
From Dolev-Yao to Strong Adaptive Corruption:
Analyzing Security in the Presence of Compromising Adversaries

Version 1.1, November 2009

David Basin and Cas Cremers
Department of Computer Science

ETH Zurich
Zurich, Switzerland

Email: {david.basin, cas.cremers}@inf.ethz.ch

Abstract—We formalize a hierarchy of adversary models for
security protocol analysis, ranging from a Dolev-Yao style ad-
versary to more powerful adversaries who can reveal different
parts of principals’ states during protocol execution. We define
our hierarchy by a modular operational semantics describing
adversarial capabilities. We use this to formalize various,
practically-relevant notions of key and state compromise. Our
semantics can be used as a basis for protocol analysis tools.
As an example, we extend an existing symbolic protocol-
verification tool with our adversary models. The result is the
first tool that systematically supports notions such as weak
perfect forward secrecy, key compromise impersonation, and
adversaries capable of so-called strong corruptions and state-
reveal queries. As further applications, we use our model
hierarchy to relate different adversarial notions, gaining new
insights on their relative strengths, and we use our tool to find
new attacks on protocols.

I. INTRODUCTION

Problem context. Many cryptographic protocols are de-
signed to work in the face of limited forms of corrup-
tion. For example, a Diffie-Hellman key agreement proto-
col, where digital signatures are used to authenticate the
exchanged half-keys, has the property of perfect-forward
secrecy [21,37]. Namely, the resulting shared key remains
secret even when the signature keys are later compromised
by the adversary. Designing protocols that work even in
presence of different forms of adversarial compromise has
considerable practical relevance. It reflects the multifaceted
computing reality with different rings of protection (user-
space, kernel space, hardware security modules) offering
different levels of assurance with respect to the computation
of cryptographic functions (e. g., the quality of the pseudo-
random numbers generated) and the storage of keys and
intermediate results.

Symbolic and computational approaches have addressed
this problem to different degrees. Most symbolic formalisms
are based on the Dolev-Yao model. These offer, with few
exceptions, a limited view of honesty and conversely corrup-
tion: either principals are honest from the start and always
keep their secrets to themselves or they are completely

malicious and always under adversarial control. Thus, cor-
rectness proofs in such models with respect to a security
property like message secrecy, must be interpreted as “if
my communication partners have not been compromised
in any way before, and will never be compromised in the
future, then the property will hold.” Under this limited
view, it is impossible to distinguish between the security
guarantees provided by early key-exchange protocols such as
the Bilateral key-exchange [16] and state-of-the art protocols
such as (H)MQV [28,33]. It is also impossible to discern
any benefit from storing the long-term keys in a tamper-
proof module or from performing part of a computation in
a cryptographic coprocessor. Despite this, symbolic methods
have the advantage that there are numerous effective tools
for symbolic protocol analysis, such as [2,8,17].

In contrast to the above, researchers in the computa-
tional setting, e. g. [11,13,26,31,40], have explored stronger
adversarial notions, whereby principals may be selectively
corrupted during protocol execution. For example, their
short-term or long-term secrets may be revealed (at different
times) to the adversary, as well as other parts of their
state, including the results of intermediate computations. By
reasoning about protocols in the presence of such adver-
saries, one can establish stronger properties, such as perfect-
forward secrecy. There are, however, drawbacks to the above
computational models. First, these models have been defined
just for key-agreement protocols, whereas one may expect
similar definitions to exist for any security protocol. Second,
their definitions are given in a monolithic fashion, where
the security model simultaneously formalizes the execution
model of the protocol, the adversary capabilities, and the
desired security property. This complicates the comparison
of models as it is non-trivial to factor out these elements
from the monolithic whole. Third, contrary to the security
models used in symbolic approaches, there is no automated
tool support available for the stronger adversarial notions
from the computational models.
Contributions. We define a modular operational semantics
for security protocols that includes a set of rules specifying

different adversarial compromise capabilities. These rules
serve as building blocks for constructing a hierarchy of ad-
versary models, ranging from a Dolev-Yao style adversary to
more powerful adversaries with capabilities for dynamically
compromising both short-term and long-term data. We use
our modular semantics to formalize different, practically-
relevant notions of key and state compromise, which can be
tailored to different computing scenarios. For example, we
can model attacks against implementations of cryptographic
protocols involving the mixed use of cryptographic co-
processors for the secure storage of long-term secrets with
the computation of intermediate results in less-secure main
memory for efficiency reasons.1

We also use our modular semantics to show how analogs
of the different adversarial models studied in the com-
putational setting can be constructed from combinations
of our rules. This provides a more uniform view of the
different adversary models and allows us to easily estab-
lish relationships between them. Our adversary models are
orthogonal to the execution model and security properties.
Although presented in a symbolic and possibilistic con-
text, our modular adversary models can also be used with
computational execution models, or with probabilistic (e. g.
indistinguishability-based) security properties.

Finally, our semantics directly lends itself to protocol
analysis. As an example, we extend an existing symbolic
protocol analysis tool [17] to reason about security prop-
erties of protocols in the presence of adversaries in our
hierarchy. The resulting tool is the first automated tool
that systematically supports notions such as: weak perfect
forward secrecy, key compromise impersonation, adversaries
that are able to learn (parts of) the local state of agents, and
malicious random number generators. We use the tool to
analyze a number of protocols, such as Naxos, KEA+, and
protocols in the MQV family, thereby finding new attacks.
We also define a hierarchy on protocols, using the tool to
classify their relative strengths against different forms of
adversarial compromise.
Organization. We define our operational semantics and
associated security properties in Section II. In Section III,
we define a hierarchy of adversary models, relate models
in the hierarchy to existing adversarial notions, and define
our protocol-security hierarchy. In Section IV, we use an
extended version of the Scyther tool to verify different
protocols with respect to models in our hierarchy. We
discuss related work in Section V and draw conclusions in
Section VI. In the Appendix, we further explain the design
choices behind our adversary models, describe our tool and
its use, and provide details on attacks found.

1For example, it is folklore in the PKCS#11 community that if the
primary goal is high throughput, one only uses the private-key acceleration
capabilities of the hardware and carries out all other cryptographic oper-
ations (e. g., symmetric cryptography and hashing) on the host computer
[24].

II. COMPROMISING ADVERSARY MODEL

We define an operational semantics that is modular with
respect to the adversary’s capabilities. After notational pre-
liminaries, we define a general symbolic protocol-execution
model, where agents execute threads that correspond to
instances of protocol roles. Afterwards we give a set of
rules, defining different adversary capabilities. A protocol
and a subset of adversarial rules define a transition system,
which has a trace semantics, as is standard.

Our framework is based on a simple operational semantics
that is compatible with the majority of existing semantics for
security protocols, including semantics based on traces and
strand-spaces. We have kept our execution model minimal
to focus on the adversary rules. However, it would be
straightforward to incorporate a more elaborate execution
model. For example, one that contains flow-control com-
mands rather than just straight-line protocols.

A. Notational preliminaries

Let f be a function. We write dom(f) and ran(f) to
denote f ’s domain and range, respectively. We write f [b← [
a] to denote f ’s update, which is the function f ′ where
f ′(x) = b when x = a and f ′(x) = f(x) otherwise. We
write f : X 7→ Y to denote a partial function mapping
some elements from X to elements from Y .

For any set S, P(S) denotes the power set of S and
S∗ denotes the set of finite sequences of elements from S.
We write 〈s0, . . . , sn〉 (sometimes omitting brackets when
no confusion can result) to denote the sequence consisting
of elements s0 through sn. For s a sequence of length |s|
and i < |s|, we write si to denote the i-th element. We
write ŝ s′ for the concatenation of the sequences s and s′.
Abusing set notation, we write e ∈ s iff ∃i.si = e, and write
set(s) for {x | x ∈ s}. Finally, we define last(〈〉) = ∅ and
last(ŝ 〈e〉) = {e}.

We use standard notions for manipulating terms.2 We
write [t0, . . . , tn/x0, . . . , xn] ∈ Sub to denote the sub-
stitution of ti for xi, for 0 ≤ i ≤ n. We extend the
functions dom and ran to substitutions. We write σ ∪ σ′ to
denote the union of two substitutions, which is defined when
dom(σ)∩dom(σ′) = ∅. We write σ(t) for the application of
the substitution σ to t and FV (t) to denote the free variables
occurring in t.

For→ a binary relation,→∗ denotes its reflexive transitive
closure.

B. Terms and events

We assume given the infinite sets Agent , Role , Fresh ,
Var , Func, and TID of agent names, roles, freshly gener-
ated terms (nonces, session keys, coin flips, etc.), variables,
function names, and thread identifiers. For technical reasons,

2We will later introduce the relevant syntactic categories of terms, events,
and sequences of events. Functions like substitution are defined as standard
(e. g., [3]) over elements of these categories.

we assume that TID contains two distinguished thread iden-
tifiers, Test and tidA. The thread Test represents an agent
thread: we will formulate both the security properties and
the adversary capabilities from the local view of an arbitrary
agent thread.3 The thread tidA represents the adversary
thread. In this thread, the adversary events, introduced later,
are executed.

In order to bind local terms, such as freshly generated
terms or local variables, to a protocol role instance (thread),
we write T]tid. This denotes that the term T is local to the
protocol role instance identified by tid.

Definition 1: Basic terms

Actor ::= Agent | Role
BasicTerm ::= Actor | Fresh | Var

| Fresh]TID | Var]TID

Definition 2: Terms

Term ::= BasicTerm | (Term,Term)
| pk(Actor) | sk(Actor) | k(Actor ,Actor)
| {|Term |}aTerm | {|Term |}sTerm | Func(Term∗)

For each X,Y ∈ Agent , sk(X) denotes the long-term
private key, pk(X) denotes the long-term public key, and
k(X,Y) denotes the long-term symmetric key shared be-
tween X and Y . Moreover, {| t1 |}at2 denotes the asymmetric
encryption of the term t1 with the key t2, and {| t1 |}st2
denotes symmetric encryption. Elements of the set Func
can be used to model other cryptographic functions, such
as hash functions. Freshly generated terms and variables are
assumed to be local to a thread. We model constants as 0-ary
functions.

Depending on the protocol analyzed, we assume that sym-
metric or asymmetric long-term keys have been distributed
prior to protocol execution. We assume the existence of an
inverse function on terms, where t−1 denotes the inverse key
of t. We have pk(X)−1 = sk(X), sk(X)−1 = pk(X) for
all X ∈ Agent , and t−1 = t for all other terms t.

For simplicity of presentation, we work with a free term
algebra, whereby term equality is just syntactic equality.
Note that our model can be straightforwardly extended to
capture algebraic properties.

We define a binary relation `, where M ` t denotes that
the term t can be inferred from the set of terms M . Let
t0, . . . , tn ∈ Term and let f ∈ Func. We define ` as the

3Fixing the name of this “point of view” thread to Test is standard in
computational approaches, and simplifies many of the formulas.

smallest relation satisfying:

t ∈M ⇒ M ` t
M ` t1 ∧M ` t2 ⇔ M ` (t1, t2)
M ` t1 ∧M ` t2 ⇒ M ` {| t1 |}st2
M ` t1 ∧M ` t2 ⇒ M ` {| t1 |}at2

M ` {| t1 |}st2 ∧M ` t2 ⇒ M ` t1
M ` {| t1 |}at2 ∧M ` (t2)−1 ⇒ M ` t1∧

0≤i≤n

M ` ti ⇒ M ` f(t0, . . . , tn)

Subterms t of a term t′, written t v t′, are defined as the
syntactic subterms of t′, e. g., t1 v {| t1 |}st2 and t2 v {| t1 |}st2 .

An agent can engage in the following events.
Definition 3: Agent events

AgentEvent ::= create(Role,Agent) | send(Term)
| recv(Term) | generate(P(Fresh))
| state(P(Term)) | sessionkey(P(Term))

The message in the send and receive events does not include
explicit sender or recipient fields although, if desired, they
can be given as subterms of the message. As is standard,
the adversary receives all messages sent, independent of the
intended recipient.

In contrast to normal agents, the adversary can engage in
the following events.

Definition 4: Adversary events

AdvEvent ::= LongtermKeyReveal(Agent)
| SessionKeyReveal(TID) | StateReveal(TID)
| RandomReveal(TID)

We assume all adversary events are executed in the single
adversary thread tidA.

We will explain the interpretation of the agent and
adversarial events shortly. Here we simply note that the
first three honest agent events are conventional: starting a
thread, sending a message, and receiving a message. The
last three events tag state information, which can possibly
be compromised later by the adversary. The four adversary
events specify which information the adversary compro-
mises. These events can occur at any time during protocol
execution and correspond to different kinds of adversary
queries from computational models.

Finally, system events are events originating from agents
or the adversary.

Event = AgentEvent ∪AdvEvent

C. Protocols and threads

A protocol is a mapping from role names to event se-
quences, i. e., Protocol : Role → AgentEvent∗. We require
that no thread identifiers occur as subterms of events in a
protocol definition.

Example 1 (Simple protocol): Let key ∈ Fresh and x ∈
Var . Let P be the protocol defined as follows.

P (Init) = 〈generate({key}),
state({key, {|Resp, key |}ask(Init)}),
send(Init,Resp, {| {|Resp, key |}ask(Init) |}apk(Resp)),

sessionkey({key})〉
P (Resp) = 〈recv(Init,Resp, {| {|Resp, x |}ask(Init) |}apk(Resp)),

state({x, {|Resp, x |}ask(Init)}),
sessionkey({x})〉

Here, the initiator generates a key and sends it (together
with the responder name) signed and encrypted, along with
the initiator and responder names. The recipient expects to
receive a message of this form. The additional protocol steps
in each party mark session keys and state information.

Protocols are executed by agents that execute roles,
thereby instantiating role names with agent names. We
define a function thread : (Protocol×Role×TID×Sub)→
AgentEvent∗. Given a protocol, a role, a thread identifier,
and a substitution mapping role names to agents, thread
yields the sequence of agent events that may occur in a
thread.

Definition 5 (Thread): Let P be a protocol, let R ∈
dom(P), tid ∈ TID , and let σ be a substitution such
that dom(σ) = dom(P). Then thread(P,R, tid, σ) =
σ′(σ(P (R))), where σ′ is defined as follows. For a sequence
of events l, let CV (l) denote the finite set of variables
and freshly generated terms occurring in the events in l.
To bind the variables and fresh terms to their thread, we
define σ′ =

⋃
cv∈CV (σ(P (R)))[cv]tid/cv].

Example 2: Let P be the protocol from Example 1, t1 ∈
TID , and {A,B} ⊆ Agent . For a thread t1 performing the
Init role we have σ′ = [key]t1/key] and

thread(P, Init, t1, [A,B/Init,Resp]) =
〈generate({key]t1}),
state({key]t1, {|B, key]t1 |}ask(A)}),
send(A,B, {| {|B, key]t1 |}ask(A) |}apk(B)),

sessionkey({key]t1})〉 .
D. Execution model

We define the set Trace as (TID × Event)∗, which rep-
resents possible execution histories. The state of our system
is a triple (tr, IK , th) ∈ Trace × P(Term) × (TID 7→
Event∗), whose components are (1) a trace tr, (2) the
adversary’s knowledge IK , and (3) a partial function th
mapping thread identifiers of initiated threads (executing or
completed) to event traces. We include the trace as part of
the state to facilitate defining the partner function later.

The initial system state is (〈〉, IK 0, ∅), where IK 0 is the
public knowledge associated with the protocol. For example,

this includes the names and public keys of all agents. Note
that, in contrast to Dolev-Yao models, IK 0 does not include
any long-term keys. The adversary may learn these by
performing LongtermKeyReveal events.

The semantics of a protocol P ∈ Protocol is defined by
a transition system that combines the execution-model rules
from Figure 1 with a set of adversary rules from Figure 2.
We first present the execution-model rules.
Execution-model rules. The create rule starts a new in-
stance of a protocol role R (a thread), executed by an agent
ρ(R). A fresh thread identifier tid is assigned to the thread,
thereby distinguishing it from existing threads, the adversary
thread, and the test thread. The rule takes the protocol P as
a parameter. The role names dom(P), which can occur in
events associated with the role, are replaced by agent names
by the substitution ρ.

The createTest rule starts the test thread. It is similar to
the create rule, but instead of choosing arbitrary role and
agent assignments, the rule takes as additional parameters
RTest and σTest. These parameters represent the test role,
and the agent to role and variable assignments of the test
thread, respectively. These parameters will be instantiated
in the definition of traces in Definition 8.

The send rule sends a message m to the network. In
contrast, the receive rule accepts messages from the network
that match the pattern pt, where pt is a term that may contain
free variables. In our model, recipients accept all messages
that match the pattern pt, and block on any other messages.
The resulting substitution σ is applied to the remaining
protocol steps l.

The last three rules support our subsequent adversary
rules. These rules simply store information about freshly
generated terms, the local state, and session keys in the
trace. The generate rule marks the fresh terms that have
been generated,4 the state rule marks the current local state,
and the sessionkey rule marks a set of terms as session keys.
Test thread. When verifying security properties we will
focus on a particular thread. In the computational setting
this is the thread in which the adversary performs a so-called
test query. In the same spirit, we refer to the thread under
consideration as the test thread, with the corresponding
thread identifier Test. For the test thread, the substitution of
role names by agent names, and all free variables by terms, is
given by σTest and the role is given by RTest. For example,
if the test thread is performed by Alice in the role of the
initiator, trying to talk to Bob, we have that RTest = Init
and σTest = [Alice,Bob/Init,Resp].
Auxiliary functions. Prior to giving the compromise rules,
we define several auxiliary functions.

Given a trace tr and a thread identifier tid, we define
the function role : Trace × TID → (Role ∪ {⊥}) by

4Note that this rule need not ensure that m is unique. The function
thread maps freshly generated terms c to c]tid in a thread tid, ensuring
uniqueness.

R ∈ dom(P) ρ ∈ dom(P)→ Agent tid 6∈ (dom(th) ∪ {tidA,Test})
(tr, IK , th) −→ (trˆ〈(tid, create(R, ρ(R)))〉, IK , th[thread(P,R, tid, ρ)← [tid]})

[create]

Test 6∈ dom(th)
(tr, IK , th) −→ (trˆ〈(Test, create(RTest, σTest(RTest)))〉, IK , th[thread(P,RTest,Test, σTest)← [Test]})

[createTest]

th(tid) = 〈send(m)〉̂ l
(tr, IK , th) −→ (trˆ〈(tid, send(m))〉, IK ∪ {m}, th[l←[tid])

[send]

th(tid) = 〈recv(pt)〉̂ l IK ` σ(pt) dom(σ) = FV (pt)
(tr, IK , th) −→ (trˆ〈(tid, recv(σ(pt)))〉, IK , th[σ(l)← [tid])

[recv]

th(tid) = 〈generate(M)〉̂ l
(tr, IK , th) −→ (trˆ〈(tid, generate(M))〉, IK , th[l← [tid])

[generate]

th(tid) = 〈state(M)〉̂ l
(tr, IK , th) −→ (trˆ〈(tid, state(M))〉, IK , th[l← [tid])

[state]

th(tid) = 〈sessionkey(M)〉̂ l
(tr, IK , th) −→ (trˆ〈(tid, sessionkey(M))〉, IK , th[l← [tid])

[sessionkey]

Figure 1. Execution-model rules

role(tr, tid) = R if ∃a.(tid, create(R, a)) ∈ tr, and
role(tr, tid) = ⊥ otherwise. This function is well-defined.
In particular, there is at most one such R, due to the third
premise tid 6∈ dom(th) of the create rule.

The long-term secret keys of an agent a are defined as
LongTermKeys(a) = {sk(a)}∪⋃b∈Agent{k(a, b), k(b, a)}.

For traces, we inductively define an operator↓ that projects
traces on events belonging to a particular thread identifier.
For all tid, tid′, and tr,

〈〉↓ tid = 〈〉

(〈(tid′, e)〉̂ tr)↓ tid =

{
〈e〉̂ (tr↓ tid) if tid = tid′, and
tr↓ tid otherwise.

Similarly, we define for sequences of events an operator �
that selects the contents of events of a particular type. For all
evtype ∈ {create, send, recv, generate, state, sessionkey}:

〈〉�evtype = 〈〉

(〈e〉̂ l)�evtype =

{
〈m〉̂ (l�evtype) if e = evtype(m), and
l�evtype otherwise.

During protocol execution, the test thread may share
its secrets with other threads. Hence some adversary rules
require distinguishing between intended partner threads and
other threads. There exist many notions of partnering in the
literature. In general, we use partnering based on matching
histories as defined below. For full details we refer to
Appendix A-D.

Definition 6 (Matching histories): Let l and l′ be se-
quences of events. We define matching histories (MH) as

MH(l, l′) ≡ (l� recv = l′�send ∧ l�send = l′� recv
)
.

Our partnering definition is parameterized over the protocol
P , the test role RTest, and the instantiation of variables in
the test thread σTest. These parameters are later instantiated
in the definition of the transition system.

Definition 7 (Partnering): Let tr be a trace. Then,

Partner(tr) =
{
tid

∣∣ tid 6= Test
∧ ∃l . MH(σTest(P (RTest)), (tr↓ tid)̂ l)

∧ role(tr, tid) 6= RTest

}
.

Intuitively, if the partner thread completes, its history will
match with the Test thread (for l = 〈〉), and the partner and
Test execute distinct roles. The above definition also ensures
that incomplete threads that may complete with matching
histories in the future, are also considered partners.

E. Adversary-compromise rules

We define the adversary-compromise rules in Figure 2.
They factor the security definitions from the cryptographic
protocol literature along three dimensions of adversarial
compromise: which kind of data is compromised, whose data
it is, and when the compromise occurs. Not all combinations
of capabilities have been used for analyzing protocols.
Some combinations are not covered because of impossibility
results (for example [28]), whereas other combinations ap-
pear to have been previously overlooked. The combinations

a 6∈ {σTest(R) | R ∈ dom(P)}
(tr, IK , th) −→ (trˆ〈(tidA, LongtermKeyReveal(a))〉, IK ∪ LongTermKeys(a), th)

[LongtermKeyRevealothers]

a = σTest(RTest) a 6∈ {σTest(R) | R ∈ dom(P) \RTest}
(tr, IK , th) −→ (trˆ〈(tidA, LongtermKeyReveal(a))〉, IK ∪ LongTermKeys(a), th)

[LongtermKeyRevealactor]

th(Test) = 〈〉
(tr, IK , th) −→ (trˆ〈(tidA, LongtermKeyReveal(a))〉, IK ∪ LongTermKeys(a), th)

[LongtermKeyRevealafter]

th(Test) = 〈〉 tid ∈ Partner(tr) th(tid) = 〈〉
(tr, IK , th) −→ (trˆ〈(tidA, LongtermKeyReveal(a))〉, IK ∪ LongTermKeys(a), th)

[LongtermKeyRevealaftercorrect]

tid 6= Test tid 6∈ Partner(tr)
(tr, IK , th) −→ (trˆ〈(tidA,SessionKeyReveal(tid))〉, IK ∪ set((tr↓ tid)�sessionkey), th)

[SessionKeyReveal]

tid 6= Test tid 6∈ Partner(tr) th(tid) 6= 〈〉
(tr, IK , th) −→ (trˆ〈(tidA,StateReveal(tid))〉, IK ∪ last((tr↓ tid)�state), th)

[StateReveal]

(tr, IK , th) −→ (trˆ〈(tidA,RandomReveal(tid))〉, IK ∪ set((tr↓ tid)�generate), th)
[RandomReveal]

Figure 2. Adversary-compromise rules

before Test
thread

during
Test thread

after Test
thread

key of
actor

keys of
peers

keys of
others

t
t
t

t
t
t

t
t
t�

�

�

�

�

�

�

��� �

LongtermKeyRevealactor

LongtermKeyRevealothers

LongtermKeyRevealafter,
LongtermKey-
Revealaftercorrect

Figure 3. Relating long-term key reveal rules

we present here include those previously studied in the
literature.
Compromise of long-term keys. The first four rules model
the compromise of agents’ long-term keys, represented by
the event LongtermKeyReveal(a). This event models the
adversary learning the long-term keys of the agent a. After
this event occurs, the adversary can emulate new threads
of the agent a. In traditional Dolev-Yao models, this event
occurs implicitly for dishonest agents before the honest
agents start their threads.

In Figure 3, we clarify the relationships between our long-
term key compromise rules in the remaining two dimensions:
the vertical axis specifies when the compromise occurs,
and the horizontal axis specifies whose long-term keys are
compromised. With respect to when a compromise occurs,

we differentiate between before, during, and after the test
thread. With respect to whose keys are compromised, we
differentiate between agents not involved in the communi-
cation (others), the agent performing the test thread (actor),
and the other partner (peer). In Figure 3, the ovals specify
the effects of each of the long-term key reveal rules from
Figure 2.

The LongtermKeyRevealothers rule formalizes the adversary
capability typically used in the symbolic analysis of security
protocols since Lowe’s Needham-Schroeder attack [34]: the
adversary can learn all the long-term keys of any agent a
that is not an intended partner of the test thread. Hence, if
the test thread is performed by Alice who is communicating
with Bob, the adversary can learn, for example, Charlie’s
long-term key.

The LongtermKeyRevealactor rule allows the adversary to
learn the long-term key of the agent executing the test thread
(also called the actor). The intuition is that a protocol may
still function as long as the long-term keys of the other
partners are not revealed. This rule allows the adversary
to perform so-called Key Compromise Impersonation at-
tacks [26]. The rule’s second premise is required because
our model allows agents to communicate with themselves.5

The LongtermKeyRevealafter and LongtermKeyRevealaftercorrect
rules have restrictions on when the compromise may occur.
In particular, they allow the compromise of long-term keys

5In our model, an initiator Alice can start a thread communicating with
a responder Alice. In this case, revealing the actor’s long-term key also
reveals the key of the partner, and as a result no protocol that establishes
a shared secret can be correct. The second premise disallows revealing the
actor’s key for threads that communicate with themselves.

randomness

session
keys

other local
data

data of
partners

data of
others

t
t
t

t
t
t�� �
���

�

�

�

�

RandomReveal

SessionKeyReveal

StateReveal

Figure 4. Relating short-term data reveal rules

only after the test thread has finished, captured by the
premise th(Test) = 〈〉. This is the sole premise of Longterm-
KeyRevealafter. If a protocol satisfies secrecy properties with
respect to an adversary that can use LongtermKeyRevealafter, it
is said to satisfy Perfect Forward Secrecy (PFS) [21,37].

For LongtermKeyRevealaftercorrect, we have the additional
premise that a finished partner thread must exist for the
test thread. This condition stems from [28] and excludes the
adversary from both inserting fake messages during protocol
execution and learning the key of the involved agents later.
If a protocol satisfies secrecy properties with respect to an
adversary that can use LongtermKeyRevealaftercorrect, it is said to
satisfy weak Perfect Forward Secrecy (wPFS). This property
is motivated by a class of protocols given in [28] whose
members fail to satisfy PFS, although some satisfy this
weaker property.
Compromise of short-term data. The three remaining
adversary rules correspond to the compromise of short-
term data, that is, data local to a specific thread. In our
adversary-compromise models, the SessionKeyReveal(tid)
and StateReveal(tid) events indicate that the adversary gains
access to the session key or, respectively, the local state
of the thread tid. These are respectively marked by the
sessionkey and state events. The contents of the state change
over time, and are erased when the thread ends. These
properties are reflected in the StateReveal rule by the use
of the last state marker for the state contents, and the third
premise requiring that the thread tid has not ended. The
RandomReveal(tid) event indicates that the adversary learns
the random numbers generated in the thread tid.

In Figure 4, we show the dimensions considered for
the compromise of short-term data: whose data, on the
horizontal axis, and which kind of data, on the vertical axis.
Whereas we assumed a long-term key compromise reveals
all long-term keys of an agent, we differentiate here between
the different kinds of local data. Furthermore, because we
assume that local data does not exist before or after a session,
we can ignore the temporal dimension.

For protocols that establish a session key, we assume
the session key is shared by all partners and should be
secret: revealing it through a compromise will trivially break
the security of the protocol. Hence the rules disallow the
compromise of the session keys of the test or partner threads.
Our basic rule set does not contain a rule for the compromise
of other local data of the partners. Including such a rule is
straightforward. However it is currently unclear whether any
protocol is correct with respect to such an adversary.

The rules SessionKeyReveal and StateReveal allow for the
compromise of session keys and the contents of the local
state of a thread. Their premise is that the compromised
thread is not a partner thread. In contrast, the premise of the
RandomReveal rule allows for the compromise of all threads,
including the partner threads. This rule stems from [31],
where it is shown that it is possible to construct protocols
that are correct in the presence of an adversary capable of
RandomReveal.

F. Traces for adversary-compromise models

We call each subset Adv of the set of adversary rules from
Figure 2 an adversary-compromise model.

Definition 8 (Traces): Let P be a protocol, IK 0 a set
of terms, Adv an adversary-compromise model, RTest a
role, and σTest a mapping from roles and free variables
to Agent and Term , respectively. We define a transition
relation →P,Adv ,RTest,σTest from the execution-model rules
from Figure 1 and the rules in Adv . For states s and s′,
s →P,Adv ,RTest,σTest s

′ iff there exists a rule in Adv or the
execution-model rules with the premises Q1(s), . . . , Qn(s)
and the conclusion s→ s′ such that all of the premises hold.
We then define the function traces as

traces(P, IK 0,Adv , RTest, σTest) = {tr | ∃IK , th.

(〈〉, IK 0, ∅)→∗P,Adv ,RTest,σTest
(tr, IK , th)} .

G. Security properties

We provide a symbolic definition of session-key secrecy
which, when combined with different adversary models,
gives rise to different notions of secrecy found in the liter-
ature. Other security properties, such as secrecy of general
terms, symbolic indistinguishability, or different variants of
authentication, can be defined analogously in our model.

Definition 9 (Session-key secrecy): Let P be a protocol.
Let RTest be a role of P that contains sessionkey events
marking the session keys. Let IK 0 be the initial knowledge
of the adversary. Let IK (tr) denote the adversary knowledge
after the events in tr. Let Adv be an adversary model, and
let the predicate completed(tr, R, tid) hold iff the thread tid
contains all events of role R in the trace tr. Let TestSub be
the set of all substitutions of roles by agents, and all free
variables of RTest by terms. We then define the secrecy of

the session keys of RTest as

∀σTest ∈ TestSub.∀tr ∈ traces(P, IK 0,Adv , RTest, σTest).
∀k.(Test, sessionkey(k)) ∈ tr ∧ completed(tr, RTest,Test)

⇒ IK (tr) 0 k .

Within our operational semantics, we can reinterpret
different security properties as classical secrecy and au-
thentication properties, with respect to different adversary
models. This provides a uniform view of these security
properties. It also gives us an account of these properties
where the execution model, adversary model, and properties
are cleanly separated.

For example, we reinterpret the secrecy of a session
key as defined in symbolic models as secrecy (Defini-
tion 9) with respect to an adversary model that includes
the LongtermKeyRevealothers rule. We reinterpret Weak Perfect
Forward Secrecy as secrecy with respect to an adversary
model that includes the LongtermKeyRevealaftercorrect rule, but
not the LongtermKeyRevealafter rule. We reinterpret Perfect
Forward Secrecy as secrecy with respect to an adversary
model that includes the LongtermKeyRevealafter rule. Finally,
we reinterpret resilience against Key Compromise Imper-
sonation as a form of authentication (e. g. agreement from
[35]) with respect to an adversary model that includes the
LongtermKeyRevealactor rule.

III. ADVERSARY AND PROTOCOL HIERARCHIES

In this section, we first define an adversary-model hierar-
chy and relate models in this hierarchy to adversarial notions
from the literature. Our hierarchy enables the comparison of
existing adversarial notions. Moreover, it has implications
for security protocol verification. A protocol that is verified
with respect to a model implies correctness with respect to
all weaker models. Similarly, falsification with respect to a
model implies falsification for all stronger models.

We also define a protocol-security hierarchy in which
protocols can be compared with respect to the adversarial
models in which they satisfy their security properties. This
hierarchy can be used to select or design protocols based
on the implementation requirements and the worst-case
expectations for adversaries in the application domain.
Hierarchy of adversary-compromise models. We define a
partial order ≤A on the adversary-compromise models. For
all adversary-compromise models Adv and Adv ′:

Adv ≤A Adv ′ ≡ ∀P,M,R, σ.

traces(P,M,Adv , R, σ) ⊆ traces(P,M,Adv ′, R, σ).

We write Adv =A Adv ′ when Adv ≤A Adv ′ and Adv ′ ≤A
Adv . We say that two adversary-compromise rules r1 and
r2 are incomparable if and only if

∀Adv .¬((Adv ∪ {r1}) ≤A (Adv ∪ {r2}) ∨
(Adv ∪ {r2}) ≤A (Adv ∪ {r1})

)

Each short-term compromise rule, i. e. the last three rules
in Figure 2, is incomparable to the other adversary rules
with respect to ≤A, since each short-term rule introduces
an event into the trace that is unique to the rule. For most
realistic application scenarios, the local state will at least
include the generated random numbers. In this case, the
effect of the RandomReveal on the adversary knowledge
will be subsumed by the effect of the StateReveal rule.
However, if some random numbers are generated within a
cryptographic coprocessor, this is not the case.

In contrast, each of the long-term key-reveal rules in
Figure 2 introduces the same event in the trace and only
the premises differ. The long-term rules can be divided into
two classes: the premises of the first two rules consider the
agents involved in the test session, and the other two rules
reveal the keys only after the Test thread has ended. In
particular, we have the following relation for all adversary
compromise models Adv :

Adv ∪ {LongtermKeyRevealaftercorrect}
≤A Adv ∪ {LongtermKeyRevealafter}. (1)

Relations between adversarial notions from the litera-
ture. We use our modular semantics to provide a uniform
formalization of different adversary models, including a
number of established adversary models from the compu-
tational setting [5,7,13,28,31]. This is challenging because
the existing models are individually defined and therefore
are not instances of a general framework. Moreover, the
existing adversary models are entangled with their associated
execution models and security properties.

In the computational setting, adversaries may compromise
agents at any time. This capability is constrained only in the
definition of the security property (commonly known as the
security experiment), which restricts the sequences of actions
considered. For example, the experiment may only consider
traces where the partner’s long-term key is not revealed.
This effectively serves as a precondition: one may reveal
the long-term key of an agent that is not the partner. In
contrast, our rules explicitly formalize the preconditions as
premises, thereby giving an operational interpretation of the
restrictions in the security experiments. In this way, our rules
capture the essence of the intruder capabilities used by the
models in the computational setting.

We focus on the adversarial capabilities only. We thereby
abstract from some subtle differences between the com-
putational execution models and their interaction with the
security properties. For example, the model in [13] has an
execution model that restricts the agents’ choice of thread
identifiers. This leads to a notion of partner threads that
differs from that of other computational models. Here we
define partnering uniformly by matching histories. We refer
the reader to [12,14,15,36] for further details.

Table I provides an overview of different adversary mod-

Table I
MAPPING ADVERSARY-COMPROMISE MODELS FROM KEY-AGREEMENT LITERATURE

Adversary rules
Long-term data Short-term data

Owner Timing Type
Name others actor after aftercorrect SessionKey State Random Origin of model
AdvEXT Dolev-Yao (external)
Adv INT X Dolev-Yao (internal) [34]
AdvCA X Key Compromise Impersonation [26]
AdvAFC X Weak Perfect Forward Secrecy [28]
AdvAF X X Perfect Forward Secrecy [21,37]
AdvBPR X BPR2000 [5]
AdvBR X X BR93 [6], BR95 [7]
AdvCKw X X X X X CK2001-wPFS [28]
AdvCK X X X X X CK2001 [13]
Adv eCK-1 X X X
Adv eCK-2 X X X X

eCK [31]

els, interpreted as instances of our modular operational se-
mantics. As a naming convention, we write AdvCK to denote
the adversary model extracted from the CK model [13], and
similarly for other models. In the table, a check mark (X)
denotes that the rule labelling the column is included in the
adversary model named in the row. For the three timing-
based long-term key reveal queries from (1), we have also
checked all weaker rules (those with additional premises).
For example, since the AdvCK model allows for LongtermKey-
Revealafter, we also check LongtermKeyRevealaftercorrect, because
LongtermKeyRevealafter can simulate their effects.

In Figure 5, we show the hierarchy of adversary models
defined in Table I. An arrow m1 → m2 denotes that the
model m1 is weaker than the model m2. Note that in
the formal methods community, the Dolev-Yao model (here
Adv INT) is often regarded as a very strong adversary model.
In contrast, within our hierarchy, the only weaker adversary
model is the model with no rules (AdvEXT). All other models
are either incomparable to, or stronger than, Adv INT.
Protocol-security hierarchy. We now define a protocol-
security hierarchy, which characterizes the relative strengths
of different protocols.

Definition 10 (Security provided by a protocol): Let S
be a set of adversary models, that is each model in S is a
subset of the rules from Figure 2, and let P be a protocol.
Furthermore, let correct be a predicate that corresponds to
a security property, such as the secrecy of the session keys
with respect to a protocol P and an adversarial model Adv .
We define the security of P with respect to S as

security(P, S) = {Adv ∈ S | correct(P,Adv)}.

Constructing the set security(P, S) involves verifying the
security properties of P in all adversary models Adv in S.
We use the function security to construct a hierarchy of
security protocols. We give a concrete example of such a
hierarchy at the end of the next section.

AdvCKw

Adv eCK-1 Adv eCK-2

OO

AdvCK

AdvCA

88qqqqqqqqqq
AdvBR

OOffMMMMMMMMMM

99rrrrrrrrrr
AdvAF

OO

AdvBPR

88qqqqqqqqqq
Adv INT

OO

AdvAFC

OO

\\:::::::::::::::::

AdvEXT

OOffMMMMMMMMMM

99rrrrrrrrrr

]];;;;;;;;;;;;;;;;;

Figure 5. Hierarchy of the adversary-compromise models from Table I

Definition 11 (Protocol-security hierarchy): We say a
protocol P is stronger than a protocol P ′ with respect
to a set of adversary rules S iff security(P, S) ⊃
security(P ′, S). Given a set of protocols and a set of
adversary rules, this ordering gives rise to a protocol-security
hierarchy.

IV. ANALYZING EXISTING PROTOCOLS

We have integrated our adversary-model hierarchy in
an existing symbolic protocol verification tool [17] and
analyzed a number of protocols. We also used the tool
to compare the relative strengths of protocols from the
perspective of their resilience to a class of adversaries, as in
Definition 11.
MQV and HMQV. The MQV protocol family [29,33,41]
is a class of authenticated key-exchange protocols designed

to provide strong security guarantees.6 The HMQV protocol
was proven secure with respect to the adversary model in
[28]. This model is the analog of our AdvCKw model, where
the local state of HMQV is defined as the random values
generated for the Diffie-Hellman key-exchange. Surpris-
ingly, our tool finds that the HMQV protocol is, depending
on the definition of the state, incorrect in adversary models
that contain StateReveal rules, such as the CK model [13].

The attack implies that MQV and HMQV are not secure
in, e. g., AdvCKw, if the final exponentiation in the com-
putation of the session key is performed in the local state.
Given the design of (H)MQV, it is possible for an adversary
to reuse the inputs to this exponentiation to impersonate
an agent in future sessions. An attack trace is given in
Appendix C-C.

We assume that in mission-critical implementations the
protocol will be entirely implemented in a tamper-proof
module or cryptographic coprocessor and the local state
is therefore empty, which would prevent this attack. At
the other end of the spectrum, if (H)MQV is completely
implemented in unprotected memory, the state will also
include the long-term keys, which also enables an attack
where the adversary compromises these long-term keys
through a StateReveal.
Signed Diffie-Hellman and variants. The original Diffie-
Hellman key-exchange protocol only satisfies its security
properties in the presence of a passive adversary, since the
messages are not authenticated. A straightforward fix is for
agents to sign each message sent, along with the intended
recipient, using the sender’s long-term signature key. The
resulting family of protocols is referred to as signed Diffie-
Hellman. We analyzed several variants, including the ISO,
ISO-C (key confirmation), and DHKE-1 variants from [22],
as well as the variant from [13]. The tool finds attacks on the
Diffie-Hellman signed protocols for all models that contain
the RandomReveal rule. This is consistent with the proofs in
[13,22], which do not consider this rule, as well as with the
observation in [31] that allowing RandomReveal introduces
an attack on a signed Diffie-Hellman protocol.
KEA+ and Naxos. KEA+ [32] and Naxos [31] belong to
the same class of protocols. In [32], KEA+ is proven correct
with respect to a variant of the adversary model of [28],
where the state is defined as containing only the ephemeral
keys (the temporary private keys used in the Diffie-Hellman
key-exchange). We find that KEA+ and Naxos admit State-
Reveal attacks and therefore are incorrect in, for example, the
AdvCK model. Additionally, for KEA+ we find an attack
using the LongtermKeyRevealaftercorrect rule and hence KEA+
does not satisfy weak Perfect Forward Secrecy. This attack
cannot be modified to work for Naxos.

6The elliptic curve variant of MQV is part of the NSA-B suite of
cryptographic protocols [4] and is recommended for use in secret and top-
secret contexts.

HMQV-C
{AdvAF,AdveCK-1,AdveCK-2}

DH-ISO, DH-ISO-C
{AdvCK,AdvCKw}

MQV, HMQV, Naxos
{AdveCK-1,AdveCK-2}

OO

DHKE-1
{AdvCK,AdveCK-2}

OO

KEA+
{AdvBR,AdvCA}

OO 55llllllllllllll

NSL, BKE
{AdvBR}

OO

NS
{AdvBPR}

OO

Yahalom, Yahalom-Paulson
{Adv INT}

iiRRRRRRRRRRRRRRR

Figure 6. Protocol-security hierarchy (secrecy)

Needham-Schroeder(-Lowe) and Bilateral Key Ex-
change. For the well-studied Needham-Schroeder (NS) pro-
tocol, we find attacks in all models in our model hierarchy
except for the external adversary model AdvEXT and the ses-
sion key-reveal model AdvBPR (which is not surprising since
NS does not construct a session key). The fixed Needham-
Schroeder-Lowe protocol (NSL) prevents the attack by the
internal adversary and is correct in AdvEXT, Adv INT, and
AdvBPR. The Bilateral Key Exchange (BKE) protocol is
correct in the same models as the NSL protocol.
Yahalom. [39] presents two versions of the Yahalom
protocol. The original version of this protocol allows the
adversary to reuse old keys. As a result, the compromise of
an old session key can lead to attacks on future sessions.
Paulson uses the Isabelle theorem prover to prove that an
improved version of the protocol does not suffer from this
attack. He proves that the loss of one session key does not
lead to attacks on other session keys. We find attacks on both
protocols for adversaries capable of revealing session keys
(SessionKeyReveal). At first sight, this appears to contradict
Paulson’s result. This discrepancy is due to the difference
in the property considered. In [39], the adversary may com-
promise other session keys, whereas our SessionKeyReveal
rule, following the definitions from key-agreement literature,
allows the adversary to compromise keys of threads that are
not partners of the test thread.
A protocol-security hierarchy. In Figure 6 we show the
protocol-security hierarchy (cf. Definition 11) of a set of pro-
tocols from the literature, with respect to the adversary mod-
els from Table I for secrecy. Nodes correspond to (a set of)
protocols that are correct in the same adversary models. The
second line of each node lists in which models the protocols

are correct, where we omit weaker adversary models based
on our model hierarchy. For example, Needham-Schroeder-
Lowe is also correct in AdvEXT. In the hierarchy, an arrow
n1 → n2 means that the protocols in n2 are stronger than
those in n1, with respect to Definition 11. Using our tool,
it is possible to automatically generate such hierarchies for
a set of protocols. Protocol-security hierarchies provide a
novel mechanism for choosing an optimal protocol for a
given application domain, for example, exchanging a secret
as illustrated here.

V. RELATED WORK

Related work in computational analysis. Most research on
adversary compromise has been performed in the context of
key-exchange protocols in the computational setting, e. g.
Canetti and Krawczyk [13,28], Shoup [40], Bellare et al.
[5]–[7], Katz and Yung [27], LaMacchia et al. [31], and
Bresson and Manulis [11].

In general, any two computational models are incom-
parable due to (often minor) differences not only in the
adversarial notions, but also in the definitions of partnership
(variants of matching sessions, used here), the execution
models, and security property specifics. As these models are
generally presented in a monolithic way, where all parts are
intertwined, it is difficult to separate these notions. Details of
some of these definitions and their relationships have been
studied by, e. g., Choo et al. [14,15], Bresson et al. [12],
LaMacchia et al. [31], and Menezes and Ustaoglu [36].

The eCK model from [31] requires protocols to be correct
with respect to Adv eCK-1 and Adv eCK-2. In [31,38,41] it is
argued that the eCK adversary model is stronger than the CK
model. The (informal) reasoning used is that if the random
numbers (ephemeral secrets) are interpreted as containing
the protocol’s local state, revealing the random numbers
means revealing the state. The AdvCK model allows for
LongtermKeyRevealafter, which is a stronger rule than Long-
termKeyRevealaftercorrect from Adv eCK-2. However, the Adv eCK-1
model allows for RandomReveal which is not allowed in
AdvCK. Therefore we have that the AdvCK and eCK ad-
versary models are incomparable, which is in line with the
analysis of CK and eCK in [10].

The CryptoVerif tool by Blanchet [9] is an automated
tool for computational analysis. Its adversary model covers
Adv INT (corresponding to static corruption, i. e., the classical
Dolev-Yao adversary) but none of the stronger notions
present in our current work.
Related work in symbolic analysis. In the symbolic anal-
ysis setting, Guttman [25] has modeled a form of forward
secrecy. With respect to verification, the only work we are
aware of is where researchers have verified (or discovered
attacks on) key-compromise related properties of particular
protocols. These cases do not use a compromising adversary
model, but are specialized constructions of key compromise,

made for specific protocols, which can be verified in a
Dolev-Yao style adversary model.

In [1], Abadi, Blanchet, and Fournet analyzed the key-
establishment protocol JFK in the Pi Calculus and proved
that it achieves perfect forward secrecy. This was proved by
giving the long-term keys of all principals to the attacker at
the end of the protocol run. This corresponds to the analog
of our LongtermKeyRevealafter rule in their setting.

As noted in Section IV, Paulson used his inductive ap-
proach to reason about the compromise of short-term data.
To model compromise, he adds a rule to the protocol, called
Oops, that directly gives short-term data to the adversary.
The Oops rule is roughly analogous to our SessionKeyReveal
rule, omitting the partner check, which accounts for the
difference we previously reported. Paulson did not explore
compromise in general. Conversely, we have not used our
rules for inductive theorem proving, although this should be
possible along the lines of Paulson’s work.

Gupta and Shmatikov [22,23] link a symbolic adversary
model that includes dynamic corruptions to an adversarial
model used in the computational analysis of key-agreement
protocols. They describe in [23] a cryptographically-sound
logic that can be used to prove security in the presence of
adaptive corruptions, that is, the adversary is able to obtain
the long-term keys of agents dynamically.

VI. CONCLUSIONS

We have provided the first symbolic framework capable
of systematically modeling a family of adversaries endowed
with different compromise capabilities. Our adversaries ex-
tend the Dolev-Yao adversary with capabilities for the dy-
namic compromise of both short-term and long-term data.
We used this framework to extend an automated protocol-
analysis tool, resulting in the first such tool that is capable
of systematically handling notions such as weak perfect for-
ward secrecy, key compromise impersonation, compromise
of (parts of) the state of a session, and malicious random
number generators. We used the tool to discover attacks on
a number of protocols for adversary models in which they
were previously proven to be secure.

Our hierarchy includes many relevant adversarial notions
for which (to the best of our knowledge) no efficient pro-
tocols have yet been proposed. For example, in the context
of tamper-proof modules, it is reasonable to assume that
the long-term secrets are never compromised, but that the
local state may be. We would like to design optimized
protocols for these scenarios, which correspond to adversary
compromise models that do not contain LongtermKeyReveal
rules.

Based on the adversarial models, we defined a protocol-
security hierarchy that characterizes the security provided by
different protocols. As future work, this protocol hierarchy
could be extended to a larger class of protocols and to
compare systematically the merits of protocols that provide

similar security guarantees. We would also like to explore
more fine-grained versions of the whose/which/when dimen-
sions considered here. For example, by introducing time
(for key expiration), or splitting the “during the test thread”
notion into multiple phases (for long-running protocols with
clearly separated phases.)

Our adversarial models are independent of the security
properties under consideration. Hence, another interesting
research direction is to study how our stronger adversarial
notions influence security properties such as, for example,
anonymity or resistance to Denial-Of-Service attacks.

REFERENCES

[1] M. Abadi, B. Blanchet, and C. Fournet. Just Fast Keying
in the Pi calculus. ACM Transactions on Information and
System Security (TISSEC), 10(3):1–59, July 2007.

[2] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Com-
pagna, L. Cuellar, P. Drielsma, P. Heám, O. Kouchnarenko,
J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinow-
itch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The
AVISPA tool for the automated validation of internet security
protocols and applications. In Proc. CAV 2005, volume 3576
of LNCS, pages 281–285. Springer, 2005.

[3] F. Baader and T. Nipkow. Term rewriting and all that.
Cambridge University Press, 1998.

[4] E. Barker, D. Johnson, and M. Smid. NIST SP 800-56:
Recommendation for pair-wise key establishment schemes
using discrete logarithm cryptography (revised), 2007.

[5] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated
key exchange secure against dictionary attacks. In EURO-
CRYPT, LNCS, pages 139–155. Springer, 2000.

[6] M. Bellare and P. Rogaway. Entity authentication and key
distribution. In CRYPTO, pages 232–249. Springer, 1993.

[7] M. Bellare and P. Rogaway. Provably secure session key
distribution: the three party case. In Proc. STOC ’95, pages
57–66. ACM, 1995.

[8] B. Blanchet. An efficient cryptographic protocol verifier
based on Prolog rules. In Proc. 14th IEEE Computer Security
Foundations Workshop (CSFW), pages 82–96. IEEE, 2001.

[9] B. Blanchet. A computationally sound mechanized prover
for security protocols. In IEEE Symposium on Security and
Privacy, pages 140–154, May 2006.

[10] C. Boyd, Y. Cliff, J. Nieto, and K. Paterson. Efficient one-
round key exchange in the standard model. In ACISP, volume
5107 of LNCS, pages 69–83. Springer, 2008.

[11] E. Bresson and M. Manulis. Securing group key exchange
against strong corruptions. In ASIACCS, pages 249–260.
ACM, 2008.

[12] E. Bresson, M. Manulis, and J. Schwenk. On security models
and compilers for group key exchange protocols. In IWSEC,
volume 4752 of LNCS, pages 292–307. Springer, 2007.

[13] R. Canetti and H. Krawczyk. Analysis of key-exchange
protocols and their use for building secure channels. In EU-
ROCRYPT, volume 2045 of LNCS, pages 453–474. Springer,
2001.

[14] K.-K. Choo, C. Boyd, and Y. Hitchcock. Examining
indistinguishability-based proof models for key establishment
proofs. In ASIACRYPT, volume 3788 of LNCS, pages 624–
643. Springer, 2005.

[15] K.-K. Choo, C. Boyd, Y. Hitchcock, and G. Maitland. On
session identifiers in provably secure protocols. In SCN’05,
volume 3352 of LNCS, pages 351–366. Springer, 2005.

[16] J. Clark and J. Jacob. A survey of authentication protocol
literature, 1997. http://citeseer.ist.psu.edu/clark97survey.html.

[17] C. Cremers. The Scyther Tool: Verification, falsification, and
analysis of security protocols. In Proc. CAV 2008, volume
5123/2008 of LNCS, pages 414–418. Springer, 2008.

[18] C. Cremers. Unbounded verification, falsification, and char-
acterization of security protocols by pattern refinement. In
CCS ’08: Proc. of the 15th ACM conference on Computer
and communications security, pages 119–128. ACM, 2008.

[19] C. Cremers. Formally and practically relating the CK, CK-
HMQV, and eCK security models for authenticated key
exchange. Cryptology ePrint Archive, Report 2009/253, 2009.
http://eprint.iacr.org/.

[20] N. Durgin, J. Mitchell, and D. Pavlovic. A compositional
logic for proving security properties of protocols. Journal of
Computer Security, 11:667–721, 2003.

[21] C. Günther. An identity-based key-exchange protocol. In EU-
ROCRYPT’89, volume 434 of LNCS, pages 29–37. Springer,
1990.

[22] P. Gupta and V. Shmatikov. Towards computationally sound
symbolic analysis of key exchange protocols. In Proc. FMSE
2005, pages 23–32. ACM, 2005.

[23] P. Gupta and V. Shmatikov. Key confirmation and adaptive
corruptions in the protocol security logic. In FCS-ARSPA’06,
2006.

[24] P. Gutmann. Abstract performance characteristics of
application-level security protocols. Draft paper at www.cs.
auckland.ac.nz/∼pgut001/pubs/app sec.pdf.

[25] J. D. Guttman. Key compromise, strand spaces, and the
authentication tests. ENTCS, 45, 2001. Invited lecture,
17th Annual Conference on Mathematical Foundations of
Programming Semantics.

[26] M. Just and S. Vaudenay. Authenticated multi-party key
agreement. In ASIACRYPT 1996, volume 1163 of LNCS,
pages 36–49, 1996.

[27] J. Katz and M. Yung. Scalable protocols for authenticated
group key exchange. In CRYPTO, volume 2729 of LNCS,
pages 110–125. Springer, 2003.

http://citeseer.ist.psu.edu/clark97survey.html
http://eprint.iacr.org/
www.cs.auckland.ac.nz/~pgut001/pubs/app_sec.pdf
www.cs.auckland.ac.nz/~pgut001/pubs/app_sec.pdf

[28] H. Krawczyk. HMQV: A high-performance secure diffie-
hellman protocol. Cryptology ePrint Archive, Report
2005/176, 2005. http://eprint.iacr.org/, retrieved on April 14,
2009.

[29] H. Krawczyk. HMQV: A high-performance secure diffie-
hellman protocol. In CRYPTO, volume 3621 of LNCS, pages
546–566. Springer, 2005.

[30] R. Küsters and T. Truderung. Reducing protocol analysis
with xor to the xor-free case in the horn theory based
approach. In Proc. of the 2008 ACM Conference on Computer
and Communications Security (CCS), pages 129–138. ACM,
2008.

[31] B. LaMacchia, K. Lauter, and A. Mityagin. Stronger security
of authenticated key exchange. In ProvSec, volume 4784 of
LNCS, pages 1–16. Springer, 2007.

[32] K. Lauter and A. Mityagin. Security analysis of KEA
authenticated key exchange protocol. In PKC 2006, volume
3958 of LNCS, pages 378–394, 2006.

[33] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An
efficient protocol for authenticated key agreement. Designs,
Codes and Cryptography, 28:119–134, 2003.

[34] G. Lowe. Breaking and fixing the Needham-Schroeder public-
key protocol using FDR. In TACAS’96, volume 1055 of
LNCS, pages 147–166. Springer, 1996.

[35] G. Lowe. A hierarchy of authentication specifications. In
Proc. 10th IEEE Computer Security Foundations Workshop
(CSFW), pages 31–44. IEEE, 1997.

[36] A. Menezes and B. Ustaoglu. Comparing the pre- and post-
specified peer models for key agreement. In Proc. of ACISP
2008, volume 5107 of LNCS, pages 53–68, 2008.

[37] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of
Applied Cryptography. CRC Press, October 1996.

[38] T. Okamoto. Authenticated key exchange and key encapsu-
lation in the standard model. In ASIACRYPT, volume 4833
of LNCS, pages 474–484, 2007.

[39] L. Paulson. Relations between secrets: Two formal analyses
of the Yahalom protocol. Journal of Computer Security,
9(3):197–216, 2001.

[40] V. Shoup. On formal models for secure key exchange (version
4), Nov. 1999. revision of IBM Research Report RZ 3120
(April 1999).

[41] B. Ustaoglu. Obtaining a secure and efficient key agreement
protocol from (H)MQV and NAXOS. Des. Codes Cryptog-
raphy, 46(3):329–342, 2008.

http://eprint.iacr.org/

APPENDIX A.
EXTRACTING ADVERSARY MODELS FROM SECURITY

DEFINITIONS FOR SECURE KEY AGREEMENT

Here we explain the relation between each of our adver-
sary rules from Section II and security definitions from the
computational setting.

A. Security definitions for key-agreement protocols

Security definitions in computational settings differ sub-
stantially from the corresponding notions in symbolic mod-
els. Here we describe the relations between both types of
definitions.

In symbolic models, a single role instance of a protocol is
referred to as thread (also sometimes called a strand or run.)
In computational models, the same notion is either called an
oracle or a session.

In symbolic models, a protocol’s possible execution his-
tory is often referred to as a trace; the notion of bundle
roughly corresponds to a set of traces. A protocol is said to
satisfy a (trace) security property if the property holds for
all protocol traces.

Security definitions for key-agreement protocols use a
notion called an experiment: it roughly corresponds to a
set of traces in which the adversary additionally performs
a Test query and a Guess query. Intuitively, the Test query
fixes the thread in the traces for which the security property
is considered, similar to the test thread in our framework.
Whereas in a symbolic model, secrecy is defined such that
the adversary may not learn a term (e. g. the session key)
of the test thread, in computational models the adversary
must not be able to distinguish it from a random bit string.
To model this, the Test query is defined as flipping a coin,
and returning either the session key of the thread under
consideration or a random key. The secrecy property is said
to hold if the adversary has at most a negligible advantage in
guessing the outcome of the coin flip over a random guess.

In computational models, the adversary capabilities are
commonly modeled as queries, e. g. session-state reveal and
session-key reveal [13]. Queries have no explicit precon-
ditions in contrast to the premises of our adversary rules.
Instead, the restrictions on the adversary capabilities are
enforced by placing restrictions on the experiments (corre-
sponding to traces) that may be considered for a Test query.
For example, one considers only Test queries for sessions
(threads) that are “completed, unexpired and unexposed”
[13, p. 13–14]. These three definitions together restrict the
set of allowed experiments in a manner similar to the
premises in our adversary rules for the corresponding AdvCK
model. In other computational models, similar predicates are
known under the names “clean” or “fresh”.

B. Origins of adversary rules

The LongtermKeyRevealnotgroup rule is implicitly used in
many symbolic models. In protocol-verification tools, it

usually corresponds to the fact that the initial adversary
knowledge contains the long-term private key of one or
more agents, e. g. sk(Eve) ∈ IK 0. Correspondingly, security
properties are verified for threads not executed by, or com-
municating with, the agent Eve. In symbolic protocol logics,
the rule is often represented by an honesty predicate, as e. g.
in [20]. In computational models, this rule corresponds to
the notion of static corruption and is modeled by a constraint
on the security experiment that the agents involved in the
test session (test thread) are not corrupted.

The LongtermKeyRevealactor rule allows the adversary to
learn the private key of the agent executing the test thread.
This rule allows for so-called Key Compromise Imperson-
ation attacks as defined in e. g. [26]. In models that capture
these attacks, it is assumed that the adversary can learn the
long-term key of the agent executing the test thread. The
complexity of the rule’s premise stems from the fact that a
single agent may execute multiple roles within a session: if
Alice decides to send a message to another thread of Alice
(e. g. a different computer owned by Alice), we do not allow
the long-term private key of Alice to be compromised, even
though she is the actor. We note that the rule is not very
common in security models. The corresponding experiment
in the eCK model [31] disallows learning the long-term
private key of the actor if there is also an RandomReveal
query in the same experiment.

The LongtermKeyRevealafter rule corresponds to the adver-
sary being able to learn any long-term private keys after
the test thread ends. In the context of verifying secrecy, this
corresponds to Perfect Forward Secrecy [21,37]. For the ad-
hoc symbolic verification of Perfect Forward Secrecy, this
can be modeled as sending all long-term private keys to
the adversary at the end of the test thread. This property is
therefore within the scope of most existing symbolic analysis
tools.

For LongtermKeyRevealaftercorrect, we have the additional
premise that partner threads must exist for the test thread.
This additional condition was introduced in [29] in tandem
with the negative result that no two-party key-agreement
protocol based only on public-key cryptography can sat-
isfy Perfect Forward Secrecy. The negative result in [29]
depends on the construction of a generic attack involving the
LongtermKeyRevealafter rule. If the adversary model instead in-
cludes the weaker LongtermKeyRevealaftercorrect rule, the generic
attack cannot be constructed. Hence, the corresponding
notion of weak Perfect Forward Secrecy is defined in [29].
It is intended to serve as a slightly weaker security property
that is satisfiable by two-party key-agreement protocols that
are based only on public-key cryptography.

For LongtermKeyRevealrnsafe of an agent a, we have a further
premise that no RandomReveal event has previously occurred
in a thread of a. This additional condition stems from [31]
where the adversary is excluded from both learning random
values generated by an agent a as well as a’s long-term

private keys in a given trace (experiment).
The SessionKeyReveal rule corresponds to revealing a ses-

sion key. The underlying assumption is that the communi-
cation partners in a correct protocol session will share a
key: revealing this key to the adversary would break any
key-agreement protocol. The idea is to allow the adversary
to reveal the key of any non-partner thread. As a result, the
effect of the SessionKeyReveal rule is tightly coupled with the
definition of partner threads. (We will return to the notion of
partner threads below.) The SessionKeyReveal rule used here
stems from [5].

Similar to SessionKeyReveal, the StateReveal rule has a
premise that no partner may have its local state revealed.
This premise stems from the corresponding session-state
reveal query in the CK model [13]. However, in [13] the
contents of the local state are not defined inside the model
and are assumed to be known to the protocol prover. In
proofs that use the CK model, the local state is defined
as containing only the locally generated values, e. g. the
ephemeral keys (private exponents) in a Diffie-Hellman key-
exchange. For a simple signed Diffie-Hellman protocol, this
seems to be the only relevant data that is computed privately
and is not revealed during communication. However, it is
clear that for many protocols this underapproximates the
local state.

[31] defines a query called ephemeral-key reveal. This
query is intended to resolve any ambiguities in the session-
state reveal query. It strictly contains the ephemeral secrets
generated in a thread, which matches our RandomReveal rule.
The premise of the RandomReveal rule allows for compromise
of the partner threads, but only if the long-term key of the
agent executing the thread is not revealed.

C. Execution model variations

In the literature for secure (group) key-exchange proto-
cols, it is common to specify the execution model within
the security definition, making the security definitions self-
contained. We refer the reader to [14,36] for a more detailed
comparison of some of these execution models. For example
some models, such as [13], assume that unique session iden-
tifiers are externally provided, whereas most other models
do not assume that such identifiers are a priori available.
This influences both the allowed behaviours as well as the
partner functions, described below.

D. Partner function variations

There are a number of different definitions of partner
threads in the literature. For example, [7] defines partnering
using an existentially-guaranteed partner function. Others
define partnering by an explicit session identifier specified
in the protocol, or using (some notion of) matching sessions.

We observe that for protocols that function correctly
in the absence of an adversary, threads in matching ses-
sions will compute the same session keys. Hence, allowing

SessionKeyReveal queries on these threads implies that no
such protocol satisfies secrecy. Inverting this condition, by
allowing SessionKeyReveal on all threads not in matching
sessions, therefore provides the strongest possible adversary
capability with respect to SessionKeyReveal.

In Section II-D, we defined the most common case of
partnering, which is based on matching histories. This defi-
nition is appropriate for most protocols. However, as pointed
out in [19], matching histories is an inappropriate partnering
function for protocols that were designed for role-symmetry.7

An example of a role-symmetric protocol is (H)MQV [29]:
the protocol allows two instances of the initiator role of the
protocol to exchange messages and establish a shared key.

Recall that our partnering definition is parameterized over
the protocol P , the test role RTest, and the instantiation
of variables of the test thread σTest. These parameters are
instantiated in the definition of the transition system.

Definition 12 (Partnering for role-symmetric protocols):
Let tr be a trace. Then,

Partner sym(tr) =
{
tid

∣∣ tid 6= Test
∧ ∃l . MH(σTest(P (RTest)), (tr↓ tid)̂ l)

}
.

In contrast to Definition 7 we have omitted the requirement
that the partners’ roles are distinct from the Test role.

However, most protocols are not symmetric in the sense
that a regular execution involves an instance of each role.
We call these protocols standard protocols and for these
protocols we use the definition of partnering based on
matching histories in Section II-D.

Throughout this paper, we have written Partner to denote
the partnering function that is appropriate for the protocol
under consideration, i. e., either Definition 7 or 12. In the
analysis tool, protocols are assumed to be standard (and
Definition 7 is applied) unless explicitly marked as being
role-symmetric by the user.

E. Corrupt queries

Our model does not contain explicit corrupt events, con-
trary to most computational adversary models. The rationale
for this design choice is that a corrupt event may simultane-
ously reveal all long-term and short-term secrets of a thread,
and is therefore a combination of our other adversarial
capabilities. In our model, we therefore represent corrupt
queries as trace subsequences consisting of adversary events
that involve LongtermKeyReveal events.

F. Erasure of state

In many computational protocol models, explicit actions
are included to mark the erasure of state within a thread.
Furthermore, most models assume that when a thread ends,
its local state is erased.

7For details on role-symmetry in security protocols we refer the reader
to [19]. Note that the vast majority of protocols were not designed for
role-symmetry.

In our model, we also assume that when a thread ends, its
local state is erased. This is reflected in the premises of our
state and key reveal rules by checking that the thread has not
ended. However, we have no explicit erasure actions in our
protocol language. This choice can be justified by observing
that in most computational models, the preconditions for
allowing a state or key compromise only depend on whether
the compromised thread is a partner of the test thread.
No distinction is made with respect to the progress within
the step and hence the erasure commands specified in the
protocols are ignored in computational proofs.

APPENDIX B.
TOOL SUPPORT: THE SCYTHER TOOL

We have extended the symbolic security-protocol verifi-
cation tool Scyther [17,18] with our adversarial rules from
Figure 2.

We describe below the two main technical hurdles that
we faced. First, we must adapt existing protocol-execution
models and the corresponding security properties. Second,
in general the internal state is not included the protocol
specification. We therefore describe the procedure we use
to infer the local state.

A. Adapting existing tools

In standard symbolic verification tools and the corre-
sponding protocol descriptions, agents are considered to be
either fully honest or fully dishonest. The first change is
to lift this restriction. Second, we must incorporate new
protocol events for marking local state and local secrets,
as well as the new adversary rules. The addition of the
new events and rules complicates the execution model,
which makes verification more expensive. Depending on the
verification algorithm, integrating the correct premises for
each of the adversary rules may require significant changes.
For protocol verification methods that dynamically generate
threads over which the security properties are checked, care
must be taken to define a particular Test thread.

A further change is required to modify the security
properties. In existing verification methods, these properties
(or the scenarios that encode them) involve conditions of the
form “if the agents are honest.” In most cases, this condition
can be dropped, as its role is now handled by the premises
of the adversary rules. Depending on the tool, this requires
either rewriting the tool or the protocol description files.

B. Automated inference of the local state from abstract
protocol descriptions

In general, protocol specifications do not describe the
local state of the protocol. This is due in part to the abstract
and functional nature of such specifications, as well as to
the complexity and diversity of actual implementations.

As a result, defining the local state of an abstract protocol
is at best an underapproximation of the local state of

Figure 7. Choosing an adversary model in the tool

Figure 8. Example input

an actual implementation. Our approach is to infer which
data must be present and, although still underspecified,
this allows us to find attacks that should function for any
implementation. Conversely, particular implementations may
still include additional data in their local state, which may
enable additional StateReveal attacks.

Given a set of terms S from an event in a role, the function
Φ determines the subterms that must be part of the local
state.

Φ(S) = {t v S | ∃t′.t′ v t ∧ t′ ∈ (Fresh ∪ Var)}
Hence, all locally computed subterms are inferred from the
set of terms S.

The idea behind the StateReveal rule is to capture the

Figure 9. Example attack output generated by the tool

distinction between the data in local memory and other
data (including long-term keys) that is inside more protected
memory, such as a tamper-proof module. We therefore
defined Φ so that long-term keys are excluded from the
local state. The simplicity of our definition depends on
the fact that, in the model described here, all functions
are assumed to be one-way. Hence the local state may
include f(sk(a), N) (N a fresh term) for some function
f . If invertible functions are required in the model, then Φ
can be suitably extended.

Given a sequence s of events in a role that does not
include state events, we automatically insert state events
by inference from the other events, by using the function Ψ:

Ψ(〈ev(x)〉̂ s) ={
〈ev(x), state(Φ({x}))〉̂ Ψ(s) if x ∈ Term , and
〈ev(x), state(Φ(x))〉̂ Ψ(s) if x ∈ P(Term).

Example 3 (Automated inference of state events.): Let
P be the protocol from Example 1. We define the protocol
P ′ as P ′(R) = Φ(P (R)) for all R ∈ dom(P), resulting in:

P ′(Init) = 〈generate({n}),
state({n}),
send(Init,Resp, {|Resp, n |}ask(Init)),

state({Resp, {|Resp, n |}ask(Init), n})〉
P ′(Resp) = 〈recv(Init,Resp, {|Resp, n |}ask(Init)),

state({{|Resp, n |}ask(Init), n})〉.

Users of the tool can choose between manual specification
of the state (by manually inserting appropriate state events
in the protocol specification) and automated inference of the
state. Currently, our tool supports secrecy and several notions
of authentication.

Table II
SUMMARY OF ATTACKS FOUND

AdvEXT Adv INT AdvCA AdvAFC AdvAF AdvBPR AdvBR AdvCKw AdvCK Adv eCK-1 Adv eCK-2

BKE × × × × × × ×
DH-ISO ×
DH-ISO-C ×
DHKE-1 × ×
HMQV-C × ×
HMQV × × ×
KEA+ × × × × × ×
MQV × × ×
Naxos × × ×
NS × × × × × × × × ×
NSL × × × × × × ×
Yahalom × × × × × × × × ×
Yahalom-Paulson × × × × × × × × ×

C. Protocol analysis example

In Figure 8, we provide an example of a protocol descrip-
tion as it appears in the tool. The protocol considered is the
DH-ISO protocol.

Prior to protocol verification, the user selects an adversary
model. The choices provided, as displayed in Figure 7, corre-
spond exactly to the adversary rules presented in this paper.
Given a protocol with a specific local state (automatically
inferred or manually specified), the Scyther tool allows one
to verify or find attacks on the protocol with respect 112
different adversary models, corresponding to the different
combinations of the adversary rules in Figure 2, taking into
account the relations in Equation (1). This includes all the
models in Table I.

We provide an example of the output generated for an
attack in Figure 9. The output graph shows the individual
agent threads and adversary events. Thread events are de-
picted as rectangles, where each event is colored according
to the role of the thread it occurs in. Adversary events are
represented by ellipses. In the graph, a generated fresh term
x]1 is denoted by “Const x]1”. The example shown is an
attack using the RandomReveal rule on the signed Diffie-
Hellman protocol. Hence the protocol is not secure in any
adversary model that includes this rule.

The current version of the Scyther tool does not directly
support algebraic properties. For Diffie-Hellman style proto-
cols, where the algebraic property (ga)b = (ga)b is relevant,
we adopt an approach similar to the approach taken for XOR
in [30]. We extend the protocol specification with a set of
rewrite rules that allow the adversary to replace (ga)b with
(ga)b in subterms.

Analysis of the protocol from Figure 8 with respect to
AdvEXT takes 1.7 seconds on an Intel Centrino laptop (1.2
GHz) with 3 GB memory. The depth-first search requires a
negligible amount of memory. Analyzing the same protocol
with respect to AdvCK takes 3.6 seconds. This increase in
verification time is mainly due to the inclusion of short-term

reveal rules. These rules extend the adversary knowledge
with complex terms and checking their premises involves
evaluating the Partner function.

APPENDIX C.
ATTACK DETAILS

A. Verification result summary

In Table II, we summarize the attacks found using our
tool on ten protocols with respect to the adversary models
from Table I. A cross (×) in the table denotes that an attack
was found. The protocol-security hierarchy in Figure 6 is
derived from Tables I and II.

B. Role symmetry of HMQV

For protocols with symmetric roles, a partner definition
based on matching histories leads to a spurious attack. In
this section, we provide a concrete example of such an
attack on the HMQV protocol [28], under the assumption
that matching histories is used for the partner function, in
Figure 10.

Because we use Partnersym for the partnering function
of symmetric-role protocols (as described in detail in Ap-
pendix A-D) this attack is not considered in our model: the
SessionKeyReveal query is not allowed because Thread 1 is
considered a partner according to Partnersym.

We use the following notation in describing the attack.
The terms a and b refer to the long-term private keys of
Alice and Bob, respectively. The corresponding public keys
are A = ga and B = gb. H and H̄ are hash functions. We
use the abbreviations d = H̄ (X,Bob) and e = H̄ (Y,Alice).

In the attack, both Alice and Bob start threads in the
initiator role, trying to communicate with each other. Due
to the protocol’s symmetry, both parties can complete the
protocol even though they are executing the same role. Then,
the symmetry of the session key computation results in
both threads computing the same session key, based on the
algebraic properties of the modular exponentiation. By the
definition of matching histories, the threads are not partners,

Thread Test

Initiator: Alice
(talking to Bob)

Thread 1
Initiator: Bob

(talking to Alice)
History does not match Test

generate({x}) generate({y})
X = gx

Y = gy

sessionkey({H ((Y Be)x+da)}) sessionkey({H ((XAd)y+eb)})

SessionKeyReveal(1)

Figure 10. (Spurious) HMQV attack for adversaries capable of Session-
KeyReveal, e. g. AdvBPR, if partnering would be defined by matching
histories.

as the send and receive labels do not match. Hence if
partnering were based on matching histories, the adversary
can use SessionKeyReveal to reveal the key of Bob’s thread.

We consider the attack to be spurious because HMQV is a
symmetric-role protocol, i. e., the protocol is designed such
that two initiators can establish a session and compute the
same session key. See [19] for a more detailed analysis of the
difference between symmetric-role and “standard” protocols.

Note that this attack is possible in the original CK model
from [13], but not in the adapted CK model used as the
HMQV security model in [28]. In [28], the partnering
function is based on session identifiers that are specifically
constructed for DH-style protocols in such a way that both
threads in the attack are considered partners. As a result, the
model in [28] disallows SessionKeyReveal for Bob’s thread.

C. State-Reveal attack on HMQV

In Figure 11 we show an attack on HMQV using State-
Reveal, where we assume that the inputs to the final ex-
ponentiation are part of the session-state of the protocol.
This corresponds to performing the final exponentiation in
unprotected memory.

We define d1 = H̄ (X,Bob), e1 = H̄ (Z,Alice), and e2 =
H̄ (Y,Alice). The attack starts with Bob receiving a message
gz that is apparently coming from Alice. This message may
have been sent by an agent or have been generated by the
adversary. Next, Bob generates x and sends X = gx, which
is intercepted by the adversary.

Thread 1 is not a partner of the test thread because its
history does not match the test thread’s. Hence the adversary
can compromise the state of thread 1, gaining access to x+
d1b.

Thread 1
Responder: Bob

(responding to Alice)
Not a partner

Thread Test

Responder: Alice
(responding to Bob)

Z = gz

generate({x})
X = gx

state({ZAe1 , x + d1b})
StateReveal(1)

sessionkey({H ((ZAe1)x+d1b)})
generate({y})

Y = gy

sessionkey({H ((XBd1)y+e2a)})

Figure 11. HMQV attack for adversaries capable of StateReveal, e. g.
AdvCK.

At any desired time, the adversary sends X to the respon-
der test thread of Alice. Alice computes and sends Y = gy .
Now Alice computes the session key based on X and y. The
adversary intercepts Y and then computes H ((Y Ae1)x+d1b).
This yields the session key of the test thread.

APPENDIX D.
DOCUMENT REVISION HISTORY

Below we provide a revision history describing any major
changes to this document. Small rewrites and bugfixes are
omitted.

Version 1.0: February 2009

The initial version of this document was released in
February 2009.

Version 1.1: November 2009

The second version was released in November 2009 and
contains two major changes: (1) A simplified adversary rule
set, and (2) an extension of the partnering function for
symmetric-role protocols. We describe and motivate both
these changes below.

In addition to these changes, the explanations of the
adversary rules have been significantly expanded to provide
more intuition.

A. Simplification of adversary rules

In the initial adversary rule set, many rules that revealed
the long-term private keys of agents included a variant whose
premise required that no RandomReveal events had occurred
earlier. This condition was motivated by the Adv eCK mod-
eled after [31] in which an experiment is only allowed if
either a long-term private key, or the ephemeral key, of a
session is revealed.

In version 1.1, we have refactored the Adv eCK model
into two sub-models, Adv eCK-1 and Adv eCK-2. A protocol
is considered eCK-secure if it is correct in both these sub-
models. This refactoring has made it possible to remove the
RandomReveal side condition in some rules and has resulted
in removal of one rule altogether.

The mapping is not exact: in particular, the union of the
traces (or experiments) in Adv eCK-1 and Adv eCK-2 does not
entail traces in which the long-term key of a partner session
is revealed as well as the ephemeral key of the test session
(or vice versa.) Such behaviour is considered by the security
notion in [31]. However, we are currently not aware of
any attacks that exploit this particular combination. Overall,
the cost of the model simplification is a slightly coarser
approximation of the model from [31].

B. Extension of the partnering function for symmetric-role
protocols

The version 1.0 of this document included only one part-
nering function, based on matching histories. This function
was not well-suited for symmetric-role protocols such as
MQV. In such protocols, two initiators, whose messages
cross, may compute the same key. Whether or not to have
role symmetry is a design decision that should be made by
the protocol designer. The tool can help designers understand
the consequences of this decision.

The application of a partnering function that is based on
matching histories, to a symmetric-role protocol, can lead
to the detection of a generic session-key reveal attack. For
details we refer the reader to [19]. Strictly speaking this
means a protocol such as MQV cannot be proven correct
in the security model of [31]. Here we have chosen a
more liberal approach as suggested in [19], in which the
partnering function is adapted when analyzing symmetric-
role protocols.

Because of this change in partnering function, the generic
symmetric-role attacks reported in version 1.0 are no longer
considered to be attacks. The attack table and protocol
security hierarchy have been updated accordingly.

	Introduction
	Compromising Adversary Model
	Notational preliminaries
	Terms and events
	Protocols and threads
	Execution model
	Adversary-compromise rules
	Traces for adversary-compromise models
	Security properties

	Adversary and protocol hierarchies
	Analyzing existing protocols
	Related work
	Conclusions
	References
	Appendix A: Extracting adversary models from security definitions for Secure Key Agreement
	Security definitions for key-agreement protocols
	Origins of adversary rules
	Execution model variations
	Partner function variations
	Corrupt queries
	Erasure of state

	Appendix B: Tool support: the Scyther tool
	Adapting existing tools
	Automated inference of the local state from abstract protocol descriptions
	Protocol analysis example

	Appendix C: Attack details
	Verification result summary
	Role symmetry of HMQV
	State-Reveal attack on HMQV

	Appendix D: Document revision history
	Simplification of adversary rules
	Extension of the partnering function for symmetric-role protocols

