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Abstract：Probable security is an important criteria for analyzing the security of cryptographic 
protocols. However, writing and verifying proofs by hand are prone to errors. This paper 
introduces the game-based approach of writing security proofs and its automatic technique. It 
advocates the automatic security proof approach based on process calculus, and presents the initial 
game and observational equivalences of OAEP+. 
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1. Introduction  
Information security is nowadays an important issue. Its essential ingredient is cryptography. To 
be accepted, a cryptographic scheme must come with a proof that it satisfies some standard 
security properties. However, a problem we have to face is that as a community, we generate more 
proofs than we carefully verify, and as a consequence some of our published proofs are incorrect. 
In fact, many of our proofs are truly complex, error-prone and difficult to check. 

In 2004, Shop[1] discussed techniques for structuring security proofs as sequences games. 
Game-playing is an approach to write security proofs that are easy to verify. In this approach, 
security definitions and intractable problems are written as programs called games, and reduction 
security proofs are sequences of game transformations [1–3]. Barthe, Cerderquist, and Tarento [4,5] 

have formalized the generic model and the random oracle model in the interactive theorem prover 
Coq[6], and proved signature schemes in this framework. Later, Nowak[7] and Affeldt et.al.[8] show 
how to formalize the game-playing framework in the proof assistant Coq. However, proofs in 
generic interactive theorem provers require a lot of human effort, in order to build a detailed 
enough proof for the theorem prover to check it. 

Halevi[9] explains that implementing an automatic tool based on compiler techniques to build 
security proofs with sequences of games, and suggests ideas in this direction, but does not actually 
implement one. In 2006, B. Blanchet and D. Pointcheval[10] presented a pioneer implementation of 
game-playing that has been applied to several standard cryptographic schemes taken from the 
literature [11, 12]. Further works can be found in [13,14]. However, this is still a new research 
area, and until now there are only a few number of cryptographic schemes can be proved with 
their automatic tool.  

This paper introduces the game-based approach of writing security proofs and its automatic 
technique. It advocates the automatic security proof approach based on process calculus, and 
presents the initial game and observational equivalences of OAEP+[15]. The rest of this paper is 



organized as follows. In Sect. 2, we explain the game-based approach of writing security proofs. 
In Sect. 3, we introduce an implementation with process calculus. In Sect. 4, we present the initial 
game and observational equivalences of OAEP+. Finally, we conclude in Sect. 7. 

 

2. Provable Security and Gamed Based Proofs 
Security for cryptograptic primitives is typically defined as an attack game involves a stateful 
adversary that interacts with some interfaces of whatever scheme that we are dealing with. We 
usually call these interfaces the challenger. Both adversary and challenger are probabilstic 
processes that communicate with each other, and so we can model the game as a probability space. 
Typically, the definition of security is tied to some particular event S. Security means that for 
every “efficient” adversary, the probability that event S occurs is “very close to” some specified 
“target probabilty”: typically, either 0 or 1/2. 

A canonical game consists of a main loop, where each iteration calls an adversary routine, 
supplying it with the results of the last iteration and getting back the query to be asked in the 
current iteration. Then the appropriate interface it invoked for the current query, and the result is 
again fed to the adversary routine in the next iteration. The game is parametrized by some upper 
bound on the number of iterations (and maybe also upper bounds on other resources of the 
adversary). It is usually convenient to assume that the adversary fully consumes its resources, and 
in particular that the number of iterations of the main loop is always exactly equal to the upper 
bound. Once the main loop is finished, the game may have some output, and this output is 
typically just the last thing that the adversary has output (more often than not a single bit).  

To make it clearer, we show an example of the game for indistinguishability against adaptive 
chosen cipher-text attack (IND-CCA2) of public key encryption. 

IND-CCA2 Game: 
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KGen: The challenger takes a security parameter k and runs the KGen algorithm to generate 
the key pair (pk,sk).  

Phase 1: The adversary is given the public key pk. It can adaptively issue queries to the 
decryption oracle O(.) and the random oracle H(.). Once the adversary decides that Phase 1 is over 
it outputs two equal length plaintexts  and some information s that it want to save.  ),( 10 mm

Challenge: The challenger picks a random bit }1,0{∈b , and encrypt  with pk. It sends 
the cipher-text y as the challenge to the adversary. 

bm

Phase 2: The adversary can adaptively issue more queries to the decryption oracle O(.) and 
the random oracle H(.). The only restriction is that it can not query O(.) with the challenge 
cipher-text y. Finally, the adversary outputs a guess b’. The adversary wins the game if b=b’. 

If  is negligible, then the scheme is secure.  |2/1]'Pr[| −= bb
Now, to prove security using the sequence-of-games approach, one prodceeds as follows. 

One constructs a sequence of games, Game 0, Game 1, . . . , Game n, where Game 0 is the original 



attack game with respect to a given adversary and cryptographic primitive. Let  be the event 
, and for , the construction defines an event  in Game i, usually in a way naturally 

related to the definition of S. The proof shows that  is negligibly close to  for 
, and that  is equal (or negligibly close) to the “target probability.” From this, 

it follows that Pr[S] is negligibly close to the “target probability,” and security is proved. 
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3. An Implementation with Process Calculus 
Attack game is a system that involves probabilstic processes communicate with each other. 
Process calculus[16] can represent the parallel or serial interacts of the adversary and the challenger, 
and the probabilistic semantics provide a description of the probabilistic reduction of the sequence 
of games.  
3.1 Process Calculus 

Blanchet[10,17] provides a process calculus to represent games. The calculus is inspired by the 
pi-calculus. It introduces arrays for accessing to the whole memory state of the system and 
replacing lists often used in proofs. The syntax is as following. 
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i~ and  represent the index and type of jT ),...,1( kjx j = respectively. 

 Output process 
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3.2 Game Transitions 
There are two main kinds of game transformations that allow us to get the sequence of games: 



syntactic transformations and transformations from the definitions of security of primitives. 

Syntactic transformations transform games with syntactic properties. For examples, when x is 

defined by an assignment PinMTiixlet m =:],...[ 1 , we can replace x with its value M. Simplify is 

the most important syntactic transformation, which combines some equations and probabilistic 

properties to simplify terms and processes.  
The security of cryptographic primitives is defined using observational equivalences given as 

axioms. We denote by  the probability that the process Q return with a, and denote 
by  the probability that the process Q executes exactly the sequence of events , in 
the order of . 

]~Pr[ aQ →

]~Pr[ ℜ→Q ℜ

ℜ

Definition 1 (Observational equivalence). We say that Q and Q’ are observationally 

equivalent up to probability p, written 'QQ p≈ , when for all t, for all contexts C acceptable for Q 

and Q’ that run in time at most t, for all bit-strings a, )(|]~]'[Pr[]~][Pr[| tpaQCaQC ≤→−→  and 

. )(|]~]'[Pr[]~][Pr[| tpQCQC ≤ℜ→−ℜ→∑ℜ

Proposition 1[16]. 1.  is reflexive and symmetric. 2. If p≈ Q'Q p≈  and ，then 

. 3. If Q executes event e with probability at most p and 

"' ' QQ p≈

"' QQ pp+≈ '' QQ p≈ , then Q’ executes 

event e with probability at most . 'pp +

Observational equivalences  can be used by the prover in order to transform a game 

 with  into another observationally equivalent game  with . Proposition 1 

provides the up bound for the success probability of the attackers. Observational equivalences 

describe transformations from the definitions of security of primitives. For example, in the random 

oracle model, Hash function can be replaced with a random oracle. This can be written as 
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where  is the domain of Hash function and  is its value type. 1T 2T

 
3.3 Criteria for Provable Security 
After each successful transformation, we should test whether the desired security properties are 
proved. So we need some criteria for provable security. As to public key encryption, we need to 
test the secrecy of the bit value b in IND-CCA2 game.  

Definition 2 (one-session secrecy). The process Q preserves the one-session secrecy of x 
when , where xx QQQQ '|| 0≈
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iT is the type of ,  are not belong to channels of Q, , and the 

value type of  is T. 
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Intuitively, the adversary cannot distinguish a process that outputs the value of the secret x 

from one that outputs a random number y. For IND-CCA2 game, we need to prove that the bit 
value b satisfies the one-session secrecy. 

Proposition 2 [16]. If Q and Q’ are observationally equivalent, and Q preserves the 
one-session secrecy of x, then Q’ preserves the one-session secrecy of x.  
 

4. Initial Game and Observational Equivalences of OAEP+ 
4.1 The Description of OAEP+ [15]

Let k be the security parameter, f the trapdoor one-way permutations. g is the inverse of f.  

are parameters satisfying 
10 , kk

kkk <+ 10  and  are negligible,  where 

. And , , are hash 

functions. OAEP+ is described as follows. 

10 2,2 kk nm }1,0{∈
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 KGen: For a seed r , output public key )(rpkgenpk =  and secret key . )(rskgensk =

 Enc: For input a message m, pick a random , compute 

, 

0}1,0{ kx∈
)||('||))(( mxHmxGs ⊕= xsHt ⊕= )( , ),||( pktsfy = , output cipher-text . y

 Dec: For input cipher-text y, compute ),(|| skygts = , , 
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tsHx ⊕= )(

]1...0[)( −⊕= nsxGm ]1....[ 1 −+= knnsc . If }||(' mxHc =  then output plain-text m, 

else output , where  denotes the bit-strings of s from the  bit to 

 bit. 
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4.2 The Formal Security Description with Process Calculus 

We denotes  as the random number type of  

respectively,  the key seed type, then ,

4321 ,,, TTTT kknk }1,0{,}1,0{,}1,0{,}1,0{ 10

5T 21: TTG → 321:' TTTH →× , 132: TTTH →× . 

In the OAEP＋, the main crypto components include the trapdoor one-way permutation f, 

hash functions G, H’ and H, and the ⊕  operation. The observational equivalences about the 

security properties and assumptions of these components are the foundation for the 

transformations and the proof. For the description convenience, we define function process as 

following:  
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In observational equivalences, we use  to express the process that 

inputs , and outputs the result of 

FPTxTx kk →):,...,:( 11

):,...,:( 11 kk TxTx FP . 

 Observational Equivalences for One-Way Permutations 



The trapdoor one-way permutation f is the kernel component for OAEP＋. We define the success 
probability of an adversary A to invert. 
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We denote by  the maximal success probability an adversary can get within time t. 

Eventually, the following observationally equivalent processes for one-way permutation can be 
used in the transformations: 
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where , and  are times for 

 and  respectively. In the right hand of the observationally equivalence, if x has 

been outputted, then k is defined and hence the adversary can determine whether  holds, 
otherwise, the adversary always output false for 

))1()1(()( pkgenkffk
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There are some other algebra properties for trapdoor one-way permutations that can be used 

for security proof. For example xrskgenrpkgenxfgTxTr =∀∀ ))()),(,((,:,: 21 , and so on. We do 

not discuss the details further.  

 Observational Equivalences for Hash Functions 

In the random oracle, we assume that hash functions are random oracles. That is, for an input, 

if it has been in the access list, then the process returns with the result in the list, otherwise, it 

picks a random value as the respond. The observation equivalence for G(.), H’(.) and H(.) are as 

following. 
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 Observational Equivalences for⊕  

aTxTanewxaTxTanew XXXX nini →≈⊕→ ≤≤ ):(;:):(;: 0  

That is, for random , the probability distribution of Ta : xa⊕  is the same as that of . a
To proof the security of OAEP+ automatically, we should further give the description of the 

initial game. According to the definition of IND-CCA2, we first define the following 

sub-processes. 
 Three Hash Function Processes 

let processG = ; )))(],[();:],[(( 211
! xGicoutTxicin GG

ni GG ≤

let processH’= ; ))),('],[());:,:(],[(( '421'3
! '' yxHicoutTyTxicin HH

ni HH ≤

let processH = , ))),(],[());:,:(],[(( 6325
! yxHicoutTyTxicin HH

ni HH ≤

where  are the up bound for the accesses to  and  respectively. HHG nnn ,, ' (.)'(.), HG (.)H

 The Key Generation Process 
let processKGen = 
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 The Decryption Process 
let processDec = 
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where  is the up bound for the accesses to decryption oracle, ch denotes the challenge 
cipher-text. Yield denotes the end process, that is, the adversary can access the decryption oracle 
with ch as input. 

Dq

 The Challenge Cipher-text Generation Process 
let processT =   
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The function  is defined as ):,:,:( 22 TyTxboolbtest 22 :,: TyTx∀ , , and 
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According to the definition of IND-CCA2 in section 2.2, first, the system runs the key 

generation process processKGen, follows with the processes processDec and processT. In the 

following attacks, the adversary can access the decryption process at most  times, and at some 

time, the adversary can access the challenge cipher-text generation process. Hence, the 

processDec is parallelized with processT. In the random oracle, the attack can access the random 

oracle at any time. Composed with the above processes, we can get the initial game of OAEP+ in 

the random oracle as following 

Dq

 Initial Game 
processG0 = 
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Up to now, we have described the Initial Game and Observational Equivalences of OAEP+. 
Next, we explain how we organize the transformations in order to prove the security. At the 
beginning of the proof, and after each successful cryptographic transformation, we should execute 
syntactic transformations, and test whether the desired one-session secrecy are proved. If so, we 
have proved. Otherwise, we try to execute each available cryptographic transformation in turn. 
When such a cryptographic transformation fails, it returns some syntactic transformations that 
could make the desired transformation work. Then we try to perform these syntactic 
transformations. When the syntactic transformations finally succeed, we retry the desired 
cryptographic transformation, and so on.  

 

5. Conclusion 
This paper introduces the game-based approach of writing security proofs and its automatic 
technique. It advocates the automatic security proof approach based on process calculus, and 
presents the initial game and observational equivalences of OAEP+. Up to now, this is still a new 
research area, only a small number of cryptography protocols can be disposed with this approach, 
and we should make further researches on the transformation rules and strategies. 
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