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Abstract. An attribute based encryption scheme capable of handling
multiple authorities was recently proposed by Chase. The scheme is built
upon a single-authority attribute based encryption scheme presented ear-
lier by Sahai and Waters. Chase’s construction uses a trusted central
authority that is inherently capable of decrypting arbitrary ciphertexts
created within the system. We present a multi-authority attribute based
encryption scheme in which only the set of recipients defined by the
encrypting party can decrypt a corresponding ciphertext. The central
authority is viewed as “honest-but-curious”: on the one hand it honestly
follows the protocol, and on the other hand it is curious to decrypt arbi-
trary ciphertexts thus violating the intent of the encrypting party. The
proposed scheme, which like its predecessors relies on the Bilinear Diffie-
Hellman assumption, has a complexity comparable to that of Chase’s
scheme. We prove that our scheme is secure in the selective ID model
and can tolerate an honest-but-curious central authority.

1 Introduction

In both standard public key encryption and identity based encryption a
message is to be transmitted to a single recipient known at the time of
encryption. Similarly, broadcast encryption addresses scenarios where a
sender explicitly specifies a set of receivers (or revoked users) when en-
crypting a plaintext. In contrast, in an attribute based encryption scheme,
the sender does not provide an explicit list of recipients or revoked users
when encrypting a plaintext, but instead, the recipient of a ciphertext is
specified through a set of credentials, also referred to as the attributes,
which are sufficient to decrypt a ciphertext. Fuzzy identity based encryp-
tion proposed by Sahai and Waters [7] can be used to address such a
setting, if all attributes are controlled by a single authority.
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The starting point of the current paper is a recent proposal of Chase
[4] which considers multi-authority attribute based encryption, therewith
solving an open problem from [7]. Chase’s scheme is capable of handling
disjoint sets of attributes that are distributed among multiple authorities.
In this setting, an encrypting party specifies a set of attributes AC with
the attributes in AC being controlled by several authorities. Let Ak be
the set of attributes controlled by authority k. Then the ciphertext C
associated with the attribute set AC can only be decrypted by those users
u with a set of attributes Au for which the cardinality of the intersection
Au ∩ Ak ∩ AC exceeds the respective threshold dk, for each authority k.

As pointed out in [4], one of the primary challenges in implementing
such a multi-authority attribute based encryption scheme is the preven-
tion of collusion attacks among users that obtain secret key components
from different authorities. Moreover, it is desirable that there be no com-
munication between the individual authorities. To overcome these difficul-
ties, Chase’s scheme relies on a trusted central authority. The resulting
scheme is capable of tolerating multiple corrupted authorities, but the
honesty of the central authority remains of vital importance since, by the
constriction from [4], the trusted authority has the capability of decrypt-
ing every ciphertext.

Our contribution. Building on Chase’s proposal, we construct a thresh-
old scheme for multi-authority attribute based encryption which offers the
same security guarantees provided by Chase’s construction, but in addi-
tion can tolerate an honest-but-curious central authority. Assuming the
central authority is honest during the initialization phase, the indistin-
guishability of encryptions is guaranteed. As in [4], our security analysis
is in the selective ID model and builds on the Decisional Bilinear Diffie
Hellman assumption.

Related work. Since Shamir posed the problem of identity based encryp-
tion [8], various proposals have been made, a very partial list being the
work in [6, 9, 10, 2, 5]. Building on the Bilinear Diffie Hellman assumption
and the selective ID model [3, 1], at EUROCRYPT 2005 Waters presented
an identity based encryption scheme in the standard model [11]. Sahai and
Water’s proposal for a fuzzy identity based encryption [7] provides an at-
tribute based encryption with a single authority. Here, fuzzy refers to an
identity id′ being able to decrypt a ciphertext encrypted by an identity
id if and only if id and id′ are close to each other in the “set overlap”
distance metric. This is of interest when dealing with noisy inputs, such
as biometric templates. Building on the ideas from [7], Chase proposed
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a solution for multi-authority attribute based encryption, provided that
a trusted central authority is available [4]. Our proposal aims at improv-
ing Chase’s construction by imposing a weaker assumption on the central
authority without paying a high cost in terms of efficiency.

2 Notation and preliminaries

As already mentioned, our proposal relies on the Decisional Bilinear Diffie
Hellman assumption. For the sake of clarity, the next sections review
the relevant terminology related to bilinear maps and multi-authority at-
tribute based encryption. Section 2.3 discusses the security model where,
like in [4], we make use of the selective ID model.

2.1 Bilinear maps and the Bilinear Diffie Hellman assumption

Let G1, G2 be groups of prime order p, and let P a generator of G1.
We assume q to be superpolynomial in the security parameter ` and
that all group operations in G1 and G2 can be computed efficiently, i. e.,
in probabilistic polynomial time. We use additive notation for G1 and
multiplicative notation for G2. By e : G1 × G1 −→ G2 we denote an
admissible bilinear map, i. e., all of the following hold [2]:

– For all P,Q ∈ G1 and for all α, β ∈ Z we have e(αP, βQ) = e(P,Q)αβ .
– We have e(P, P ) 6= 1, i. e., e(P, P ) is a generator of G2.
– There is a probabilistic polynomial time algorithm that for arbitrary

P,Q ∈ G1 computes e(P,Q).

In the above setting, the Decisional Bilinear Diffie Hellman (D-BDH)
problem in (G1, G2, e) is the problem of distinguishing between the chal-
lenger’s possible outputs in the following experiment: The challenger
chooses α, β, γ, η ← {0, 1, . . . , p− 1} independently and uniformly at ran-
dom, flips a fair binary coin δ ← {0, 1}, and then outputs the tuple

(P, αP, βP, γP, e(P, P )δ·αβγ+(1−δ)·η).

In other words, with probability 1/2 the last component of the challenger’s
output is e(P, P )αβγ , and with probability 1/2 the last component is a
uniformly at random chosen element from G2. We define the advantage
of algorithm A in solving the D-BDH problem as

Advbdh
A (`) := Pr(δ′ = δ)− 1

2

3



where δ′ is the output of A when trying to guess the value of the fair
binary coin δ. We say that an algorithm A has a non-negligible advantage
in solving the D-BDH problem, if Advbdh

A is not negligible1 where the
probability is over the randomly chosen α, β, γ, η and the random bits
consumed by A.

Definition 1 (Decisional Bilinear Diffie Hellman assumption).
The Decisional Bilinear Diffie Hellman assumption holds for (G1, G2, e)
if there exists no probabilistic polynomial time algorithm having non-
negligible advantage in solving the above D-BDH problem.

2.2 Authorities, attributes and users

Let K be the polynomial size set of authorities and U the polynomial
size set of users we consider, and denote by Ak the polynomial size set of
attributes handled by authority k ∈ K. We impose that the sets Ak are
pairwise disjoint, i. e., the universal attribute set

A :=
⊎
k∈K
Ak

is the disjoint union of the Ak. In addition to the authorities k ∈ K,
there is one central authority kCA 6∈ K which we will model as honest-
but-curious—the central authority kCA honestly follows the protocol, but
will try to decrypt ciphertexts sent by users in the system. During an
initialization phase we allow communication between kCA and k for each
authority k ∈ K, but thereafter no communication between the central
authority and the authorities k ∈ K is possible: while the central authority
kCA is involved in setting up the system, we do not want to rely on kCA

being available throughout the complete lifetime of the system. Also, we
do not allow any communication among the authorities in K.

To distinguish different users, we follow [4] and assume that each user
u ∈ U has a unique identifier. Depending on the application, the identifier
could refer to a social security number or a passport number, for instance.
We denote the set of those attributes in A that are available to user u ∈ U
by Au. Similarly, we write AC for the set of attributes that is associated
with a ciphertext C. This set AC is chosen by the encrypting party as
part of the input to the encryption algorithm, the other part of the input
being the plaintext. We associate with each authority k ∈ K a threshold
dk ∈ N>0. The goal is that exactly those users u satisfying
1 We refer to a function f : N>0 −→ R as negligible, if |f | = |f(`)| ∈ 1

`o(1)
.
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|Au ∩ Ak ∩ AC | ≥ dk for every k ∈ K
are able to decrypt the ciphertext C. In other words, for each authority

k, user u must have at least dk of the attributes that have been specified
at the time of encryption. To decrypt a ciphertext, user u ∈ U uses the
secret keys obtained during the initialization phase from the authorities
k ∈ K. Figure 1 lists the main components of a multi-authority attribute
based encryption scheme (cf. [4]).

Setup. A probabilistic polynomial time algorithma that given the security parame-
ter 1`, a list of pairwise disjoint sets of attributes [Ak]k∈K and thresholds [dk]k∈K
generates
– a (public key, secret key)-pair for each attribute authority k ∈ K
– public system parameters.

Attribute key generation. A probabilistic polynomial time algorithm that given
an attribute authority k’s secret key, the corresponding threshold dk, a (unique
identifier of a) user u and a subset Au ⊆ Ak outputs decryption keys for user u.

Encryption. A probabilistic polynomial time algorithm that given a plaintext,
attributes AC ⊆ A and the public system parameters, outputs a ciphertext C.

Decryption. A deterministic polynomial time algorithm that given a set of decryp-
tion keys for a set of attributes Au and a ciphertext C encrypted with attribute
set AC , outputs the corresponding plaintext M if |Au ∩ Ak ∩ AC | ≥ dk for all
attribute authorities k ∈ K; otherwise it outputs an error symbol ⊥.

a It may be preferable to realize this computation in a distributed fashion, involving
individual attribute authorities and some central authority. Below we will use such
a distributed realization.

Fig. 1. Algorithms in a multi-authority attribute based encryption scheme.

Remark 1. Unlike [4] we do not make use of a central key generation
algorithm, run by the central authority kCA to generate secret keys for
users u. Without loss of generality, in the security model we therefore
will not give the adversary the possibility to query kCA for private user
keys. In the scheme we discuss, private user keys are generated by the
attribute authorities k ∈ K only.

A crucial feature of a multi-authority attribute based encryption
scheme is the prevention of collusions among users: we want to prevent
that any set of users, each of which is not able to decrypt a ciphertext
C, can combine their information to decrypt C. The security definition
discussed next tries to capture this design goal.
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2.3 Security model

Like [4], we use a selective ID model for the security analysis. The adver-
sary H has to specify the set of attributes that he wants to attack before
receiving any public keys of the system. Figure 2 shows the game an ad-
versary has to win to defeat the security of our scheme. As in [4], for our
security analysis we impose the technical restriction that the adversary
does not query the same attribute authority twice for private keys of the
same user.

For a multi-authority attribute based encryption scheme to be secure,
we require that there is no efficient algorithm achieving a non-negligible
advantage in the game in Figure 2. More specifically, we define the ad-
vantage of an adversary H in the game in Figure 2 as

Advsid
H (`) := Pr(δ′ = δ)− 1

2

and make the following definition.

Definition 2 (Security in the selective ID model). A scheme for
multi-authority attribute based encryption is secure in the selective ID
model, if for all probabilistic polynomial time adversaries H, the advan-
tage Advsid

H (`) is negligible.

The security requirement in Definition 2 does not address the ques-
tion which information is available to the central authority. Specifically,
in Chase’s scheme [4], the central authority has the capability of reading
arbitrary ciphertexts constructed by the users within the system. To ex-
press a requirement that limits the possibilities of an honest-but-curious
central authority, we take a more detailed look at the setup phase, which
is combined into a single algorithm in Figure 1. More precisely, this step
can be seen as a simple protocol where the central authority kCA securely
communicates with the attribute authorities.

Remark 2. From a practical perspective, it is desirable to have no com-
munication among attribute authorities, and only very limited interaction
of the central authority with each attribute authority. In the protocol in
Section 3, the central authority sends one message to each attribute au-
thority and derives the public system parameters from the replies.

The game in Figure 3 captures a setting where an honest-but-curious
central authority tries to violate the indistinguishability of ciphertexts.
We introduce a “curious” algorithm B which, similarly as the “outside
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Setup

1. Given the security parameter 1`, the adversary H outputs
– a non-empty list U of (unique identifiers of) users
– a non-empty list K of (unique identifiers of) attribute authorities
– a list [(Ak, corrupted, dk)]k∈K of non-empty, pairwise disjoint attribute

sets, each along with a threshold dk ∈ N>0 and a flag indicating if the re-
spective authority is corrupted. There must be at least one uncorrupted
authority.a

– a non-empty set of attributes AC ⊆
U

k∈KAk that will be associated
with the challenge ciphertext.

2. The public and secret keys are generated, and H learns
– the public keys of all attribute authorities
– the public system parameters
– the complete history of all those authorities k ∈ K that are corrupted.

Secret key queries

The adversary can query the authorities k ∈ K for private user keys for attributes
in Ak for user u. Whenever the adversary queries k for a secret key for attribute
a ∈ Ak for user u, the attribute a is added to the (initially empty) set Au. The
only restrictions for secret key queries are the following:
– at any time, for each user u there is at least one uncorrupted authority

k̂ = k̂(u) with |Au ∩ Ak̂ ∩ AC | < dk̂
b

– for each user u, no authority k ∈ K is queried more than once for private
keys of u.

Challenge

1. The adversary H outputs two equal length messages M0, M1.
2. The challenger flips a fair binary coin δ ← {0, 1} and then applies the

encryption algorithm to Mδ and the attribute set AC .
3. The resulting ciphertext C is given to the adversary H.

Further secret key queries

The adversary can query for further private keys of users, subject to the same
restrictions as before: for each user u there is at least one uncorrupted authority
k̂ = k̂(u) with |Au ∩ Ak̂ ∩ AC | < dk̂, and for each user u, no authority k ∈ K is
queried more than once for private keys of u.

Guess

The adversary H outputs a guess δ′ for the challenger’s secret coin δ.

a Note that the central authority kCA is not included in this list and in particular
cannot be corrupted.

b The uncorrupted authority k̂ = k̂(u) may be different for each user u.

Fig. 2. Attacking multi-authority attribute based encryption in the selective ID model.
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adversary” H in Figure 2, fixes the attribute sets and their distribution
among the attribute authorities. Further on, B specifies the set of at-
tributes that will be associated with the challenge ciphertext. At the end
of the setup phase, B learns the complete state of the central authority,
and based on this knowledge then tries to violate the indistinguishability
of ciphertexts.
For an algorithm B, we define the advantage in the game in Figure 3 as

Advca
B (`) := Pr(δ′ = δ)− 1

2
.

Setup

1. Given the security parameter 1`, the algorithm B outputs
– a non-empty list U of (unique identifiers of) users
– a non-empty list K of (unique identifiers of) attribute authorities
– a list [(Ak, corrupted, dk)]k∈K of non-empty, pairwise disjoint attribute

sets, each along with a threshold dk ∈ N>0 and a flag indicating if the re-
spective authority is corrupted. There must be at least one uncorrupted
authority.a

2. The public and secret keys of all authorities k ∈ K are generated, and B
learns
– all public keys
– the public system parameters
– the complete history of all those authorities k ∈ K that are corrupted
– the complete history of the central authority kCA.

Challenge

1. The algorithm B outputs two equal length messages M0, M1 and a non-
empty set of attributes AC ⊆

U
k∈KAk.

2. The challenger flips a fair binary coin binary δ ← {0, 1} and then applies
the encryption algorithm to Mδ and the attribute set AC .

3. The resulting ciphertext C is given to B.

Guess

The algorithm B outputs a guess δ′ for the challenger’s secret coin δ.

a Note that the central authority kCA is not included in this list and in particular
cannot be corrupted.

Fig. 3. Dealing with an honest-but-curious central authority.

Definition 3 (Tolerating an honest-but-curious central author-
ity). A scheme for multi-authority attribute based encryption can toler-
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ate an honest-but-curious central authority, if for all probabilistic time
algorithms B, the advantage Advca

B (`) is negligible.

Remark 3. Unlike for the adversary H in Figure 2, we do not require that
an honest-but-curious central authority specifies the challenge attributes
AC in advance: algorithm B in Figure 3 does not have to provide this set
before the challenge phase.

We are now in the position to describe our suggestion for a multi-
authority attribute based encryption scheme and to show it is secure in
the sense of both Definition 2 and Definition 3.

3 Proposed protocol

We adopt the notation from Section 2 with G1, G2 being groups of prime
order p, P a generator of G1 and e : G1 × G1 −→ G2 an admissible
bilinear map. We assume the unique identifiers for users u and for the
attribute authorities k ∈ K to be public. Similarly, we assume the sets
of attributes Ak and the corresponding threshold dk to be public—in
particular, all these values are known to the central authority kCA, which
we invoke (only) in the setup phase. In order to generate secret keys
for users, we assume that each attribute a ∈ A can be identified with a
number ι(a) ∈ {1, . . . , p− 1}—for practical purposes, ι(a) could be based
on a hash value, for instance.

For the sake of clarity, we break the protocol description down into
steps. We start with a basic protocol, which is then modified, yielding the
final proposal.

3.1 The basic protocol

Setup. The setup phase requires one message to be sent from the cen-
tral authority to each of the attribute authorities. It is assumed that the
adversary has no possibility to interfere with or to access this communi-
cation:

The central authority kCA chooses, for each pair (k, u) ∈ K×U , uniformly
at random a secret value sk,u ← {0, . . . , p − 1}. Then, the parameter
σ is set as follows:

σ :=
∑
k∈K

sk,u (mod p). (1)
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The sequence
[sk,u · P︸ ︷︷ ︸

=:Sk,u

]u∈U

is sent to attribute authority k (k ∈ K), and kCA publishes the public
system parameter

e(P, P )σ︸ ︷︷ ︸
=:pk

.

Attribute authority k ∈ K receives the corresponding sequence of Sk,u-
values from kCA and chooses a value rk ← {0, . . . , p− 1} uniformly at
random. Moreover, for each of its attributes a ∈ Ak, a secret value
tk,a ← (Z/pZ)∗ is chosen uniformly at random by k, and the pair(

e(P, P )rk , [tk,a · P︸ ︷︷ ︸
=:Tk,a

]a∈Ak

)
forms k’s public key. The secret key of k contains the aforementioned
values rk, [Sk,u]u∈U , and [tk,a]a∈Ak

. Finally, for each user u ∈ U , at-
tribute authority k chooses uniformly at random a secret polynomial
fk,u ∈ Fp[X] of degree < dk.

Remark 4. The value e(P, P )rk is only used during encryption and de-
cryption to compute the product pk·

∏
k∈K e(P, P )rk—which is ciphertext-

independent. If one allows the attribute authorities to contribute to the
generation of the public system parameters, the e(P, P )rk -component in
the attribute authorities’ public keys can be omitted. To do so, the public
system parameter pk = e(P, P )σ can be replaced with e(P, P )σ+

P
k∈K rk .

Attribute key generation. To extract the secret decryption key asso-
ciated with an attribute a ∈ Ak∩Au for a user u ∈ U , attribute authority
k proceeds as follows:

– The secret value Xk,u := Sk,u + (rk − fk,u(0)) ·P , which depends on k
and u, but not the specific attribute a, is computed and given to u.

– The attribute-specific value Dk,u,a := fk,u(ι(a))
tk,a

· P is computed and
given to u.

Encryption. To encrypt a plaintext M ∈ G2 with associated attribute
set AC ⊆ A, the encrypting party chooses s ← {0, . . . , p − 1} uniformly
at random and computes the ciphertext((

pk ·
∏

k∈K
e(P, P )rk

)s
·M, s · P, [s · Tk,a]a∈AC

)
.
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Decryption. Let C = ((pk ·
∏

k∈K e(P, P )rk)s ·M, s ·P, [s · Tk,a]a∈AC
) be

a ciphertext with associated attribute set AC , and suppose that user u’s
attribute set Au satisfies |Au∩Ak| ≥ dk for all k ∈ K. Then u can recover
the plaintext M as follows.

1. For each k ∈ K, he chooses dk attributes a ∈ Au ∩ Ak, and computes

e(s · Tk,a, Dk,u,a) = e(P, P )fk,u(ι(a))·s.

Then, using Lagrange polynomial interpolation, u computes

e(P, P )fk,u(0)·s.

2. Further on, for each k ∈ K, user u can use the Xk,u-component of his
secret key to compute e(Xk,u, s · P ) = e(P, P )(sk,u+rk−fk,u(0))·s.

3. Finally, user u computes the following product:∏
k∈K

e(P, P )fk,u(0)·s · e(P, P )(sk,u+rk−fk,u(0))·s

= e(P, P )s·
P

k∈K(sk,u+rk)

= e(P, P )s·(σ+
P

k∈K rk)

=

(
pk ·

∏
k∈K

e(P, P )rk

)s

.

By inverting this element and multiplying the result with the first
component of the ciphertext, the plaintext M can be recovered.

3.2 Improving flexibility

We can make the aforementioned basic protocol more flexible by allowing
the addition of new authorities to a previously established protocol. For
this purpose, we will change the setup phase through the introduction of
dummy values skCA,u (u ∈ U). This causes a corresponding modification
of the decryption algorithm.

Setup. The setup phase remains the same, except that now the central
authority kCA computes for each user u ∈ U the additional “dummy
secret” skCA,u := σ −

∑
k∈K sk,u. The corresponding “dummy public key”

skCA,u · P is sent to user u. Now, to add a new authority k∗, the central
authority kCA replaces the old value σ with a new uniformly at random
chosen σ′, and replaces each skCA,u with σ′ −

∑
k∈K∪{k∗} sk,u. Then the

updated “dummy public keys” skCA,u ·P have to be communicated to the
users, and the new authority k∗ can compute its secret and public key as
before.
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Decryption. After a user receives the dummy public key skCA,u · P , he
can perform the following decryption phase, which deviates only in the
third step from the previous decryption algorithm.

1. For each k ∈ K, he chooses dk attributes a ∈ Au ∩ Ak, and computes

e(s · Tk,a, Dk,u,a) = e(P, P )fk,u(ι(a))·s.

Then, using Lagrange polynomial interpolation, u computes

e(P, P )fk,u(0)·s.

2. Further on, for each k ∈ K, user u can use the Xk,u-component of his
secret key to compute e(Xk,u, s · P ) = e(P, P )(sk,u+rk−fk,u(0))·s.

3. Multiplying e(s · P, skCA,u · P ) with all of the above values yields

e(s · P, skCA,u · P ) ·
∏
k∈K

e(P, P )fk,u(0)·s · e(P, P )(sk,u+rk−fk,u(0))·s

= e(P, P )s·skCA,u ·e(P, P )s·
P

k∈K(sk,u+rk)

= e(P, P )s·(σ+
P

k∈K rk)

=

(
pk ·

∏
k∈K

e(P, P )rk

)s

.

By inverting this element and multiplying the result with the first
component of the ciphertext, the plaintext M can be recovered.

3.3 The proposed protocol

In general, it is not desirable for the central authority to have to commu-
nicate with the users in every update phase. At the cost of an increased
size of the public system parameters, an update can be performed with-
out this communication. More specifically, in our final protocol, we use
the pair (

[skCA,u · P ]u∈U , e(P, P )σ︸ ︷︷ ︸
=:pk

)
.

as public system parameters. As the decryption algorithm has access to
the public system parameters, no modification to the decryption algo-
rithm just described is necessary, and users can decrypt as before.
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4 Security analysis

In this section, we prove security of the proposed protocol both in the
sense of Definition 2 and Definition 3. We start with the former and show
security in the selective ID model.

4.1 Security in the selective ID model

Our proof builds on the analysis of Chase’s scheme in [4], and it is worth
noting that the reduction to a D-BDH adversary S in the proof below
is tight: Essentially, the advantage of the adversary H violating security
in the selective ID model is only halved at the cost of simulating the
attribute authorities k and the central authority kCA.

Theorem 1. Suppose there exists a probabilistic polynomial time adver-
sary H against the protocol in Section 3 having a non-negligible advantage
in the game in Figure 2. Then there is a probabilistic polynomial time algo-
rithm S having a non-negligible advantage in solving the D-BDH-problem.

Proof. As explained in Section 2.1, the input of the D-BDH adversary S
is a tuple

(P, αP, βP, γP, e(P, P )δ·αβγ+(1−δ)·η) (2)

with δ ← {0, 1} being chosen uniformly random. To find δ, the algorithm
S runs a simulation ofH, and subsequently we refer to S as the simulator :
it will simulate all attribute authorities and the central authority to H,
and S will answer all queries for user keys made by H. More specifically,
S mimics the individual phases of the game in Figure 2 as follows:

Setup. The simulator uses the attribute authorities, thresholds and at-
tribute sets specified byH. For corrupted authorities the simulator follows
exactly the original protocol specification, so that the history of such an
authority (which is revealed to H) follows the same distribution as in
the game in Figure 2. Honest attribute authorities are also simulated
by S, but instead of computing the public key of an uncorrupted au-
thority k as (e(P, P )rk , [tk,a · P ]a∈Ak

), the simulator uses the public key
(e(P, P )rk , [tk,a ·Q]a∈Ak

) where

Q :=
{

P , if a ∈ AC

βP , if a 6∈ AC

with βP being part of the D-BDH-challenge. In other words, for attributes
a ∈ Ak \ AC handled by honest authorities, the random value tk,a is
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multiplied with the point βP instead of P . As G1 is of prime order, with
overwhelming probability βP generates G1 and for H the distribution
of the public keys does not change compared to the game in Figure 2.
Reflecting the above modification of public keys, the computation of the
polynomials fk,u by honest authorities will also be modified, and the
simulator S will define the polynomials fk,u implicitly when answering
secret key queries as detailed below.

When simulating the central authority kCA, the simulator follows the
steps of the original protocol, with the following exceptions:

– The value pk in the public system parameters is computed as

pk := e(αP, βP ) (3)

where αP and βP are part of the D-BDH challenge. For the adversary
H, the usage of this modified pk-value instead of e(P, P )σ makes no
difference. Because of G2 being of prime order, with overwhelming
probability pk = e(P, P )αβ is a uniformly distributed element in G2.
Similarly, the original value e(P, P )σ is for H indistinguishable from
a uniformly at random chosen group element. The only information
on σ that is potentially available to H, are
• Sk,u-values of corrupted authorities,
• [skCA,u · P ]u∈U ,
• Xk,u-values obtained from secret user key queries.

By assumption, for each u ∈ U , at least one authority k̂(u) is uncor-
rupted, and hence the first two of the above listed items alone do not
reveal any information on σ. Even with the knowledge of the Sk,u-
values of all corrupted authorities and [skCA,u · P ]u∈U , each value of
σ remains equally likely, as for each u ∈ U Equation (1) contains at
least one unknown random value sk̂(u),u. The only potentially avail-
able information on sk̂(u),u is the value Xk̂(u),u obtained from a secret
user key query. However, due to the subtraction of the random value
f̃k,u(0) · P , each Xk,u is an independent random value, containing no
information on sk,u or σ.

– The simulator only chooses the “dummy secrets” skCA,u (u ∈ U) and
the sk,u-values of corrupted authorities uniformly at random. For hon-
est authorities, the sk,u-values will be determined later as needed.

Secret key queries. We can w. l. o. g. assume that H does not query secret
user keys from corrupted attribute authorities, as H can compute such
user keys itself. For uncorrupted attribute authorities, the simulator S
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must be able to answer secret key queries from H, and we distinguish two
cases:2

1. |Au∩Ak∩AC | < dk and there has not been a previous secret key query
for user u to an authority k′ 6= k with |Au∩Ak′∩AC | < dk′: W. l. o. g.,
we may assume |Ak ∩ AC | = dk − 1 (otherwise we can modify H to
ask for further secret user keys which will be ignored). The simulator
implicitly defines fk,u by specifying the values of fk,u at dk points.
Namely, the simulator chooses uniformly at random ρk,u,a ∈ Fp for all
a ∈ Ak ∩ AC , a random value ρ̂k,u ∈ Fp and imposes

fk,u(ι(a)) = β · ρk,u,a for all a ∈ Ak ∩ AC and
fk,u(0) = β · (α + ρ̂k,u)

with αP , βP being part of the D-BDH challenge. With overwhelming
probability β 6= 0 and fk,u follows the same distribution as in the
original protocol. Now S can use the values αP , βP from the D-BDH
challenge to extract the requested secret key (Xk,u, Dk,u,a) for user
u ∈ U and attribute a ∈ Ak ∩ Au:
– For a ∈ AC , we have Dk,u,a = (ρk,u,a/tk,a) · βP .
– Because of

fk,u(0)
tk,a · β

· P =
1

tk,a
· (αP + ρ̂k,uP )

the simulator S can compute the dk points

fk,u(0)
tk,a · β

· P,

[
fk,u(ι(a))
tk,a · β︸ ︷︷ ︸

ρk,u,a/tk,a

·P

]
a∈Ak∩AC

and then use Lagrange interpolation to derive

Dk,u,a =
fk,u(ι(a))
tk,a · β

· P

for a 6∈ AC .
– Finally, the simulator computes

Xk,u := rk · P − ρ̂k,u · βP −

 ∑
κ∈(K∪{kCA})\{k}

sκ,u

 · P,

2 Here we exploit that H never queries the same authority k twice with the same user
u, and that for k 6= k′ we have Ak ∩Ak′ = ∅ (cf. [4, Remark 1]). These assumptions
ensure that the validity of |Au∩Ak ∩AC | < dk does not depend on the future secret
key queries of H.
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choosing, for the user u, all Sκ,u (κ ∈ K \ {k}), that have not
been fixed already, as Sκ,u := sκ,u ·P with a uniformly at random
chosen sκ,u. With the modified value of pk in (3), this choice of
Xk,u implicitly fixes sk,u := αβ −

∑
κ∈(K∪{kCA})\{k} sκ,u.

2. |Au ∩Ak ∩AC | ≥ dk or there has been a previous secret key query for
user u to an authority k′ 6= k with |Au∩Ak′ ∩AC | < dk′: In this case,
the simulator chooses a random polynomial f̃k,u ∈ Fp[X] of degree
< dk and implicitly defines fk,u := β · f̃k,u (with βP being part of the
D-BDH challenge). Note that with overwhelming probability β 6= 0
and fk,u follows the same distribution as in the original protocol. Using
the value βP from the D-BDH challenge, S can compute the respective
secret key (Xk,u, Dk,u,a) for user u ∈ U and attribute a ∈ Ak ∩ Au as
follows:

Xk,u := Sk,u + rk · P − f̃k,u(0) · βP and

Dk,u,a :=


f̃k,u(ι(a))

tk,a
· βP , if a ∈ AC

f̃k,u(ι(a))
tk,a

· P , if a 6∈ AC

At this point, the value Sk,u, if not fixed already through a previous
secret key query (see above), is chosen as Sk,u := sk,u · P with a
uniformly at random chosen sk,u.

Challenge. Let M0,M1 ∈ G2 be the challenge messages selected by H,
and let δ be the value to be found by the D-BDH adversary S (see (2)).
Using a fair binary coin µ ← {0, 1} and the last two components of the
D-BDH challenge, the simulator hands the challenge ciphertext(

e(P, P )δ·αβγ+(1−δ)·η · e(γP, P )
P

k∈K rk ·Mµ, γP, [tk,a · γP ]a∈AC

)
(4)

for Mµ to H. We consider both possible cases δ = 0 and δ = 1:

δ = 0: Because of e(P, P )δ·αβγ+(1−δ)·η = e(P, P )η with a uniformly at
random chosen η ← {0, . . . , p − 1}, the challenge ciphertext contains
no information on Mµ.

δ = 1: Because of pk = e(αP, βP ), in this case we can rewrite the chal-
lenge ciphertext (4) as((

pk ·
∏

k∈K
e(P, P )rk

)γ
·Mµ, γP, [γ · tk,aP ]a∈AC

)
,

which is a valid encryption of Mµ.
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Further secret key queries. Here the simulator proceeds exactly as with
secret key queries prior to the challenge phase, maintaining consistency
with already answered secret key queries.

Guess. Denote by µ′ the output of H. The output of the simulator S is
given by

δ′ :=
{

1 , if µ = µ′

0 , if µ 6= µ′
.

In other words, S considers the last component of the D-BDH challenge
to be e(P, P )αβγ whenever H correctly identifies Mµ. As in case of δ = 0
the challenge ciphertext contains no information on µ, the adversary’s H
probability to find the correct µ-value is 1/2. Consequently, the probabil-
ity that S returns a correct guess for δ in this case is 1/2, too:

Pr(δ′ = δ | δ = 0) =
1
2

. (5)

If δ = 1, the adversary H faces a valid encryption of Mµ, and we obtain

Pr(δ′ = δ | δ = 1) = Pr(µ′ = µ | δ = 1) =
1
2

+ Advsid
H (`) . (6)

Combining (5) and (6), we can compute S’s advantage in solving the
D-BDH challenge:

Advbdh
S (`) = Pr(δ′ = δ)− 1

2
= 1

2 · (Pr(δ′ = δ | δ = 0) + Pr(δ′ = δ | δ = 1))− 1
2

= 1
2 · (

1
2 + 1

2 + Advsid
H (`))− 1

2

= 1
2 ·Advsid

H (`).

ut

4.2 Security against an honest-but curious central authority

In order to show that the proposed scheme can tolerate an honest-but-
curious central authority in the sense of Definition 3, we can use a similar
argument as in the above proof of Theorem 1. It turns out that again
there is a tight security reduction: Essentially, for the price of simulating
the central authority and the attribute authorities, from an adversary B
described in the game from Figure 3, we obtain a D-BDH adversary whose
advantage is half the advantage of B.
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Theorem 2. Let B be a probabilistic polynomial time adversary against
the protocol in Section 3 having a non-negligible advantage in the game
in Figure 3. Then there is a probabilistic polynomial time algorithm S
having a non-negligible advantage in solving the D-BDH-problem.

Proof. As in the proof of Theorem 1, the input of the D-BDH adversary
S, which we have to derive, is a tuple of the form (2). Again we refer
to S as the simulator, and to find δ, a simulation of B is run by S. The
individual phases of the game in Figure 3 are mimicked as follows:

Setup. The simulator uses the attribute authorities, users, thresholds and
attribute sets specified by B. For all corrupted authorities the simulator
follows the original protocol specification. Moreover, as the central au-
thority kCA is honest-but-curious, the simulation of kCA follows the orig-
inal protocol specification also. In particular, σ and all the sk,u-values
(k ∈ K ∪ {kCA}) are chosen honestly. Let Khon ⊆ K be the set of those
attribute authorities that B specified as not being corrupted.

The simulator chooses one authority k̂ ∈ Khon uniformly at random.
For k ∈ Khon \ {k̂} the simulator generates k’s public key as specified in
the original protocol. For k̂, the computation of the public value e(P, P )rk̂

is modified. Namely, the latter value is computed as

e(αP, βP ) · e(P, P )−
P

k∈K\{k̂} rk = e(P, P )αβ−
P

k∈K\{k̂} rk

with αP , βP being part of the D-BDH challenge. This implicitly fixes

rk̂ := αβ −
∑

k∈K\{k̂}

rk. (7)

So for B the values learned at the end of the setup phase with over-
whelming probability follow the same distribution as in the original game
in Figure 3.

Challenge. Let M0,M1 ∈ G2 be the challenge messages selected by B,
and let δ be the value to be found by the D-BDH adversary S. Using a
fair binary coin µ ← {0, 1} and the last two components of the D-BDH
challenge, the simulator hands the challenge ciphertext(

e(P, P )δ·αβγ+(1−δ)·η · e(γP, P )σ ·Mµ, γP, [tk,a · γP ]a∈AC

)
(8)

for Mµ to H. We consider both possible cases δ = 0 and δ = 1:
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δ = 0: Because of e(P, P )δ·αβγ+(1−δ)·η = e(P, P )η with a uniformly at
random chosen η ← {0, . . . , p − 1}, the challenge ciphertext contains
no information on Mµ.

δ = 1: We have that e(P, P )δ·αβγ+(1−δ)·η = e(P, P )αβγ , and Equation (7)
yields e(P, P )αβγ = e(P, P )γ·

P
k∈K rk . Hence the challenge ciphertext

(8) becomes((
pk ·

∏
k∈K

e(P, P )rk

)γ
·Mµ, γP, [γ · tk,aP ]a∈AC

)
,

which is a valid encryption of Mµ.

Guess. Denote by µ′ the output of B. The output of the simulator S is
given by

δ′ :=
{

1 , if µ = µ′

0 , if µ 6= µ′
.

In other words, S considers the last component of the D-BDH challenge
to be e(P, P )αβγ whenever B correctly identifies Mµ. With the same line
of arguments as in the proof of Theorem 1, the advantage of S in solving
the D-BDH challenge computes to

Advbdh
S (`) = 1

2 ·Advca
B (`).

ut

5 Conclusion

Building on the proposal for multi-authority based attribute based en-
cryption from [4], we constructed a scheme where the central authority
is no longer capable of decrypting arbitrary ciphertexts created within
the system. In addition to showing security in the selective ID model,
we showed that the proposed system can tolerate an honest-but-curious
central authority. Since both Chase’s scheme and the proposed scheme
rely on the same hardness assumption, and have a comparable complex-
ity, the new scheme seems a viable alternative to Chase’s construction.
However, since only the proposed method is capable of handling a curi-
ous yet honest central authority, the proposed scheme is recommended in
applications where security against such a central authority is required.
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