CCZ-equivalence and Boolean functions

Lilya Budaghyan^{*} and Claude Carlet[†]

Abstract

We study further CCZ-equivalence of (n, m)-functions. We prove that for Boolean functions (that is, for m = 1), CCZ-equivalence coincides with EA-equivalence. On the contrary, we show that for (n, m)- functions, CCZ-equivalence is strictly more general than EAequivalence when $n \ge 5$ and m is greater or equal to the smallest positive divisor of n different from 1. Our result on Boolean functions allows us to study the natural generalization of CCZ-equivalence corresponding to the CCZ-equivalence of the indicators of the graphs of the functions. We show that it coincides with CCZ-equivalence.

Keywords: Affine equivalence, Almost perfect nonlinear, Bent function, Boolean function, CCZ-equivalence, Nonlinearity.

1 Introduction

The notion of CCZ-equivalence of vectorial functions, introduced in [4] (the name came later in [2]), seems to be the proper notion of equivalence for vectorial functions used as S-boxes in cryptosystems and has led to new APN and AB functions. Two vectorial functions F and F' from \mathbb{F}_2^n to \mathbb{F}_2^m (that is, two (n, m)-functions) are called CCZ-equivalent if their graphs $G_F =$ $\{(x, F(x)); x \in \mathbb{F}_2^n\}$ and $G_{F'} = \{(x, F'(x)); x \in \mathbb{F}_2^n\}$ are affine equivalent, that is, if there exists an affine permutation \mathcal{L} of $\mathbb{F}_2^n \times \mathbb{F}_2^m$ such that $\mathcal{L}(G_F) =$ $G_{F'}$. If F is an almost perfect nonlinear (APN) function from \mathbb{F}_2^n to \mathbb{F}_2^n , that is, if any derivative $D_aF(x) = F(x) + F(x+a), a \neq 0$, of F is 2-to-1 (which implies that F contributes to an optimal resistance to the differential

^{*}Department of Informatics, University of Bergen, PB 7803, 5020 Bergen, NORWAY; e-mail: Lilya.Budaghyan@ii.uib.no

[†]Universities of Paris 8 and Paris 13; CNRS, UMR 7539 LAGA; Address: University of Paris 8, Department of Mathematics, 2 rue de la liberté, 93526 Saint-Denis cedex 02, France; e-mail: claude.carlet@inria.fr

attack of the cipher in which it is used as an S-box), then F' is APN too. If F is almost bent (AB), that is, if its nonlinearity equals $2^{n-1} - 2^{\frac{n-1}{2}}$ (which implies that F contributes to an optimal resistance of the cipher to the linear attack), then F' is also AB. In fact, these two central notions for the design of S-boxes in block ciphers, APNness and ABness, can be expressed in a natural way by means of the graph of the S-box and this is why CCZ-equivalence is the proper notion of equivalence in this framework.

Recall that F and F' are called EA-equivalent if there exist affine automorphisms $L : \mathbb{F}_2^n \to \mathbb{F}_2^n$ and $L' : \mathbb{F}_2^m \to \mathbb{F}_2^m$ and an affine function $L'' : \mathbb{F}_2^n \to \mathbb{F}_2^m$ such that $F' = L' \circ F \circ L + L''$ (if L'' = 0 and L, L' are linear, the functions are called linearly equivalent). EA-equivalence is a particular case of CCZ-equivalence [4].

In the present paper we investigate the question of knowing whether CCZ-equivalence of (n, m)-functions is strictly more general than their EAequivalence. We already know that the answer to this question is yes when n = m since every permutation is CCZ-equivalent to its inverse and, moreover, as shown in [2], CCZ-equivalence is still more general than the EAequivalence of the functions or their inverses (when they exist). A result in the other sense has been proven in [1]: CCZ-equivalence coincides with EA-equivalence when applied to bent (n, m)-functions, that is, to functions whose derivatives $D_a F(x) = F(x) + F(x+a), a \neq 0$, are balanced (i.e. uniformly distributed over \mathbb{F}_2^m ; bent functions exist only for n even and $m \leq n/2$, see [6]). The question is open for general (n, m)-functions when $n \neq m$. In Subsection 2.1 we prove that the answer is also negative for (n, m)-functions when m = 1, that is, for Boolean functions. This poses then the question of knowing whether the case m = 1 is a particular case or if the same situation occurs for larger values of m. We give a partial answer to this question in Subsection 2.2 by showing that CCZ-equivalence of (n, m)-functions is strictly more general than their EA-equivalence when $n \geq 5$ and m is greater or equal to the smallest positive divisor of n different from 1.

The question of knowing whether a notion still more general than CCZequivalence for vectorial functions has been raised by several authors. A notion having potentially such property, that we call ECCZ-equivalence, is introduced and studied in Section 3.

2 CCZ-equivalence of (n, m)-functions

If we identify \mathbb{F}_2^n with the finite field \mathbb{F}_{2^n} then a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is uniquely represented as a univariate polynomial over \mathbb{F}_{2^n} of degree smaller than 2^n

$$F(x) = \sum_{i=0}^{2^n - 1} c_i x^i, \quad c_i \in \mathbb{F}_{2^n}.$$

If m is a divisor of n then a function F from \mathbb{F}_{2^n} to \mathbb{F}_{2^m} can be viewed as a function from \mathbb{F}_{2^n} to itself and, therefore, it admits a univariate polynomial representation. More precisely, if $\operatorname{tr}_n(x)$ denotes the trace function from \mathbb{F}_{2^n} into \mathbb{F}_2 , and $\operatorname{tr}_{n/m}(x)$ denotes the trace function from \mathbb{F}_{2^n} , that is,

$$tr_n(x) = x + x^2 + x^4 + \dots + x^{2^{n-1}},$$

$$tr_{n/m}(x) = x + x^{2^m} + x^{2^{2m}} + \dots + x^{2^{(n/m-1)m}},$$

then F can be represented in the form $\operatorname{tr}_{n/m}(\sum_{i=0}^{2^n-1} c_i x^i)$ (and in the form $\operatorname{tr}_n(\sum_{i=0}^{2^n-1} c_i x^i)$ for m=1). Indeed, there exists a function G from \mathbb{F}_{2^n} to \mathbb{F}_{2^n} (for example G(x) = aF(x), where $a \in \mathbb{F}_{2^n}$ and $\operatorname{tr}_{n/m}(a) = 1$) such that F equals $\operatorname{tr}_{n/m}(G(x))$.

For any integer $k, 0 \leq k \leq 2^n - 1$, the number $w_2(k)$ of nonzero coefficients $k_s, 0 \leq k_s \leq 1$, in the binary expansion $\sum_{s=0}^{n-1} 2^s k_s$ of k is called the 2-weight of k. The algebraic degree of a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is equal to the maximum 2-weight of the exponents i of the polynomial F(x) such that $c_i \neq 0$, that is,

$$d^{\circ}(F) = \max_{\substack{0 \le i \le 2^n - 1 \\ c_i \ne 0}} w_2(i).$$

The algebraic degree of a function (if it is not linear) is invariant under EAequivalence but it is not preserved by CCZ-equivalence. This has been proved in [2]. Let us recall why the structure of CCZ-equivalence implies this: for an (n, m)-function F and an affine permutation $\mathcal{L}(x, y) = (L_1(x, y), L_2(x, y))$ of $\mathbb{F}_2^n \times \mathbb{F}_2^m$ the set $\mathcal{L}(G_F)$ equals $\{(F_1(x), F_2(x)) : x \in \mathbb{F}_2^n\}$ where $F_1(x) =$ $L_1(x, F(x)), F_2(x) = L_2(x, F(x))$. It is the graph of a function if and only if the function F_1 is a permutation. The function CCZ-equivalent to F whose graph equals $\mathcal{L}(G_F)$ is then $F' = F_2 \circ F_1^{-1}$. The composition by the inverse of F_1 modifies in general the algebraic degree (examples are given in [2]).

2.1 CCZ-equivalence of Boolean functions

We first consider the question whether CCZ-equivalence is strictly more general than EA-equivalence for Boolean functions. Let a Boolean function f'be CCZ-equivalent to a Boolean function f and EA-inequivalent to it. Then there exist linear functions $L : \mathbb{F}_2^n \to \mathbb{F}_2^n$, and $l : \mathbb{F}_2^n \to \mathbb{F}_2$, and elements $a \in \mathbb{F}_2^n \setminus \{0\}, \eta \in \mathbb{F}_2$, such that

$$\mathcal{L}(x,y) = \left(L(x) + ay, l(x) + \eta y\right) \tag{1}$$

is a linear permutation of $\mathbb{F}_2^n \times \mathbb{F}_2$, and for

$$F_1(x) = L(x) + af(x) \tag{2}$$

$$F_2(x) = l(x) + \eta f(x),$$
 (3)

 F_1 is a permutation of \mathbb{F}_2^n and

$$f'(x) = F_2 \circ F_1^{-1}(x).$$
(4)

Hence we need characterizing the permutations of the form (2). Note that for any permutation (2) the function L must be either a permutation or 2-to-1. Thus, we have only two possibilities for the function F_1 , that is, either

$$F_1(x) = L(x + L^{-1}(a)f(x))$$

when L is a permutation, or

$$F_1(x) = L'\Big((x/b)^2 + x/b + L'^{-1}(a)f(x)\Big)$$
(5)

when L is 2-to-1 and its kernel equals $\{0, b\}$ where $b \in \mathbb{F}_{2^n}^*$, and L' is a linear permutation of \mathbb{F}_{2^n} such that $L'((x/b)^2 + x/b) = L(x)$. Note that if we take $L^{-1} \circ F_1$ (when L is a permutation) or $L'^{-1} \circ F_1$ (when L is 2-to-1) in (4) instead of F_1 then we get $f' \circ L$ and $f' \circ L'$, respectively, which are EA-equivalent to f'. Therefore, without loss of generality we can neglect L and L'. Then (5) gives

$$F_1(x) = (x/b)^2 + x/b + af(x)$$
(6)

$$F_1(bx) = x^2 + x + af(bx) = x^2 + x + ag(x)$$
(7)

where g(x) = f(bx). Hence it is sufficient to consider permutations (2) of the following two types

$$x + af(x) \tag{8}$$

$$x^2 + x + af(x). (9)$$

A lemma will simplify the study of permutations (2):

Lemma 1 Let n be any positive integer, a any nonzero element of \mathbb{F}_{2^n} and f a Boolean function on \mathbb{F}_{2^n} .

- The function F(x) = x + af(x) is a permutation over \mathbb{F}_{2^n} if and only if F is an involution.

- The function $F'(x) = x + x^2 + af(x)$ is a permutation over \mathbb{F}_{2^n} if and only if $\operatorname{tr}_n(a) = 1$ and f(x+1) = f(x) + 1 for every $x \in \mathbb{F}_{2^n}$. Under this condition,

let H be any linear hyperplane of \mathbb{F}_{2^n} not containing 1; for every $y \in \mathbb{F}_{2^n}$, there exists a unique element $\phi(y) \in \mathbb{F}_{2^n}$ such that $\phi(y) \in H$ and

$$\phi(y) + (\phi(y))^2 = y$$
 if $\operatorname{tr}_n(y) = 0$
 $\phi(y) = \phi(y+a) + 1$ if $\operatorname{tr}_n(y) = 1$.

Then ϕ is a linear automorphism of \mathbb{F}_{2^n} and we have

$$F'^{-1}(y) = \phi(y) + \operatorname{tr}_n(y) + f(\phi(y))$$

for every $y \in \mathbb{F}_{2^n}$.

Proof. Let us assume that F is a permutation. We have

$$F \circ F(x) = x + af(x) + af(x + af(x)).$$

If f(x) = 0 then obviously $F \circ F(x) = x$. If f(x) = 1 then $F \circ F(x) = x + a + af(x+a)$. Moreover, we have f(x+a) = 1 since otherwise F(x+a) = F(x) which contradicts F being a permutation. Hence, when f(x) = 1, we have also $F \circ F(x) = x$. Hence, $F^{-1} = F$.

If F' is a permutation over \mathbb{F}_{2^n} , then $\operatorname{tr}_n(a) = 1$ since otherwise we have $\operatorname{tr}_n(F'(x)) = 0$ for every $x \in \mathbb{F}_{2^n}$ (and F' is not surjective), and f(x + 1) = f(x) + 1 for every x since if f(x + 1) = f(x) for some $x \in \mathbb{F}_{2^n}$, then F'(x + 1) = F'(x) and F' is not injective. Conversely, if $\operatorname{tr}_n(a) = 1$ and f(x + 1) = f(x) + 1 for every $x \in \mathbb{F}_{2^n}$ then, for every $x, y \in \mathbb{F}_{2^n}$, we have F'(x) = y if and only if:

- either $\operatorname{tr}_n(y) = f(x) = 0$ and x is the unique element of $\mathbb{F}_{2^n} \setminus \operatorname{supp}(f)$ such that $x + x^2 = y$;

- or $\operatorname{tr}_n(y) = f(x) = 1$ and x is the unique element of $\operatorname{supp}(f)$ such that $x + x^2 = y + a$.

Hence, F' is a permutation over \mathbb{F}_{2^n} .

Moreover, since $\operatorname{tr}_n(a) = 1$ and f(x+1) = f(x)+1 for every $x \in \mathbb{F}_{2^n}$, we have $F'^{-1}(y+a) = F'^{-1}(y)+1$ for every $y \in \mathbb{F}_{2^n}$. The existence and uniqueness of $\phi(y)$ is straightforward. The restriction of ϕ to the hyperplane of equation $\operatorname{tr}_n(y) = 0$ is an isomorphism between this hyperplane and H. The restriction of ϕ to the hyperplane of equation $\operatorname{tr}_n(y) = 1$ is an isomorphism between this hyperplane and $F_{2^n} \setminus H$. Hence ϕ is a linear automorphism of \mathbb{F}_{2^n} . Moreover, for every $x, y \in \mathbb{F}_{2^n}$, we have F'(x) = y if and only if:

- either $\operatorname{tr}_n(y) = f(x) = 0$ and $x = \phi(y) + f(\phi(y))$ (indeed, if $\phi(y) \notin \operatorname{supp}(f)$ then $\phi(y)$ is the unique element x of $\mathbb{F}_{2^n} \setminus \operatorname{supp}(f)$ such that $x + x^2 = y$ and if $\phi(y) \in \operatorname{supp}(f)$ then $\phi(y) + 1$ is the unique element x of $\mathbb{F}_{2^n} \setminus \operatorname{supp}(f)$ such

that $x + x^2 = y$ since f(x + 1) = f(x) + 1; - or $\operatorname{tr}_n(y) = f(x) = 1$ and

$$x = F'^{-1}(y+a) + 1 = \phi(y+a) + f(\phi(y+a)) + 1 = \phi(y) + 1 + f(\phi(y)).$$

This completes the proof.

We deduce the main result of this subsection:

Theorem 1 Two Boolean functions of \mathbb{F}_{2^n} are CCZ-equivalent if and only if they are EA-equivalent.

Proof. Assume that two Boolean functions f and f' on \mathbb{F}_{2^n} are CCZequivalent and EA-inequivalent. Then there is a linear permutation $\mathcal L$ of $\mathbb{F}_{2^n}^2$ such that (1)-(4) take place. We first assume that $\eta = 1$.

In case L is a permutation, we have $F_1(x) = L(x + L^{-1}(a)f(x))$ and therefore by Lemma 1

$$F_1^{-1}(x) = L^{-1}(x) + L^{-1}(a)f(L^{-1}(x)).$$

Then we have

$$f'(L(x)) = l(F_1^{-1}(L(x))) + f(F_1^{-1}(L(x)))$$

= $l(x + L^{-1}(a)f(x)) + f(x + L^{-1}(a)f(x)).$

If f(x) = 0 then f'(L(x)) = l(x). If f(x) = 1 then we have $f(x+L^{-1}(a)) = 1$. Indeed, since a is assumed to be nonzero, and F_1 being a permutation, we have $L(x + L^{-1}(a) + L^{-1}(a)f(x + L^{-1}(a))) = F_1(x + L^{-1}(a)) \neq F_1(x) =$ $L(x + L^{-1}(a))$. Hence, $f'(L(x)) = l(x) + l(L^{-1}(a)) + 1$ when f(x) = 1. Therefore,

$$f'(L(x)) = l(x) + \left(1 + l(L^{-1}(a))\right)f(x).$$

Note that $l(L^{-1}(a)) = 0$. Indeed, if $l(L^{-1}(a)) = 1$ then the system of equations

$$L(x) + ay = 0$$
$$l(x) + y = 0$$

has two solutions (0,0) and $(L^{-1}(a),1)$ which contradicts \mathcal{L} being a permutation. Hence, $f'(x) = l(L^{-1}(x)) + f(L^{-1}(x))$ and f is EA-equivalent to f', a contradiction.

Let L be now 2-to-1. Then, as observed above, we can assume without loss of generality that (6) and (7) take place. Then, since \mathcal{L} is bijective,

we have l(b) = 1 (otherwise, the vector (b, 0) would belong to the kernel of \mathcal{L}). By Lemma 1, we have g(x+1) = g(x) + 1 for any $x \in \mathbb{F}_{2^n}$, that is, f(bx+b) = f(bx) + 1 for any $x \in \mathbb{F}_{2^n}$, that is, f(x+b) = f(x) + 1 for any $x \in \mathbb{F}_{2^n}$. By Lemma 1, the inverse of the function $x^2 + x + ag(x)$ equals $\phi(x) + \operatorname{tr}_n(x) + g(\phi(x))$ for a certain linear permutation ϕ of \mathbb{F}_{2^n} . Then

$$F_1^{-1}(x) = b(\phi(x) + \operatorname{tr}_n(x) + f(b \ \phi(x)))$$

and therefore

$$f'(x) = l \Big(b \big(\phi(x) + \operatorname{tr}_n(x) + f(b \phi(x)) \big) \Big) + f \Big(b \big(\phi(x) + \operatorname{tr}_n(x) + f(b \phi(x)) \big) \Big) \\ = l(b\phi(x)) + \operatorname{tr}_n(x) + f \big(b \phi(x) \big) + f \big(b \phi(x) \big) + \operatorname{tr}_n(x) + f \big(b \phi(x) \big) \\ = l(b\phi(x)) + f(b \phi(x)).$$

This means that f and f' are EA-equivalent, a contradiction.

According to the observations above and to Lemma 1, if $\eta = 0$ then we can reduce ourselves to the cases f'(x) = l(x + af(x)) and $f'(x) = l(b(\phi(x) + \operatorname{tr}_n(x) + f(b \phi(x))))$. For the first case we necessarily have l(a) = 1 and for the second case l(b) = 1 since otherwise the kernel of \mathcal{L} would not be trivial (it would contain (a, 1) and (b, 0) respectively). Thus, f'(x) = l(x) + f(x) or $f'(x) = l(b \phi(x)) + \operatorname{tr}_n(x) + f(b \phi(x))$, and therefore f and f' are EA-equivalent, a contradiction. \Box

A Boolen function f of \mathbb{F}_{2^n} can be considered as a function form \mathbb{F}_{2^n} to itself. Hence it is a natural question whether an (n, n)-function f', which is CCZ-equivalent to f, is necessarily EA-equivalent to a Boolean function, or even EA-equivalent to f. The theorem below shows that the answer is positive.

Theorem 2 Let f be a Boolen function of \mathbb{F}_{2^n} and f' a function from \mathbb{F}_{2^n} to itself. Then f and f' are CCZ-equivalent as (n, n)-functions if and only if they are EA-equivalent as (n, n)-functions.

Proof. If f and f' are CCZ-equivalent as (n, n)-functions then their is a linear permutation $\mathcal{L}(x, y) = (L_1(x, y), L_2(x, y))$ of $\mathbb{F}_{2^n}^2$ such that $F_1(x) = L_1(x, f(x))$ is a permutation of \mathbb{F}_{2^n} and $f' = F_2 \circ \mathbb{F}_1^{-1}$ for $F_2(x) = L_2(x, f(x))$. As we saw above it is sufficient to consider only the cases

$$L_1(x,y) = x + ay, \tag{10}$$

$$L_1(x,y) = (x/b)^2 + x/b + ay,$$
 (11)

where $a, b \in \mathbb{F}_{2^n}^*$. We have $L_2(x, y) = L'(x) + L''(y)$ for some linear functions L' and L'' from \mathbb{F}_{2^n} to itself, and

$$F_2(x) = L'(x) + L''(f(x)) = L'(x) + L''(1)f(x).$$

Since \mathcal{L} is a permutation then the system

$$x + ay = 0$$
$$L'(x) + L''(y) = 0$$

in case (10), and the system

$$(x/b)^{2} + x/b + ay = 0$$

 $L'(x) + L''(y) = 0$

in case (11), must have only (0,0) solution. Hence, $L'(a) \neq L''(1)$ for case (10) (since otherwise (a, 1) is in the kernel of \mathcal{L}), and $L'(b) \neq 0$ for case (11) (since otherwise (b, 0) is in the kernel of \mathcal{L}).

Using Lemma 1 in case (10) we get

$$f'(x) = F_2 \circ F_1^{-1}(x) = L'(x + af(x)) + L''(1)f(x + af(x))$$

= $L'(x) + (L'(a) + L''(1))f(x)$

since f(x + af(x)) = f(x) as we see it in the proof of Lemma 1. Hence f and f' are EA-equivalent as (n, n)-functions.

Applying Lemma 1 for case (11) we get

$$f'(x) = F_2 \circ F_1^{-1}(x) = L' \Big(b \big(\phi(x) + \operatorname{tr}_n(x) + f(b \ \phi(x)) \big) \Big) \\ + L''(1) f \Big(b \big(\phi(x) + \operatorname{tr}_n(x) + f(b \ \phi(x)) \big) \Big) \\ = L'(b \ \phi(x)) + L'(b) \operatorname{tr}_n(x) + L'(b) f(b \ \phi(x)) \\ + L''(1) f(b \ \phi(x)) + L''(1) \operatorname{tr}_n(x) + L''(1) f(b \ \phi(x)) \\ = \Big(L'(b \ \phi(x)) + L'(b) \operatorname{tr}_n(x) + L''(1) \operatorname{tr}_n(x) \Big) + L'(b) f(b \ \phi(x))$$

since f(x+b) = f(x) + 1 as we see it from the proof of Lemma 1. Thus f and f' are EA-equivalent as (n, n)-functions.

2.2 CCZ-equivalence and EA-equivalence of (n, m)-functions when 1 < m < n

We first show in Proposition 1 that there exist values of (n, m) such that CCZ-equivalence is strictly more general than EA-equivalence. We extend then in Theorem 3, thanks to Proposition 2, the hypotheses under which this is true.

Proposition 1 Let $n \ge 5$ and m > 1 be any divisor of n, or n = m = 4. Then for (n, m)-functions CCZ-equivalence is strictly more general than EAequivalence.

Proof. We need to treat the cases n odd and n even differently.

- Let n be any odd positive integer, m any divisor of n and

$$F(x) = \operatorname{tr}_{n/m}(x^3). \tag{12}$$

The linear function from $\mathbb{F}_{2^n} \times \mathbb{F}_{2^m}$ to itself:

$$\mathcal{L}(x,y) = \left(L_1(x,y), L_2(x,y)\right) = \left(x + \operatorname{tr}_n(x) + \operatorname{tr}_m(y), y + \operatorname{tr}_n(x) + \operatorname{tr}_m(y)\right)$$

is an involution, and

$$F_1(x) = L_1(x, F(x)) = x + \operatorname{tr}_n(x) + \operatorname{tr}_n(x^3)$$

is an involution too (which is easy to check). Let:

$$F_2(x) = L_2(x, F(x)) = \operatorname{tr}_{n/m}(x^3) + \operatorname{tr}_n(x) + \operatorname{tr}_n(x^3)$$

then the function:

$$F'(x) = F_2 \circ F_1^{-1}(x) = F_2 \circ F_1(x)$$

= $\operatorname{tr}_{n/m}(x^3) + \operatorname{tr}_{n/m}(x^2 + x) \operatorname{tr}_n(x) + \operatorname{tr}_{n/m}(x^2 + x) \operatorname{tr}_n(x^3)$

is CCZ-equivalent to F by definition.

The part $\operatorname{tr}_{n/m}(x^2+x)\operatorname{tr}_n(x^3)$ is nonquadratic for $n \ge 5$ and m > 1. Indeed,

$$\operatorname{tr}_{n/m}(x^2 + x)\operatorname{tr}_n(x^3) = \sum_{\substack{0 \le i < n \\ 0 \le j < n/m}} x^{2^{i+1} + 2^i + 2^{jm}} + \sum_{\substack{0 \le i < n \\ 0 \le j < n/m}} x^{2^{i+1} + 2^i + 2^{jm+1}} \quad (13)$$

and for $n \ge 5$, m > 1, the item $x^{2^3+2^2+2^0}$ does not vanish in the sum above. By construction the (n,m)-functions F and F' are CCZ-equivalent. When $n \ge 5$ and m > 1 they are EA-inequivalent because they have different algebraic degrees.

- Let now n be any even positive integer, m any divisor of n and F be given by (12). The linear function

$$L(x,y) = (L_1(x,y), L_2(x,y)) = (x + tr_m(y), y)$$

is an involution, and

$$F_1(x) = L_1(x, F(x)) = x + \operatorname{tr}_n(x^3)$$

is also involutive (this can be easily checked). Let:

$$F_2(x) = L_2(x, F(x)) = \operatorname{tr}_{n/m}(x^3)$$

then

$$F'(x) = F_2 \circ F_1^{-1}(x) = F_2 \circ F_1(x) = \operatorname{tr}_{n/m} \left(\left(x + \operatorname{tr}_n(x^3) \right)^3 \right)$$

= $\operatorname{tr}_{n/m}(x^3) + \operatorname{tr}_{n/m}(1) \operatorname{tr}_n(x^3) + \operatorname{tr}_{n/m}(x^2 + x) \operatorname{tr}_n(x^3).$

The part $\operatorname{tr}_{n/m}(x^2 + x) \operatorname{tr}_n(x^3)$ is nonquadratic when $n \ge 6, m > 1$, or when n = m = 4. Indeed, in these cases the item $x^{2^3+2^2+2^0}$ does not vanish in (13). Hence, the (n,m)-functions F and F' are CCZ-equivalent by construction, and when $n \ge 6, m > 1$, or when n = m = 4 they are EA-inequivalent because of the difference of their algebraic degrees.

The next proposition will allow us to generalize the conditions under which the statement of Proposition 1 is valid.

Proposition 2 If there exist CCZ-equivalent (n, m)-functions F and F' which are EA-inequivalent then for any positive integer k the (n, m + k)-functions H(x) = (F(x), 0) and H'(x) = (F'(x), 0) are also CCZ-equivalent and EA-inequivalent.

Proof. Let

$$L(x, y) = (L_1(x, y), L_2(x, y))$$

be a linear permutation of $\mathbb{F}_{2^n} \times \mathbb{F}_{2^m}$ which maps the graph of F to the graph of F'. Then we have:

$$F_1(x) = L_1(x, F(x)),$$

$$F_2(x) = L_2(x, F(x)),$$

$$F'(x) = F_2 \circ F_1^{-1}(x),$$

where F_1 is a permutation. Let

$$\psi(x, (y, z)) = (\psi_1(x, (y, z)), \psi_2(x, (y, z)))$$

be a function from $\mathbb{F}_{2^n} \times \mathbb{F}_{2^m} \times \mathbb{F}_{2^k}$ to itself, where

$$\psi_1(x, (y, z)) = L_1(x, y) + L_0(z)$$

for some linear function L_0 from \mathbb{F}_{2^k} to \mathbb{F}_{2^n} , and where

$$\psi_2(x, (y, z)) = (L_2(x, y), z).$$

 ψ is linear and it is a permutation; indeed its kernel is the set of solutions of the system of two linear equations

$$L_1(x, y) + L_0(z) = 0$$

 $(L_2(x, y), z) = 0$

From the second equation we get z = 0, and since L_0 is linear then $L_0(0) = 0$ and we come down to the system

$$L_1(x,y) = 0$$

 $L_2(x,y) = 0$

which has only solution (0,0). Hence the kernel of ψ is trivial. Denote $H_1(x) = \psi_1(x, H(x))$ and $H_2(x) = \psi_2(x, H(x))$ then

$$H_1(x) = \psi_1(x, H(x)) = \psi_1(x, (F(x), 0)) = L_1(x, F(x)) + L_0(0) = F_1(x)$$

which is a permutation and

$$H_2(x) = \psi_2(x, H(x)) = \psi_2(x, (F(x), 0)) = (L_2(x, F(x)), 0) = (F_2(x), 0).$$

Hence,

$$H'(x) = H_2 \circ H_1^{-1}(x) = (F_2 \circ F_1^{-1}(x), 0) = (F'(x), 0)$$

is CCZ-equivalent to H(x). If F and F' are EA-inequivalent then obviously H and H' are EA-inequivalent too.

Proposition 1 and Proposition 2 give

Theorem 3 Let $n \ge 5$ and k > 1 be the smallest divisor of n. Then for any $m \ge k$, the CCZ-equivalence of (n, m)-functions is strictly more general than their EA-equivalence.

In particular, when $n \ge 6$ is even, this is true for every $m \ge 2$.

Remark.

The paper [5] is dedicated to the study of permutations of the kind G(x) + f(x) where f is a Boolean function of \mathbb{F}_{2^n} and G is either a permutation or a linear function from \mathbb{F}_{2^n} to itself. Lemma 1 gives us a description of the inverses of all such permutations:

Corollary 1 Let L be a linear function from \mathbb{F}_{2^n} to itself and f be a Boolean function of \mathbb{F}_{2^n} . If F(x) = L(x) + f(x) is a permutation then F^{-1} is EA-equivalent to F.

Corollary 2 Let G be a permutation of \mathbb{F}_{2^n} and f be a Boolean function of \mathbb{F}_{2^n} . If F(x) = G(x) + f(x) is a permutation then

$$F^{-1}(x) = G^{-1}(x + f \circ G^{-1}(x)).$$

Proof. We have $F(x) = H \circ G(x)$, where $H(x) = x + f \circ G^{-1}(x)$ is a permutation. H is involutive by Lemma 1. Hence

$$F^{-1}(x) = G^{-1} \circ H^{-1}(x) = G^{-1} \circ H(x) = G^{-1}(x + f \circ G^{-1}(x)).$$

3 Consequence on a notion of equivalence of vectorial functions whose definition is more general than CCZ-equivalence

It is not hard to check that CCZ-equivalence of functions is the same as EAequivalence of the graphs of these functions. Indeed, for a given function Ffrom \mathbb{F}_2^n to \mathbb{F}_2^m , let us denote the indicator of its graph G_F by 1_{G_F} , that is,

$$1_{G_F}(x,y) = \begin{cases} 1 & \text{if } y = F(x) \\ 0 & \text{otherwise,} \end{cases}$$

 1_{G_F} is a Boolean function over \mathbb{F}_2^{n+m} . It is obvious that when composing 1_{G_F} by an affine permutation \mathcal{L} of \mathbb{F}_2^{n+m} on the right, that is, taking $1_{G_F} \circ \mathcal{L}$, we are within the definition of CCZ- equivalence of functions. If we compose 1_{G_F} by an affine permutation \mathcal{L} of \mathbb{F}_2 on the left, then we get $\mathcal{L} \circ 1_{G_F} = 1_{G_F} + b$ for $b \in \mathbb{F}_2$. Hence, we have only to prove that if for an (n, m)-function F' and for an affine Boolean function φ of \mathbb{F}_2^{n+m}

$$1_{G_{F'}}(x,y) = 1_{G_F}(x,y) + \varphi(x,y)$$

then F and F' are CCZ-equivalent. In case m > 2 we must have $\varphi = 0$ because 1_{G_F} and $1_{G_{F'}}$ have Hamming weight 2^n while, if φ is not null, it has then Hamming weight 2^{n+m-1} or 2^{n+m} , a contradiction, since $2^{n+m-1} > 2^{n+1}$. Thus, for m > 2 we get F = F'. Let us consider now the case m = 1. Then $1_{G_F}(x, y) = F(x) + y + 1$ and $\varphi(x, y) = A(x) + ay + b$ for some affine Boolean function A of \mathbb{F}_2^n and $a, b \in \mathbb{F}_2$. Therefore,

$$1_{G_{F'}}(x,y) = 1_{G_F}(x,y) + \varphi(x,y) = F(x) + A(x) + (a+1)y + b + 1.$$

If a = 1 then $1_{G_{F'}}$ is not an indicator of a graph of a function since $1_{G_{F'}}(x, 0) = 1_{G_{F'}}(x, 1) = 1$ when F(x) + A(x) = b. If a = 0 then $1_{G_{F'}}(x, y) = 1$ if and only if y = F(x) + A(x) + b, that is, F'(x) = F(x) + A(x) + b and F and F' are EA-equivalent and therefore CCZ-equivalent. Let now m = 2. Then φ has Hamming weight 2^{n+1} while 1_{G_F} and $1_{G_{F'}}$ have Hamming weight 2^n . Therefore, $\varphi(x, F(x)) = 1$ for any $x \in \mathbb{F}_2^n$. Besides, since $1_{G_{F'}}$ is the indicator of the graph of a function then for any $x \in \mathbb{F}_2^n$ there is a unique $\alpha_x \in \mathbb{F}_4$, $\alpha_x \neq F(x)$, that $\varphi(x, \alpha_x) = 1$. Withought loss of generality we can assume that F(0) = 0. Then $\varphi(0, 0) = \varphi(0, F(0)) = 1$. We also have $\varphi(0, \alpha_0) = 1$ and $\varphi(0, \beta) = 0$ for any $\beta \in \mathbb{F}_4 \setminus \{0, \alpha_0\}$. Since φ is affine then for any $x \in \mathbb{F}_2^n$ we have $\varphi(x, F(x) + \alpha_0) = \varphi(x, F(x)) + \varphi(0, \alpha_0) + 1 = 1$ and $\varphi(x, F(x) + \beta) = \varphi(x, F(x)) + \varphi(0, \beta) + 1 = 0$. Thus, $1_{G_{F'}}(x, y) = 1$ if and only if $y = F(x) + \alpha_0$, that is, $F'(x) = F(x) + \alpha_0$.

Hence, (n, m)-functions F and F' are CCZ-equivalent if and only if the graphs of F and F' are EA-equivalent. A natural question is to know whether CCZ-equivalence of the graphs is more general than their EA-equivalence.

Definition 1 Two (n,m)-functions F and F' are called ECCZ-equivalent if the indicators of their graphs $G_F = \{(x, F(x)); x \in F_2^n\}$ and $G_{F'} = \{(x, F'(x)); x \in F_2^n\}$ are CCZ-equivalent.

According to Theorem 1 we have:

Corollary 3 Let F and F' be two (n,m)-functions. F and F' are ECCZ-equivalent if and only if they are CCZ-equivalent.

References

- L. Budaghyan and C. Carlet. On CCZ-equivalence and its use in secondary constructions of bent functions. Preprint available at IACR ePrint Archive, number 2009/042.
- [2] L. Budaghyan, C. Carlet, A. Pott. New Classes of Almost Bent and Almost Perfect Nonlinear Functions. *IEEE Trans. Inform. Theory*, vol. 52, no. 3, pp. 1141-1152, March 2006.
- [3] C. Carlet. Vectorial Boolean Functions for Cryptography. Chapter of the monography *Boolean Methods and Models*, Y. Crama and P. Hammer eds, Cambridge University Press, in press.
- [4] C. Carlet, P. Charpin, and V. Zinoviev. Codes, bent functions and permutations suitable for DES-like cryptosystems. *Designs, Codes and Cryptography*, 15(2), pp. 125-156, 1998.

- [5] P. Charpin, G. Kyureghyan. On a class of permutation polynomials over \mathbb{F}_{2^n} . *Proceedings of SETA 2008*, Lecture Notes in Computer Science 5203, pp. 368-376, 2008.
- [6] K. Nyberg. Perfect non-linear S-boxes. Proceedings of EUROCRYPT' 91, Lecture Notes in Computer Science 547, pp. 378-386, 1992.