a polynomial number of oracle queries whether the linear combination
is valid and it cannot distinguish the simulation made by ℬ from the oracle, we conclude that A also has
negligible probability of outputting a non-trivial linear combination of the group elements underlying the
common reference string. □

5 Commitment

It is well-known that the Pedersen commitment [Ped91] can be extended to commit to many values. Let G
be a cyclic group of prime order p and g, g1, . . . , gn be random generators of G. To commit to messages
a1, . . . , an using randomness r ← ℤp compute the commitment c = gr

∏
i∈[n] g

ai
i . We call (r, a1, . . . , an)



an opening of c. The commitment is computationally binding assuming the discrete logarithm problem is
hard, i.e., it is infeasible to find two different openings of a commitment c. The commitment is perfectly
hiding, i.e., no matter the choice of a1, . . . , an the randomizer r ensures that the commitment is a uni-
formly distributed group element. Further, the commitment scheme is trapdoor; if the discrete logarithms of
g1, . . . , gn with respect to g are known, it is possible to create a commitment and later open it to any set of
values.

Common reference string: � including commitment key ck = (g, g1, . . . , gn).
Commitment: To commit to a1, . . . , an sample randomness r ← ℤp and compute the commitment

c = gr
∏
i∈[n]

gaii .

Trapdoor commitment: To make a trapdoor commitment sample randomness t ← ℤp and compute the
commitment c = gt and the trapdoor randomness t.

Trapdoor opening: The trapdoor opening algorithm takes as input a commitment c ∈ G, messages
a1, . . . , an ∈ ℤp, trapdoor randomness t ∈ ℤP and trapdoor key tk = (x1, . . . , xn) so c = gt and
for all i ∈ [n] : gi = gxi . It returns randomizer r = t−

∑
i∈[n] aixi, so we have c = gr

∏
i∈[n] g

ai
i .

Theorem 2. The commitment scheme is perfectly hiding and perfectly trapdoor.

Proof. It is easy to see the commitment scheme is perfectly hiding, since no matter what the values a1, . . . , an
are, the commitment is uniformly distributed in G. Consider the probability distributions of (c, r) for re-
spectively commitments and trapdoor commitments that are trapdoor opened conditioned on messages
a1, . . . , an ∈ ℤp. In the first case r is uniformly random and given r the commitment c = gr

∏
i∈[n] g

ai
i

is uniquely determined conditioned on a1, . . . , an. In the second case, t is uniformly random and condi-
tioned on a1, . . . , an this makes r = t −

∑
i∈[n] aixi uniformly random. The trapdoor opening satisfies

c = gt−
∑
i∈[n] aixi

∏
i∈[n] g

ai
i . In both cases, we therefore have the same probability distribution for (c, r)

and conclude that the commitment scheme is perfectly trapdoor. □
It is well-known that the Pedersen commitment scheme for multiple messages is computationally bind-

ing assuming the discrete logarithm problem is hard. Here the common reference string contains more
information about the discrete logarithms x1, . . . , xn but as the following corollary to Theorem 1 shows the
commitment scheme is still binding in the generic group model.

Corollary 1. In the generic group model it is infeasible to find two different openings (r, a1, . . . , an) ∕=
(s, b1, . . . , bn) so

gr
∏
i∈[n]

gaii = gs
∏
i∈[n]

gbii .

EFFICIENCY. We summarize the cost of commitments in Table 2. The receiver of a commitment just checks
whether it belongs to G, which we assume carries negligible cost compared to other parts of the NIZK
argument that will be presented in this paper. We note as a special case, the computation involved in making
a commitment is cheaper when the values are bits.

6 Argument of Knowledge

We will give an argument of knowledge of opening of a commitment. This argument can be seen as a natural
extension of arguments of knowledge for standard Pedersen commitments with a single message based on a
knowledge of exponent assumption [BP04,AF07].



Size of ck Commitment size Computation Computation for ai ∈ {0, 1} Receiver computation
n+ 1 G 1 G n+ 1 E 1 E + n M -

Table 2. Cost of commitments.

Common reference string: � including ck = (g, g1, . . . , gn) and �know = (g�, g�x1 , . . . , g�xn).
Statement: Commitment c.
Prover’s witness: Opening a1, . . . , an, r ∈ ℤp so c = gr

∏
i∈[n] g

ai
i .

Argument: Compute the argument as

� = (g�)r
∏
i∈[n]

(g�xi)ai .

Verification: Output 1 if and only if
e(c, g�) = e(g, �).

Theorem 3. The non-interactive argument described above has perfect completeness and perfect witness-
indistinguishability.

Proof. To argue perfect completeness, observe � = c� giving us e(c, g�) = e(g, �). Perfect witness-
indistinguishability follows from g� being a generator for G, so there is only one acceptable argument
�. By perfect completeness, any opening of the commitment will result in the same argument � and we
therefore have perfect witness-indistinguishability. □

Theorem 4. In the generic group model it is infeasible to construct a commitment c and a valid argument
of knowledge � without knowing an opening r, a1, . . . , an of the commitment.

Proof. We will show that there is an polynomial time extractor E that takes the adversary’s input
(p,G,GT , e, g) and the generic common reference string �, the adversary’s outputs [c], [�], and a list of
inputs and outputs to the generic bilinear group oracle, which with overwhelming probability outputs an
opening r, a1, . . . , an of c in case � is a valid argument of knowledge for c.

Let us first consider howA can be successful in producing encodings [c], [�] of a commitment and a valid
argument of knowledge. Suppose one or both of [c] and [�] are not part of the generic common reference
string or output by the generic group oracle. In that case, since [⋅] is a random permutation over G and g, g�

are generators for G there is negligible probability of e(c, g�) = e(g, �). We can therefore from now on
assume [c], [�] have been generated by the generic group oracle.

Now, let us as in the proof of Theorem 1 keep track of queries made by A and the corre-
sponding polynomials. The extractor maintains two lists L = {(pi, �i)} and LT = {(pi,T , �i,T )}
containing pairs of the form (pi, �i) ∈ ℤp[X1, . . . , Xn, A, Y1, . . . , Yn, Z11, . . . , Znn] × ℤp, where
�i, �i,T are values the oracle has given to A. At first the lists are initialized as follows L =
{(1, �1), (X1, �2), (X2, �3), . . . , (Xn−1Znn, �2n3+n2+n+2)} and LT = ∅, where �1, . . . , �2n3+n2+n+2 are
the values from the generic common reference string. The list L thus starts out by containing the polyno-
mials used in the exponents when generating a common reference string and matching random encodings
of those group elements. Upon input (mult, �i, �j) giving answer � the extractor appends (pi + pj , �) to L
unless it has already been stored in L. Inputs of the form (multT , �i,T , �j,T ) are treated similarly using the
list LT . On input (pair, �i, �j) giving response �T it appends (pipj , �T ) to LT unless such a tuple already
exists.



Consider now the polynomials c(X1, . . . , Znn) and �(X1, . . . , Znn) for the adversary’s output [c], [�].
If we have �(X1, . . . , Znn) ∕= Ac(X1, . . . , Znn) we will argue as in Theorem 1 that there is negligible
chance of A being successful. Since the generic oracle uses a random permutation to encode the group
elements, we can simulate it by picking random distinct values for each new polynomial generated during
the queries to the oracle. By the Schwartz-Zippel lemma, there is negligible probability of having a collision,
i.e., two distinct polynomials that evaluate to the same group elements for the oracle’s concrete choice of
x1, . . . , znn. The simulation is perfect conditioned on no such collision happening, and as the adversary in
the simulation gets no information about x1, . . . , znn in the simulation there is negligible chance over the
choice of x1, . . . , znn ← ℤ∗p for the event �(x1, . . . , znn) = �c(x1, . . . , znn).

Remaining is the possibility that �(X1, . . . , Znn) = Ac(X1, . . . , Znn). Since the two polynomials be-
long to L, which can only grow by adding polynomials in Lwhen the adversary makes a (mult, �i, �j) query
to the oracle, we have

c(X1, . . . , Znn) = c1 + cx1X1 + ⋅ ⋅ ⋅+ c�A+ c�x1AX1 + ⋅ ⋅ ⋅+ cx1x2X1X2 + ⋅ ⋅ ⋅ cxn−1znnXn−1Znn

�(X1, . . . , Znn) = �1 + �x1X1 + ⋅ ⋅ ⋅+ ��A+ ��x1AX1 + ⋅ ⋅ ⋅+ �x1x2X1X2 + ⋅ ⋅ ⋅�xn−1znnXn−1Znn,

for known coefficients c1, . . . , cxn−1znn , �1, . . . , �xn−1znn ∈ ℤp.
The equality �(X1, . . . , Znn) = Ac(X1, . . . , Znn) implies that we can simplify

�(X1, . . . , Znn) = ��A+ ��x1AX1 + ⋅ ⋅ ⋅+ ��xnAXn,

since all the other parts are distinct monomials with degree 0 in A. This means we have

c(X1, . . . , Znn) = ��A+ ��x1X1 + ⋅ ⋅ ⋅��xnXn.

By Theorem 1 this is the only linear combination giving c(X1, . . . , Znn), so r = c1 = ��, a1 = cx1 =
��x1 , . . . , an = cxn = ��xn gives us the desired opening of c. □

EFFICIENCY. We summarize the cost of arguments of knowledge in Table 3. If there are many arguments
of knowledge it is possible to use batch-verification techniques to lower the cost of verification. Consider
for instance the case, where we have N commitments and arguments of knowledge c1, �1, . . . , cN , �N . The
verifier picks t1, . . . , tn ← [2ℓ] at random for some security parameter ℓ < log p and verifies

e(
∏
i∈[n]

ctii , g
�) =

∏
i∈[n]

e(ci, g
�)ti =

∏
i∈[n]

e(g, �i)
ti = e(g,

∏
i∈[n]

�tii ),

which has at most chance 2−ℓ of being true unless ∀i ∈ [n] : e(ci, g
�) = e(g, �i). The last column in the

table lists the costs of batch-verifying N arguments of knowledge.

Size of �know Argument size Prover comp. Prover comp. {0, 1} Verifier comp. Verifier comp. N
n+ 1 G 1 G n+ 1 E 1 E + n M 2 P 2 P + 2N E

Table 3. Cost of arguments of knowledge.



7 Products of Committed Values

Consider three commitments c, d and v to values a1, . . . , an, b1, . . . , bn and u1, . . . , un. We will give a non-
interactive perfectly witness-indistinguishable argument for the committed u1, . . . , un being the products
a1b1, . . . , anbn.

Common reference string: � including ck = (g, g1, . . . , gn) and �prod = ({gxixj}i,j∈[n],i ∕=j).
Statement: Commitments c, d, v ∈ G.
Prover’s witness: Openings r, a1, . . . , an and s, b1, . . . , bn and t, u1, . . . , un so

c = gr
∏
i∈[n]

gaii and d = gs
∏
i∈[n]

gbii and v = gt
∏
i∈[n]

guii and ∀i ∈ [n] : ui = aibi.

Argument: Compute the argument as

� = grs
∏
i∈[n]

⎛⎝(gi)
ais+bir−t

∏
j∈[n]∖{i}

(gxixj )aibj−ui

⎞⎠ .

Verification: Output 1 if and only if

e(c, d) = e(v,
∏
j∈[n]

gj)e(g, �).

Theorem 5. The non-interactive argument described above has perfect completeness and perfect witness-
indistinguishability.

Proof. To argue perfect completeness, consider the three pairings the verifier has to compute.

e(c, d) = e(gr+
∑
i aixi , gs+

∑
j bjxj ) = e(g, g)

∑
i aibix

2
i e(g, g)rs+s

∑
i aixi+r

∑
j bjxj+

∑
i ∕=j aibjxixj .

e(v,
∏
j∈[n]

gj) = e(gt+
∑
i uixi , g

∑
j xj ) = e(g, g)

∑
i uix

2
i e(g, g)t

∑
j xj+

∑
i ∕=j uixixj .

e(g, �) = e(g, grs
∏
i∈[n]

[(gxi)ais+bir−t
∏

j∈[n]∖{i}

(gxixj )aibj−ui ])

= e(g, g)rs+
∑
i(air+bis−t)xi+

∑
i ∕=j(aibj−ui)xixj

Since ui = aibi we see that
∑

i∈[n] aibix
2
i =

∑
i∈[n] uix

2
i . Looking at the three pairings above we then get

e(c, d) = e(v,
∏
j∈[n]

gj)e(g, �)

so the verification accepts the argument �.
Perfect witness-indistinguishability follows from g being a generator of G, since there is exactly one

unique argument � that will make the verification accept. By the perfect completeness, all valid witnesses
give an accepting argument and therefore for fixed c, d, u all openings with ui = aibi result in the same
argument �. □



Theorem 6. In the generic group model it is infeasible to find three commitments with their respective
openings and a valid argument unless indeed the third set of values contains the entry-wise product of the
first two sets.

Proof. We want to prove

Pr
[
(p,G,GT , e, g)← G(1�); (r, a1, . . . , s, b1, . . . , t, u1, . . . , [�])← AO(p,G,GT , e, g) :

e(c, d) = e(v,
∏
j∈[n]

gj)e(g, �) and ∃i ∈ [n] : ui ∕= aibi

]
≈ 0,

where we define c = gr
∏
i∈[n] g

ai
i , d = gs

∏
i∈[n] g

bi
i and v = gt

∏
i∈[n] g

ui
i .

Let us first consider howA can be successful in producing the encoding [�] of a valid argument. Suppose
[�] is not part of the generic common reference string or output by the generic group oracle. In that case,
since [⋅] is a random permutation over G and g is a generator there is negligible probability of e(c, d) =
e(v,

∏
j∈[n] gj)e(g, �). We can therefore from now on assume [�] has been generated by the generic group

oracle at some point.
Now, let us as in the proof of Theorem 1 keep track of queries made byA and the corresponding polyno-

mials. We maintain two lists L = {(pi, �i)} and LT = {(pi,T , �i,T )} containing pairs of the form (pi, �i) ∈
ℤp[X1, . . . , Xn, A, Y1, . . . , Yn, Z11, . . . , Znn] × ℤp, where �i, �i,T are values the oracle has given to A. At
first the lists are initialized as follows L = {(1, �1), (X1, �2), (X2, �3), . . . , (Xn−1Znn, �2n3+n2+n+2)} and
LT = ∅, where �1, . . . , �2n3+n2+n+2 are the values from the generic common reference string. The list
L thus starts out by containing the polynomials used in the exponents when generating a common ref-
erence string and matching random encodings of those group elements. Upon input (mult, �i, �j) giving
answer � the extractor appends (pi + pj , �) to L unless it has already been stored in L. Inputs of the form
(multT , �i,T , �j,T ) are treated similarly using the list LT . On input (pair, �i, �j) giving response �T it ap-
pends (pipj , �T ) to LT unless such a tuple already exists.

Consider now the polynomial �(X1, . . . , Znn) for the adversary’s output [�]. If we have

(r +
∑
i∈[n]

aiXi)(s+
∑
j∈[n]

bjXj) ∕= (t+
∑
i∈[n]

uiXi)
∑
j∈[n]

Xj + �(X1, . . . , Znn)

we can argue as in Theorem 1 that there is negligible chance of A being successful, i.e., there is negligi-
ble chance that e(c, d) = e(v,

∏
j∈[n] gj)e(g, �(x1, . . . , znn)) for the concrete values of x1, . . . , znn chosen

by the oracle. Since the generic oracle uses a random permutation to encode the group elements, we can
simulate it by picking random distinct values for each new polynomial generated during the queries to the
oracle. By the Schwartz-Zippel lemma, there is negligible probability of having a collision, i.e., two dis-
tinct polynomials that evaluate to the same group elements for the oracle’s concrete choice of x1, . . . , znn.
The simulation is perfect conditioned on no such collision happening, and as the adversary in the simula-
tion gets no information about x1, . . . , znn in the simulation there is negligible chance over the choice of
x1, . . . , znn ← ℤ∗p for the event e(c, d) = e(v,

∏
j∈[n] gj)e(g, �(x1, . . . , znn)).

Remaining is the possibility that (r+
∑

i∈[n] aiXi)(s+
∑

j∈[n] bjXj) = (t+
∑

i∈[n] uiXi)
∑

j∈[n]Xj+
�(X1, . . . , Znn). Since �(X1, . . . , Znn) belongs to L, which can only grow by adding polynomials in L
when the adversary makes a (mult, �i, �j) query to the oracle, we have

�(X1, . . . , Znn) = �1 + �x1X1 + ⋅ ⋅ ⋅+ ��A+ ��x1AX1 + ⋅ ⋅ ⋅+ �x1x2X1X2 + ⋅ ⋅ ⋅�xn−1znnXn−1Znn,



for known coefficients �1, . . . , �xn−1znn ∈ ℤp.
Expanding (r+

∑
i∈[n] aiXi)(s+

∑
j∈[n] bjXj) = (t+

∑
i∈[n] uiXi)

∑
j∈[n]Xj + �(X1, . . . , Znn) on

both sides gives us

∑
i∈[n]

aibiX
2
i +

⎡⎣rs+ s
∑
i∈[n]

aiXi + r
∑
j∈[n]

bjXj +
∑
i∈[n]

∑
j∈[n]∖{i}

aibjXiXj

⎤⎦
=

∑
i∈[n]

uiX
2
i +

⎡⎣t ∑
j∈[n]

Xj +
∑
i∈[n]

∑
j∈[n]∖{i}

uiXiXj + �(X1, . . . , Znn)

⎤⎦ .
Since �(X1, . . . , Znn) has no X2

i elements, neither do any of the parts within the brackets. We conclude
that for the two polynomials to be equal, we must have ui = aibi for all i ∈ [n]. □

EFFICIENCY. Table 4 summarizes the cost of product arguments. As is the case with arguments of knowl-
edge, batch-verification techniques may reduce the cost of verifying many statements and product argu-
ments.

Size of �prod Argument size Prover comp. Prover comp. {0, 1} Verifier comp. Verifier comp. N
n2 − n G 1 G n2 + 1 E n+ 1 E + n2 − n M 3 P N P + 2N E

Table 4. Cost of product arguments.

8 Permutation of Committed Values within a Commitment

Consider two commitments c and d to values a1, . . . , an and b1, . . . , bn. We will give a non-interactive per-
fectly witness-indistinguishable argument for the committed b1, . . . , bn being a publicly known permutation
of a1, . . . , an.

Common reference string: � including �perm = ({gPi(x)yj}i,j∈[n], {gxiPj(x)yk}i,j,k∈[n],i ∕=j).
Statement: Commitments c, d ∈ G and permutation � ∈ Sn.
Prover’s witness: Openings r, a1, . . . , an ∈ ℤp and s, b1, . . . , bn ∈ ℤp so

c = gr
∏
i∈[n]

gaii and d = gs
∏
j∈[n]

g
bj
i and ∀i ∈ [n] : bi = a�(i).

Argument: Compute the argument as

� =

⎛⎝∏
i∈[n]

gPi(x)yi

⎞⎠r⎛⎝∏
i∈[n]

gPi(x)y�(i)

⎞⎠−s ∏
i∈[n]

⎡⎢⎣
⎛⎝ ∏
j∈[n]∖{i}

gxiPj(x)yj

⎞⎠ai ⎛⎝ ∏
j∈[n]∖{i}

gxiPj(x)y�(j)

⎞⎠−bi
⎤⎥⎦ .

Verification: Output 1 if and only if

e(c,
∏
j∈[n]

gPj(x)yj ) = e(d,
∏
j∈[n]

gPj(x)y�(j))e(g, �).



Theorem 7. The non-interactive argument described above has perfect completeness and perfect witness-
indistinguishability.

Proof. To argue perfect completeness, consider the three pairings the verifier has to compute.

e(c,
∏
j∈[n]

gPj(x)yj ) = e(gr+
∑
i aixi , g

∑
j Pj(x)yj ) = e(g, g)

∑
i aiyiP (x)e(g, g)r

∑
j Pj(x)yj+

∑
i ∕=j aixiPj(x)yj .

e(d,
∏
j∈[n]

gPj(x)y�(j)) = e(gs+
∑
i bixi , g

∑
j Pj(x)y�(j))

= e(g, g)
∑
i biy�(i)P (x)e(g, g)s

∑
j Pj(x)y�(j)+

∑
i∕=j bixiPj(x)y�(j) .

e(g, �) = e(g, (
∏
i∈[n]

gPi(x)yi)r(
∏
i∈[n]

gPi(x)y�(i))−s
∏
i∈[n]

[(
∏

j∈[n]∖{i}

gxiPj(x)yj )ai(
∏

j∈[n]∖{i}

gxiPj(x)y�(j))−bi ]

= e(g, g)r
∑
i Pi(x)yi−s

∑
i Pi(x)y�(i)+

∑
i ∕=j aixiPj(x)yj−

∑
i ∕=j bixiPj(x)y�(j) .

Since bi = a�(i) we have
∑

i∈[n] aiyi =
∑

i∈[n] biy�(i). Looking at the three pairings above we then get

e(c,
∏
j∈[n]

gPj(x)yj ) = e(d,
∏
j∈[n]

gPj(x)y�(j))e(g, �)

so the verification accepts the argument �.
Since g is a generator for G, there is exactly one argument � that will make the verification accept. By

the perfect completeness, all valid openings with bi = a�(i) give an accepting argument and therefore all
valid witnesses result in the same argument. □

Theorem 8. In the generic group model it is infeasible to find a permutation, two commitments with their
respective openings, and a valid argument unless indeed the openings obey the permutation.

Proof. We want to prove

Pr
[
(p,G,GT , e, g)← G(1�); (�, r, a1, . . . , an, s, b1, . . . , bn, [�])← AO(p,G,GT , e, g) : � ∈ Sn and

e(c,
∏
j∈[n]

gPj(x)yj ) = e(d,
∏
j∈[n]

gPj(x)y�(j))e(g, �) and ∃i ∈ [n] : bi ∕= a�(i)

]
≈ 0,

where we define c = gr
∏
i∈[n] g

ai
i and d = gs

∏
i∈[n] g

bi
i .

Let us first consider how A can be successful in producing the encoding [�] of a valid argument.
Suppose [�] is not part of the generic common reference string or output by the generic group oracle. In
that case, since [⋅] is a random permutation over G and g is a generator there is negligible probability of
e(c,

∏
j∈[n] g

Pj(x)yj ) = e(d,
∏
j∈[n] g

Pj(x)y�(j))e(g, �). We can therefore from now on assume [�] has been
generated by the generic group oracle at some point.

Now, let us as in the proof of Theorem 1 keep track of queries made byA and the corresponding polyno-
mials. We maintain two lists L = {(pi, �i)} and LT = {(pi,T , �i,T )} containing pairs of the form (pi, �i) ∈
ℤp[X1, . . . , Xn, A, Y1, . . . , Yn, Z11, . . . , Znn] × ℤp, where �i, �i,T are values the oracle has given to A. At
first the lists are initialized as follows L = {(1, �1), (X1, �2), (X2, �3), . . . , (Xn−1Znn, �2n3+n2+n+2)} and
LT = ∅, where �1, . . . , �2n3+n2+n+2 are the values from the generic common reference string. The list



L thus starts out by containing the polynomials used in the exponents when generating a common ref-
erence string and matching random encodings of those group elements. Upon input (mult, �i, �j) giving
answer � the extractor appends (pi + pj , �) to L unless it has already been stored in L. Inputs of the form
(multT , �i,T , �j,T ) are treated similarly using the list LT . On input (pair, �i, �j) giving response �T it ap-
pends (pipj , �T ) to LT unless such a tuple already exists.

Consider now the polynomial �(X1, . . . , Znn) for the adversary’s output [�]. If we have

(r +
∑
i∈[n]

aiXi)(
∑
j∈[n]

Pj(X)Yj) ∕= (s+
∑
i∈[n]

biXi)(
∑
j∈[n]

Pj(X)Y�(j)) + �(X1, . . . , Znn)

we will argue as in Theorem 1 that there is negligible chance of A being successful, i.e., there is negligible
chance that e(c,

∏
j∈[n] g

Pj(x)yj ) = e(d,
∏
j∈[n] g

Pj(x)y�(j))e(g, �) for the concrete values of x1, . . . , znn
chosen by the oracle. Since the generic oracle uses a random permutation to encode the group elements, we
can simulate it by picking random distinct values for each new polynomial generated during the queries to the
oracle. By the Schwartz-Zippel lemma, there is negligible probability of having a collision, i.e., two distinct
polynomials that evaluate to the same group elements for the oracle’s concrete choice of x1, . . . , znn. The
simulation is perfect conditioned on no such collision happening, and as the adversary gets no information
about x1, . . . , znn in the simulation there is negligible chance over the choice of x1, . . . , znn ← ℤ∗p for the
event e(c,

∏
j∈[n] g

Pj(x)yj ) = e(d,
∏
j∈[n] g

Pj(x)y�(j))e(g, �).
Remaining is the possibility that

(r +
∑
i∈[n]

aiXi)(
∑
j∈[n]

Pj(X)Yj) = (s+
∑
i∈[n]

biXi)
∑
j∈[n]

Pj(X)Y�(j) + �(X1, . . . , Znn).

Since �(X1, . . . , Znn) belongs to L, which can only grow by adding polynomials in L when the adversary
makes a (mult, �i, �j) query to the oracle, we have

�(X1, . . . , Znn) = �1 + �x1X1 + ⋅ ⋅ ⋅+ ��A+ ��x1AX1 + ⋅ ⋅ ⋅+ �x1x2X1X2 + ⋅ ⋅ ⋅�xn−1znnXn−1Znn,

for known coefficients �1, . . . , �xn−1znn ∈ ℤp.
Expanding (r +

∑
i∈[n] aiXi)(

∑
j∈[n] Pj(X)Yj) = (s +

∑
i∈[n] biXi)(

∑
j∈[n] Pj(X)Y�(j)) +

�(X1, . . . , Znn) on both sides gives us

∑
i∈[n]

aiP (X)Yi +

⎡⎣r ∑
j∈[n]

Pj(X)Yj +
∑
i∈[n]

∑
j∈[n]∖{i}

aiXiPj(X)Yj

⎤⎦
=

∑
i∈[n]

biP (X)Y�(i) +

⎡⎣s ∑
j∈[n]

Pj(X)Y�(j) +
∑
i∈[n]

∑
j∈[n]∖{i}

biXiPj(X)Y�(j) + �(X1, . . . , Znn)

⎤⎦ .
Since �(X1, . . . , Znn) has no elements of the form P (X)Yi, neither do any of the parts within the brackets.
We conclude that for the two polynomials to be equal, we must have bi = a�(i) for all i ∈ [n]. □

EFFICIENCY. Table 5 summarizes the cost of permutation arguments. We note that if we carry out many
permutation arguments, it is possible to pre-compute all the products

∏
j∈[n]∖{i} g

xiPj(x)yj to reduce the
number of multiplications. Similarly, it is possible to pre-compute

∏
i∈[n] g

Pi(x)yi . We have therefore ignored
these computational costs for the prover and verifier in Table 5.



Size of �perm Argument size Prover comp. Prover comp. {0, 1} Verifier comp. Verifier comp. N
n3 G 1 G 2n+ 2 E + n2 M 2 E + n2 M 3 P + n− 1 M N + 2 P + 2N E + Nn−N M

Table 5. Cost of permutation arguments.

9 Rotating Values between Commitments

Consider two sets of n commitments c1, . . . , cn and d1, . . . , dn, with openings ai1, . . . , ain, ri and
bi1, . . . , bin, si for i = 1, . . . , n. We can view these committed values as rows of two matrices A and B.
We will give an argument for the first column of B being the first column of A rotated one step up, the
second column of B being the second column of A rotates two steps up, the third column of B being the
third column of A rotated three step up, etc. Since a rotation of n steps corresponds to staying in place the
last column remains unchanged. In other words, we want to show that for all i, j we have bij = ai+j mod n,j .
This means each commitment di contains exactly one value from each of the commitments c1, . . . , cn and
vice versa.

We will split the argument into n separate arguments; one for each column. We now give an argument
for column k of B being equal to column k of A rotated k steps upwards.

Common reference string: � including �rot,k = ({gzik}i∈[n], {gxjzik}i,j∈[n],j ∕=k).
Statement: Commitments c1, . . . , cn, d1, . . . , dn ∈ G.

Prover’s witness: Openings {ri, ai1, . . . , ain}i∈[n] and {si, bi1, . . . , bin}i∈[n] so

∀i : ci = gri
∏
j∈[n]

g
aij
j and ∀i : di = gsi

∏
j∈[n]

g
bij
j and ∀i : bik = ai+k mod n,k.

Argument: Compute the argument as

� =
∏
i∈[n]

⎡⎣(gzik)ri(gzi+k mod n,k)−si
∏

j∈[n]∖{k}

(gxjzik)aij (gxjzi+k mod n,k)−bij

⎤⎦ .
Verification: Output 1 if and only if

∏
i∈[n]

e(ci, g
zik) = e(g, �)

∏
i∈[n]

e(di, g
zi+k mod n,k).

Theorem 9. The non-interactive argument described above has perfect completeness and perfect witness-
indistinguishability.



Proof. To argue perfect completeness, consider the three products of pairings the verifier has to compute.∏
i∈[n]

e(ci, g
zik) = e(g, g)

∑
i(ri+

∑
j aijxj)zik)

= e(g, g)
∑
i aikxkzike(g, g)

∑
i rizik+

∑
i

∑
j ∕=k aijxjzik .∏

i∈[n]

e(di, g
zi+k mod n,k) = e(g, g)

∑
i(si+

∑
j bijxj)zi+k mod n,k

= e(g, g)
∑
i bikxkzi+k mod n,ke(g, g)

∑
i sizi+k mod n,k+

∑
i

∑
j ∕=k bijxjzi+k mod n,k .

e(g, �) = e(g,
∏
i∈[n]

[(gzik)ri(gzi+k mod n,k)−si
∏

j∈[n]∖{k}

(gxjzik)aij (gxjzi+k mod n,k)−bij ])

= e(g, g)
∑
i(rizik−sizi+k mod n,k+

∑
j ∕=k(aijxjzik−bijxjzi+k mod n,k))

Since bik = ai+k mod n,k we have
∑

i∈[n] bikxkzi+k mod n,k =
∑

i∈[n] ai+k mod n,kxkzi+k mod n,k =∑
i∈[n] aikxkzik. Looking at the three pairings above we then get

∏
i∈[n] e(ci, g

zik) =
e(g, �)

∏
i∈[n] e(di, g

zi+k mod n,k) so the verification accepts the argument �.
Since g is a generator for G, there is exactly one argument � that will make the verification accept. By

the perfect completeness, all openings with bik = ai+k mod n,k give an accepting argument and therefore all
valid witnesses result in the same argument. □

Theorem 10. In the generic group model it is infeasible to find two sets of commitments with their respective
openings and a valid argument unless indeed the matrices A and B given by the commitments have the
property that column k of B is equal to column k of A rotated k step upwards.

Proof. We want to prove

Pr
[
(p,G,GT , e, g)← G(1�); ({ri, ai1, . . . , ain, si, bi1, . . . , bin}i∈[n], [�])← AO(p,G,GT , e, g) :∏
i∈[n]

e(ci, g
zik) = e(g, �)

∏
i∈[n]

e(di, g
zi+k mod n,k) and ∃i ∈ [n] : bik ∕= ai+k mod n,k

]
≈ 0,

where we define ci = gri
∏
j∈[n] g

aij
j and di = gsi

∏
j∈[n] g

bij
j .

Let us first consider howA can be successful in producing the encoding [�] of a valid argument. Suppose
[�] is not part of the generic common reference string or output by the generic group oracle. In that case, since
[⋅] is a random permutation over G and g is a generator there is negligible probability of

∏
i∈[n] e(ci, g

zik) =
e(g, �)

∏
i∈[n] e(di, g

zi+k mod n,k). We can therefore from now on assume [�] has been generated by the
generic group oracle at some point.

Now, let us as in the proof of Theorem 1 keep track of queries made byA and the corresponding polyno-
mials. We maintain two lists L = {(pi, �i)} and LT = {(pi,T , �i,T )} containing pairs of the form (pi, �i) ∈
ℤp[X1, . . . , Xn, A, Y1, . . . , Yn, Z11, . . . , Znn] × ℤp, where �i, �i,T are values the oracle has given to A. At
first the lists are initialized as follows L = {(1, �1), (X1, �2), (X2, �3), . . . , (Xn−1Znn, �2n3+n2+n+2)} and
LT = ∅, where �1, . . . , �2n3+n2+n+2 are the values from the generic common reference string. The list
L thus starts out by containing the polynomials used in the exponents when generating a common ref-
erence string and matching random encodings of those group elements. Upon input (mult, �i, �j) giving
answer � the extractor appends (pi + pj , �) to L unless it has already been stored in L. Inputs of the form



(multT , �i,T , �j,T ) are treated similarly using the list LT . On input (pair, �i, �j) giving response �T it ap-
pends (pipj , �T ) to LT unless such a tuple already exists.

Consider now the polynomial �(X1, . . . , Znn) for the adversary’s output [�]. If∑
i∈[n]

(ri +
∑
j∈[n]

aijXj)Zik ∕= �(X1, . . . , Znn) +
∑
i∈[n]

(si +
∑
j∈[n]

bijXj)Zi+k mod n,k,

we can argue as in Theorem 1 that there is negligible chance of A being successful, i.e., there is negligible
chance that

∏
i∈[n] e(ci, g

zik) = e(g, �)
∏
i∈[n] e(di, g

zi+k mod n,k) for the concrete values of x1, . . . , znn
chosen by the oracle. Since the generic oracle uses a random permutation to encode the group elements, we
can simulate it by picking random distinct values for each new polynomial generated during the queries to the
oracle. By the Schwartz-Zippel lemma, there is negligible probability of having a collision, i.e., two distinct
polynomials that evaluate to the same group elements for the oracle’s concrete choice of x1, . . . , znn. The
simulation is perfect conditioned on no such collision happening, and as the adversary gets no information
about x1, . . . , znn in the simulation there is negligible chance over the choice of x1, . . . , znn ← ℤ∗p for the
event

∏
i∈[n] e(ci, g

zik) = e(g, �)
∏
i∈[n] e(di, g

zi+k mod n,k).
Remaining is the possibility that∑

i∈[n]

(ri +
∑
j∈[n]

aijXj)Zik = �(X1, . . . , Znn) +
∑
i∈[n]

(si +
∑
j∈[n]

bjXj)Zi+k mod n,k.

Since �(X1, . . . , Znn) belongs to L, which can only grow by adding polynomials in L when the adversary
makes a (mult, �i, �j) query to the oracle, we have

�(X1, . . . , Znn) = �1 + �x1X1 + ⋅ ⋅ ⋅+ ��A+ ��x1AX1 + ⋅ ⋅ ⋅+ �x1x2X1X2 + ⋅ ⋅ ⋅�xn−1znnXn−1Znn,

for known coefficients �1, . . . , �xn−1znn ∈ ℤp.
Expanding

∑
i∈[n](ri+

∑
j∈[n] aijXj)Zik = �(X1, . . . , Znn)+

∑
i∈[n](si+

∑
j∈[n] bijXj)Zi+k mod n,k

on both sides gives us

∑
i∈[n]

aikXkZik +
∑
i∈[n]

⎡⎣riZik + ∑
j∈[n]∖{k}

aijXjZik

⎤⎦
=

∑
i∈[n]

bikXkZi+k mod n,k + �(X1, . . . , Znn) +
∑
i∈[n]

⎡⎣siZi+k mod n,k +
∑

j∈[n]∖{k}

bijXjZi+k mod n,k

⎤⎦ .
Neither �(X1, . . . , Znn) nor any of the parts within the brackets have elements of the form XkZik. We
conclude that for the two polynomials to be equal, we must have∑

i∈[n]

aikXkZik =
∑
i∈[n]

bikXkZi+k mod n,k.

This in turn implies bik = ai+k mod n,k for all i ∈ [n]. □

EFFICIENCY. We summarize the cost of the rotation argument in Table 6. In the NIZK argument for cir-
cuit satisfiability, we will typically be considering 2 sets of n commitments, where we want to make



a rotation argument for each of the n columns. The rotation argument has a structure that permits sig-
nificant batch-verification savings in this case, which we will now present. Suppose we have commit-
ments c11, d11, . . . , cnN , dnN and corresponding rotation arguments �11, . . . , �Nn, where �jk is the rota-
tion argument for column k between the sets c1j , . . . , cnj and d1j , . . . , dnj . The verifier picks at random
s1, . . . , sN , t1, . . . , tn ← [2ℓ] and verifies∏

i∈[n]

e(
∏
j∈[N ]

c
sj
ij ,

∏
k∈[n]

(gzik)tk) = e(g,
∏
j∈[N ]

∏
k∈[n]

�
sjtk
jk )

∏
i∈[n]

e(
∏
j∈[N ]

d
sj
ij ,

∏
k∈[n]

(gzi+k mod n,k)tk).

By the bilinear properties of the pairing, this corresponds to a “two-layer” batch-verification

∏
j∈[N ]

⎛⎝ ∏
k∈[n]

⎡⎣∏
i∈[n]

e(cij , g
zik)

⎤⎦tk⎞⎠sj

=
∏
j∈[N ]

⎛⎝ ∏
k∈[n]

⎡⎣e(g, �jk) ∏
i∈[n]

e(dij , g
zi+k mod n,k)

⎤⎦tk⎞⎠sj

,

with at most probability 21−ℓ of succeeding unless all of the Nn rotation arguments are valid.

Size of �rot,k Argument size Prover comp. Prover comp. {0, 1} Verifier comp. Verifier comp. N
One column n2 G 1 G n2 E n E + n2 − n M n+ 1 P 2 P + Nn E
n columns n3 G n G n3 E n2 E + n3 − n2 M n2 + n P 2n+ 1 P + 3Nn+ 2n2 E

Table 6. Cost of rotation arguments.

10 Circuit Satisfiability

We will now give a NIZK argument for Circuit Satisfiability. Without loss of generality, we will for simplic-
ity just consider circuits consisting of NAND-gates; the construction can be generalized to circuits contain-
ing a mix of different types of binary gates. Further, we will without loss of generality assume 3∣n and that
the circuit has exactly 1

3n
4 gates.

Common reference string: � = (gk, ck, �know, �prod, �perm, �rot,1, . . . , �rot,n).
Statement: Circuit C consisting of N = 1

3n
4 NAND-gates.

Prover’s witness: An assignment of values in {0, 1} to the input wires so the circuit outputs 1.
Argument:

1. Make commitments c1, . . . , c 1
3
n3 and d1, . . . , d 1

3
n3 to the inputs and commitments v1, . . . , v 1

3
n3 to

the outputs of the NAND-gates. We think of the gates as being numbered (i, j) ∈ [13n
3] × [n] and

the committed values aij , bij and uij correspond to the two inputs and the output of gate (i, j).
2. For each commitment give an argument of knowledge of the committed values as in Section 6.
3. For each commitment prove that all values belong to {0, 1}. This can be done by using the product

argument from Section 7, since a = a2 implies a ∈ {0, 1}.
4. Let (∗, . . . , ∗, a, ∗, . . . , ∗) we the values of the commitment containing the circuit’s output a. We

prove that the circuits output is a = 1 by using a product argument from Section 7 for the product
of (∗, . . . , ∗, a, ∗, . . . , ∗) and (0 . . . , 0, 1, 0, . . . , 0) being (0, . . . , 0, 1, 0, . . . , 0).



5. Prove that the committed values respect the NAND-gates. This can be done by using the product
argument from Section 7 and the homomorphic property of the commitment scheme, since uij =
¬(aij ∧ bij) if and only if 1− uij = aijbij , when aij , bij , uij ∈ {0, 1}.

6. Prove that the wires have been given consistent value assignments, i.e., for each wire all the com-
mitted values corresponding to this wire are the same. This argument is described in Section 10.1.

Verification: Return 1 if and only if all arguments are valid.

Theorem 11. The argument given above has perfect completeness and perfect zero-knowledge.

Proof. Perfect completeness follows from perfect completeness of the underlying arguments of knowledge,
products, permutations and rotations.

We now turn to proving perfect zero-knowledge. First we describe the simulator (S1, S2). S1 gen-
erates the common reference string correctly, but also outputs the trapdoor for the commitment scheme
tk = (x1, . . . , xn). The simulation algorithm S2 gets the circuit C, the common reference string � and the
commitment trapdoor tk as input. It creates a simulated argument as follows:

1. Make commitments c1, . . . , c 1
3
n3 and d1, . . . , dn and v1, . . . , v 1

3
n3 all containing 0 values. Use the trap-

door for the commitment scheme to compute openings of v1, . . . , v 1
3
n3 to 1 values.

2. For each commitment give an argument of knowledge of the committed values as in Section 6 as in the
real argument.

3. For each commitment prove that all values belong to {0, 1} using the product argument from Section 7
as in the real argument.

4. Using the trapdoor openings of the vi’s to 1 values, give an argument for the committed circuit output a
being 1 as in the real argument.

5. Using the trapdoor openings of the vi’s to 1 values use the product argument from Section 7 to prove
that the committed values respect the NAND-gates as in the real argument.

6. Prove that the wires have been given consistent value assignments, i.e., for each wire all the committed
values corresponding to this wire are the same. As in the real argument, we do that using the wire
consistency argument described in Section 10.1 and the argument goes through since all committed
values are 0.

The common reference string is generated in the same way by the simulator as in a real argument, so
to argue perfect zero-knowledge we just need to show that a simulated argument has the same probability
distribution as a real argument. Consider for that purpose the following hybrid argument where we get both
the trapdoor for the commitment scheme and the witness. First we commit to 0 in all commitments just as
the simulator, but then afterwards we use the trapdoor for the commitment scheme to find openings of the
commitments that correspond to the real inputs and outputs of the circuit and run the real prover algorithm
to generate the rest of the argument. By the perfect trapdoor property of the commitment scheme, it is
indistinguishable whether we first commit to the real values or whether we make trapdoor commitments
and then open them to the real values. The hybrid argument is therefore perfectly indistinguishable from a
real argument. On the other hand, the perfect witness-indistinguishability of all the underlying arguments
of knowledge, products and wire-consistency implies that the hybrid argument is perfectly indistinguishable
from a simulated argument. □

Theorem 12. In the generic group model, the argument above demonstrates knowledge of a satisfying wit-
ness for the circuit C.



Proof. By Theorem 4 there is an extractor that given the commitments, proofs of knowledge and a list of
the oracle queries and answers made by the adversary can extract openings of all commitments. If those
committed values are internally consistent with an honest prover’s argument using a real witness for the
circuit being satisfiable, then we will be able to deduce a witness for the circuit being satisfiable. What
remains is to prove that the committed values are indeed consistent with an honest argument.

According to Theorem 1 the commitments are binding, so we can talk about the opening of a com-
mitment without ambiguity. The argument contains a set of arguments showing that all the commitments
contain values a1, . . . , an so a2i = ai. By Theorem 6 this implies that all the committed values belong to
{0, 1}. Also, for the output wire a, there is an argument for a⋅1 = a. The next set of product arguments show
that for each set of n gates with input a1, . . . , an, b1, . . . , bn and outputs u1, . . . , un we have 1− ui = aibi.
This means the inputs and the outputs conform to the NAND-gates. Finally, there is an argument of wire
consistency that shows that for each wire, all the committed values corresponding to that wire are identical.
We conclude that the committed values do indeed represent a valid assignment of values to wires that make
the circuit output 1, so we have extracted a witness for the circuit’s satisfiability. □

ARITHMETIC CIRCUIT. In an arithmetic circuit with multiple outputs, the wires may contain any value in
ℤp. The circuit has a mix of addition and multiplication gates which each have two inputs and one output.
Some of the inputs and outputs may be fixed and specified in the statement. Without loss of generality, we
can assume each gate has at most one of the wires specified as part of the public statement since gates with
two specified wires are trivial and can be eliminated from the statement in a preprocessing step. We will
adapt the argument for circuit satisfiability to the case of arithmetic circuits with multiple outputs.

Common reference string: � = (gk, ck, �know, �prod, �perm, �rot,1, . . . , �rot,n).
Statement: CircuitC consisting of 1

3n
4 addition and multiplication gates and a specification of fixed values

for some of the inputs and outputs.
Prover’s witness: An assignment of values in ℤp to the unspecified wires so the circuit is consistent with

the specified inputs and outputs.
Argument:

1. Group the gates in six categories: addition with one specified input, addition with one specified
output, addition with no specified values, multiplication with one specified input, multiplication
with one specified output, multiplication with no specified values.
Without loss of generality, we assume the number of gates in each category is divisible by n. For
each block of n gates with specified inputs and each block of n gates with specified outputs we will
in the following use trivial randomness 0 in the commitment so it is easy to verify that the inputs and
outputs are as specified in the statement.

2. Make commitments c1, . . . , c 1
3
n3 and d1, . . . , d 1

3
n3 to the inputs and commitments v1, . . . , v 1

3
n3 to

the outputs of the gates. We think of the gates as being numbered (i, j) ∈ [13n
3] × [n] and the

committed values aij , bij and uij correspond to the two inputs and the output of gate (i, j).
For the addition gates, the randomizers are chosen so cidi = vi, which by the homomorphic property
of the commitment scheme implies aij + bij = uij .

3. For each non-trivial commitment give an argument of knowledge of the committed values as in
Section 6.

4. For each block of n multiplication gates, make a product argument for the corresponding commit-
ments as in Section 7.

5. Prove that the wires have been given consistent value assignments, i.e., for each wire all the com-
mitted values corresponding to this wire are the same. This argument is described in Section 10.1.



Verification: Return 1 if and only if all commitments with specified values are correct, for all addition gates
we have cidi = vi, and all arguments are valid.

Theorem 13. The argument given above has perfect completeness and perfect zero-knowledge.

Proof. Perfect completeness follows from perfect completeness of the underlying arguments of knowledge,
products, permutations and rotations.

We now turn to proving perfect zero-knowledge. First we describe the simulator (S1, S2). S1 gen-
erates the common reference string correctly, but also outputs the trapdoor for the commitment scheme
tk = (x1, . . . , xn). The simulation algorithm S2 gets the circuit C, the common reference string � and the
commitment trapdoor tk as input. It creates a simulated argument as follows:

1. As in the real argument, group the gates in six categories: addition with one specified input, addition
with one specified output, addition with no specified values, multiplication with one specified input,
multiplication with one specified output, multiplication with no specified values.
For each block of n gates with specified inputs and each block of n gates use trivial randomness 0 in
the commitment. Use the trapdoor opening property to compute an opening of these commitments to 0
values.

2. Make commitments c1, . . . , c 1
3
n3 and d1, . . . , dn and v1, . . . , v 1

3
n3 for blocks of unspecified values all

contain 0 values instead of inputs and outputs of the gates.
For addition gates, select the randomizers so cidi = vi. For triples involving a commitment to specified
values, this can be done by using the trapdoor opening of that commitment to 0.

3. For each commitment give an argument of knowledge of the committed values as in Section 6 as in a
real argument.

4. As in the real argument, use the product argument from Section 7 to prove that the committed values
respect the product gates. For triples involving a commitment to specified values, this may require using
the trapdoor opening of that commitment.

5. As in a real argument, use the technique described in Section 10.1 to prove that the wires have been
given consistent value assignments, i.e., for each wire all the committed values corresponding to this
wire are the same. This can be done by using the trapdoor openings to 0 values for the commitments to
specified values.

The common reference string is generated in the same way by the simulator as in a real argument, so
to argue perfect zero-knowledge we just need to show that a simulated argument has the same probability
distribution as a real argument. Consider for that purpose the following hybrid argument where we get
both the trapdoor for the commitment scheme and the witness. First we make all commitments just as the
simulator, but then afterwards we use the trapdoor for the commitment scheme to find openings of the
commitments that correspond to the real inputs and outputs of the circuit and run the real prover algorithm
to generate the rest of the argument. By the perfect trapdoor property of the commitment scheme, it is
indistinguishable whether we first commit to the real values or whether we make trapdoor commitments
and then open them to the real values. The hybrid argument is therefore perfectly indistinguishable from a
real argument. On the other hand, the perfect witness-indistinguishability of all the underlying arguments
of knowledge, products and wire-consistency implies that the hybrid argument is perfectly indistinguishable
from a simulated argument. □

Theorem 14. In the generic group model, the argument above demonstrates knowledge of an assignment
of values to the wires of the circuit C that is consistent with the specified values and the addition and
multiplication gates.



Proof. By Theorem 4 there is an extractor that given the commitments, proofs of knowledge and a list of
the oracle queries and answers made by the adversary can extract openings of all commitments. If those
committed values are consistent with an honest prover’s argument using a real witness for the circuit being
satisfiable, then we will be able to deduce a witness for the circuit being satisfiable. What remains is to prove
that the committed values are indeed consistent with an honest argument.

According to Theorem 1 the commitments are binding, so we can talk about the opening of a commit-
ment without ambiguity. The prover uses trivial randomness in commitments to specified values, so it can
be checked that they are correct. The argument contains commitments ci, di, vi for the addition gates such
that cidi = vi, which by the homomorphic property shows that the committed values respect the addition
gates. The product arguments show that the multiplication gates are respected. Finally, there is an argument
of wire consistency that shows that for each wire, all the committed values corresponding to that wire are
identical. We conclude that the committed values do indeed represent a valid assignment of values to wires
that is consistent with the gate sin the circuit and the specified values. □

10.1 Wire Consistency

A wire may appear several places in a circuit, both as an output of a gate and as input to other gates. If we
have committed values a1, . . . , an4 , a particular wire may be committed at indices i1, i2, . . . , ik. We will
describe and argument for all committed values to a wire being identical.

The idea in the argument is as follows, if � is a permutation that contains the cycle i1 → i2 → ⋅ ⋅ ⋅ →
in → i1, then if ai1 = a�(i1), . . . , aik = a�(ik) we can conclude that ai1 = ai2 = ⋅ ⋅ ⋅ = aik . Generalizing, if
� is a permutation that contain Hamiltonian cycles over the indices for each wire, then by proving that the
committed values satisfy a1 = a�(1), . . . , an4 = a�(n4) we show that each wire has been assigned the same
value in each place it appears in the commitments.

We will now describe how to argue committed values a1, . . . , an4 and b1, . . . , bn4 satisfy b1 =
a�(1), . . . , bn4 = a�(n4). In our construction, we will use the permutation argument from Section 8 which
can be used to show that two commitments c and d contain a publicly known permutation of each other’s
committed values. We will also use the rotation argument in Section 9. Observe, if we have two sets of n
commitments c1, . . . , cn and d1, . . . , dn, committing to two sets of n2 values a11, . . . , ann and b11, . . . , bnn,
we may combine n rotation arguments to demonstrate for all i, j ∈ [n] that bij = ai+j mod n,j . This implies
that the values have been distributed evenly using a permutation such that each commitment bi contains
exactly one value from each of c1, . . . , cn.

Consider first two sets of n commitments c1, . . . , cn, d1, . . . , dn to values a11, . . . , ann and b11, . . . , bnn.
We will use a Clos-network [Clo53] to give an argument for the two sets of committed values being permu-
tations of each other, for a publicly known permutation � ∈ Sn2 , i.e., for all i, j ∈ [n] we have bij = a�(ij).
Clos observed that all permutations of n2 elements can be obtained as follows. First divide the elements
into n blocks of n elements and permute the elements within each block. Next, distribute the elements in
each block evenly on n blocks, i.e., we get a new set of n blocks, each containing one element from each of
the previous blocks. Again permute the elements in each block. Once again, distribute the elements in each
block evenly on n blocks. Finally, permute the elements within this block to get the elements permuted in
the desired order.

To build a Clos-network for a permutation � ∈ Sn2 , we make 4 sets of n intermediate commitments
{c′i}i∈[n], {vi}i∈[n], {v′i}i∈[n], {d′i}i∈[n] and argue knowledge of their contents. Each commitment corre-
sponds to a commitment to a block of n values. We use the argument of a permutation within a commitment
to show that for all i ∈ [n] the pairs of commitments (ci, c′i), (di, d

′
i) and (vi, v

′
i) contain the same elements



just in permuted order. We use n rotation arguments to show that c′1, . . . , c
′
n and v1, . . . , vn contain values

a′11, . . . , a
′
nn and u11, . . . , u′nn so for all i, j ∈ [n] we have uij = ai+j mod n,j . Similarly, we use n rotation

arguments to show that v′1, . . . , v
′
n and b1, . . . , bn contain values u′11, . . . , u

′
nn and b′11, . . . , b

′
nn so for all

i, j ∈ [n] we have b′ij = u′i+j mod n,j . By using appropriately chosen intermediate permutations within the
commitments, this gives us bij = a�(ij) for i, j ∈ [n] as desired.

We will now use recursion to build a Clos-network for � ∈ Sn4 . Given two sets of n3 commitments
c1, . . . , cn3 and d1, . . . , dn3 to values a1, . . . , an4 and b1, . . . , bn4 and a publicly know permutation � ∈ Sn4

we can use a similar Clos-network argument, to demonstrate bi = a�(i) for i ∈ [n4]. Divide the n3 com-
mitment c1, . . . , cn3 into n2 groups of n commitments to n2 values and similarly for the n3 commitments
d1, . . . , dn. Using the Clos-network argument above for the case n2 we can give an argument of n2 values
being permuted within each set of n commitment. Using n3 rotation arguments, we can argue correctness
of an even distribution of n2 committed values within a group onto n2 different groups of commitments.
Repeating the Clos-network construction given above for n2 we now have an argument for two sets of n4

committed values satisfying bi = a�(i) for i ∈ [n4].
The argument for a known permutation of n4 committed values has perfect completeness and perfect

witness-indistinguishability because the underlying commitments are perfectly hiding and the underlying
arguments are perfectly witness-indistinguishable. The argument is sound in the generic group model, since
we prove knowledge of the contents of the commitments, the commitments are binding and the underlying
arguments for permutations within commitments and rotations of values between commitments are sound
in the generic group model according to Theorems 8 and 10.

11 Efficiency

THE COMMON REFERENCE STRING. The common reference string contains 2n3 + n2 + n + 2 group
elements as well as the description of the group. With L being the language of circuits that has ∣C∣ = 1

3n
4

gates this gives a common reference string with less than 5∣C∣3/4 group elements. Except for g all these
group elements require an exponentiation to be constructed, so the key generation does less than 5∣C∣3/4
exponentiations.

THE ARGUMENTS. We summarize the cost of the various arguments in Table 7. In the table, we only include
the dominant parts of the cost ignoring smaller additive factors. This is done under the assumptions thatN ≥
n2 and n ≥ �. Our arguments are well-suited for the use of multi-exponentiation techniques [Pip80,Lim00],
and n ≥ � implies that n multiplications is cheaper than 1 exponentiation or pairing. We have ignored the
cost of exponentiations and pairings when the cost is dominated by the cost of the multiplications.

Argument size Prover comp. Prov. comp. {0, 1} Verifier comp. Ver. comp. N
Commit 1 G n E n M - -
Knowledge 1 G n E n M 2 P 2N E
Product 1 G n2 E n2 M 3 P N P + 2N E
Permutation 1 G n2 M n2 M n M Nn M
Rotation (one column) 1 G n2 E n2 M n P Nn E
Rotation (n columns) n G n3 E n3 M n2 P 3Nn E

Table 7. Cost of arguments.



CIRCUIT SATISFIABILITY. The non-interactive argument for circuit satisfiability requires the construction
of n3 commitments together with their n3 corresponding arguments of knowledge. It contains n3 product
arguments to show that each gate’s inputs and output are 0 or 1. Moreover, it has 1

3n
3 product arguments that

show that the inputs and outputs satisfy the NAND-gates. The main bulk of effort is in the argument for wire
consistency. This argument for a permutation over n4 committed values requires 16n3 new commitments,
16n3 corresponding arguments of knowledge, 9n3 permutation arguments, and 8n3 rotation arguments.
Adding up these parts gives a total of 17n3 commitments, 17n3 arguments of knowledge, 11

3n
3 product

arguments, 9n3 permutation arguments and 8n3 rotation arguments. The 8n3 rotation arguments can be
divided into 8n2 rotation arguments for n columns. Using Table 7 and ∣C∣ = 1

3n
4 we get the cost of arguing

circuit satisfiability listed in Table 8.

ARITHMETIC CIRCUIT. The non-interactive argument for arithmetic circuits requires the construction of n3

commitments with their corresponding arguments of knowledge. There may be up to 1
3n

4 multiplication
gates for a cost of 1

3n
3 product arguments. Add this to the cost of the wire-consistency argument, we get a

total cost of up to 17n3 commitments, 17n3 arguments of knowledge, 1
3 product arguments, 9n3 permutation

arguments and 8n2 arguments for n columns. Using Table 7 and ∣C∣ = 1
3n

4 we get the cost in Table 8 of
arguing the arithmetic circuit is consistent with the specified values.

CRS size CRS comp. Argument size Prover comp. Verifier comp.

Circuit satisfiability 5∣C∣
3
4 G 5∣C∣

3
4 E 120∣C∣

3
4 G 73∣C∣

5
4 M 27∣C∣ M

Arithmetic circuit 5∣C∣
3
4 G 5∣C∣

3
4 E 117∣C∣

3
4 G 33∣C∣

5
4 E 27∣C∣ M

Table 8. Cost of arguments.

12 Conclusion

We have proposed sub-linear size NIZK arguments with perfect completeness, perfect zero-knowledge and
computational (co-)soundness in the common reference string model. Our construction directly yields a
Zap with perfect completeness, perfect witness-indistinguishability and computational (co-)soundness in
the plain model, where the verifier’s first move consists of picking a verifiable common reference string for
the NIZK argument. The NIZK argument is highly efficient to verify, matching state-of-the art interactive
zero-knowledge arguments. The prover uses super-linear computation, but since the NIZK arguments are
transferable this trade-off may be acceptable in cases where communication is expensive or when each
NIZK argument has to be verified by many verifiers.

Abe and Fehr [AF07] showed that NIZK arguments with perfect zero-knowledge do not have a “direct
black-box” reduction to a standard intractability problem. We do therefore not expect that the security of
our NIZK argument can be reduced to a standard intractability assumption. The co-soundness of our NIZK
argument, however, is a standard “q-style” assumption about the bilinear group used in the NIZK argument.
We leave it as an interesting open problem to construct a sub-linear size co-sound NIZK argument from a
simpler intractability assumption.
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