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Abstract

In this paper, we study the recently proposed encryption scheme MST3,
focusing on a concrete instantiation using Suzuki-2-groups. In a passive sce-
nario, we argue that the one wayness of this scheme may not, as claimed, be
proven without the assumption that factoring group elements with respect to
random covers for a subset of the group is hard. As a result, we conclude that
for the proposed Suzuki 2-groups instantiation, impractical key sizes should
be used in order to prevent more or less straightforward factorization attacks.

Keywords: public key cryptography, cryptanalysis, group factorizations, covers,
Suzuki 2-groups.

1 Introduction

There have been several attempts to exploit the computational properties of cer-
tain factorization sequences of finite groups for cryptography. More precisely, such
an object is a finite sequence of blocks, which are also finite strings of group
elements, such that it is possible to write each group element as a product se-
lecting a factor from each block. This research line was initiated in [8], where
S. Magliveras proposed a private key cryptosystem called PGM (Permutation
Group Mappings) using logarithmic signatures, which are group bases yielding a
unique factorization on each group element. Although many questions about PGM
still remain unanswered, subsequent work revealed nice security properties of the
scheme [11, 10, 9, 12].

Several years later, the ideas behind PGM were used to design two public
key encryption schemes, MST1 and MST2 [13]. Again these constructions exploit
special properties of factorization sequences in finite groups: while MST1 makes
use of a one-way permutation constructed from a logarithmic signature inducing a
(hard to compute) factorization, MST2 is inspired by ElGamal encryption [3]. For
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this scheme, again, finding the factorization of a given group element with respect
to certain public factorization sequences was assumed to be hard. Subsequent work
proved this assumption to be rather unrealistic; in [5, 2], it was evidenced that
all proposed key generation methods were susceptible to produce weak keys; i.e.,
factorization sequences with respect to which significant subsets of the underlying
group could be factored efficiently.

Recently, Lempken et al. [7] put forward a new approach to designing public-
key encryption schemes using the hardness of factoring with respect to group bases
on finite groups. More precisely, their tools are random covers of finite non-abelian
groups, i.e., factorization sequences in which blocks are constructed by sampling
uniformly at random on the underlying group. They give a generic description
of the proposed scheme – which they call MST3 – and further ellaborate on an
instantiation based on Suzuki 2-groups. This construction is indeed elegant and
involves nice group theoretical tools, yet much work remains to be done in order
to give precise guidelines towards a secure construction.

To that aim, in this paper, we focus on the proposed instantiation of MST3

using Suzuki 2-groups. For the scheme to achieve one-wayness in a passive scenario,
a certain factorization sequence which is part of the public key, should either cover
a subset J of size significantly smaller than the center Z of the group or induce a
hard factorization. In this note we explore to what extent these requirements may
be met, if in the key generation process, covers are generated at random (following
for instance [15]).

Our Contribution. We found, experimentally and for several parameters of the
key generation algorithm, that the quotient |Z|/|J | (which in a sense measures
the average number of representations through the cover for each element of J) is
not necessarily large. As a result, in order to achieve one-wayness without further
hypotheses one needs to assume the hardness of factoring with respect to a random
cover.

We also evidence that the problem of factoring with respect to the public cover
of the Suzuki 2-group can be reduced to factoring with respect to the naturally in-
duced cover of the base field IF2m , which seems to be an easier task. Consequently,
to avoid exhaustive-search enumeration attacks, a high value (of at least 80) for
the security parameter m must be chosen. This leads to a public key of size much
larger than the custom key size recommended for public key encryption nowadays.

Paper Roadmap. In Section 2 we briefly present the notations and main notions
related to factorization sequences in finite groups, namely the notions of cover
and of logarithmic signature. In Section 3 we describe the public key encryption
scheme MST3 and its instantiation using Suzuki 2-groups as presented in [7].
Subsequently, in Section 4 a security analysis of the proposal is presented. Further,
we describe the experimental results which evidence that the assumption that
random covers are hard to invert is essential for the security of this instantiation.
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Finally, we argue the need for large parameters in order to thwart more or less
straightforward factorization attacks.

2 Preliminaries

2.1 Covers and logarithmic signatures

Let us start by giving formal definitions of the notions we will be needing in the
sequel:

Let G be a finite group and n be a positive integer. Suppose that for each i =
1, . . . , n we have a finite sequence αi = [αi1, . . . , αiri ] with each αij ∈ G. Write
α = [α1, . . . , αn]. Let S be a subset of G.

Definition 2.1 [Cover, Logarithmic Signature]

i) α as above is said to be a cover for S if any g ∈ S can be written as a product

g = α1i1 . . . αnin (1)

The vector (r1, . . . , rn) is called the type of the cover α.

ii) Let α be a cover for S. If the decomposition (1) is unique for every g ∈ S,
then α is said to be a logarithmic signature for S.

Let α be a cover of type (r1, . . . , rn) for S ⊆ G and for each m ∈ IN, denote by ZZm

the set {0, 1, . . . ,m− 1}. Consider the mappings

λ : ZZr1 × · · · × ZZrn −→ ZZ|G|

(k1, . . . , kn) 7→
n∑

i=1

(ki

i−1∏
j=1

rj)

and
θα : ZZr1 × · · · × ZZrn −→ G

(k1, . . . , kn) 7→ α1k1 . . . αnkn

The mapping λ is easily seen to be injective and moreover there is an efficient
algorithm for computing λ−1. Therefore we are able to efficiently compute

α̌ : ZZ|G| −→ G

k 7→ θα(λ−1(k))

Given a cover α for S and g ∈ S, computing an n-tuple (k1, . . . , kn) ∈ ZZr1×· · ·×ZZrn

such that g = α1k1 · · ·αnkn is equivalent to computing an element in α̌−1(g). If this
can be done in polynomial time for every g ∈ G, α is said to be tame, otherwise,
it is referred to as wild. For further details see [7].
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3 The encryption scheme MST3

We summarize in this section the presentation from [7].

3.1 Description

Given a security parameter m ∈ N, let G be a finite non-abelian group with non-
trivial center Z and such that G does not split over Z. Moreover, assume the size
of Z to be exponential in m. With this at hand, the MST3 protocol is described
in Figure 1.

Observe that the decryption process Dec is correct: on input a valid ciphertext
(y1, y2) the corresponding plaintext is retrieved as follows:

y2 = γ̌(x)
= β1i1t

−1
0 α1i1t1 · β2i2t

−1
1 α2i2t2 · . . . · βsist

−1
s−1αsists

= β1i1 . . . βsist
−1
0 α1i1 . . . αsists

= β̌(x)t−1
0 α̌(x)ts

= β̌(x)t−1
0 y1ts

and therefore x = β̌−1(y2t
−1
s y1t0) which can be efficiently computed knowing the

tame logarithmic signature β.

Remark 3.1 The authors do not specify the response of Dec on input an invalid
ciphertext; if, for instance y2t

−1
s y−1

1 t0 does not lie in Z. Clearly, if that is the case,
Dec would not be able to compute an output value.

Remark 3.2 The condition imposed that “G does not split over Z” is not enough
to thwart attacks using permutation group algorithms. Note that for any subgroup
H with H ∩Z = 1 it is possible to efficiently write elements in ZoH as a product
zh with z ∈ Z and h ∈ H. As a result, if a certain γij ∈ Z o H (which can happen
with high probability if Z o H is large) the corresponding βij could be achieved in
polynomial time.

3.2 A realization of MST3

In Section 4 of [7] the authors propose a concrete instantiation of the above scheme
using Suzuki 2-groups as a base. We recall the basic terminology and some needed
facts on the group, and refer the interested reader to Chapter VIII of [6] (see also
Section 4.1 of [7]).

Let m ≥ 3, be an odd natural number and θ a non trivial automorphism of
odd order of the finite field IFq with q = 2m. The Suzuki 2-group G of order q2

can be realized as the subgroup of GL(3, q) consisting of the matrices:
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• K: on input the security parameter m

– Selects a group G as described above and generates a tame loga-
rithmic signature

β = [β1, . . . , βs] := (βij)

of type (r1, . . . , rs) for Z
– Generates a random cover

α = [α1, . . . , αs] := (αij)

of the same type as β, for a certain “large” subset J ⊆ G, and such
that αk ⊆ G\Z, k = 1, . . . , s

– Chooses t0, . . . , ts ∈ G\Z and computes ᾱ = [ᾱ1, . . . , ᾱs] := (ᾱij)
where ᾱk = t−1

k−1 αk tk

– Computes γ := (γij) = (βij ᾱij)

– Outputs

∗ a description of the group G
∗ the pair pk = (α, γ) as public key
∗ the pair sk = (β, (t0, . . . , ts)) as secret key

• Enc: on input x ∈ ZZ|Z|

– Computes y1 = α̌(x) and y2 = γ̌(x)

– Outputs y = (y1, y2).

• Dec: on input a ciphertext (y1, y2)

– Computes y2t
−1
s y−1

1 t0

– Outputs x = β̌−1(y2t
−1
s y−1

1 t0)

Figure 1: MST3 Encryption Scheme
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S(a, b) =

 1 0 0
a 1 0
b aθ 1


with a, b ∈ IFq, i.e

G = {S(a, b) : a, b ∈ IFq}

It is easy to see that the center of G is Z = {S(0, b) : b ∈ IFq} and thus has order
q. Further, the group operation is given by the rule

S(a, b) · S(x, y) = S(a + x, b + y + aθ · x)

and as a result,
S(a, b)−1 = S(a, aθa + b).

From the above it is easy to check that all elements in the center are involutions
and all elements not in the center have order 4.

An instantiation of MST3 is proposed on this platform groups, adding one only
restriction to the key generation process: any two elements on the same block of
the cover α must not be in the same coset of the center, i.e.,

∀ i ∈ {1, . . . , s},∀ j, k ∈ {1, . . . , ri} if αij 6= αik then αij α−1
ik /∈ Z

4 Security Analysis

Security Model. We assume the reader to be somewhat familiar with standard
security notions for encryption schemes; formal definitions can be seen, for instance
in [1]. As proposed in [7], MST3 is a deterministic scheme; as a result, the best
we can hope for is security in the sense of one-wayness.

Remark 4.1 Here it is worth noting that the randomized version of the scheme
suggested by the authors is also insecure in the sense of indistinguishability, even
when only considering passive adversaries. Indeed, the encryption procedure in this
randomized version works as follows to encrypt a message x ∈ ZZ|Z|,:

• It chooses a random number R ∈ ZZ|Z| and sets y0 = x + R,

• computes y1 = α̌(R) and y2 = γ̌(R)

• outputs y = (y0, y1, y2).

Now, if the adversary is to choose to messages m0 and m1, and then guess whether
a ciphertext c∗ = (y∗0, y

∗
1, y

∗
2) corresponds to any of them, all he has to do is check

whether α̌(y∗0 − m0) = y∗1, if affirmative, the hidden plaintext is m0, otherwise c∗

is an encryption of m1.
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Now, consider an active scenario of CCA type, where the adversary has access
to a decryption oracle that will decrypt any ciphertext different from the challenge
one c∗ = (y∗1, y

∗
2), for which he attempts to retrieve the corresponding plaintext.

Clearly, he may simply choose an element z ∈ Z and feed the decryption oracle
with the ciphertext c = (y∗1z, y∗2z), obtaining the plaintext x corresponding to c∗

as output.

Once it is clear that MST3 is insecure against an active adversary one can
wonder what happens if one considers a slightly weaker (yet active) scenario; that
of VCA —validity checking— attacks:

Remark 4.2 It is easy to argue that security against validity checking attacks is
equivalent to CPA security, as a validity checking oracle can be simulated using
only the public information.
For this, let y1 = S(a, b), y2 = S(ā, b̄), t0 = S(t0a, t0b) and ts = S(tsa, tsb). Note
that Dec(y1, y2) outputs a value if and only if y2t

−1
s y−1

1 t0 ∈ Z, and this happens if
and only if a + ā = t0a + tsa. Therefore, all that is needed in order to simulate a
validity checking oracle using only the public information, is to compute t0a + tsa.
This can be done from any ciphertext (α̌(x), γ̌(x)) as the “a-part” of γ̌(x)α̌(x) is
t0a + tsa.

Remark 4.3 We note that it is possible to construct ciphertexts that would be suc-
cessfully decrypted without following the encryption procedure. Just choose random
a, b, b̄ ∈ IFq and send (y1, y2) = (S(a, b), S(a+(t0a+tsa), b̄)). One may thus wonder
whether a stronger VCA oracle should be considered. For example, an oracle O,
that on input S(a, b) ∈ G outputs 1 if there exists x such that S(a, b) = α̌(x) and
0 otherwise. Such an oracle would, in particular, help to discard many ciphertexts
that did not follow the encryption procedure but that were accepted by the oracle
constructed in remark 4.2. Nevertheless, assuming such an oracle is at hand is
actually close to assuming access to a factorization oracle for the cover α.

Seeing this, in the sequel we will focus on the security notion OW-CPA i.e.
one-wayness in a passive scenario. In other words, we consider an adversary only
observing the message flow and having access to the public keys, and explore
whether he is able to retrieve the complete plaintext from an eavesdropped cipher-
text.

4.1 Estimating the size of J

In Section 4.4 of [7] the authors discuss the security of MST3 without the cryp-
tographic hypothesis “factorizing with respect to a randomly generated cover of a
large subset of a finite group is hard”. They observe that the value |Z|/|J | can
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be viewed as the average number of representations for each element of J with
respect to the cover α. Then it is claimed that, if this value is large, the cryp-
tosystem remains secure when the crytographic hypothesis for α is removed. This
is due to the fact that finding a factorization of y1 = α̌(x) provides only a small
probability of retrieving the correct x, as the number of different factorizations of
y1 is expected to be large.

However the authors do not explain how one can generate a cover α such that
a large value |Z|/|J | is achieved, neither if this frequently happens when one just
generate a random cover. We have found that, for uniformly randomly generated
covers for several parameters of the proposed realization in the Suzuki 2-groups,
the value |Z|/|J | is small, in fact smaller than 2, in all of our experiments. We
devote the rest of this section to describe these experiments.

Remark 4.4 A cover α for a set J ⊆ G induces a cover α∗ of the same type for a
subset J1 ⊆ IFq, by restricting to the “first” coordinate elements of α. The existence
of a natural surjective map p : J −→ J1, defined as p(S(a, b)) = a, implies that
|J | ≥ |J1|. Therefore |Z|/|J | ≤ |Z|/|J1| and it is enough for our purposes to upper
bound |Z|/|J1|.

Remark 4.5 We assume that generating u.a.r. the cover α satisfying the imposed
condition αij α−1

ik /∈ Z for the public key might be done in the following way:

For each block αi, choose u.a.r. values aij and bij in IFq such that:

1. aij 6= 0 for every j and

2. aik 6= ail for k 6= l.

But then, the induced cover α∗ looks exactly like if we had constructed it by
selecting u.a.r. values aij in IFq satisfying conditions (1) and (2) for each block.
Therefore, for our experiments, we have generated covers just for subsets of IFq,
precisely in this way.

Description of the experiments: For each experiment we have arbitrarily
chosen a value for the exponent m and a value for the type of the cover (r1, . . . , rs).
Then, for these fixed values, we have repeated 50 times the following steps:

1. Generate a random cover as described in Remark 4.5, which will be a cover
for certain unknown set J1 ⊆ IFq.

2. Determine |J1| just by brute force: make all the possible sums and count
how many elements we obtain.

3. Store the value |Z|/|J1| = q/|J1|.
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Once we are done with the 50 iterations we store the minimum, the maximum
and the arithmetic mean of the obtained values for |Z|/|J1|. All calculations have
been made with GAP [4].

We repeated this experiment for different values of m and the type of the cover.
The results are summarized in the following table:

m type of the cover min. max. mean
15 (16,16,16,8) 1.55 1.653 1.581
15 (64,32,16) 1.552 1.611 1.578
15 (8,8,8,8,8) 1.517 1.678 1.581
17 (32,16,16,16) 1.562 1.608 1.582
17 (128,64,16) 1.567 1.593 1.58
17 (8,8,8,8,8,4) 1.529 1.627 1.576
19 (32,32,32,16) 1.569 1.595 1.581
19 (256,64,32) 1.574 1.593 1.582
19 (8,8,8,8,8,4,4) 1.547 1.624 1.575
21 (64,32,32,32) 1.577 1.59 1.582
21 (512,128,32) 1.577 1.588 1.581

Remark 4.6 Note that we cannot use large values for m, because step (2) in our
previous experiment would have too much computational cost. In fact, if we assume
that we have enough computational power for certain parameters to enumerate all
the possible sums formed with one element from each block of α∗, then we can
decrypt any ciphertext constructed in MST3 with those parameters, just by enu-
meration. Therefore it is not feasible to make this experiment for any parameters
which are believed to provide some kind of security to MST3. Nevertheless our
experiments evidence that assuming |Z|/|J1| to be large is rather unrealistic (even
if m is large).

Remark 4.7 The results of the experiments also weaken MST3 in another im-
portant way: the fact that |Z|/|J1| is smaller than 2 implies that, for each element
in |J1|, there will often be just one unique factorization with respect to α∗. Thus,
if y1 = α̌(x) = S(a, b), then factoring a with respect to α∗ will allow us to retrieve
x, i.e. the problem of factoring y1 with respect to α is reduced to factoring a with
respect to α∗.

4.2 Remarks on factoring in IFq and the key length

It follows from Remark 4.7 that the OW-CPA security of the proposed realization of
MST3 is compromised if an adversary is able to factorize with respect to a random
cover of IFq. Although we do not know how to efficiently solve this problem in the
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general case, some remarks about it can be made. In the sequel, α∗ will denote a
random cover of IFq of type (r1, . . . , rs).

Remark 4.8 We will assume, without loss of generality, that the vector 0 ∈ IFq

belongs to every block of α∗.

Proof. Such a signature is constructed from a random cover α as follows:

1. Choose a sandwich transform α̃ of α∗ such that the first element of each of
the blocks α̃1, . . . , α̃s−1 equals 0. Both signatures are equivalent, that is, the
factorization of an element a ∈ IFq is obtained in the same way for both (see
[13]).

2. Construct another signature α̂ with α̂j = α̃j for j < s and α̂s = α̃s + α̃s,1.
Now, the first element of each block of α̂ equals 0. Finding the factorization
of an element a ∈ IFq w.r.t. α̃ is equivalent to factorize α + α̃s,1 w.r.t. α̂.

�

A tame subcover of α∗. We will look for a cover δ such that:

i) 0 ∈ δj ⊆ α∗
j for every j ∈ {1, . . . , s}.

ii) dj = |δj | ≥ 2 for every j ∈ {1, . . . , s}.

iii)
∑s

i=1 dj = m + s (i.e. there are m non-zero vectors in δ).

The probability that m vectors chosen at u.a.r. from IFq are linearly indepen-
dent is higher than 1/4, thus it is possible to find, just by trial and error, a cover
δ satisfying conditions i) to iii) and such that the m non-zero vectors are linearly
independent. Such a cover will be, by construction, a sublogarithmic signature of
a linear transformation of a canonical logarithmic signature of IFq. Therefore δ is
tame (see [14]).

This means that, by using the signature δ we are able to find the factorization
w.r.t. α∗ of

∏s
j=1 dj different elements among the 2m elements of IFq. Let us show

how this works in a couple of examples, where we fix the type of the random cover
α∗:

Example 4.9 Let rj = 2 for every j. Then s = m and δ = α∗ (in case the m
non-zero vectors are independent, which happens with probability higher than 1/4).
Therefore such a signature will always be tame.
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Example 4.10 Let rj = 4 for every j ∈ {1, . . . , s − 1} and rs = 2, therefore
s = (m + 1)/2. Suppose we find δ as described before with dj = 3 for j < s and
ds = 2. Then we can factor 2 · 3s−1 elements of IFq through δ, that is we have a
success probability

2 · 3s−1

2m
=

3(m−1)/2

2m−1
=

(
3
4

)(m−1)/2

The success probability obviously decreases exponentially to zero as m grows. But
it is non-negligible for certain values of m which could seem, at first glance, ade-
quate for the proposed realization of MST3. For example, for m = 61 the success
probability is around 10−4.

Key length. At this point, it is worth noting that the Suzuki 2-groups instan-
tiation is far away from being suitable for practical applications, as it can only be
derived using rather large keys. Indeed, for a fixed odd m, the number of elements
involved in β—and so, in γ and α—is, at least 2m group elements.1 As each group
element is represented via two elements in F2m , we need 2m bits to represent it;
thus, the public key has at least 8m2 bits. On the other hand, note that the results
in this section imply that it is necessary to set m ≥ 80, to avoid trivial exhaustive-
search factorization attacks. This yields a public key of 27, 200 bits, which is over
ten times larger than the custom key size recommended for public key encryption
nowadays.
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