Untraceable Tags based on Mild Assumptions*

Carlo Blundo, Angelo De Caro, and Giuseppe Persiano
Dipartimento di Informatica ed Applicazioni, Universita di Salerno, Italy

Monday 3¢ August, 2009

Abstract

Radio frequency identification (RFID) chips have been widely de-
ployed in large-scale systems such as inventory control and supply chain
management. While RFID technology has much advantage, however it
may create new problems to privacy. Tag untraceability is a significant
concern that needs to be addressed in deploying RFID-based system.

In this paper we propose a new construction for untraceable tags.
Our construction is the first construction in the symmetric bilinear
setting based on a mild assumption. That is our assumption is tau-
tological in the generic group model and is “efficiently falsifiable” in
the sense that its problem instances are stated non-interactively and
concisely (i.e., independently of the number of adversarial queries and
other large quantities).

1 Introduction

RFID [4] and NFC [9] are the de-facto technology for storing small amount
of data on devices that can be read without physical contact. It is expected
that everyday objects will be tagged with small components which are used
to carry information to identify the object. For example, the garnment
industry plans to use RFID tags for the management of post-sale services.
Obviously, it is expected that encryption is used for storing information on
the tag so that only legitimate users can access the stored data. Encryption
though does not solve all problems and we are interested in privacy issues
associated with RFID tags. Specifically, RFID tags can be read by anyone

*The work of the authors has been supported in part by the European Commission
through the FP7 Information Communication Technologies programme, under Contract
FET-215270 FRONTS (Foundations of Adaptive Networked Societies of Tiny Artefacts).

and the string stored on a tag, even though it is a ciphertext, can be used
to trace the tag and, in the case the tag is attached to a personal object, to
trace the owner of the tag.

We thus envision a system in which the environment helps in alleviat-
ing this problem: as tags move in the environment they are read by special
devices called the randomizers which provide the following service: every-
time a randomizer reads a tag carrying a ciphertext, the ciphertext is re-
randomized; that is, a new ciphertext carrying the same cleartext is com-
puted. This can be easily achieved if the randomizers are trusted with the
secret keys: just decrypt the ciphertext to obtain the cleartext and then
encrypt the cleartext using fresh randomness. In some applications though
this is a very strong trust assumption: even if one of the randomizers is
corrupted then all privacy is lost. We thus look at the problem of designing
special encryption schemes that support re-randomization; that is, given a
ciphertext Ct carrying cleartext M, it is possible to produce a new cipher-
text Ct’ carrying the same cleartext M, even if the decryption key is not
available.

The El-Gamal encryption scheme. A simple variation of the El-Gamal
encryption scheme is known to be re-randomizable [5], but it is of limited
applicability. Let us review the re-randomizable version of the ElGamal
encryption scheme.

Let p be a large prime and let g be a generator of Zy. The public key
for the ElGamal encryption scheme consists simply of an element y € Zj
and the associated secret key is x € Zj such that y = g* (all operations are
in Zy). In the encryption scheme rElGamal (the re-randomizable version of
the ElGamal encryption scheme), to encrypt message M € Zy, one selects
7,8 € Z at random and computes the pair (¢", My", g°,4°). The plaintext
associated to ciphertext Ct = (Cy, C1, Uy, Ur) is recovered by computing
C1/C§, where x is the secret key. The re-randomization procedure takes a
ciphertext Ct = (Co, C1, Uy, Ur), selects t,t' € Zj at random and returns
Ct = (Cp - UL, Cy - UL UE U Tt is easy to see that if Ct is a ciphertext
for cleartext M then Ct is a uniformly distributed ciphertext for the same
cleartext M. Also notice that the re-randomization procedure does not
need to know neither the public key nor the secret key associated with the
ciphertext Ct.

Suppose now that we want to store message M on a tag and suppose
we use rElGamal to encrypt M before actually storing on the tag. Unfor-
tunately, an adversary A that wants to trace a tag has a very simple and

successful strategy. A simply generates a pair of public/secret key (ya,z.4)
for rEIGamal and writes a random message M 4 on the tag T4 that he wants
to trace by computing ciphertext Ct4 for public key y 4. Notice that every-
time T4 is re-randomized by the randomizers, message M 4 is not affected.
Thus to check that a given tag T is actually T4, A can simply try to decrypt
the stored ciphertext and if the decryption gives back M4 then with very
high probability A can conclude that he is in presence of T 4.

We notice that rElGamal can still be used in the scenario in which writing
on the tag can be selectively disabled by the owner. That is, the owner of
the tag enables writing on the tag when in presence of trusted randomizers
and disables writing if he is in an untrusted environment.

The scenario. In this paper, we consider the more challenging scenario
in which writing on a tag cannot be selectively disabled. Obviously, in this
scenario, an adversary A can destroy the content of a tag T' by overwriting
its content. We will guarantee though that A cannot trace tag T even in
this case.

We have three types of honest players:

1. The Central Authority CA that publishes some public information Pub
and issues a pair of private and secret keys to each authorized player.

2. The players that receive a public and secret key from the CA and use
the keys to encrypt and decrypt messages that are stored on tags.

3. The randomizers that receive tags and randomize the ciphertexts stored
on the tags. The randomization procedure changes the ciphertext but
not the cleartext stored on the tag.

Notice that the role of the CA is necessary: if users could generate keys by
themselves then the it would not be possible to prevent attacks similar to
the one we have discussed for the rElGamal encryption scheme.

In this paper we give a construction for untraceable tags. We split the
presentation in two parts. In Section [d we present a tag system that is secure
against adversaries that can only read tags. Building on the construction
of Section [4] in Section [5] we present out main result, a tag system that is
secure against adversaries that can write on tags.

Previous work. In [I], a construction for an untraceable tag system was
proposed. The security of the construction of [I] is based on a stronger
version of the LRSW assumption introduced by Lysyanskaya et al. [6]. The

strong LRSW assumption does not hold for symmetric bilinear mapping.
Specifically, the construction of [I] requires the existence of three groups
G1, Go, Gy such that no morphism between G; and Go exists and of a bi-
linear mapping e : Gy x Go — Gp. This is called the asymmetric bilinear
setting. If one tries to use the construction of [I] in the symmetric bilinear
setting then, as it is easily seen, tags become traceable. Our construction
instead is in the symmetric bilinear setting. In [I] the authors state that in
the full version of their paper they will show a construction of the symmetric
bilinear setting. To the best of our knowledge such a full version was never
published.

Moreover, our construction is based on a mild assumption in the sense of
[2]. That is our assumption is tautological in the generic group model [I1]
and is “efficiently falsifiable” [§] in the sense that its problem instances are
stated non-interactively and concisely (i.e., independently of the number of
adversarial queries and other large quantities). In contrast, the assumption
used to prove the security of the construction in [I] is stated in an interactive
way.

2 The model

We start by defining the notion of a tag system and then define its security
properties. We consider quintuples of algorithms (GenPub, GenKey, rEnc,
rDec, Randomize) with the following intended meaning.

1. GenPub(1%) is executed by the CA. It takes as input the security
parameter k and returns the public information Pub, the randomizing
information rPub, and the master secret key Msk.

2. GenKey(Pub, Msk) is executed by the CA to generate the secret key of
a player. It takes as input the public information Pub and the master
secret key Msk and returns the public key Pk and the secret key Sk.

3. rEnc(Pub, Pk, M) is executed by a player to encrypt a message M to
be written on a tag. It takes as input the public information Pub, the
public key Pk of the user for which the message is encrypted, and the
message M and returns the ciphertext Ct.

4. rDec(Pub, Sk, Ct) is executed by a player to decrypt a ciphertext Ct.
It takes as input the public information Pub, the secret key Sk of the
user, and the cipheretext Ct and returns the cleartext M.

5. Randomize(Pub, rPub, Ct) is executed by the randomizers to randomize
ciphertexts. It takes as input the public information Pub, the random-
izing information rPub, and a ciphertext Ct that encrypts a message
M for public key Pk and returns a new ciphertext Ct* that encrypts
message M for Pk. We stress that M, Pk, and the secret key Sk are not
given as input to Randomize.

In a typical scenario, the players are manufacturers that attach tags to con-
sumer goods. They obtain their pair of private and secret key from the CA
and use the encryption algorithm rEnc to store information regarding the
good on the tag. We envision randomizers being present in the physical en-
vironment were the end user lives. Finally, the decryption algorithm rDec is
used by the manufacturer to recover the information written on the tag when
the end user requires assistance (or maintenance) from the manufacturer.

Definition 2.1 A tag system is a quintuple of algorithms (GenPub, GenKey,
rEnc, rDec, Randomize) such that for any ¢ = poly(k),

Prob[(Pub, rPub, Msk) « GenPub(1%); (Pk, Sk) « GenKey(Pub, Msk);
Cto < rEnc(Pub, Pk, M);
Ct; <« Randomize(Pub, rPub, Cty);

I

Ct; < Randomize(Pub, rPub, Ct;_1); M’ « rDec(Pub, Sk, Ct;) : M = M’]

We next define the security properties of a tag system. We start from
semantic security.

2.1 Semantic security

Consider the following experiment with an adversary .A.

SSExp 4(1F)
1. (Pub, rPub, Msk) « GenPub(1%).
(Pk, Sk) «— GenKey(Pub, Msk).
Run A on input Pub and Pk and obtain messages Mg, M.
Toss a random coin 1 € {0,1} and compute Ct = rEnc(Pub, Pk, M,)).
Run A on input Ct and let i’ be its output.
If n =7 then return 1 else return 0.

A ol A

In SSExp 4 the adversary A selects two strings of his choice, My and M;.
Then, one of the strings is picked at random, it is encrypted and given to
the adversary. We require that the adversary is not able to guess which of
the two string has been encrypted.

Definition 2.2 A tag system (GenPub, GenKey, rEnc, rDec, Randomize) is
semantically secure if for all probabilistic polynomial-time algorithms A we

have that

Prob[SSExp 4(1%) = 1] —%

1s negligible in k.

2.2 Weak untraceability

Next we define the notions of untraceability for a tag systems. We start
with the notion of weak untraceability and then present our notion of strong
untraceability.

For defining the notion of weak untraceability we use the following ex-
periment.

WUExp 4(1F)
1. (Pub, rPub, Msk) < GenPub(1%).
(Pko, Sko) < GenKey(Pub, Msk) and (Pkj, Sk;) < GenKey(Pub, Msk).
Run A on input Pub, Pkg and Pk; and obtain messages Mg, M.
Compute Cty = rEnc(Pub, Pkg, Mg), Ct; = rEnc(Pub, Pk, My).
Toss a random coin 7 € {0,1} and compute
Ct* = Randomize(Pub, rPub, Ct,)).
6. Run A on input Cty, Ct;, Ct* and let 1 be its output.
7. If n =1/ then return 1 else return 0.

Uk N

In WUExp 4 the adversary A selects two strings of his choice, My and M.
Both strings are encryped using different public keys (namely, Pky and Pk;)
obtaining the ciphertexts Ctg and Cty, respectively. Then, one of the cipher-
texts is picked at random, it is re-randomized and given to the adversary
along with Ctg and Ct;. We require that the adversary is not able to guess
which of the two ciphertexts (i.e, tags) has been re-randomized.

Definition 2.3 A tag system (GenPub, GenKey, rEnc, rDec, Randomize) is
weakly untraceable if for all probabilistic polynomial-time algorithms A we
have that

Prob| WUExp 4(1F) = 1] — 3

1s negligible in k.

We remark that weak untraceability protects against adversaries that can
only read tags and not write on tags. Thus it is a very weak notion and

cannot be applied to our scenario of interest. In Section [4] we will give a
construction of a weakly untraceable tag system which constitutes the basis
for our construction of a strongly untraceable tag system.

2.3 Strong untraceability

Next we define the notion of a strongly untraceable tag system and for this
we need the following experiment.

SUExp 4(1%)

1. (Pub, rPub, Msk) < GenPub(1%).
(Pk, Sk) <« GenKey(Pub, Msk).
Run A on input Pub and Pk and obtain strings Ctg and Ct;.
Set Ct; < Randomize(Pub, rPub, Ctg) and

Ct} < Randomize(Pub, rPub, Ct;).

If Cty =L or Ct] =L then return 0.
Toss a random coin 7 € {0, 1}.
Run A on input Ct and let ' be its output.
If n =7 then return 1 else return 0.

N

x>

Essentially in SUExp 4 the adversary A selects two strings of his choice,
Ctp and Ct;. Then both strings are re-randomized and, if the procedure
is successful on both of them, then one is picked at random and given to
the adversary. We require that the adversary is not able to guess which of
the two tags has been re-randomized. Notice that if the adversary selects
the two strings so that the randomization procedure fails (that is, it out-
puts the special failure symbol 1) on exactly one of them, then traceability
is unavoidable. We disallow this case by having the experiment return 0
(meaning that the adversary failed).

Observe also that the two strings Ctg and Ct; need not to be well-formed
ciphertexts with respect to Pk but still the randomization procedure could
be successful. However that if they both are well-formed ciphertexts then
we are actually executing experiment WUExp 4. This implies that strong
untraceability is stronger than weak untraceability (as one would expect).

Definition 2.4 A tag system (GenPub, GenKey, rEnc, rDec, Randomize) is
strongly untraceable if for all probabilistic polynomial-time algorithms A we

have that .
Prob[SUExp 4(1%) = 1] — 3

1s negligible in k.

2.4 Strong semantic security

We observe that the notion of semantic security does not make any security
guarantee with respect to randomizers. In other words, randomizers are
assumed to be trusted. If this is the case, then we have a very simple and
direct construction of strongly untraceable tag systems. Roughly speaking,
the randomizer decrypts the ciphertext and re-encrypts it using fresh ran-
domness. If instead randomizers cannot be assumed to be trustful, then we
require semantic security to hold also with respect to randomizers.

SSSExp 4(1%)

1. (Pub, rPub, Msk) < GenPub(1%).
(Pk, Sk) «— GenKey(Pub, Msk).
Run A on input Pub, Pk and rPub and obtain messages Mg, M.
Toss a random coin 1 € {0,1} and compute Ct = rEnc(Pub, Pk,M,)).
Run A on input Ct and rPub and let 7' be its output.
. If n = 1/ then return 1 else return 0.

A ol S

Experiment SSSExp 4 differs from SSExp 4 in that in the former the ad-
versary is given access to the re-randomizing information rPub and so it
correctly models security against randomizers.

Definition 2.5 A tag system (GenPub, GenKey, rEnc, rDec, Randomize) is
strongly semantic secure if for all probabilistic polynomial-time algorithms
A we have that

1
‘Prob[SSSEpr(lk) =1]-3
1s negligible in k.

Finally, we have

Definition 2.6 A quintuple of algorithms (GenPub, GenKey, rEnc, rDec,
Randomize) is an untraceable tag system if it is strongly untraceable and
strongly semantic secure.

3 Background on bilinear groups

The symmetric bilinear setting. We have multiplicative groups G and
G of prime order p and a non-degenerate pairing function e : G x G — Gr.
That is, for all g € G, e(g,g) # 1 and e(g%, ¢°) = e(g, g)?*. We denote by
g and e(g, g) generators of G and Grp, respectively. We call a symmetric
bilinear instance a tuple Z = [p, G, Gr, g, €] and assume that there exists an

efficient generation procedure G that, on input 1%, outputs an instance with
p| = O(k).

In our constructions we make the following hardness assumptions.

Bilinear Decision Diffie-Hellman Given a tuple [Z, g*, g*2, ¢*3, Z] for
random exponents zi, 22,23 € Zj it is hard to distinguish between Z =
e(g,9)**** and a random Z from Gp. More specifically, for an algorithm
A we define experiment BDDHExp 4 as follows.

BDDHExp™ (1%)

01. Choose instance T = [p,G,Gr, g, €] running G with security parameter 1¥;
02. Choose z1, 22, 23 € Zjp at random;

03. Choose n € {0,1} at random;

04. if n = 1 then choose z € Z, at random

05. else set z = z12923;

06. Set Zy = g™, Zy = g*2,Z3 = ¢*® and Z = e(g, 9)*;

07. Let 0 = A(Z, Z1, 22, Z3, Z);

08. if » =7 then return 1 else return 0;

Assumption 3.1 (Bilinear Decision Diffie-Hellman (BDDH)) For all
probabilistic polynomial-time algorithms A,

Prob[BDDHExpA(1%) = 1] — 1/2

1s negligible in k.

Decision Linear. Given a tuple [¢*!, g*2, g*'1%3, g*2* Z] for random ran-
dom exponents 21, z2, 23, 24 € Zy it is hard to distinguish between Z = g+
and a random Z from G. More specifically, for an algorithm A4 we define
experiment DLExp 4 as follows.

DLExp™(1%)

01. Choose instance T = [p, G, g, €] running G with with security parameter 1%;
02. Choose z1, 22, 23, 24 € Zp at random;

03. Choose n € {0,1} at random;

04. if n =1 then choose z € Z, at random

05. else set z = z3 + 24;

06. Set Zy = g™, Zy = g*2, Z13 = g*1%3, Zoy = g%, and Z = ¢7;

07. Let 7’]/ :.A(I, Zl,ZQ,Zlg,Z24,Z);

08. if n =17 then return 1 else return 0;

Assumption 3.2 (Decision Linear (DL)) For all probabilistic polynomial-
time algorithms A,

Prob[DLExpA(1%) = 1] — 1/2
1s negligible in k.
Note that Symmetric Decision Linear implies Symmetric Decision BDDH
and the Symmentric Decision Linear assumption has been used in [2].
4 A first construction
In this section we present our construction of a tag system
Tag = (GenPub, GenKey, rEnc, rDec, Randomize)
and then we show that it is semantically secure and weakly untraceable.

4.1 The construction

Procedure GenPub(1¥). We now describe the procedure GenPub used by
CA to generate the public information Pub, the re-randomizing information
rPub and the master secret key Msk.

1. Run G(1%) to select a random bilinear instance Z = [p, G, Gr, g,] with

lp| = ©(k).
2. Pick t1,t2,t3,w, € Z; and go, g1 € G at random.
3. Set

0= e(gag)Wt1t2t37 Tl = gtla T2 = gt2> T3 = gt3 .

4. Set
PUb:[Za go, 91, Qa Ty, To, T3]7

rPub = (), and
Msk = (tl, to, t3, w).
5. Return [Pub, rPub, Msk].
Procedure GenKey(Pub,Msk). We now describe the procedure used by
CA to generate the pair of public and secret key.

1. Pick r € Z,, at random.
2. Set Pk = gog].

10

3. Set -
DO — grt1t2t37 l)1 — g—wt1t3 Pk*T 1 37

D2 — g_U)tth Pk—Tt1t27 D3 — g—wtztg Pk—Ttgtg

4. Set
Sk = [Dy, D1, D3, D3).

5. Return [Pk, Sk].

Procedure rEnc(Pub, Pk,M). We first describe the basic encryption pro-
cedure E(Pub, Pk, M) that takes as input the public parameters Pub, the
public key Pk, and a cleartext M € Gp. Then, we describe the randomizable
encryption procedure rEnc in terms of E.

E(Pub, Pk, M) is computed by picking s, s1, s2 € Z, at random and set-
ting

C'=Q°-M, Coy=Pk’, Ci=T15, Co=T3 7% C3=17"

E(Pub, Pk, M) returns [C’, Cy, C1, Ca, C3).

We will use the writing C' = E(Pub, Pk, M; s, s1,s2) to denote the ci-
phertext computed using s, s; and s2 as random choices. rEnc(Pub, Pk, M)
simply computes

C = E(Pub,Pk,M) and U = E(Pub, Pk, 1)

and returns [C, U].

Procedure rDec(Pub, Sk, Ct). As for the encryption procedure we first de-
scribe the basic decryption procedure D(Pub, Sk, C'). Let C' = [C’, Cy, C1, Ca, Cs]
be a ciphertext. Then D(Pub, Sk, C') returns

C' - e(Cy, Dy) - €(C1, D1) - €(Ca, D) - (Cs, Ds).

Simple algebra shows that if, (Pk,Sk) are a pair of public and secret keys
output by GenKey(Pub, Msk) and C' = E(Pub, Pk, M) then D(Pub, Sk,C) =

11

M. Indeed, we notice that

e(C(),Do) = e(Pks,grtthtS)
— 6(97 Pk)?“t1t2t38

e(ClaDl) = egt252 —wtitzpl— rtltg)

@

) ’wt1t2t382 . 6(97 Pk)—TtthtBSQ

o]

9,9
e(CQ,DQ) = gt 5—81—52) g—wtthPkfrtltg)
= 9,9

wtltztg(s S1— 82) . e(g7pk)77't1t2t3(8781782)

|
o

)
gtlsl —witats Pk Tt2t3)

e(Cg,Dg) = €
— g,9) ’wt1t2t381 . e(g7pk)77't1t2t381

\
o

(
(
(
(
(
(

and thus

e(Co, Do) - e(Cy, D1) - €(Ca, D3) - e(Cs, D3) = e(g, g) 1285 = 5,
Hence,

C'-e(Cy, Dy) - e(C1,D1) - e(Cy, Do) - e(C3,D3) = Q°-M-Q7° = M.

The randomizable decryption algorithm rDec(Pub, Sk, Ct) with Ct = [C, U]
simply returns D(Pub, Sk, ().

Procedure Randomize(Pub, rPub, Ct). We now describe procedure Randomize
used to randomize a ciphertext.

A ciphertext Ct = [C, U] for key Pk is composed of a basic encryption
C of M € Gr and of a basic encryption U of 1 € Gp. Notice that C' - U
(component-wise multiplication) is a new valid basic encryption of M w.r.t.
key Pk. Moreover let U = [U’, Uy, Uy, Us, Us] be a basic encryption of 1
w.r.t. key Pk. Then, for random r,r3,rs € Zj,

U* = [U",Ug, Ui Ty?, Us T*, U Ty 7]

is a randomly distributed encryption of 1 w.r.t. the same key. Therefore,
to randomize Ct = (C,U) we compute (C,U**) where C = C - U* and
U** = (U*)*; that is, we apply the randomization of U twice and use the
intermediate result U* to randomize C. Notice that we do not need to know
the public key for which C is intended.

4.2 Semantic security

In this section we prove the following lemma.

12

Lemma 4.1 Assume the BDDH assumption. Then tag system Tag is se-
mantically secure.

PROOF. Suppose that there exists a probabilistic polynomial-time algo-
rithm A for which

Prob[SSExp 4(1%)] > 1/2 + 1/poly(k),

for some polynomial poly. Then, the following probabilistic polynomial-time
algorithm B breaks BDDH.

1. B receives the tuple [Z, g%, g*2, 9%, Z], for random z1, 29, 23, and has
to decide whether Z = e(g, g)***2*3 or Z is random in Grp.

2. B picks z,y,t1,t2,t3 € Z;, at random and sets

go=21"¢Y, g1=21, Q=e(Zy,Z)""",
Tl - gt17 T2 = gt27 T3 = gt3
and
Pk = gog7 .

After this step Pub and Msk are implicitly defined. Indeed, Q =
e(Z1, Zo)1t2!3 implictly sets w = 2129. Notice that Pub has the same
distribution as the public information given as output by GenPub(1%).
Moreover, setting Pk = gog{ implies that Pk is a random element of
G as gogi = ¢".

3. B runs A on input Pub and Pk and receives Mgy, M. Then, B picks
be{0,1} and s, 59 € Zy, at random and computes

C' = Zhtts .My, Co = Z§, C1 =137,
Cy=ZBTy5 7%, Cy =T

Finally, B sets C = [C’, Cy, C1, C2, C3] and runs A on input Ct = [C, U]
where U is a random encryption of 1 for Pk and receives b’ as output.

4. If b =t then B guess that Z = e(g, g)*'*2*% otherwise it guess that Z
is random.

Observe that if Z = e(g, g)***2* we have that C' = E(Pub, Pk, My; z3, s1, s2).
Indeed, we have

C' = 71" My = e(g, g)* 2120 - My, = e(Z1, Z2)" 0 - My, = Q% - My,

13

and
Co=7§=g" =Pk® and Cp=ZPT;" "2 =T7 "7,

Therefore A will guess b correctly with probability at least 1/2 + 1/poly(k),

On the other hand, if Z is random then C’ is independent of b and thus
A will guess b correctly with probability at most 1/2. This implies that B
breaks the BDDH assumption. O

4.3 Weak untraceability

To prove weak untraceability we show that under the Decision Linear as-

sumption, if we apply the randomization procedure to any ciphertext Ct =

[C, U] we obtain a tuple that is indistinguishable from a random tuple chosen

from (G7 x G x G x G x G)2. We observe that it is actually enough to prove

that for any basic encryption U = [U’, Uy, Uy, Us, Us] of 1 the tuple U** is

indistinguishable from a tuple chosen at random from Gy x G x G x G x G.
We proceed in two steps.

The first step. We prove that the following two distributions are indistin-
guishable under the BDDH. For any M € Gy, define distribution Dist(1¥)
as follows:

Disto(1%) = {(Pub, rPub, Msk) « GenPub(1¥);
(Pk, Sk) «— GenKey(Pub, Msk);
U « E(Pub, Pk, 1);
C « E(Pub, Pk, M);
[C,U**] — Randomize(Pub, rPub, [C,U]) : (Pub, U, U**)}

while, distribution Dist; (1¥) is defined as follows:

Dist; (1%) = {(Pub, rPub, Msk) « GenPub(1¥);
(Pk, Sk) <« GenKey(Pub, Msk);
U «— E(Pub, Pk, 1);
r, 8 12,13 — Lp;

U* = [UL UTTS? USTS UST, 27" + (Pub, U, U*)}

In the definition of Dist; we have denoted by 2,17, T, T3 the components of
Pub and by U’, Uy, Uy, Uy, U3 the components of U. Notice that if we write
U as U = E(Pub, Pk, 1; s, s1, s2) then we have

/ 51— o —
U* — [QTS , PkTS,T27'82+T27T§'(S S1 52)+7’3’T17'81 79 Tg}.

14

That is, U* is a ciphertext for a random element of G for public key Pk
(specifically, U* is an encryption of Q*'~"%). Thus, indistinguishability of
Distg and Dist; can be argued by a reasoning similar to the one employed
to prove semantic security.

The second step. We prove that, under the Decision Linear assumption,
distributions

Disto(1%) = {(Pub, rPub, Msk) « GenPub(1¥);
(Pk, Sk) «— GenKey(Pub, Msk);
U «— E(Pub, Pk, 1);
s, 8 1o, 13 — Lp;
U* = [Q°, Pk, Ty?, T53, T "27"3] : (Pub, U, U*)}

and

Dist3(1%) = {(Pub, rPub, Msk) « GenPub(1¥);
(Pk, Sk) <« GenKey(Pub, Msk);
U — E(Pub, Pk, 1);
s,8' 11,19, 13 — Lp;

U* = [Q°,Pk®, T32, T33, T]"] : (Pub, U, U*)}

are indistinguishable. Notice that Disty is just a re-writing of Dist; and
that Dists is the random distribution on G X G x G x G x G. Thus, the
second step completes the proof that U** is indistinguishable from a random
quintuple.

Suppose for sake of contradiction that there exists a probabilistic polynomial-
time adversary A that can distinguish Disty from Dist3. That is, denoted
with ps'(k) and p3'(k) the probabilities that A outputs 1 on input a random
tuple from Disty(k) and Dists(k) respectively, we have that

2 (k) — p5' (k)| > 1/poly(k)

for some polynomial poly. Then the following probabilistic polynomial-time
algorithm B breaks the Decision Linear assumption.

1. B receives the tuple [Z, g*', g*2, g*1%3, g*2%4, Z], for random exponents
21, 22, 23 € Zyp, and has to decide whether Z = ¢g*%# or Z is random
in G.

2. B constructs Pub by picking gg, g1 at random from G, €2 at random
from Gr, and setting Th = g, T> = ¢**, T3 = g*2.

15

3. B picks Pk at random from G, and s, s’, 72,73 at random from Z,. B
sets

U = [U',Up, Uy, Uz, Us] = [Q°, Pk, T2, T3 T3~ 2775,

4. B picks at random r from Z, and computes the tuple

U* = {U’T, US? U{ . 9212’3, Ué" . gz2z4’ Ug . Z—l]
= U UG, UTTE, UST U 271,

5. B runs A on input (Pub, U, U*) and returns its output.

We observe that, if Z = ¢g®7#4 then we have that

A~

U = U7 U5 USTE U T U Ty
[Qrs’ Pk"s T2rr2+Z3 T§"T3+z4 Tlr(s—rg—rg)—zg—zﬂ

and thus U is distributed as in Disty. If instead Z is chosen at random from
G, then U is randomly distributed over Gy x G x G x G x G. We have thus
proved the following lemma.

Lemma 4.2 Assume the Decision Linear assumption. Then tag system Tag
18 weakly untraceable.

Why strong untraceability is not guaranteed. The scheme described
in this section is only weakly untraceable. Let us see where our proof breaks
for strong untraceability. The first step of the proof essentially says that
distribution (Q°, Pk*) with random s € Z, is indistinguishable from distri-
bution (2, Pk®) with random s, s’ € Zy,. The analogous statement for the
case of strong untraceability would have been, for any A € Gy and B € G
((A, B) is one of the strings given in output by the adversary A at step 3 of
SUExp 4), the distribution (A%, B®) with random s € Z,, (this is the distri-
bution of the output of the randomizer on input (A, B)) is indistiguishable
from the distribution (A®, B") with random r,s € Z, (this is the random
distribution on Gr x G).

It is easy to see that if A and B are adversarially chosen the assumption
is false. In fact, the adversary may choose A = e(a,a) for random a € G
and B = a® for random b € Zp. Then, for any s € Z, and for (C,D) =
(A%, B®), we have e(a, D) = C°. On the other hand, for random r,s € Ly if
(C,D) = (A%, B") then e(a, D) = C® with negligible probability.

16

5 Strong untraceability

In this section we present a transformation that takes the weakly intraceable
tag system Tag = (GenPub, GenKey, rEnc, rDec, Randomize) of the previous
section and tranforms it into a strongly untraceable tag system

STag = (SGenPub, SGenKey, SrEnc, SrDec, SRandomize).

5.1 The transformation

Our transformation employs a regular semantically-secure encryption scheme
€ = (KG, Enc, Dec).

Procedure SGenPub(1¥). Execute procedure GenPub(1*) and obtain [Pub, §), Msk].
Then, execute the key-generation procedure KG of the secure encryption
scheme £ and obtain (rpk,rsk). The output of the procedure is the triple

[SPub, SrPub, SMsk] where

SPub = (Pub, rpk), SrPub =rsk, and SMsk = Msk.

Procedure SGenKey(SPub,SMsk). The key generation procedure takes
as input the public information SPub = (Pub, rpk) and the master secret
key SMsk = Msk, invokes GenKey(Pub, Msk) to obtain [Pk, Sk], and returns
[Pk, Sk].

Procedure SrEnc(SPub, Pk, M). The encryption procedure SrEnc takes as
input the public information SPub = (Pub, rpk), the public key Pk, and a
cleartext M, invokesﬂ E(Pub, Pk, M) to obtain C, and returns the ciphertext
Ct = [C, Enc(Pk, rpk)].

Procedure SrDec(Pub, Sk, Ct). The decryption procedure SrDec takes as
input the public information SPub = (Pub, rpk), the private key Sk, and the
ciphertext Ct = [Cy, C1] and returng?] D(Pub, Sk, Cj).

Procedure SRandomize(SPub,SrPub, Ct). The randomization procedure
SRandomize takes as input the public information SPub = (Pub, rpk), the
randomizing information SrPub = rsk, and the ciphertext Ct = [Cp, C1] and
proceeds as follows.

'Recall that E(Pub, Pk, M) is the basic encryption procedure used in rEnc(Pub, Pk, M).
2Recall that D(Pub, Sk, Cy) is the basic decryption procedure used in rDec(Pub, Sk, Ct).

17

Let Pk = Dec(C1, rsk). If decryption fails then return L and halt.
If Co & Gr x G x G x G x G then return | and halt.

Compute U = E(Pub, Pk, 1).

Set 5’0 equal to the component-wise product of Cy and U.

Set Cy = Enc(Pk, rpk).

Return (6’0,61).

AN o S

We next briefly argue the security properties of the tag system STag.
Strong Semantic security follows directly from the proof of semantic security
of the tag system Tag (see Section .

Let Ct = [Cy,C1] be an adversarially chosen pair. We assume that
Co € Gr xG xG x G x G and that C; encrypts public key Pk. If this
is not the case then the SRandomize fails and returns 1. Notice that if
SRandomize does not return | then Cj is a valid encryption of a message
M with respect to public information Pub and some public key Pk’ (notice
that we do not necessarily have that Pk = Pk’). Let Ct = [60, C1] be the
output of SRandomize. Observe that by the semantic security of Enc, O is
indistinguishable from an encryption of a random string (of the same length
as Pk). In addition, 60 is the encryption of message M’ with respect to public
key Pk’. We distinguish two case. If Pk = Pk’ then M’ = M and, by the weak
untraceability of tag system Tag (see Lemma , 6’0 is indistinguishable
from a random element of Gy x G x G x G x G.

If Pk # Pk’ then 60 is the encryption of a random element M’ of G
which is indistinguishable from a random element of Gy x G x G x G x G.
This follows from arguments similar to the ones used to prove the semantic
security of Tag (see Lemma [4.1]).

We thus have the following theorem.

Theorem 5.1 Assume the Decision Linear assumption. The tag system
STag is an untraceable tag system.

6 Performances Analysis

In this section, we present the results of some experiments that we ran to
evaluate the real applicability and the lightness of our schemes for untrace-
able tags. We also compare them with the scheme presented in [I]. For our
experiments, we set up the following small test-bed:

e PC: Intel Core 2 Quad Q6600 2.40 GHz, 3 GB RAM.

e OS: Ubuntu 9.04 - kernel 2.6.28-11-generic - 64 bit.

18

e PBC Library ver. 0.4.18 [10].
e dcrypt Library ver. 0.3 [3].

In the following tables we summarize the results of our experiments.
The second column (e.g., Weak) corresponds to the scheme presented in
Section the third column (e.g., Strong) presents the results for the
scheme satisfying the strong untraceability property (the scheme is described
in Section ; while, the last column (e.g., InsEnc) describes the results
attained by the Insubvertible Encryption scheme proposed in [I].

Weak Strong InsEnc
Public Information Generation 53.3819 85.0649 103.6559
Key Generation 54.2332 81.1983 24.9269
Encryption 67.1600 49.7901 24.9460
Decryption 46.8101 47.0070 93.4520
Randomization 147.7423 53.9974 116.4845

Table 1: Execution times in milliseconds of the schemes’ procedures

For the tests, we set the security parameter to k& = 1206. Tests were
repeated 5000 times. We took the time needed to execute each procedure of
an untraceable tag system. In Table|l| we report the average time (expressed
in milliseconds) taken by the tests we ran. Considering the randomization
procedure, in spite of relying on weaker assumptions, our strong scheme
has a better performance, in terms of computational requirements, than
the scheme presented in [1I]. Our randomization procedure (as well as the
decryption one) runs twice faster as the one of [I]. This is very important,
as the randomization procedure is invoked quite often (e.g., each time a tag
is in proximity of a randomizer); while, all other procedures are invoked just
once. Moreover, the randomization procedure is run by special devices (i.e.,
randomizers) which have low computing power; while, the other procedures
are executed by more powerful devices.

Weak Strong InsEnc
Bytes written on tag 1520 1281 364

Table 2: Size in bytes of the encryption

As one can see from Table [2] both our schemes generate an encrypted
message (to be written on the tag) of size greater than the one generated

19

by the scheme in [I]. This is not a big concern, as our encrypted messages
easily fit in the user memory of currently produced passive RFID tags. For
instance, Maxell provides RFID tags whose memory capacity ranges from
128 bytes up to 4K bytes [7]. Moreover, there exists passive RFID having
user memory of 32K bytes [12].

7 Extensions and an open problem

Our construction of STag is a special case of a general construction that
starts from a randomizable anonymous identity-based encryption scheme
that enjoys a weak form of security (specifically, security against randomly
chosen identities) and turns into an untraceable tag system. Unfortunately,
no randomizable anonymous identity-based encryption was known prior to
our work, and thus we had to construct our own.

The strong untraceability property defined in this paper does not give
any guarantee against randomizers as in experiment SUExp adversary A has
not access to rPub. It would be nice to give a construction which guaran-
tees untraceability against randomizers and whose security is based on mild
assumptions.

Nonetheless, as it is not difficult to see, if we use tag system STag,
randomizers cannot distinguish between tags carrying encryptions computed
with respect to the same public key. This is a very important property since
in many applications the public key corresponds to the manufacturer of the
object to which the tag is attached. An adversary thus does not need to
look at the tag to distinguish objects from different manufacturers and the
applicability of tag system STag is not limited.

References

[1] Giuseppe Ateniese, Jan Camenisch, and Breno de Medeiros. Untrace-
able rfid tags via insubvertible encryption. In Vijay Atluri, Catherine
Meadows, and Ari Juels, editors, ACM Conference on Computer and
Communications Security, pages 92—-101. ACM, 2005.

[2] Xavier Boyen and Brent Waters. Anonymous Hierarchical Identity-
Based Encryption (Without Random Oracles). In Advances in Cryp-
tology — CRYPTO 2006, Lecture Notes in Computer Science, pages
290-307. Springer-Verlag, August 2006.

20

3]

[12]

The dcrypt Library. http://www.scs.cs.nyu.edu/css/lab/dcrypt_
fns.html) Ver. 0.3.

Simson Garfinkel and Beth Rosenberg. RFID: Applications, Security,
and Privacy. Addison-Wesley Professional, 2005.

Philippe Golle, Markus Jakobsson, Ari Juels, and Paul F. Syverson.
Universal re-encryption for mixnets. In Tatsuaki Okamoto, editor, C'T-
RSA, volume 2964 of Lecture Notes in Computer Science, pages 163—
178. Springer, 2004.

Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym systems. In Howard M. Heys and Carlisle M. Adams, edi-
tors, Selected Areas in Cryptography, volume 1758 of Lecture Notes in
Computer Science, pages 184-199. Springer, 1999.

Maxell. Coil-on-Chip RFID. http://www.maxei.co.jp/products/
coc/eng-smal_chip.html) 2009.

Moni Naor. On cryptographic assumptions and challenges (invited
talk). In Dan Boneh, editor, Advances in Cryptology — CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 96—109.
Springer-Verlag, August 2003.

Near field communication forum. http://www.nfc-forum.org/.

PBC: The Pairing-Based Cryptography Library. http://crypto.
stanford.edu/pbc/, Ver. 0.4.18.

Victor Shoup. Lower bounds for discrete logarithms and related prob-
lems. In Walter Fumy, editor, Advances in Cryptology — EURO-
CRYPT’97, volume 1233 of Lecture Notes in Computer Science, pages
256-266. Springer-Verlag, May 1997.

TegoTag. http://www.tegoinc.com/, 2009.

21

http://www.scs.cs.nyu.edu/css/lab/dcrypt_fns.html
http://www.scs.cs.nyu.edu/css/lab/dcrypt_fns.html
http://www.maxei.co.jp/products/coc/eng-smal_chip.html
http://www.maxei.co.jp/products/coc/eng-smal_chip.html
http://www.nfc-forum.org/
http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/
http://www.tegoinc.com/

	Introduction
	The model
	Semantic security
	Weak untraceability
	Strong untraceability
	Strong semantic security

	Background on bilinear groups
	A first construction
	The construction
	Semantic security
	Weak untraceability

	Strong untraceability
	The transformation

	Performances Analysis
	Extensions and an open problem

