A preliminary version of this paper appears as part of our Eurocrypt 2009 paper with Hofheinz [3]. This
is an updated full version.

Encryption Schemes Secure under
Selective Opening Attack

MIHIR BELLARE* ScoTT YILEK'

Abstract

We provide the first public key encryption schemes proven secure against selective opening attack
(SOA). This means that if an adversary obtains a number of ciphertexts and then corrupts some
fraction of the senders, obtaining not only the corresponding messages but also the coins under which
they were encrypted then the security of the other messages is guaranteed. Whether or not schemes with
this property exist has been open for many years. Our schemes are based on a primitive we call lossy
encryption. Our schemes have short keys (public and secret keys of a fixed length suffice for encrypting
an arbitrary number of messages), are stateless, are non-interactive, and security does not rely on
erasures. The schemes are without random oracles, proven secure under standard assumptions (DDH,
Paillier’s DCR, QR, lattices), and even efficient. We are able to meet both an indistinguishability
(IND-SOA-C) and a simulation-style, semantic security (SS-SOA-C) definition.

“Dept. of Computer Science & Engineering 0404, University of California San Diego, 9500 Gilman Drive, La Jolla, CA
92093-0404, USA. Email: mihir@cs.ucsd.edu. URL: http://cseweb.ucsd.edu/ mihir Supported in part by NSF grants
CNS 0524765, CNS 0627779, CCF 0915675, CNS 1116800, CNS 0904380 and a gift from Intel Corporation.

fDepartment of Computer and Information Sciences, University of St. Thomas, 2115 Summit Ave. Mail #0SS-402,
Saint Paul, MN 55105, USA. Email: syilek@stthomas.edu. URL: http://personal.stthomas.edu/yile5901 Supported
in part by NSF grants CNS-0430595 and CNS-0831536.

Contents

1 Introduction
1.1 Background L
1.2 Contributions e
1.3 Related work e

2 Basic definitions
3 Notions of SOA security

4 Equivalence of IND-CPA, SS-SOA-M and IND-SOA-M
4.1 IND-SOA-M implies IND-CPA

5 Lossy Encryption
5.1 Lossy Encryption from DDH
5.2 Lossy Encryption from Lossy TDFs,
5.3 The GM Probabilistic Encryption Scheme is Lossy with Efficient Opening
5.4 A Scheme with Efficient Opening from DDH

6 Lossy Encryption implies SOA-C Security

7 IND-SOA-C for Special Message Distributions

CU s W W

14
16

18
19
20
22
23

23

30

1 Introduction

IND-CPA and IND-CCA are generally viewed as strong notions of encryption security that suffice for
applications. However, there is an important setting where these standard notions do not in fact im-
ply security and the search for solutions continues, namely, in the presence of selective-opening attack
(SOA) [18, 12, 28, 17, 13, 10]. Let us provide some background on SOA and then discuss our results and
related work.

1.1 Background

THE PROBLEM. Suppose a receiver with public encryption key ek receives a vector ¢ = (c[1],...,c[n])
of ciphertexts, where sender i created ciphertext c[i] = £(ek, m[i];r[i]) by encrypting a message ml]i]
under ek and coins r[i| (1 < i < n). It is important here that the messages mll], ..., m[n] might be
related, but the coins r[l],...,r[n| are random and independent. Now, the adversary, given c, is allowed
to corrupt some subset I C {1,...,n} of senders, obtaining not only their messages but also their coins,
so that it has m[i], r[i] for all i € I. This is called a SOA-C attack.! The security requirement is that the
privacy of the unopened messages, namely m[iq],..., m[i,_¢] where {i1,...,ip,—¢} = {1,...,n} \ I and
t = |I], is preserved. (Meaning the adversary learns nothing more about the unopened messages than it
could predict given the opened messages and knowledge of the message distribution. Formal definitions
to capture this will be discussed soon.) The question is whether SOA-C-secure encryption schemes exist.

STATUS AND MOTIVATION. One’s first impression may be that a simple hybrid argument would show that
any IND-CPA scheme is SOA-C-secure. Nobody has yet been able to push such an argument through,
and the question of whether IND-CPA implies SOA-C-security has remained open, neither a proof that
it is true, nor a counter-example to show that it is false, appearing.? One might think that IND-CCA, at
least, would imply SOA-C-security, but even this is not true [2]. This means that one has to look for new
approaches in order to build SOA-C-secure schemes. To date, this has not been successful, and no such
schemes exist. The difficulty of the problem is well understood and documented [18, 12, 13, 28, 17, 10].

Very roughly, the difficulties come from a combination of two factors. The first is that it is the random
coins underlying the encryption, not just the messages, that are revealed. The second is that the messages
can be related. We clarify that the problem becomes moot if senders can erase their randomness after
encryption, but it is well understood that true and reliable erasure is difficult on a real system. We will
only be interested in solutions that avoid erasures.

The problem first arose in the context of multiparty computation, where it is standard to assume secure
communication channels between parties [7, 14]. But, how are these to be implemented? Presumably,
via encryption. But due to the fact that parties can be corrupted, the encryption would need to be SOA-
C-secure. We contend, however, that there are important practical motivations as well. For example,
suppose a server has SSL connections with a large number of clients. Suppose a virus corrupts some
fraction of the clients, thereby exposing the randomness underlying their encryptions. Are the encryptions
of the uncorrupted clients secure?

COMMITMENT. Possession of the coins allows the adversary to verify that the opening is correct, since
it can compute &(ek, m[i];r[i]) and check that this equals c[i] for all ¢ € I. This apparent commitment

! Here “SOA” stands for “selective opening attack” and the “C” indicates that coins are being revealed, to distinguish
this from another version of SOA, denoted SOA-K. In the latter there are many receivers and one sender, and receivers
are corrupted to reveal their decryption keys. Sometimes SOA-C is also referred to as SOA with sender corruptions while
SOA-K is referred to as SOA with receiver corruptions.

2 Results subsequent to ours show that IND-CPA does not imply SS-SOA-C [2]. We will discuss this and other subsequent
work later.

property has been viewed as the core technical difficulty in obtaining a proof. The view that commitment
is in this way at the heart of the problem has led researchers to formulate and focus on the problem
of commitment secure against SOA [18]. Here, think of the algorithm & in our description above as
the commitment algorithm of a commitment scheme, with the public key being the empty string. The
question is then exactly the same.

1.2 Contributions

DEFINITIONS. We provide two definitions of SOA-C security. One is a simulation-based, semantic-security
style definition that we call SS-SOA-C. It is based on a similar notion for commitment from [18]. We also
provide an indistinguishability-based formalization that we denote IND-SOA-C. We show that SS-SOA-C
implies IND-SOA-C, but whether the converse is true in general remains open. (Relations between these
and other notions are discussed in more detail later.)

The formalization of SOA-secure commitment of [18] was in the above setting where the adversary
gets a vector of ciphertexts all in one shot and then corrupts some fraction of the senders, again all in
one shot. Our setting is more general. The adversary gets ciphertexts one by one, the distribution of the
underlying message being adaptively chosen by the adversary depending on previous ciphertexts. It can
make corruptions, adaptively, at any time. This extends the setting of our preliminary work and other
previous work [3, 18] and better captures the needs of applications.

MAIN RESULTS. We provide the first public-key encryption schemes provably secure against SOA-C.
Unlike non-committing encryption schemes [12, 28], ours have short keys. (Public and secret keys of
a fixed length suffice for encrypting an arbitrary number of messages.) The schemes are stateless and
noninteractive, and security does not rely on erasures. The schemes are without random oracles, proven
secure under standard assumptions, and even efficient. We are able to meet both the IND-SOA-C and
SS-SOA-C notions of security, although, with a given assumption, we may pay in efficiency for the latter.

The main tool (that we define and employ) is lossy encryption, an encryption analogue of lossy
trapdoor functions (LTDFs) [32] that is closely related to meaningful-meaningless encryption [26] and
dual-mode encryption [31]. We provide lossy encryption schemes based on DDH and QR. We also show
that any (sufficiently) lossy trapdoor function yields lossy encryption. Via [32, 9, 33] we thereby obtain
alternative lossy encryption schemes based on DDH, as well as one’s based on Paillier’s DCR [29] and on
LWE. We show that any lossy encryption scheme is IND-SOA-C-secure, thereby obtaining IND-SOA-C-
secure schemes based on the assumptions just mentioned.

If the lossy encryption scheme has an additional property that we call efficient openability, we show
that it is also SS-SOA-C-secure. We observe that the classical QR-based encryption scheme of Gold-
wasser and Micali [23] is lossy with efficient openability, thereby obtaining QR-based SS-SOA-C-secure
encryption. It is interesting in this regard that the solution to a long-standing open problem is a scheme
that has been known for 25 years. (Only the proof was missing until now.) We also present a DDH-based
lossy encryption scheme with efficient opening. (It less efficient than the above-mentioned DDH-based
lossy encryption scheme which lacks efficient opening.) Thus we get SS-SOA-C-secure encryption from
DDH as well.

RELATIONS AMONG NOTIONS. Having discussed our main results, namely the first SOA-C-secure en-
cryption schemes, we back up a bit to put them into perspective and better understand the issues and
definitions. Figure 1 summarizes a bigger picture of related notions. We consider SOA-M, where opening
reveals messages but not coins, formulating IND-SOA-M and SS-SOA-M as analogues of IND-SOA-C
and SS-SOA-C, respectively. We show that that IND-SOA-M and SS-SOA-M are equivalent to each
other and to the classical IND-CPA notion. This result is expected but it provides a good pedagogic
starting point for the understanding of SOA-C security, for we see that the difficulty comes from the

- IND-CPA
Th. 7., d Th. 4.3

7/
¥

[2] ¢ IND-SOA-C

IND-SOA-M | Th. 4.1

polmas sl

> SS-SOA-C

SS-SOA-M <

Figure 1: Notions of security and their relations. On the right are the two formalizations of selective opening
of messages only, which are equivalent to the standard IND-CPA notion at the top. On the left are the two formal-
izations of selective opening of coins (and messages). The dotted arrow indicates that when encrypted messages are
independently distributed, IND-CPA implies IND-SOA-C. Coupling this with the fact that the shown separation
of [2] holds even for independently distributed messages means that IND-SOA-C does not imply SS-SOA-C. Unan-
notated arrows represent trivial implications. The question that remains open is whether IND-CPA (in general)
implies IND-SOA-C.

coins and we also see the hybrid argument that we might expect works in the SOA-C case. In general it
does not, but we use it to show that when the messages being encrypted are independently distributed,
IND-CPA implies IND-SOA-C. Our proof does not extend to show that IND-CPA implies SS-SOA-C
for independently-distributed messages. Indeed, [2] show that IND-CPA does not imply SS-SOA-C, even
for (uniformly and) independently-distributed messages. Putting these two results together shows that
IND-SOA-C does not imply SS-SOA-C, meaning the latter is strictly stronger. The major open question
regarding relations is whether or not IND-CPA implies IND-SOA-C, meaning whether or not they are
equivalent. Neither a proof nor a counter-example has yet emerged.

1.3 Related work

The problem of selective opening has been considered in a variety of forms in a variety of models and
the precise relations between the variants have not in all cases been formally established. We attempt to
overview here some of the work and likely relations.

HisTory. Canetti, Feige, Goldreich and Naor [12] introduced non committing encryption (NCE) to
achieve adaptively secure multi-party computation in the computational (as opposed to secure channels)
setting without erasures. In their treatment, NCE is an interactive protocol, and their definition of
security is in the MPC framework. The model allows corruption of both senders and receivers. They
show how to achieve NCE but, viewed as a public-key system, they would have long keys, meaning
keys longer than the total number of message bits that may be securely encrypted. More efficient NCE
protocols followed [16, 15] but the restriction remained, and Nielsen [28] showed it was necessary. Canetti,
Halevi and Katz [13] provide adaptively-secure encryption with short public keys, but they make use of
(limited) erasures. (They use a key-evolving system where, at the end of every day, the receiver’s key is
updated and the previous version of the key is securely erased.)

Dwork, Naor, Reingold and Stockmeyer [18] extracted out a stand-alone notion of commitment secure
against selective opening defined directly by a game rather than via the MPC framework. Corruptions
allow the adversary to obtain the committer’s coins along with its message. We denote it SEM-SO-COM.
We have followed their lead and use stand-alone, game-based definitions. SS-SOA-C adapts SEM-SO-
COM. Beyond the fact that it is for encryption, there are differences in details, such as the inputs to
the relation. Also, in SEM-SO-COM, both the adversary and the simulator are one-shot, while we allow

the distribution of the next encrypted message to be adaptively chosen by the adversary depending on
previous ciphertexts. This is more suitable for applications.

In the SOA-C version of the problem that we consider, there is one receiver and many senders. Senders
may be corrupted, with the corruption exposing their coins and messages. An alternative version of the
problem considers a single sender and many receivers, each receiver having its own public and secret key.
Receivers may be corrupted, with corruption exposing their secret key. We call this SOA-K. A definition
of SOA-K security analagous to our SS-SOA-C definition for SOA-C was given in [2]. We would imagine
that security under the MPC definitions of the above works implies both SOA-K and SOA-C but are not
aware of this claim having been formally established.

Our schemes do not suffer from any of the restrictions of the ones discussed above. We have short
public and secret keys, do not rely on erasures, and achieve strong notions of security. However, we
achieve only SOA-C security while the previous works target security under both sender and receiver
corruptions, meaning achieve SOA-K as well.

In the symmetric setting, Panjwani [30] proves SOA-security against receiver corruptions against a
limited class of attacks with an indistinguishability style definition.

It has generally been thought that the two versions of the problem (sender or receiver corruptions)
are of equal difficulty. The reason is that corruptions, in either case, allow the adversary to verify an
opening and appear to create a commitment. (Either the randomness or the decryption key suffices to
verify an opening.) Our work refutes this impression and shows that sender corruptions are easier to
handle than receiver ones. Indeed, we can fully resolve the problem in the former case, while the latter
case remains open.

Canetti, Dwork, Naor and Ostrovsky [11] introduced deniable encryption, where a sender may open
a ciphertext to an arbitrary message by providing coins produced by a faking algorithm. The authors
explain that this is stronger than NCE because in the latter only a simulator can open in this way.

COMMITMENT. Recall that SEM-SO-COM denotes the notion of SOA-security for commitment formal-
ized by [18]. On the negative side, they showed that the existence of a one-shot (this means non-interactive
and without setup assumptions) SEM-SO-COM-secure commitment scheme implied solutions to other
well-known cryptographic problems, namely, three-round ZK and “magic functions.” This is evidence
that simulation-based one-shot SOA-secure commitment is difficult to achieve. On the positive side [18]
showed that any statistically hiding chameleon commitment scheme is SOA-secure. (This scheme would
not be one-shot, which is why this does not contradict their negative results.) In the zero-knowledge
(ZK) setting, [22] notice a selective opening attack and circumvent it by adapting the distribution of the
committed messages.

In work that was independent of, and concurrent to, ours, Hofheinz [25] continued the investigation of
SOA-secure commitment. He showed that no one-shot or perfectly binding commitment scheme can be
shown SEM-SO-COM-secure using black-box reductions to standard assumptions. On the other hand, via
non-black-box techniques, he showed that there exists an interactive SEM-SO-COM-secure commitment
scheme under the assumption that one-way permutations exist. He also introduced an indistinguishability
style notion that we will call IND-SO-COM. He showed that no perfectly hiding commitment scheme
(whether interactive or not) can be shown IND-SO-COM secure using black-box reductions to standard
assumptions. On the positive side, he showed that any statistically hiding commitment scheme is IND-
SO-COM secure. (We note that a special case of this result was already implicit in [5].) He does not
consider encryption.

The commitment results do show that the SOA-C-security of an encryption scheme cannot be proved
using a black-box reduction, but only if encryption constitutes a commitment. But our SOA-C-secure
encryption schemes do not give rise to commitment schemes. So there is no contradiction.

BHY. Our paper, along with that of Hofheinz, were submitted to Eurocrypt 2009. They were accepted
under the condition that they be merged. The resulting merged paper appeared as [3]. Full versions
have, however, been written separately as the present paper and [25].

SUBSEQUENT WORK. Since the appearance of the preliminary version of our work [3] there has been quite a
lot of activity in this area. Hemenway, Libert, Ostrovsky and Vergnaud [24] showed that re-randomizable
encryption and statistically hiding, two-round oblivious transfer imply lossy encryption, yielding still
more examples of SOA-C secure PKE schemes via our lossy-implies-SOA-C-secure connection. Further
constructions of LTDFs were given in [20] and, via our results, yield more lossy encryption schemes.
Fehr, Hotheinz, Kiltz, and Wee [19] use a deniable encryption [11] approach to achieve CC-SOA (Chosen-
Ciphertext SOA-C) secure PKE. SOA-C-secure identity-based encryption was defined and achieved in [6].

A major open question in this area was whether IND-CPA implies SOA-C security. Bellare, Dowsley,
Waters and Yilek [2] show that IND-CPA does not imply SS-SOA-C. They show this is true even
for uniformly distributed, independent messages, and for natural and common schemes. They show a
similar result for SOA-K, and they rule out non-interactive SEM-SO-COM-secure commitment altogether.
Whether IND-CPA implies IND-SOA-C remains open.

2 Basic definitions

Here we recall basic notation and definitions.

NOTATION AND CONVENTIONS. If n € N then we let 1”7 denote the string of n ones (the unary represen-
tation of n) and [n] the set {1,...,n}. The empty string is denoted by ¢ and the length of a string x is
denoted |z|. If a,b are strings then a || b denotes their concatenation and if |a| = |b| then a @ b denotes
the bitwise xor of a and b. If a is tuple then (aqy,...,a,) < a means we parse a into its constituents.
We use boldface letters for vectors. If x is a vector then we let |x| denote the number of components of
x and for 1 < i < |x| we let x[i] denote its i-th component. We say x is an n-vector if |x| = n. If x is
an n-vector and I C [n] then x[I] = (x[i1], x[i2],...,x[i]) where I = {i1,...,4} and i1 < iz < ... <.
We let Len() be the function that on input a vector x of strings returns the |x|-vector len whose i-th
component is |x[i]| (the length of the string x[i]) for all 7 € [|x|]. If S is a (finite) set then |S| denotes
its size and s <—s S denotes the operation of drawing s uniformly at random from S. We say a function
p: N — R is negligible if p € o(n=<(1),

All algorithms in this paper are randomized, unless otherwise specified as being deterministic. Let
y < A(x1,x9,...;7) denote that algorithm A is run on inputs x1, z9,... with coins 7 and the result is
named y. Let y <—s A(z1, 2, ...) denote that we pick coins r at random and let y «— A(x1,xo,...;r). Coins
are assumed drawn uniformly a random from a set that might depend on the inputs. Let [A(z1,zo,...)]
denote the set of all y for which there exists r such that y = A(z1,x2,...;7). “PT” stands for “polynomial
time.” An algorithm is called unbounded if its running time is not necessarily polynomial. An adversary
is an algorithm.

GAMES. We use the language of code-based game-playing [4]. A game (see Figure 2 for examples) has
an INITIALIZE procedure, procedures to respond to adversary oracle queries, and a FINALIZE procedure.
A game G is executed with an adversary A and security parameter \ as follows. A is given input 1* and
can then call game procedures. Its first oracle query must be INITIALIZE(1?) and its last oracle query
must be to FINALIZE, and it must make exactly one query to each of these oracles. In between it can
query the other procedures as oracles as it wishes. The output of FINALIZE, denoted GA()\), is called the
output of the game. We let “G4(\)” denote the event that this output takes the boolean value true. The
running time of an adversary is the worst case time for the execution of the adversary with the game

Game IndCpa 4¢

PROCEDURE INITIALIZE(1?):

Game IndCpaMr 4

PROCEDURE INITIALIZE(1):

pars «s P(17) n0; 0+ 0;b+s{0,1}; pars «s P(1*)
(ek, dk) +s K(pars) Return pars
%;ijr?’elk} PROCEDURE MKREC():

n+ n+1; (ek[n],dk[n]) +s K(pars)

PROCEDURE LR/(mg, my): Return ek|[n]

¢ +s E(pars, ek, my)

PROCEDURE LR(7, mg, m1):
Return ¢ (2, mp, m1)

Ifi ¢ {1,...,n} then return L
< 0+ 1; c<s&(pars, ekli], mp)
Return ¢

PROCEDURE FINALIZE(b'):
Return (b =1b')

PROCEDURE FINALIZE(b'):
Return (b =1b")

Figure 2: Games to define IND-CPA and IND-CPA-MR security of PKE scheme AE = (P, K, E,D).

defining its security with the convention that the oracle calls count as one unit of time. The number of
oracle queries of an adversary is an integer-valued function of the security parameter alone.

PKE SCHEMES. A public-key encryption scheme AE = (P, K, E, D) is a 4-tuple of PT algorithms. The
parameter generation algorithm P takes as input the security parameter 1% in unary and outputs a string
pars called the parameters or public parameters. The key generation algorithm K takes as input pars and
outputs a pair (ek, dk) consisting of an encryption key ek and matching decryption key dk. Associated
to the scheme is a message space function MsgSp 4¢ that, on input pars, returns a set of strings. The
encryption algorithm & takes as input pars, an encryption key ek and a message m € MsgSp 4¢(pars) and
outputs a ciphertext ¢. The deterministic decryption algorithm takes as input pars, a decryption key dk
and a ciphertext ¢ and outputs either a message m € MsgSp 4¢ (pars) or the special non-string symbol L,
denoting failure. We let Coinsg(pars) be the set from which £ draws its coins on inputs pars, ek, m. (The
set does not depend on ek, m.) Scheme AE = (P,K,E, D) is correct if D(pars, dk, E(pars, ek, m;r)) =m
for all A € N, all pars € [P(\)], all (ek, dk) € [K(pars)|, all m € MsgSp 4¢(pars) and all r € Coinsg(pars).
Correctness is not a default assumption on an encryption scheme, meaning if it is not stated that a
scheme is correct, it need not be. If the set Coinsg(pars) is empty for all ek then we say that AE is a
deterministic PKE scheme.

IND-CPA. Game IndCpa 4¢ of Figure 2 captures the basic notion of indistinguishability under chosen-
plaintext attack (IND-CPA) [23]. We say that A is an ind-cpa-adversary if it makes only one LR query,
this consisting of two messages in MsgSp 4¢(pars) that have the same length. The ind-cpa-advantage of
such an adversary A is

AdvITEF (V) =2 Pr[IndCpage(\)] — 1.

We say that AE is IND-CPA-secure if the function Advijiigpa(-) is negligible for all PT ind-cpa-adversaries
A. We also let IND-CPA denote the set of all encryption schemes AE that are IND-CPA-secure. This con-
vention allows us to compactly express relations between notions as containments and non-containments
between the corresponding sets. We say that AE is u-IND-CPA-secure if the function Advjﬁzpa(-) is
negligible for all (whether PT or not) ind-cpa-adversaries A, and we let u-IND-CPA C IND-CPA (“u”

stands for “unbounded”) denote the set of all encryption schemes AE that are u-IND-CPA-secure.

IND-CPA-MR. It will be useful for some of our proofs to consider the multi-user version of IND-CPA
from [1], captured by game IndCpaMr 4¢ of Figure 2. An ind-cpa-mr-adversary can create a new receiver
by calling MKREC, receiving the encryption key in return. The adversary can obtain via LR an encryption
of a challenge message under an encryption key of a receiver of its choice. It is required that in any such
query, the two messages are in MsgSp 4¢(pars) and have the same length. Note that the same challenge
bit is used for all receivers. The ind-cpa-mr-advantage of an adversary A is

Adv TP ()) =2 Pr [IndCpaMrge(A)] — 1.

We say that AE is IND-CPA-MR-secure if the function Advili;gpa_mr(') is negligible for all PT ind-
cpa-mr-adversaries A, and we let IND-CPA-MR denote the set of all encryption schemes AE that are
IND-CPA-MR-secure. The following result of [1] says that IND-CPA = IND-CPA-MR.

Proposition 2.1 (IND-CPA-MR = IND-CPA) [1] Let AE = (P,K,E,D) be a public-key encryption
scheme. Let A be an ind-cpa-mr-adversary making at most g (-) queries to MKREC. Also assume that
for each 7 it makes at most gspr(-) LR(4, -,) queries. Then there exists an ind-cpa-adversary B such that
for all A € N we have

ind-cpa-mr ind-cpa
Advy SN < quk(N) - gspr(N) - AdVE ()

The running time of B is around the same as that of A. |

3 Notions of SOA security

We provide a simulation-based semantic-security style formalizations of SOA security as well as an
indistinguishabilty-style one. We consider both SOA-M, where only messages are opened, and SOA-C,
where both messages and coins are opened. We will see that mere opening of messages, even adaptively,
adds no power, the resulting notions being equivalent to IND-CPA, but opening of coins is different.

SS-SOA-X. We first give the formal definitions and then discuss them. Let AE = (P,K,E,D) be a
public-key encryption scheme. A relation is an algorithm R with boolean output. A message sampler
is an algorithm M taking input pars, a string « and a current state to return a pair consisting of a
message m € MsgSp 4¢(pars) and an updated state. We consider the games of Figure 3, the first played
by an adversary A and the second by a simulator S. For (x,X) € {(m, M), (¢,C)} we define the ss-soa-x-
advantage of A relative to S via

Advfjg?j‘g’fM,R(A) =Pr [SsSoaXRealﬁg’M’R()\)] — Pr [SsSoaIdlfl&MR()\)] .

We say that AE is SS-SOA-X-secure if for every PT adversary A, every PT message sampler M and
every PT relation R there is a PT simulator S such that the function Adv} %1% = () is negligible. We
let SS-SOA-X denote the set of all encryption schemes A€ that are SS-SOA-M-secure.

In games SsSoaCReal 4¢, 0,7 and SsSoaMReal 4¢, 11,7, the adversary can create receivers via MKREC(),
with receiver n getting an encryption key ek[n] and decryption key dk[n]. By calling procedure SAMPLE
with a receiver index i and a string «, the adversary can get the game to generate the next message m[/]
via (m[l], s) <—s M(pars, «, s). In each invocation, M tosses coins, and, at its discretion, may include
these in the updated state so that the state can potentially hold all the coins generated so far and the
generated message may depend on these and thus in particular on previously generated messages. The
procedure returns an encryption of m[¢] under the encryption key of the i-th receiver. Via CORRUPT(j)
the adversary can obtain in game SsSoaMReal 4¢ A1,z the j-th message and in game SsSoaCReal 4 pm1,7
also the coins used to encrypt it. Eventually the adversary calls FINALIZE with some argument w of its

Game ‘ SsSoaCRealag, m,% ‘, SsSoaMReal e, Mm% Game SsSoaldl 4e 11,7

PROCEDURE INITIALIZE(1?):
ne—0;0<0;1+0

pars <s P(11); s + 12
Return pars

PROCEDURE INITIALIZE(1?):
n<0;0<0;1+0

pars <sP(11); s ¢
Return pars

PROCEDURE MKREC(): PROCEDURE MKREC():

n <+ n+1; (ek[n],dk[n]) < K(pars) n«n+tl

Return ek[n| Return L

PROCEDURE SAMPLE(i, av): PROCEDURE SAMPLE(i, @):
Ifi ¢ {1,...,n} then return L Ifi ¢ {1,...,n} then return L
0+ £+ 1; r[f] < Coinsg (pars) (e l+1;aff] < a

all] + a; (m[f], s) «s M(pars, «, s) (mlf], s) = M(pars, a, s)

c[l] + &(pars, ek]i], m[¢];r[(]) Return |ml¢]|

Return c[/] PROCEDURE CORRUPT(j):
PROCEDURE CORRUPT(j): If j ¢ {1,...,¢} then return L
If j € {1,...,¢} then return L I<—IU{J}_

I+ TU{j} Return m{;]

Return m(j] m PROCEDURE FINALIZE(w):
PROCEDURE FINALIZE(w): Return R(1%, pars, m, I, w, @)

Return R(1*, pars, m, I, w, &)

Figure 3: Games to define SS-SOA-C and SS-SOA-M security of PKE scheme A€ = (P, K, &, D). Game
SsSoaCReal 4¢, pm,% includes the boxed code in the CORRUPT(j) procedure while game SsSoaMReal 4 m,%
does not.

choice and the game evaluates the relation R as shown. Game SsSoaldlg aq,z is the same whether we
consider soa-m or soa-c. INITIALIZE is unchanged. MKREC() simply records that another receiver exists
but no keys are generated. SAMPLE(7,) generates a message as before but performs no encryption and
returns only the length of the message. CORRUPT(j) returns the j-th message, and FINALIZE is as before.
The following says that any ss-soa-c-secure scheme is also ss-soa-m-secure, which is obvious.

Proposition 3.1 SS-SOA-C C SS-SOA-M. 1

CONDITIONAL RESAMPLING. Our ind-style definition will rely on conditional resampling from the message
sampler M. Consider the first two algorithms on the right side of Figure 4. Here « is a vectors of strings;
len is a vector over N; || = |len]; I C [|a|]; x is a |[|-vector of strings; w is a |a|-vector whose components
are coins. Resampling, given pars, «, I, x, len, aims to produce a vector m; distributed according to the
output of Rung(pars, o) subject to the constraint that m;[I] = x and Len(m;) = len. To define this
more formally we let

CSm(pars,a, I,x,1len) = {w : Test(Runp(pars, a;w), I, x,len) = true } .

This is the set of vectors w of coins such that an execution of Run(pars,) with coins from w results
in a vector m; for which the test returns true, meaning that m;[/] = x and Len(m;) = len. The third
algorithm on the right side of Figure 4 now performs the resampling, which consists of picking w at

10

Game Rsmp Run g (pars, a;; w)

PROCEDURE INITIALIZE(1?): s¢g;n« o

PN b 0.1 Fori=1,...,ndo
par P b0 (mui], 5) - M(pars, ail, s; i)

Return m;

PROCEDURE CHALLENGE(q, I, X):

len + Len(c) Test(my, I, x,len)

If b =1 then m; s M(pars, a, I,x,len) Return (m;[/] = x and Len(m;) = len)
Else m, s Resamp ,(pars, a, I, x, len)
Return m; Resamp y(pars, o, I, x, len)

If CSq(pars, a, I,x,len) =) then return |
w s CS v (pars, o, I, %, len)

Return (b =1V') m; <+ Run(pars, a; w)

Return m;

PROCEDURE FINALIZE(D'):

Figure 4: On the left is the game to define conditional resampling error for message sampler M. On the
right are algorithms called in this and later games. The set CSq(pars, o, I, x,len) is defined in the text.

random from this set and then returning m; = Run(pars, a;; w).

Note that this resampling process need not in general be PT. Our ind definition will require an extra
property of the message sampler M, namely that a distribution statistically close to the resampled one
can be sampled from in PT. We will require that the sampler has two modes. Its “sample” mode is the
usual one above, where it takes pars, «, s to return (m, s). In “resample” mode it takes pars, a, I, x, len,
as above. It returns a |al|-vector of strings, in PT. Then the requirement is that the output of M on
input pars, a, I, x,len has a distribution that is statistically close to the distribution of the output m;
of Resamp ,(pars, o, I, x,len).

To more easily use this condition in our proofs, and also to be more precise, we now define a resampling
error based on the game on the left side of Figure 4. A resamp-adversary A makes exactly one CHALLENGE
query and outputs a bit. For any A € N we let

Advi"yP(\) =2-Pr [Rsmpﬁ,l(/\) |=1 and Adv ")) = max {Advfj?p(/\)} .

The maximum is over all adversaries, meaning A is unbounded rather than PT. The function Adv’;*""(+)

is the resampling error of M. We say that M permits efficient re-sampling if Advi\cjamp(') is negligible
and M runs in PT in both sample and resample modes. Note that the game procedures may not run in
PT even if A does because they run Resamp ,(-).

An important case in which efficient resampling is possible is when successive messages generated
by the sampler are independently distributed, and there are other cases as well. But not every message
sampler permits efficient resampling, and indeed the assumption that it is possible is quite strong and

translates to a restriction in the ind definition that follows.

IND-SOA-X. Let AE = (P,K,E,D) be a public-key encryption scheme. Let M be a message sampler
that permits efficient re-sampling as discussed above. We consider the game of Figure 5. We say that A
is an ind-soa-adversary if it makes exactly one CHALLENGE query and following this it makes no oracle
queries except to FINALIZE. The ind-soa-m advantage of A is

AdvR9Eee(N) =2 Pr [IndSoaM%e o (A) | — 1.

11

Game | IndSoaC g¢ a1 |, IndSoaM 4¢, m PROCEDURE SAMPLE(i, a):

Ifi ¢ {1,...,n} then return L
£« 0+ 1; r[f] +s Coinsg(pars)

PROCEDURE INITIALIZE(1?): all] < a: (m[], s) s M(pars, a, s)
ne0;0+0;s+¢e; 1«0 c[f] «+ &(pars, ek[i], m[{];r[{])
b<+s{0,1}; pars <s P(1%) Return c[/]

Return pars .
PROCEDURE CORRUPT(j):

PROCEDURE MKREC(): If 5 € {1,...,¢} then return L
n<n+1 I+ T1U{j}
(ek[n], dk[n]) «=s K(pars) Return m[j] |, r[j]

Return ek|n|

PROCEDURE CHALLENGE():

mg < m; len + Len(m)

Return (b=1') m; <s Resamp ,,(pars, o, I, m[I],len)
Return my,

PROCEDURE FINALIZE(b):

Figure 5: Games to define IND-SOA-C and IND-SOA-M security of PKE scheme AE = (P,K,E,D).
Game IndSoaC 4¢ A includes the boxed code in the CORRUPT(j) procedure while game IndSoaM a¢ aq
does not.

We let IND-SOA-M denote the set of all encryption schemes AE with the property that Advfi}tsg‘f?\}(m(-)
is negligible for every PT ind-soa-adversary A and every PT message sampler M that permits efficient
resampling. The ind-soa-c-advantage of A is

AdvREse(N) = 2 Pr [IndSoaChe p(A)] — 1.

We let IND-SOA-C denote the set of all encryption schemes AE with the property that Advfﬂi}‘?%f{-)
is negligible for every PT ind-soa-adversary A and every PT message sampler M that permits efficient
resampling.

In the game, variable n will keep track of the number of active receivers; ¢ will be the number of
messages sampled; s will be the current state of the message sampling algorithm; I will be the set of
corrupted indices. The adversary can call MKREC at any time to create a receiver, a party for whom
the game creates keys so that it can receive encrypted messages. The adversary can then query SAMPLE
with input a receiver index i and a string o € {0,1}*. After checking that ¢ corresponds to an active
receiver, incrementing the number of sampled messages ¢, and storing « in the vector o, the SAMPLE
procedure will run the message sampler M on « and the current message sampler state s. The sampler
M will return a message which is stored in the message vector m at location ¢, as well as an updated
message sampling state string s. Procedure SAMPLE then creates an encryption of the sampled message
using independent and uniform coins, returning the ciphertext to the adversary. The adversary can also
query CORRUPT on a message index j, and as a result will learn m[j], the jth message sampled by
SAMPLE, as well as the coins used by SAMPLE to encrypt the message in the SOA-C case. The set I
of corrupted indices is updated with j. Once the adversary is finished making MKREC, SAMPLE, and
CORRUPT queries, it can make one query to CHALLENGE with no input. Depending on the challenge bit
chosen in INITIALIZE, procedure CHALLENGE will either return the actual messages sampled by SAMPLE
or a resampled vector. Note that due to the invocation of Resamp,,(-) the game need not run in PT,
but the game is used only for a definition. The following says that any ind-soa-c-secure scheme is also
ind-soa-m-secure, which is obvious.

12

Proposition 3.2 IND-SOA-C C IND-SOA-M. |

As the above indicates, security is only required for message samplers permitting efficient re-sampling.
The reason is that otherwise the definition is difficult or impossible to use in applications. Yet, the
restriction itself also inhibits applicability, for not all message samplers that arise in applications permit
efficient re-sampling. The version of the definition that drops the efficiency requirement on the re-sampling
is considered and related to this one and other definitions in [8].

SS-SOA-X mMPLIES IND-SOA-X. We prove that security under our simulation-based notion of security
(SS-SOA-X) implies security under our indistinguishability-based notion (IND-SOA-X). This is true both
for X=C and X=M.

Theorem 3.3 [SS-SOA-C C IND-SOA-C and SS-SOA-M C IND-SOA-M] Let AE be a PKE scheme
and M a PT message sampler permitting efficient resampling. Let x € {m,c}. Let A be a PT ind-soa
adversary. Then there exists a PT adversary B and a PT relation R such that for any simulator S and
all A € N we have

AdvIIEETE(N) < 2 AdvEEEE (V) +4 - AdVTTP(N) L (1)

A potentially confusing aspect of the above statement is that it is for all simulators. So let us see
why it implies that SS-SOA-X C IND-SOA-X. Assume AE € SS-SOA-X. We want to show that
AE € IND-SOA-X. Let M be a PT message sampler permitting efficient resampling and let A be a
PT ind-soa adversary. Let B,R be as per the theorem. The assumption AE € SS-SOA-X means that
there is a PT simulator S such that Adv 5”5 vz (+) is negligible. The assumption that M permits
resamp ind-soa-x

efficient resampling means that Adv,,"""(-) is negligible. Equation (1) now implies that Advii 4z (")
is negligible. This means that AE € IND-SOA-X as desired.

Proof of Theorem 3.3: We can break the operation of A into two algorithms Aq, Ay as

/| /]
AiNITIALIZE,I\IKREC,SAMPLE,CORRUPT(1)\) : b/ “ Az(

W s w, m)

Algorithm A; takes 1* and runs A on these inputs until it makes its CHALLENGE query, returning the
state w of the execution at this point. As takes the state w and the response my of the CHALLENGE oracle
to return a bit ¥’ that is the input to FINALIZE, and we may assume A, is deterministic since A; can
put all coins in w. Adversary B, on input 1*, simply runs A; on input 1%, replying to its oracle queries
via its own oracles INITIALIZE, MKREC, SAMPLE, CORRUPT, to get w. It then queries FINALIZE(w) and
halts. We define relations R, R via

Relation R(1*, pars,m, I, w, c) Relation R(1*, pars, m, I, w, c)
b<s{0,1}; mp < m; len < Len(m) | b<s{0,1}; my < m; len + Len(m)
m; <s M(pars, ., I, m[I],len) m; s Resamp (pars, o, I, m[I],len)
b Ag(w, mb) Vo« AQ(’LU, mb)

Return (b =b') Return (b =1b')

Relation R is PT since M is assumed to support efficient resampling. Relation R need not be PT but will
be used only in the analysis. Let X=C if x=c and X=M if x=m. We claim that for all (even unbounded)

13

simulators S we can build adversaries A1, Ay such that for all A € N we have:

[SSSoaXRealASM 7 } = Pr [IndSoaXﬁg’M(A)] (2)
1
Pr | SsSoaldlf, =(V)] < 5 (3)
[SSSO&XRealAg M R(/\)] —Pr [SSSoaXRealAg MmrA)] < Adv VISP (0) 4)
Pr [SsSoaldl%e v z(A)] — [SsSoaIdl S MR(A)} < AQVIEMP()) (5)

We first show how to obtain Equation (1) and then return to briefly justify the above claims. From the
above we have

AdviGETrE(\) = 2-Pr[IndSoaXie y(N)] — 1

1
= 2. < [SSSoaXRealAgM R()\)} - 5)

< (Pr [SSSoaXRealfw M, =(A) } Pr [SSSoaIdlig M, =N])
< 20 AdVE RIS Mr(A) +2- Advmsamp()\) +2. Advresamp()\)
< 2-AdvERIEMmr(A) +4- Adv Tjamp()\) .

This yields Equation (1). The construction and the definitions of the games justify Equation (2). Equa-
tion (3) is true because the real and resampled message vectors are identically distributed given the view
of the simulator. Adversary A; making Equation (4) true runs B in such a way that B is executing with
game SSSoaXReal MR if the challenge bit of A; is 0 and B is executing with game SsSoaXRealZ AEMR
if the challenge blt of A1 is 1. Ay obtains pars via its INITIALIZE query and then directly simulates
oracles MKREC, SAMPLE, CORRUPT. When B calls FINALIZE(w), adversary A; simulates the relation,
obtaining m; via its CHALLENGE oracle, so that the relation is R when the challenge bit of A; is 1 and R
otherwise. If the simulated relation returns true, it calls FINALIZE(0) else it calls FINALIZE(1) Adversary

As making Equation (5) true runs S in such a way that S is executing with game SsSoaldl® QEMT if the

challenge bit of Ay is 0 and S is executing with SsSoaldl’ 2e . m,r if the challenge bit of A is 1. A obtains
pars via its INITIALIZE query and then directly simulates oracles MKREC, SAMPLE, CORRUPT. When S
calls FINALIZE(w), adversary Ay simulates the relation, obtaining m; via its CHALLENGE oracle, so that
the relation is R when the challenge bit of A is 1 and R otherwise. If the simulated relation returns
true, it calls FINALIZE(1) else it calls FINALIZE(0). |

4 Equivalence of IND-CPA, SS-SOA-M and IND-SOA-M

In this section we show that when only messages (and not coins) are revealed, both notions of SOA-
security are equivalent to each other and to the standard IND-CPA. This confirms an expected result
but we feel it is worth seeing in perspective to the later difficulties with opening of coins.

IND-CPA mMPLIES SS-SOA-M. We show that any encryption scheme that is IND-CPA secure is also SS-
SOA-M secure. While interesting in its own right, the proof of this result also serves as a good warm-up
for our main SOA-C results.

Theorem 4.1 [IND-CPA C SS-SOA-M] Let A = (P,K,E,D) be a PKE scheme, M a PT message
sampler, R a PT relation, and A a PT adversary making g, queries to MKREC, ¢s queries to SAMPLE

14

PROCEDURE SAMPLE(i, @): Go PROCEDURE SAMPLE(Z, a): Gy

Ifi ¢ {1,...,n} then return L Ifi ¢ {1,...,n} then return L

£+ £+ 1; r[f] +s Coinsg(pars, ek]i]) 0+ £+ 1; r[f] <s Coinsg (pars, ek[i])
all] + « all] + «

(m[f] 5) s M(a, 5) (mn]t], 5) << M(a, 5)

c[{] < &(pars, ek[i], m[(]; r[(]) len + |ml[/]|

Return c[/]

c[l] < &(pars, ek[i], 0""; r[¢])
Return c[/]

Figure 6: The SAMPLE procedures in games G and 7 used in the proof of Theorem 4.1.

of which at most gspr are for any particular receiver, and g. queries to CORRUPT. Then, there exists a
PT simulator S and a PT indcpa-adversary C such that for every A € N we have

AdvEET (V) < Guk - Gopr - AdVESEP (V) L 1

Proof: We will prove the theorem using a sequence of game transitions, starting with a game G, which
is the same as game SsSoaMReal.

First, recall that
AdviE v r(A) = Pr [SSSoaMRealﬁg’M’R(A) =1]—Pr [SsSoaIdli,LR()\) =1]. (6)

We let game Gy be identical to game SsSoaMReal 4¢ A7 (A). Our game transition from G to G makes
only one change, shown in Figure 6: in SAMPLE, instead of encrypting the actual message sampled by
M, encrypt a dummy message of the appropriate length (represented in the figure by 0%7). We claim
that there is an efficient adversary B such that

PrGf = 1] —Pr[G = 1] < Advip P ™ (), (7)

where adversary B, shown in Figure 7, makes g,k queries to MKREC and at most gspr queries to LR for
any receiver index. Adversary B runs A and answers SAMPLE queries using its own LR oracle queried
on a sampled message and a dummy message of the same length. Thus, depending on the bit used by
LR, B either perfectly simulates game Gg or G for A, leading to the claim.

Applying Proposition 2.1, there is an efficient adversary C such that
Pr [GSx =1]—-Pr [G‘f1 = 1] < Gk * Gspr - Advi(gljzpa(/\) , (8)

where C makes one LR query.

Finally, we note that running game (7 with adversary A is the same as running game SsSoaldl with
simulator S, shown in Figure 7:

Pr[Gf = 1] = Pr[SsSoaldl} r(\) = 1] . (9)

This is because S only needs the message length in SAMPLE (which it can get from its own SAMPLE
oracle) and actual sampled messages are not needed until CORRUPT, where they can be learned by S by
querying its own CORRUPT oracle.

15

Adversary B(pars):

n<0;0+0;s« 1>
I+10
Run A(pars).

On query MKREC():

n<—n+1
ek[n] + MKRECgs()
Return ek[n]

On query SAMPLE(%, «):

If i ¢ {1,...,n} then return L
L+ 1+1

all] + «

(m[{], s) < M(a,)

len + |m[/]|

cl] + LR (i, m[/], 0%n)
Return c[/]

On query CORRUPT(j):

If j ¢ {1,...,¢} then return L
I+ 1U{j}
Return m[j]

When A halts with output w,
halt and output R(1*, m, I, w, @)

Simulator S(1*):

n<0;0+0;s« 1*
I+0

pars s P(11)

Run A(pars).

On query MKREC():

n<—n+1l

MKRECs()

(ek[n], dk[n]) + K(pars)
Return ek[n]

On query SAMPLE(i, «):

Ifi ¢ {1,...,n} then return L

0+ 0+ 1; r[{] +s Coinsg (pars, ek|i])
all] + «

len <~ SAMPLEg (%, @)

cll] « &(pars, ek]i], 0% r[¢])

Return c[/]

On query CORRUPT(j):

If j ¢ {1,...,¢} then return L
I+ TU{j}

m|j] + CORRUPTs(j)

Return m{j]

When A halts with output w,
halt and output w

Figure 7: Adversary and simulator used in the proof of Theorem 4.1

Combining the above equations, we can see that

AdVT A mr (M)

IN

which proves the theorem.

Combining Theorem 4.1 with Theorem 3.3 gives us that IND-CPA also implies IND-SOA-M.

Corollary 4.2 IND-CPA C IND-SOA-M. 1

4.1 IND-SOA-M implies IND-CPA

= Pr [SSSoaCRealﬁaMﬁ(A) =1]-Pr [SsSoaIdlfV,R()\) =1]
Pr[G‘O4:>1] —Pr[Gi4 =1]

ind-
gmk * Gspr * Adnggpa()\) >

Next, we will show that IND-SOA-M implies IND-CPA.

Theorem 4.3 [IND-SOA-M C IND-CPA] Let A be a security parameter, A = (P,K,E,D) be a PKE
scheme, and A a PT ind-cpa adversary against AE. Then there exists a PT adversary B and PT message

sampler M permitting efficient resampling such that

AdvTP(N) <20 AdvBLERD

).

16

Adversary B(pars):

ek + MKREC()
Run A(ek).

On query LR(mq,m1):

a + (mg,mq)
¢ < SAMPLE(1, @)
Return ¢

When A halts with output b’
m < CHALLENGE()
If m = my halt with output 0, else halt with output 1

Figure 8: Adversary used in proof of Theorem 4.3.

Adversary B makes 1 MKREC query, 1 SAMPLE query, and 0 CORRUPT queries. O

Proof: We first define M(«, s) to parse « as (mg, m1), flip a bit d, and return (my, s). It is easy to see
M runs in polynomial time and also permits efficient resampling. We define adversary B in Figure 8.
The adversary B runs A and uses SAMPLE to simulate the LR oracle.

Recall that .
Advffiigpa()\) =2 Pr[IndCpa%g(\) = true| — 1, (10)
and

Adviﬁﬁ?%m()\) =2-Pr [IndSoaMﬁ&M()\) = true] — 1. (11)

Now, let’s look at Pr [IndSoaMﬁaM(/\) = true | in more detail. Let IndSoaMy ag ar(A) be the same
game, but parameterized by the challenge bit b. (In other words, the game sets b to that value instead of
choosing it uniformly at random.) Then

Pr [IndSoaMZe 1 (A) = true] =

1 1
3 Pr[IndSoaMy s pm(A) = true] + 3 Pr[IndSoaM; 4¢ m(X) = true] .
We first claim that
Pr [IndSoaMng&M(/\) = true | = Pr [Indeaﬁg(A) = true | . (12)

This is true since if the challenge bit in IndSoaM is 0 then the actual encrypted message is returned by
CHALLENGE. Adversary B will correctly guess 0 only if adversary A guessed the bit of the encrypted
message correctly, meaning it won the IND-CPA game.

We next claim

1
Pr [IndSoaM{B’A&M()\) = true| = 3 (13)

This is true since if the challenge bit in IndSoaM is 1 the resampled message is returned, and this value will
just be uniformly chosen between the two options. This uniform choice will be independent of anything
given to A, so A has a 1/2 probability of guessing correctly.

17

Combining the above equations, we see that
AdvEGERE ()
= 2. (% - Pr[IndSoaMo _ag m(A) = true | + % - Pr[IndSoaM; _se m(A) = true]) -1
= Pr [Indeaﬁg()\) = true | + % -1
- %Advijf};lgpam :

which proves the theorem. |

To summarize the results of this section, we have that
IND-CPA C SS-SOA-M C IND-SOA-M C IND-CPA .

5 Lossy Encryption

Our main results on SOA-C rely on what we call a Lossy Encryption Scheme. Informally, a public-key
encryption scheme is lossy if there is an efficient alternate key generation algorithm (called the “lossy key
generation algorithm”) that produces “lossy” public keys that are indistinguishable from “real” public
keys; however, encryptions under lossy public keys statistically contain little or no information about
the encrypted message. Peikert, Vaikuntanathan, and Waters [31] called such lossy keys “messy keys”,
for message lossy, while defining a related notion called Dual-Mode Encryption. The notion of Lossy
Encryption is also similar to Meaningful/Meaningless Encryption [26], formalized by Kol and Naor.

Before we give a formal definition of lossy encryption schemes, we define the key-ind advantage of an
adversary A with respect to a PKE scheme AE = (P, K, &, D) and an alternate key generation algorithm
Ky as

Advlzai;,%e()\) =92.Pr [KeyIndf}l&m(A) = true] — 1,

where the security game Keylnd is defined as follows. The INITIALIZE procedure flips a bit b, runs
parameter generation P(1%) to get parameters pars, and then runs key generation algorithm K to get
keypair (ekg,dko) and runs alternate key generation algorithm Ky to get keypair (eki,dky). It then
returns (pars, ekp) to the adversary. The adversary outputs a guess bit & and the output of the game is
true if b = O’ and false otherwise.

Now we can formally define lossy encryption. We say a PKE scheme AE = (P,K,E,D) is lossy if
there is a PT alternate key generation algorithm Ky, called the lossy key generation algorithm, such that

1. Indistinguishability of Real and Lossy Keys. For all PT A, the key-ind advantage Adviﬁagfcz()\) is
negligible.

2. Lossiness of encryption with lossy keys. For PKE scheme scheme A&, = (P,Ky,E, D) and for all

(even unbounded) adversaries B, the indcpa-advantage Advgi:éia()\) is negligible.

We will sometimes call the encryption keys output by K “real” public keys, and the encryption keys
output by Ky “lossy” public keys.

Let A = (P,K,E,D) be a lossy encryption scheme with lossy key generation algorithm ;. Then,
let AEy = (P,K,E,D) be a PKE scheme composed of the same algorithms as AE except with K replaced
by the lossy key generation algorithm ;. We say that an algorithm Open_ is an opening algorithm for
A&y if for all A, all pars € [P(11)], all (eky, dk) € [K¢(pars)], all m’ € MsgSp 4¢(pars), and all ciphertexts

18

PROCEDURE INITIALIZE: Game DDHgpgen,»

(9,p) <—£GPGG“(1Z’\) \ o) PROCEDURE FINALIZE(d'):
T, T <3 p;y<—$ D T o

hg's g < g°; des{0,1} Return (d = d')
If d =0 then b’ <+ g™ else h' + g"¥

Return (p, g,h, g', 1)

Figure 9: Decisional Diffie-Hellman (DDH) security game.

¢, Open_(eky,m’,c) is distributed uniformly in the set {r’ : ' € Coinsg(pars) A E(eky, m';1") = c}.
This set may be empty, in which case Open_, should output L. Note that an opening algorithm always
exists, but may not be polynomial time. For example, Open_, can find all 7' € Coinsg(pars) such that
E(eky,m’;7") = ¢ and then output a uniformly chosen one of the 7.

We also consider efficient opening algorithms that take additional inputs. Specifically, we say that
Open is an efficient opening algorithm for AE, = (P, Ky, £, D) if for all A, all pars € [P(17], all (eky, dk;) €
[Ce(pars)], and all messages m, m’ € MsgSp 4¢(pars), Open(eky, dky,m', m,r, E(eky, m; 7)) is distributed
identically to Open,,(eky, m’,E(eky, m;7)) over the choice of r s Coinsg(pars, eky) and the coins of the
opening algorithms.

We note that it immediately follows that any lossy encryption scheme is IND-CPA secure. We next
provide numerous examples of lossy encryption schemes.

5.1 Lossy Encryption from DDH

We first describe a lossy public-key encryption scheme based on the DDH assumption. A group generator
is an algorithm GpGen that, on input a security parameter 1 in unary, selects a cyclic group G of order
a prime p and a generator g, and outputs a description of the group G as well as g and p. Now consider a
game DDH (shown in Figure 9) played with an adversary. We define the ddh-advantage of an adversary
A against a group generator GpGen as

AdVdA(?ngen(/\) =2-Pr [DDHépGen’)\ = true] —1.

The DDH assumption for a group generator GpGen states that for all PT adversaries A the ddh-advantage
of A against GpGen is a negligible function of the security parameter.

We can now describe our scheme. The scheme is originally from [27], yet some of our notation is
taken from [31]. The scheme has structure similar to El Gamal encryption [21].

The scheme AE4qn1 = (P, K, E,D) and the associated lossy key generation algorithm /C; constructed
from a group generation algorithm GpGen are as follows. Parameter generation algorithm P, on input
1", runs GpGen on input 1* and outputs the description of the group G, prime p, and generator g. The
message space of the scheme is the group, i.e., MsgSp 4¢ . . (pars) = G, for pars = (G, p, g). (Note that we
are abusing notation here and sometimes using G to denote the description of the group and sometimes
using it to indicate the set of group elements.)

The rest of the algorithms:

19

Algorithm KC(pars) Algorithm &(pars, ek, m) Algorithm D(pars, sk, c)

(G,g,p) < pars; x,7 s Z, (g,h,g',h") < ek (co,c1) ¢
ek < (g9,9",9%,9™) (u,v) <—s Rand(pars, g, h, g, i) Return ¢y /csk
dk <z Return (u,v - m)

Return (ek, dk)

Algorithm Ky(pars)

(G, g,p) < pars

T, x s Ly y<sZy,\ {x}
ek < (9,9",9%,9"")

dk < (r,z,y)

Return (ek, dk)

Subroutine Rand(pars, g, h, g, 1)
S,t <$ Zy

W e g5 v e (g) ()

Return (u,v)

To see the correctness property is satisfied, consider a (real) public key ek = (g,¢",¢"%,¢"*) and corre-
sponding secret key dk = x. Then, for a message m € G

D(pars, dk, E(pars, ek,m)) = D(pars,dk, (g°*, g® % . m))

— (g:cs-l—r:ct . m)/(gs-‘rrt):c
= m

Now, we claim that AE4qn1 is a lossy encryption scheme.

1. Indistinguishability of Real Keys and Lossy Keys. This follows from the assumption that DDH is
hard for GpGen, since the first output of K is (g, ¢", g%, ¢"*) and the first output of Ky is (g,9", 9%, 9"Y)
for y # x, which exactly matches the case in game DDH.

2. Lossiness of encryption with lossy keys. Since a lossy key (g,9", g%, ¢Y) is such that rz # y, then
s+ rt and sz + yt are linearly independent combinations of s and ¢, so an encryption under the
lossy key results in two uniformly random group elements.

5.2 Lossy Encryption from Lossy TDF's

For our next scheme, we make use of lossy trapdoor functions, a primitive recently introduced by Peikert
and Waters [32]. A family of injective trapdoor functions is syntactically the same as a deterministic
PKE scheme, however we will use different letters to denote the different algorithms to avoid confusion.
Specifically, a family of injective trapdoor functions with message length n(-) is a tuple of PT algorithms
F = (P,K,F,F~1) with the following properties. The randomized parameter generation algorithm P takes
as input security parameter 1* and outputs parameter string 7. The randomized key generation algorithm
K takes as input parameters m and outputs a function index o and trapdoor 7. The deterministic function
evaluation algorithm F takes as input =, a function index o and z € {0,1}*™ and outputs a point y. The
function inverse algorithm F~! takes as input 7, a trapdoor 7 and a point y and outputs a point z. We
require the correctness condition that for all 1*, all = € [P(1*)], all (0, 7) € [K(7)], and all z € {0,1}*™),
it is the case that F~!(x, 7, F(r, 0,2)) = .

We will also need a family of pairwise-independent hash functions. A family of hash functions is a
tuple of PT algorithms H = (Py, Ky, H) with message length n(-) and with the following properties. The
randomized parameter generation algorithm P}, takes as input a security parameter 1* and outputs a
parameter string 7. The randomized key generation algorithm Ky, takes as input a parameter string my,
and outputs a hash key x. The deterministic hash evaluation algorithm H takes as input the parameters
7, hash key & and input = € {0,1}" and outputs y. Let R(m,) = {H(m,, k,z) : & € [Kp(m)] A

20

r € {0,1}"}. We say that H is pairwise-independent if for all A, all 7, € [Py (11)], all distinct inputs
z,x’ € {0,1}"M and all y,y/ € R(m,), it is the case that

1
| R(mn)| °

Pr [H(mn, K, 2) = y AH(my, K, 2") = y'] <

where the probability is taken over k <—sKy(my). We say H has output length ¢ if for all A and all
7 € [Ky(11)], the range R(pars) = {0, 1}V,

Now, we say a family F of injective trapdoor functions with message length n(-) is (n, k)-lossy if there
exists a PT alternative key generation algorithm K, (called the lossy key generation algorithm) such that

e For all A, all 7 € [P(1")], and all (04, 7) € [K¢(7)] the map F(m,oy,-) has image size at most
on(\)—k(A).

e For all PT adversaries A, the key-ind advantage Advieb}_:iﬁj()\) is negligible in .

We now describe an instantiation of lossy (randomized) encryption based on lossy trapdoor functions.
The following scheme was given by Peikert and Waters in [32] Let A be a security parameter and let
F = (P,K,F,F~!) define a collection of injective trapdoor functions that are (n, k)-lossy with associated
lossy key generation algorithm K,. Also let H = (P, Ky, H) be a collection of pair-wise independent hash
functions with message length n(\) and output length ¢(\); the message space of the cryptosystem will
be {0,1}¢. The parameter ¢ should be such that £ < k — 2log(1/§), where ¢ is a negligible function in
the security parameter A. The scheme AEqr = (P, K, E, D) is then defined as follows. The parameter
generation algorithm P, on input security parameter 1*, simply runs 7 <—s P(1*) and 7, <—s Py (1*) and
outputs pars = (m, 7). The rest of the algorithms are as follows:

Algorithm K(pars)
(m,m,) < pars

(o,7) s K(m)

K s Ky, ()

ek « (o,k);dk < (7,K)
Return (ek, dk)

Algorithm &(pars, ek, m)

(m,my,) < pars

(0,Kk) + ek

x s {0,1}"

c1 < F(m,0,7)

¢y < m @ H(my, k,)

Algorithm D(pars, dk, ¢)

(m,7m,) < pars)

(1,k) < dk

(c1,¢2) < ¢

r+ Fi(m,7c1)
Return H(m,, k,) ® co

Return (¢q, ¢2)

The associated lossy key generation algorithm K, is simply the same as K, but using K; instead of K.
The correctness of the scheme follows since when ek = (o, k) was generated by I,

D(pars, dk, &(pars, ek,m)) H(my, s, F (7, 7, F(m,0,2)) ® (m @ H(my,, K, z))
= H(m, k,2) ®m & H(my, k, x)

= m
We can then verify that the encryption scheme is lossy:

1. Indistinguishability of real keys and lossy keys. We need to show that any efficient adversary A,
the key-ind advantage Adviezg:if x,(A) is negligible. This follows since K uses K while K, uses
Ky, and since F is lossy, then by definition we know that for all efficient adversaries B, the key-ind
advantage Advg};ﬁj()\) is negligible.

2. Lossiness of encryption with lossy keys. This was shown by Peikert and Waters in [32]. Reviewing
their argument, the average min-entropy Hoo(z|(c1, €ky)) of the random variable x, given F(m, oy, x)

and eky = (oy, k) is at least k, and since ¢ < k—21log(1/0) for negligible ¢, it follows that H(my,, &, x)

21

PROCEDURE INITIALIZE: Game DQRp.,
A
(N, p, q) <= Par(1?) PROCEDURE FINALIZE(d'):

d<s{0,1}; zo s QRy ; 21 s QNR}!
Return (N, zq) N Return (d = d’')

Figure 10: Quadratic Residuosity Game.

will be statistically close to uniform and my @ H(my, &,) will also be statistically close to uniform
for either bit b. Thus, even unbounded adversaries have negligible ind-cpa advantage.

5.3 The GM Probabilistic Encryption Scheme is Lossy with Efficient Opening

The Goldwasser-Micali Probabilistic encryption scheme [23] is an example of a lossy encryption scheme
with efficient opening. We briefly recall the GM scheme. Let Par be an algorithm that on input 1*
efficiently chooses two large distinct random primes p and ¢ congruent to 3 (mod 4) and outputs them
along with their product N (a Blum integer). Let J,(x) denote the Jacobi symbol of x modulo p.
We denote by QRy the group of quadratic residues modulo N and we denote by QNRJJ\F,1 the group of
quadratic non-residues x such that Jy(x) = +1. Recall that the security of the GM scheme is based on
the quadratic residuosity assumption, which states that it is difficult to distinguish a random element of
QRy from a random element of QNRZJ(,I. This is captured by game DQR, shown in Figure 10. We say
that the qr-advantage of an adversary A with respect to Par is

Advy%, (A) =2 Pr[DQRA, (A) = true] — 1.

The quadratic residuosity assumption for Par is that for all efficient adversaries, the qr-advantage of A
with respect to Par is negligible in A.

The scheme AEqn = (P, K, E,D) is then defined as follows. The parameter generation algorithm P,
on input 1%, simply outputs 1*. The other algorithms:

Algorithm (1) Algorithm £(1*, ek, m) Algorithm D(1*, dk, c)
(N, p,q) s Par(1}) (N,z) < ek (p,q) «+ dk
z <3 QNRY! For i =1 to |m| For i =1 to |c]|
ek < (N, z) Ti s Ly If 7,(cfi]) = Jy(cfi]) = +1
dk < (p,q) cli] < r?- 2™ mod N m; < 0
Return (ek, dk) Return ¢ Else m; + 1

Return m

The associated lossy key generation algorithm /Cy is the same as K except that x is chosen at random
from QR instead of QNR;(,I; the lossy secret key is still the factorization of N.

The correctness of the above scheme was shown in [23], while the indistinguishability of real keys from
lossy keys follows directly from the quadratic residuosity assumption. It is also clear that encryptions
under lossy keys are (perfectly) indistinguishable, since lossy ciphertexts are just sequences of random
quadratic residues.

Now, we claim that AEq is also efficiently openable. To see this consider the efficient algorithm Open
that takes as input lossy secret key dk = (p, q), lossy public key ek = (N,), plaintext m/, ciphertext c,
and m and r such that £(ek, m;r) = c. Say m’ has length n bits. For each i € [n], Open uses p and q to
efficiently compute the four square roots of c[i]/z™ and lets r'[i] be a randomly chosen one of the four.

22

The output of Open is the sequence r’. Notice this is exactly what the inefficient Open_, would do (find
the four square roots and output a uniformly chosen one of the four); the efficiency is gained by knowing
the factorization of N.

5.4 A Scheme with Efficient Opening from DDH

We point out that if we modify the scheme in Section 5.1 to only encrypt one bit at a time, we can get an
encryption scheme AEqqn2 that is lossy with efficient opening. More formally, we modify the encryption
algorithm to be as follows:
Algorithm &(pars, ek, m)
(g,h,g',h') < ek
For i =1 to |m)|
(u,v) <s Rand(pars, g, h, g, h')
(crfil, i) + (u, - g™)
Return (cy, c2)

In the above, |m| is the bit length of m and m; is the ith bit. The decryption algorithm is modified
in the obvious way, while parameter generation, key generation, Rand, and the corresponding lossy key
generation algorithms are unmodified from Section 5.1.

We will describe the efficient opening algorithm for a 1-bit message; the algorithm can be repeated
on each individual component of the ciphertext in the multibit case. The efficient opening algorithm, on
input

eky = (9,9",9",9")
dky (r,x,y)
(crye2) = (g°- (¢ (6")-(g"™) - g™)
m € {0,1}
s,t € Zp
m' € {0,1},

needs to find §',¢' € Z, such that encrypting m’ with s’ and ¢’ as coins will result in ciphertext (c1,c2).
To do so, the opening algorithm solves the equations
s+rt = s+t
rs+ryt+m = :Es/—l—ryt/+m/,

which is possible in our scheme since = # y. Note that there is only one such pair (s',t'), so the output of
the efficient opener will be the same as the output would have been from the inefficient opener Open_.

6 Lossy Encryption implies SOA-C Security

We now state our main results for encryption: any lossy public-key encryption scheme is IND-SOA-C
secure, and any lossy public-key encryption scheme with efficient opening is SS-SOA-C secure.

Theorem 6.1 [Lossy Encryption implies IND-SOA-C] Let A be a security parameter, AE = (P, K, E, D)
be a lossy public-key encryption scheme with associated lossy key generation algorithm Cp; let AE, =
(P,K¢,E,D). Let M be PT message sampler permitting efficient resampling. Let A be a PT ind-
soa adversary making g¢mi queries to MKREC, ¢s queries to SAMPLE of which at most gs,, are for any

23

PROCEDURE INITIALIZE: G1,G2,G3,G4 | | PROCEDURE MKREC(): Go,G3,Gy

ne0:0+0;s+1* n+n+1

I+ 0;b+s{0,1} (ek[n], dk[n]) «s Ky (pars)

pars s P(1%) Return ek[n]

Return pars

PROCEDURE MKREC(): G4 | | PROCEDURE CORRUPT(j): G3,Gy
n+<n-+1 If j ¢ {1,...,¢} then return L

(ek[n], dk[n]) <—s K(pars) I+ Tu{j}

Return ek[n] '[j] s Open__ (pars, eklidx[j]], mlj], c[j])

PROCEDURE SAMPLE(4, @): G1,G2,Gs | | Return m[j], '[§]

Ifi ¢ {1,...,n} then return L

{ < £+ 1; r[l] <= Coinsg (pars) PROCEDURE SAMPLE(i, a): Gy
idx[l) + i

If i ¢ {1,...,n} then return L

all] + « £+ 0+ 1; r[f] +s Coinsg(pars)

(ml[f], s) +—s M(a, s)

: all] + o
c[{] < &(pars, ek[i], m[¢];r[¢])
Return c[(] (ml[f], 5) < M(a, s)
len + |ml[/]|
PROCEDURE CORRUPT(j): G1,G
.) LG ol e epars, ekf], 0% xld)
If j € {1,...,¢} then return L Rot v
[—1U{j) eturn c[/]
Return m(j], r[j]
PROCEDURE CHALLENGE(): G1,G2,G3,Gy
mop < m
m; +s M(pars, o, I, mo[I], Len(my))
Return m,
PROCEDURE FINALIZE(b'): G1,G2,G3,Gy

Return (b =1b')

Figure 11: Games G through G4 for the proof of Theorem 6.1.

particular receiver, and g. queries to CORRUPT. Then, there exists an efficient key-ind adversary B, and
an unbounded ind-cpa adversary D such that

AQVESETE) <2 i ADVETEE, () 42 ik - Gopr - ADVELE () + 40 AV -

Theorem 6.2 [Lossy Encryption with efficient opening implies SS-SOA-C| Let A be a security param-
eter, A = (P,K,E,D) be any lossy public-key encryption scheme with associated lossy key generation
algorithm /C; and efficient opening algorithm Open; let A&, = (P, Ky, E,D). Let M be a PT message
sampler, R a PT relation, and A a PT adversary making ¢, queries to MKREC, ¢s queries to SAMPLE
of which at most gg,, are for any particular receiver, and ¢, queries to CORRUPT. Then, there exists a
PT simulator S, a PT key-ind adversary B, and an unbounded ind-cpa adversary D such that

son- key~ind ind-
AdVIEHE mr(N) < gmic- Advgieic, (V) + mk - gspr - Advp 87 (A) - 1

Proof of Theorem 6.1: We will prove the theorem using a sequence of game transitions, starting with
a game Gy, which is the same as game IndSoaC ¢ rm(N).

24

Adversary C(pars):

n«0;0+0;s« 1"
I+ 0;b+s{0,1}
Run A(pars).

On query MKREC():

n<n+1
ek[n] < MKRECg()
Return ek[n]

On query SAMPLE(i, «):

If i ¢ {1,...,n} then return L
L+ L+1

all] + a; idx[l] + i

(m[{], s) < M(a,)

len + |m[/]|

cl{] + LR (i, m[/], 0%n)
Return c[/]

On query CORRUPT(j):

If j ¢ {1,...,¢} then return L

I+ TU{j}

r'[j] <=5 Open (pars, ek[idx[j]], mj], c[j])
Return m[j], r'[J]

On query CHALLENGE():

mgy < m
m; <s M(pars, a, I, mg[I], Len(m))
Return m,

When A halts with output &',
halt and output 1 if (b =10") and 0 otherwise.

Figure 12: Adversary used in the proof of Theorem 6.1.

Thus, by definition _
AdvRLETrE(N) =2 -Pr[GE = true] — 1. (14)

We will bound this probability by gradually changing game G until we end up in a game in which A
has no advantage. The first game transition replaces the call to the possible unbounded Resamp in the
CHALLENGE procedure with a call to the PT resample mode of M. This gives us

Pr[G§ = true] — Pr[G{ = true| < Adv';"™P()) . (15)
The next game, game Go, (see Figure 11 for games G through G4) replaces all of the public keys returned

by MKREC with lossy public keys. A standard hybrid argument shows that there exists a PT key-ind
adversary B such that

Pr[Gy = true] — Pr[Gy = true| < gy - Adv?ﬁ?i(()\) . (16)

25

Adversary B, given a challenge public-key ek that is either real or lossy, randomly chooses a value t € [gy]
and runs adversary A as in game Gy, but replacing ek[t] with the challenge ek, and using the lossy key
generation algorithm K, to generate all keys ek|[t'] for ¢ > t. Notice that since adversary B needs to be
efficient, we need the resampling procedure to also be efficient; this is the only place in our proof where
we need this requirement.

In our next game, G3, we modify the CORRUPT procedure so that instead of opening with the actual
coins r[j] used to encrypt in SAMPLE, it uses an unbounded opening algorithm Open_ to find just-as-
likely coins r'[j] and returns those to the adversary. From the adversary’s point of view, these coins are
equally-likely by the definition of an opening algorithm, so

Pr[Ga = true] = Pr|[G = true] . (17)

Next, for game G4 we modify the SAMPLE procedure so that after sampling a message m[¢] it only
uses the length of the message and instead encrypts a dummy message of the appropriate length. We
emphasize that in the CORRUPT procedure we still open to the actual message that was sampled.

We can bound the gap between games (G35 and G4 using the ind-cpa advantage of an unbounded adversary
against the PKE scheme A&, = (P,Ky,E,D). To see this, first consider adversary C, playing game
IndCpaMr, and shown in Figure 12. If the challenge bit is 0, C' perfectly simulates game G5 for A, while
if the challenge bit is 1 C' perfectly simulates game G4. Thus, it follows that

Pr[Gs = true| — Pr[Gy = true| < Advglﬁga_mr(}\) , (18)

where adversary C' makes gk queries to MKREC and at most gspr queries to LR on any one index.
Applying Proposition 2.1, there is an unbounded adversary D such that

Pr [G? = true] — Pr [Gf = true | < gmk - Gepr - Advigfi;éia()\) , (19)

where D makes one LR query in game IndCpa.
Next, we modify game G4 so that instead of using the resample mode of the message sampler M it

instead uses the Resamp procedure, which resamples perfectly but may not be PT. We then see that

Pr[G{ = true] — Pr[Gf = true | < Adv';™™P()) . (20)

Finally, we claim that
1
Pr [G§ = true] =5 (21)

This is true since A is given no information about mg other than the lengths of all of the messages and
the messages at corrupted indices I, since dummy messages of the appropriate lengths are encrypted.
Thus, the resampled message m1, which has the same lengths and same messages at the corrupted indices
1, is by definition exactly equally likely.

26

Combining the above equations, we can see that
AdVRTETE(N)
= 2'Pr[GA:>true] -1

< 2. (Advj\ejamp)+ Pr [G‘f‘ = true]) — 1
< 2 (Vi P (A) 4 Gk - Advlgzij;%z()\) + Pr [G‘Q4 = true]) -1
< 2 <Ad oA + gk Adv?ﬁ?%z()\) +Pr[Gf = true]) -1
< 2. <Ad NP A) + ok AT () + Gk Gepr - AdVE PN +Pr [G = true]) ~1
< 2. (CAAVIETP(A) 4 i - ADVEYL (V) + gk - gipr - AdVELTH (V) + Pr [GE = true]> 1
< 2. (2 AdVIE™(A) + gk - AdVEEC (V) + Gk Gspr - ADVEEPN(N) + AdVITTP(N) + %) —1
< 2 g ADVETER (V) 2 Gk Gopr - AdVELEA (V) + 4 AdVITP(N)
which proves the theorem. |

Proof of Theorem 6.2: We will prove the theorem using a sequence of game transitions, starting with
a game Gg, which is the same as game SsSoaCReal. All of the game transitions are shown in Figure 13.

First, recall that
AdviEE mr(A) = Pr [SSSO&CRG&lﬁg’M’fR(A) =1]-Pr [SsSoaIdli,,’R(/\) =1]. (22)

We let game G be identical to game SsSoaCReal g mz(A). Game G differs from Gy only in that
MKREC uses the lossy key generation algorithm Ky instead of K. A standard hybrid argument shows
that there exists an efficient key-ind adversary B such that

Pr[Go=1]—Pr[G1 = 1] < gui - Advis &, (V) - (23)

Adversary B, given a challenge public-key ek that is either real or lossy, randomly chooses a value t € [gk]
and runs adversary A as in game Gy, but replacing ek|[t] with the challenge ek, and using the lossy key
generation algorithm Ky to generate all keys ek|[t] for ¢’ > ¢.

Next, we change (G7 into Go by changing the CORRUPT procedure so that on a query j, instead of
returning the actual coins r[j] used in SAMPLE, it finds equally-likely coins r’[j] that still open the jth
ciphertext to m[j] by running a (possibly unbounded) opening algorithm Open_ . Since these coins are
just as likely given the view of the adversary, it follows that

PI‘[G1:>1]:PI‘[G2=>1]. (24)

The next game, G3, modifies the SAMPLE procedure to encrypt dummy messages of the appropriate length
instead of the messages sampled by M. However, importantly, CORRUPT still opens the ciphertexts to
the actual messages sampled by M. We can bound the gap between games Gy and G3 using the ind-cpa
advantage of an unbounded adversary against AEy = (P, Ky, E, D), the PKE scheme with the lossy key
generation algorithm. To see this, first consider adversary C, playing game IndCpaMr, and shown in
Figure 14. If the challenge bit is 0, C perfectly simulates game Gy for A, while if the challenge bit is 1

27

PROCEDURE INITIALIZE: All Games | | PROCEDURE MKREC(): G1,Go,G3,Gy

ne0:0+0;s+1* n+<n+1

I+ 0 (ek[n], dk[n]) <—s KCs(pars)

pars s P(1%) Return ek|n|

Return pars

PROCEDURE MKREC(): Gy | | PROCEDURE CORRUPT(j): G2, G3
n+<n+1 If j £ {1,...,£} then return L

(ek[n], dk[n]) <—s K(pars) I+ Tu{j}

Return ek[n] /[j] < Open__ (pars, eklidx[j]], m[j], e[j])

PROCEDURE SAMPLE(4, @): Go,G1 | | Return m[j],r'[5]

Ifi ¢ {1,...,n} then return L

£« £+ 1; r[{] < Coinsg(pars) PROCEDURE SAMPLE(4, @): Gs3,Gy
idx[l) + i

Ifi ¢ {1,...,n} then return L

afl] < o £+ 1; r[f] +s Coinsg(pars)

(ml[f], s) +—s M(a, s)

: idx[l] i
ell] + &(pars, ekl m{]:2(¢) TP
Return c[¢] (m[f], 5) <—s M(a, 5)
PROCEDURE CORRUPT(j): Go,G1 || len < |m[/]]
IIfj %tl, e , £} then return L clf] « &(pars, ek[i], 0 r[4])

- {]} . Return c[/]
Return m(j], r[j]
PROCEDURE FINALIZE(w): All Games | [pROCEDURE CORRUPT()): C
Return R(1*, m, I, w,) If j ¢ {1,...,¢} then return L
I+ Tu{j}

r'[j] ¢~ Open(pars, ek[idx];]], dklidx[5]], m[5], 0PVIl, r[]c[5])
Return m(j], r'[j]

Figure 13: Games for proof of Theorem 6.2.

C perfectly simulates game G3. Thus, it follows that
ind-cpa-mr
Pr[G2:>1]—Pr[G3:>1]gAdvaAgi (N, (25)

where adversary C' makes gk queries to MKREC and at most gsp,r queries to LR on any one index.
Applying Proposition 2.1, there is an unbounded adversary D such that

Pr [G? = 1] —Pr [GgA = 1] < Gmk * Gspr - AdviDn(;ga()\) , (26)

where D makes one LR query in game IndCpa.

The final game transition is to game G4, where the CORRUPT procedure (shown in Figure 13) uses the
efficient opening algorithm Open instead of the potentially unbounded opening algorithm. Algorithm
Open takes a few extra inputs, which the game chooses. Since by definition algorithms Open_, and Open
have the same output distribution, the view of an adversary playing the game is identical and we see that

Pr[Gl=1]=Pr[G{=1]. (27)

28

Adversary C(pars): Simulator S(1*):

ne0:0+0;s+1* ne0;0+0;s+1*
I+ 0 I+ 0
Run A(pars). pars s P(1%)

On query MKREC(): Run_A(pars).

nemn+1 On query MKREC():
ek[n] + MKREC5() n<—n+1l
Return ek[n] MKRECs()

(ek[n], dk[n]) < K¢(pars)

On query SAMPLE(%, &): Return ek|n]

Ifi ¢ {1,...,n} then return L

0 0+1 On query SAMPLE(%, «):
all] « a; idx[l] <1 Ifi ¢ {1,...,n} then return L
(ml[f], s) +—s M(a,) £+ 0+ 1; r[f] +s Coinsg(pars)
len + |ml[{]| all] « a; idx[l] + i

clf] «+ LRp(i,m[{],0%") len <~ SAMPLEg (i,)

Return c[/ cll] « &(pars, ek]i], 0'1; r[(])
On query CORRUPT(j): Return cff]

If 5 £ {1,...,¢} then return L On query CORRUPT(j):

I+ T1U{j} If 5 € {1,...,¢} then return L
r/[j] s Open, (pars, ekidx(j]l, m{j], c[j)) | | I 10}

Return m(j], r'[}] m|j] + CORRUPTs(j)

r'[j] s Open(pars, eklidx[j]], dk[idx[j]], m[j], Olmmlv r[{], c[j])

When A halts with output w, Return m[j], '[j]

halt and output R(1*, m, I, w, @)

When A halts with output w,
halt and output w

Figure 14: Adversary and simulator used in the proof of Theorem 6.2.

Finally, we note that running game G4 with adversary A is the same as running game SsSoaldl with the
simulator S shown in Figure 14, meaning that

Pr[Gf = 1] =Pr[SsSoaldl} r(\) =1] . (28)

This is because to encrypt dummy messages, S only needs the message length in the procedure SAMPLE
(which it can get from its own SAMPLE oracle) and actual sampled messages are not needed until
CORRUPT, where they can be learned by S by querying its own CORRUPT oracle. Also in CORRUPT, S
can run the efficient opening algorithm Open since it chooses all of the inputs itself.

Combining the above equations, we can see that

AdvE 5 mr(N) = Pr[SsSoaCRealie pqz(A) = 1] — Pr [SsSoaldlf z(\) = 1]

= Pr[Géil}—Pr[Gfﬁl]

= (Pr[Gy=1]-Pr[G!=1])+(Pr[G=1]-Pr[G}=1])+
(Pr[G{=1]-Pr[G§ =1])+(Pr[Gs =1]-Pr[G{=1])
Gk - AV () + 0+ ok - Gspr - AdVETPA(N) 40

IA

29

which proves the theorem. |

7 IND-SOA-C for Special Message Distributions

While it is an open question whether IND-CPA C IND-SOA-C in general, we can prove it is the case
when we restrict to certain message distributions.

ILC MESSAGE SAMPLERS. We will prove that IND-CPA implies IND-SOA-C when the message sampler
is what we call independent and length-consistent (ILC). More formally, we say a message sampler M is
independent if for all pars and for all «, the output of M(pars, a,¢) is a pair (m,¢). In other words, M
does not output any saved state s. We say a message sampler M is length-consistent if for all pars and
for all a there exists a k € N such that the output of M(pars, a, €) is a pair (m, s) such that |m| = k. In
other words, if M is continually run on the same inputs pars, a, and s = ¢ (but with different coins) it
always outputs messages of the same length. If M is independent and length-consistent, we say it is ILC.

If a PT message sampler M is ILC, then we can see that it is also efficiently resamplable with
resampling error exactly 0: for each ¢ ¢ I, algorithm M(pars, a, I, x,len) simply runs M(pars, afi], €)
for each i € [|a|] \ I. (Notice that if M is not length-consistent, then this resampling will not necessarily
be PT.)

Let IND-SOA-C-I denote the set of all encryption schemes AE with the property that Advfﬂi}‘?%f{-)
is negligible for every PT ind-soa-adversary A and every PT ILC message sampler M. We prove the
following theorem.

Theorem 7.1 [IND-CPA C IND-SOA-C-I] Let A be a security parameter, AE = (P,K,&,D) be a PKE
scheme, M be a PT ILC message sampler, and A be a PT ind-soa adversary making ¢, queries to
MKREC, ¢s queries to SAMPLE of which at most gs,, are for any particular receiver, and g. queries to
CORRUPT. Then, there exists a PT ind-cpa adversary C' such that

AdVESETEN) < ok 65 - AdvESEP (V) - 1

Proof of Theorem 7.1: Let game IndSoaCg ag rm(A) (resp. IndSoaCy g a1(A)) be the same as IndSoaC
except the challenge bit is hardcoded to 0 (resp. 1) and FINALIZE returns b, the output of the adversary,
instead of (b =b'). It is easy to see that

AdvR4EEr(A) = Pr [IndSoaCi 4¢ aq(A) = 1] — Pr [IndSoaC{ 4e p(N) = 1] . (29)

Now, we consider hybrid game H, for z € {0,...,qs}; the game is shown in Figure 15. In the first
hybrid game, Hy, CHALLENGE returns all resampled messages. At the other extreme, hybrid game H,,
has CHALLENGE return all original messages. More generally, hybrid H, has CHALLENGE return original
messages through index z, and resampled messages after that. We emphasize that CHALLENGE always
returns the original messages for indices in the set I of corrupted messages, regardless of the value of z.
Considering these hybrid games, we see that

AdvRGEse(\) = Pr[IndSoaCi 4e a¢(A) = 1] — Pr[IndSoaC{ 4¢ p((A) = 1]
= Pr[H{=1]-Pr[H!=1]

qs
= > Pr[HY =>1]-Pr[H!=1] .
z=1

30

Game H, PROCEDURE SAMPLE(i, a):

Ifi ¢ {1,...,n} then return L
£« 0+ 1; r[f] +s Coinsg(pars)

PROCEDURE INITIALIZE(1?): alf] « a; (mll], s) <s M(pars, a, s)
ne0;0+0;s+¢e;1«0 c[f] «+ &(pars, ek[i], m[{];r[{])
pars <—s P(1}) Return c[/]

Return pars .
PROCEDURE CORRUPT(j):

PROCEDURE MKREC(): If j ¢ {1,...,¢} then return L
n<n+1 I+ T1U{j}
(ek[n], dk[n]) s K(pars) Return mlj], r[j]

Return ek{n] PROCEDURE CHALLENGE():

PROCEDURE FINALIZE(b): For ¢t =1 to |a] do:
Return b’ If t € I then
m*[t] « mlt]
Else

If ¢t < z then m*[t] + ml]t]
Else (m*[t], s) + M(pars, a[t],€)
Return m*

Figure 15: Hybrid game H, used in the Proof of Theorem 7.1

Now, let corr; be the event that in the execution of game H, with adversary A, the vth index is corrupted.
Since the hybrid games only differ in what happens in CHALLENGE, which comes after all CORRUPT
queries, it is the case that for all v and for all z, 2’

Pr[corr] =Pr [corrf), } .
Now, we claim that for all z
Pr[HX | = 1AcoZ™' | =Pr[H = 1 Acorr?] . (30)

Recall that in CHALLENGE game H,_j returns actual messages through index z — 1 and resampled
messages after that, while H, returns actual messages through index z. However, in the event that index
z is corrupted, the zth message returned by CHALLENGE will be the same in the real and resampled case,
meaning there is no difference between the games.

31

Adversary B(pars):

n«0;0+0;s«1*
I+ 0; z+s[gs)
Run A(pars).

On query MKREC():

n<—n+1
ek[n] + MKRECg()
Return ek[n]

On query SAMPLE(Z, o):
Ifi ¢ {1,...,n} then return L
£+ L+ 1; r[f] +s Coinsg(pars, ek[i])
all] + «
(mg[f], s) s M(c, s)
(mq[f],) s M(c, s)
If ¢ = 2z then
c[f] «+ LRp (¢, mg[f], m;[¢])
Else c[{] + &(pars, ek[i], mgy[{]; r[¢])
Return c[/

On query CORRUPT(j):

If j ¢ {1,...,¢} then return L

I+ Tu{j}

If j = 2 then halt and output b’ < {0,1}
Return my[j], r[j]

On query CHALLENGE():
For t =1 to |a| do:
If t € I then
m*[t] + mylt]
Else
If ¢ < z then m*[t] « mglt]
Else m*[t] < m; [t]
Return m*

When A halts with output ¥, halt with the same output &'.

Figure 16: Adversary B in the Proof of Theorem 7.1

Combining this fact with the equation above gives

Advi9EE(N) = Pr[HY =1]-Pr[H! = 1])
[

as
>
z=1
as
> (Pr[HA, = 1ATom: | —Pr[H! = 1 Acor: |)
=1
’ as
+Z(Pr[H;4_1:>1/\corr§_1]—Pr[H?:>1/\corr§])
=1
QSZ
= Y (Pr[HA, = 1Az '] - Pr[H = 1 acorr:)
z=1

32

We can construct an ind-cpa adversary B, shown in Figure 16. Adversary B chooses a random z and
then runs adversary A, answering its oracle calls similar to as in game H,, but using its own LR oracle
to answer the zth CORRUPT query from A. One key point is that if A then makes a call to CORRUPT(Z),
then B will be unable to answer and must halt with a random guess bit as output.

Let IndCpaMr (resp. IndCpaMr;) be the same as IndCpaMr but with the challenge bit set to 0 (resp.
1) and FINALIZE simply forwarding the adversary’s output. Then, the IND-CPA advantage of B against
AE is

AdvEGEPT™(\) = Pr [IndCpaMif 4¢(A) = 1] — Pr [IndCpaMrf 4¢(A) = 1] . (31)

Notice that running B with IndCpaMr; is the same as running game H,_; with adversary A as long as
index z is not corrupted; if z is corrupted B terminates with a random guess. Similarly, running B with
IndCpaMr, is the same as running game H, with A as long as index z is not corrupted. Thus we can see
that

Advigf;gpa'mru)

= Pr [IndeaMrng()\) =1]-Pr [IndeaMrngg()\) =1]

gs
= %;(Pr[Hf_ljl/\Wi_l]+%-Pr[corr§_1]—Pr[Hf:l/\Wﬁ]—%-Pr[corrj])
qs
= in(PT[qu:HAWi_I]—Pr[HfélAWj])
S 2=1
— AV
S

Applying Proposition 2.1 we then get that there there is an efficient IND-CPA adversary C' such that
AdVESETE(N) < gk G ADVESPH (V) (32)

This completes the proof. |

Acknowledgements

The authors would like to thank Saurabh Panjwani for participating in early stages of this work which in
particular involved the development of the indistinguishability-based definition IND-SOA-C. The authors
would also like to thank Dennis Hofheinz for pointing out that the Goldwasser-Micali scheme is a lossy
encryption scheme with efficient opening, and for other useful feedback.

References

[1] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting: Security proofs and
improvements. In FEUROCRYPT 2000, volume 1807 of LNCS. Springer, 2000.

[2] M. Bellare, R. Dowsley, B. Waters, and S. Yilek. Standard security does not imply security against selective-
opening. In D. Pointcheval and T. Johansson, editors, FUROCRYPT 2012, volume 7237 of LNCS, pages
645—662. Springer, Apr. 2012.

[3] M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption and commitment
secure under selective opening. In A. Joux, editor, Advances in Cryptology — EUROCRYPT 2009, number
5479 in Lecture Notes in Computer Science, pages 1-35. Springer, 2009.

33

[4]

[5]

[6]

[7]

8]

M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409—426. Springer,
May / June 2006.

M. Bellare and P. Rogaway. Robust computational secrete sharing and a unified account of classical secret-
sharing goals. In 14th ACM Conference on Computer and Communications Security, Proceedings of CCS
2007, pages 172-184. ACM Press, 2007.

M. Bellare, B. Waters, and S. Yilek. Identity-based encryption secure against selective opening attack. In
Y. Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 235-252. Springer, Mar. 2011.

M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant
distributed computation. In 20th ACM Symposium on Theory of Computing, Proceedings of STOC 1988,
pages 1-10. ACM, 1988.

F. Bohl, D. Hotheinz, and D. Kraschewski. On definitions of selective opening security. In M. Fischlin,
J. Buchmann, and M. Manulis, editors, Public Key Cryptography — PKC 2012, volume 7293 of LNCS, pages
522-539. Springer, 2012.

A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption, and efficient
constructions without random oracles. In D. Wagner, editor, Advances in Cryptology, Proceedings of CRYPTO
2008, number 5157 in Lecture Notes in Computer Science, pages 335-359. Springer, 2008.

R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In B. S. Kaliski Jr., editor, Advances
in Cryptology, Proceedings of CRYPTO ’97, number 1294 in Lecture Notes in Computer Science, pages 90-104.
Springer-Verlag, 1997.

R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In B. S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 90-104. Springer, Aug. 1997.

R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation. In Twenty-
Eighth Annual ACM Symposium on Theory of Computing, Proceedings of STOC 1995, pages 639-648. ACM
Press, 1996.

R. Canetti, S. Halevi, and J. Katz. Adaptively-secure, non-interactive public-key encryption. In J. Kilian,
editor, Theory of Cryptography, Proceedings of TCC 2005, number 3378 in Lecture Notes in Computer Science,
pages 150-168. Springer-Verlag, 2005.

D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure protocols. In 20th ACM Symposium
on Theory of Computing, Proceedings of STOC 1988, pages 11-19. ACM, 1988.

S. G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Improved non-committing encryption with applications
to adaptively secure protocols. In M. Matsui, editor, ASTACRYPT 2009, volume 5912 of LNCS, pages 287-302.
Springer, Dec. 2009.

I. Damgard and J. B. Nielsen. Improved non-committing encryption schemes based on a general complexity
assumption. In M. Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 432-450. Springer, Aug. 2000.

I. Damgard and J. B. Nielsen. Improved non-committing encryption schemes based on general complexity
assumptions. In M. Bellare, editor, Advances in Cryptology, Proceedings of CRYPTO 2000, number 1880 in
Lecture Notes in Computer Science, pages 432—450. Springer-Verlag, 2000.

C. Dwork, M. Naor, O. Reingold, and L. Stockmeyer. Magic functions. Journal of the ACM, 50(6):852-921,
2003.

S. Fehr, D. Hofheinz, E. Kiltz, and H. Wee. Encryption schemes secure against chosen-ciphertext selective
opening attacks. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 381-402. Springer,
May 2010.

D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev. More constructions of lossy and correlation-
secure trapdoor functions. In P. Q. Nguyen and D. Pointcheval, editors, PKC 2010, volume 6056 of LNCS,
pages 279-295. Springer, May 2010.

34

[21]

22]

[27]

28]

[29]

[30]

[31]

T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In Advances
in Cryptology — CRYPTO 198/, pages 10-18. Springer, 1985.

R. Gennaro and S. Micali. Independent zero-knowledge sets. In M. Bugliese, B. Preneel, V. Sassone, and
I. Wegener, editors, Automata, Languages and Programming, 33th International Colloquium, Proceedings of
ICALP 2006, number 4052 in Lecture Notes in Computer Science, pages 34-45. Springer-Verlag, 2006.

S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270—
299, 1984.

B. Hemenway, B. Libert, R. Ostrovsky, and D. Vergnaud. Lossy encryption: Constructions from general
assumptions and efficient selective opening chosen ciphertext security. In D. H. Lee and X. Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 70-88. Springer, Dec. 2011.

D. Hofheinz. Possibility and impossibility results for selective decommitments. TACR ePrint Archive, Apr.
2008.

G. Kol and M. Naor. Cryptography and game theory: Designing protocols for exchanging information. In
R. Canetti, editor, Theory of Cryptography, Proceedings of TCC 2008, number 4948 in Lecture Notes in
Computer Science, pages 320-339. Springer, 2008.

M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In Twelfth Annual Symposium on Discrete
Algorithms, Proceedings of SODA 2001, pages 448-457. ACM/STAM, 2001.

J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-committing en-
cryption case. In M. Yung, editor, Advances in Cryptology, Proceedings of CRYPTO 2002, number 2442 in
Lecture Notes in Computer Science, pages 111-126. Springer-Verlag, 2002.

P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern, editor,
Advances in Cryptology — EUROCRYPT 1999, number 1592 in Lecture Notes in Computer Science, pages
223-238. Springer, 1999.

S. Panjwani. Tackling adaptive corruptions in multicast encryption protocols. In S. Vadhan, editor, Theory
of Cryptography, Proceedings of TCC 2007, number 4392 in Lecture Notes in Computer Science, pages 21—40.
Springer, 2007.

C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable oblivious transfer.
In D. Wagner, editor, Advances in Cryptology, Proceedings of CRYPTO 2008, number 5157 in Lecture Notes
in Computer Science, pages 554-571. Springer, 2008.

C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In Fortieth Annual ACM Symposium
on Theory of Computing, Proceedings of STOC 2008, pages 187-196. ACM Press, 2008.

A. Rosen and G. Segev. Efficient lossy trapdoor functions based on the composite residuosity assumption.
TACR ePrint Archive, Mar. 2008.

35

